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A B S T R A C T   

Temperature conditions matter for ground-dwelling biodiversity. However, contrary to ambient-air temperatures 
as measured by weather stations, there is no global network available yet for measuring microclimate temper
atures as perceived by organisms living near the ground. To predict microclimate temperatures near the ground, 
mechanistic models have been recently developed. Here, we aim at testing the ability of the microclima package 
in R to make mechanistic predictions of real temperature conditions near the ground. Focusing on a network of 
45 temperature loggers measuring hourly air temperature near the ground (1-m height) inside and outside the 
forest of Compiègne, in northern France, we generated hourly maps of near-ground air temperature, as predicted 
by the microclima package, covering the exact same period: February 2018 to October 2019. Our results show a 
strong correlation between hourly temperatures as predicted by the model and hourly temperatures as measured 
by loggers (R2 = 0.88). We also found that vegetation height and the Normalized Difference Vegetation Index 
(NDVI) influence the root mean square error (RMSE) as well as the slope coefficient between measured and 
predicted temperatures. For instance, increasing vegetation height reduces the RMSE and the slope coefficient 
between measured and predicted temperatures. Sensors placed in open habitats outside the forest or under low 
forest canopy height tended to measure higher temperatures than those predicted by the model. Because sensors 
placed outside forests are likely biased by overheating due to incoming solar radiation, the predictive accuracy of 
the microclima model cannot be quantified in a fair manner. Better and more in-situ data outside forests are 
needed. Alternatively, the microclima package could be tailored to mimic sensor overheating and better reflect 
the temperature as measured by sensors near the ground in open conditions—(e.g., 3D structure of the vege
tation, sliding window approach).   

1. Introduction 

The activity and distribution of ground-dwelling organisms is 
strongly determined by temperature conditions near the ground surface 
(Woods et al., 2015). Depending on vegetation cover and the vertical 
layering of vegetation as well as terrain complexity, atmospheric con
ditions, such as ambient-air temperature, can be dramatically altered 
into a myriad of diverse microclimate conditions—i.e., the conditions 
that ground-dwelling organisms actually experience—that strongly 
deviate from the macroclimatic context (Lembrechts et al., 2019). 

Forests are an excellent illustration of this, and their role in buffering the 
macroclimate, especially temperature near the ground, is well known 
(De Frenne et al., 2019). Microclimate temperature can be defined as the 
temperature as perceived by organisms inside their proximal habitats, 
such as the soil-air interface for ground-dwelling insects in grasslands or 
inside tree holes for forest-dwelling organisms living in 
dendro-microhabitats (Scheffers et al., 2014). Indeed, there is often an 
offset between these microclimatic temperatures and the macroclimate 
temperatures as measured by weather stations (De Frenne et al., 2021), 
linked to the influence of vegetation cover. Considering the importance 
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of temperature conditions on biodiversity living near the ground and 
below the forest canopy, it is essential to be able to model its temporal 
variation in a spatially explicit manner to improve our understanding of 
distribution patterns of living organisms, especially in the context of 
current climate change (De Frenne et al., 2021). 

Collecting microclimate temperature data in space and time can be 
achieved using temperature loggers placed directly within the micro
habitat of the target species (Pincebourde and Salle, 2020). Various 
types of low-cost temperature loggers exist (e.g., iButton, HOBO 
Pendant, TMS4, Lascars, etc.), each with measurement capabilities 
potentially dependent on the habitat type and its direct exposure to solar 
radiation (Ashcroft, 2018; Maclean et al., 2021; Terando et al., 2017). 
However, deploying a network of temperature loggers in the field has 
several limitations in terms of: (i) the spatial extent one can cover; (ii) 
the spatial heterogeneity of microclimate conditions one can cover in
side the focal habitat; and (iii) the logistic costs to maintain such a 
network of loggers in the long term (Lembrechts et al., 2021a). Besides 
these technical limitations, one then needs to spatially interpolate 
temperature conditions as measured by temperature loggers in order to 
generate spatially contiguous maps of microclimate temperatures inside 
the focal habitat. For instance, Lembrechts et al. (2020) first established 
the SoilTemp database storing microclimate temperature data from all 
over the world before interpolating, using a machine learning approach, 
soil temperature conditions at 1 km resolution worldwide (Lembrechts 
et al., 2021b). However, temporal and spatial resolutions of such global 
maps of soil temperature remain too coarse for local studies. To fill this 
gap, the most recent microclimate research developed maps of 
sub-canopy air temperature at 25-m resolution across Europe (Haesen 
et al., 2023, 2021). In addition, and in parallel to these statistical ap
proaches to map microclimate temperatures at increasingly finer 
spatiotemporal resolutions, mechanistic models have been recently 
developed to map microclimate temperature anywhere and at any time 
from physical mechanisms and without the need for in-situ measure
ment data. (Lembrechts and Lenoir, 2020; Maclean, 2020). 

Maclean et al. (2019) developed the microclima R package, a mech
anistic model to downscale temperature conditions near the ground. The 
model can estimate microclimate temperatures at fine spatiotemporal 
resolutions by relying on ambient-air temperature as measured by 
weather stations, as well as multiple environmental variables that are 
known to alter temperature conditions as measured by weather stations. 
Wind speed and direct solar radiation are the two main atmospheric 
parameters likely to be reduced in ecosystems with denser and higher 
vegetation, leading to a dampening of air and soil temperature varia
tions (Gril et al., 2023; Vinod et al., 2023). Microclimate temperatures 
can deviate from macroclimate temperatures due to various factors. 
Topographical factors such as elevation and topographic incline have 
been shown to influence microclimate (e.g., Macek et al., 2019; Rita 
et al., 2021). For example, high elevations tend to experience cooler 
temperatures and increased wind speeds compared to low elevations. 
Similarly, south-facing slopes tend to be warmer and drier than 
north-facing slopes. Additionally, forests can regulate macroclimate 
temperatures through vegetation characteristics such as canopy density 
(Lenoir et al., 2017; Zellweger et al., 2019) and vegetation height (Song 
et al., 2013). In general, vegetation characteristics and proxies of 
aboveground biomass, such as the Normalized Difference Vegetation 
Index (NDVI), are good candidate variables to explain microclimate 
temperatures (Duffy et al., 2021). For instance, we expect a positive 
relationship between the buffering effect of vegetation and NDVI, such 
that higher NDVI values (i.e., denser vegetation) causes a stronger 
buffering effect of air temperature conditions near the ground. Thus, 
microclimate temperatures are less variable through time under 
well-developed vegetation cover (Yue et al., 2007). 

Maclean et al. (2019) depicted the microclima model as effective and 
adaptable to various ecosystems, which has been further demonstrated 
in several studies focusing on: (i) island and coastal ecosystems (Gard
ner et al., 2021; Maclean et al., 2019); (ii) grassland ecosystems 

(Atkin-Willoughby et al., 2022); or (iii) Arctic wetland ecosystems 
(Deschamps et al., 2022). For instance, Maclean et al. (2019) tested the 
validity of their model predictions against empirical data from tem
perature loggers installed in a coastal ecosystem (i.e., heathland system) 
and found an R2 of 0.909 and an RMSE of 1.61 ◦C. However, to our 
knowledge, no study has attempted yet to compare temperatures as 
predicted by the microclima model with field-measured temperature 
data inside the understory of temperate forests. As more and more re
searchers consider using mechanistic approaches to map spatial and 
temporal variation of microclimate, it is therefore necessary to know if 
the microclima model is also valid in forest ecosystems where the buff
ering effect of microclimate is particularly pronounced. 

In this study, we aim to (i) assess the ability of the microclima model 
developed by Maclean et al. (2019) to reliably predict air temperature 
conditions near the ground and inside the understory of a temperate 
forest and (ii) investigate the environmental factors that could explain 
part of the variation we observed in the strength of the coupling between 
temperature measurements from the loggers and temperature pre
dictions from the microclima model. To achieve this, we worked in a 
forest located in northern France (the Compiegne forest) and validated 
the hourly temperature maps generated by the microclima package in R 
through comparison with empirical data acquired by a network of 
temperature loggers recording during the period 2018–2019. 

2. Materials and methods 

2.1. Study area 

The study was conducted in the temperate deciduous forest of 
Compiègne (49◦17′–49◦27′N; 2◦45′–3◦2′E; 32–148 m altitude) and its 
surroundings open habitats for comparative purposes (Fig. 1). The forest 
of Compiègne is a state forest of 144 km2 located in northern France and 
managed by the Office national des forêts (ONF). The climate is sub- 
oceanic with mean annual temperature being 11.3 ◦C and total annual 
precipitation being 732 mm, on average, during the 1999–2021 period. 
The forest of Compiègne is dominated by common beech (Fagus sylvatica 
L.), oak (Quercus robur L., Q. petraea Liebl.), and Scots pine (Pinus syl
vestris L.) (ONF, 2012). 

2.2. Microclimate data 

2.2.1. Microclimate measurements 
Forty-five air temperature loggers (HOBO Pendant, UA-001-8, ac

curacy at 0 to +50 ◦C: ±0.53 ◦C) have been installed from February 1st 
2018 to August 31st 2019 in the state forest of Compiègne and its sur
roundings, including forty-one inside the forest (three of which are close 
to water bodies) and four outside, in open habitats around the forest 
(Fig. 1). The positions of the loggers inside the forest were determined a 
priori from an environmental sampling strategy that optimizes the 
variation in environmental conditions (see Table S1 for details of all the 
variables considered) (Hattab et al., 2017). In short, we first generated a 
large set of LiDAR-derived variables obtained from an airborne LiDAR 
flight operated in 2014 and then conducted a multivariate analysis to 
capture the greatest amount of variation, in terms of vegetation struc
ture and light conditions throughout the forest of Compiègne, within the 
environmental space reduced to the two or three first principal com
ponents. Once we obtained this reduced environmental space charac
terizing the variation of vegetation structure throughout the forest, we 
conducted a systematic sampling across this environmental space in 
order to capture the full range of variation as captured by the airborne 
LiDAR flight and to obtain a representative sample of the forest. Finally, 
we projected back our sample in the geographical space which explain 
why some loggers are located far apart while others are closer to each 
other (see blue dots in Fig. 1(c)). Note that loggers can be installed in 
adjacent management units which are homogeneous in themselves but 
often very different from one another. The microclimatic temperature 
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measured by the sensor is generally only characteristic of the few meters 
surrounding it (Gril et al., 2023). In addition, we also installed four 
temperature loggers outside the forest, in fully open conditions to obtain 
a contrast and assess the predictive accuracy of the microclima model in 
an open environment. These four loggers were installed all around the 
forest of Compiègne to be representative of the study area (see red dots 
in Fig. 1(c)). 

All temperature sensors were hanging at 1-meter height above 
ground and attached either on a tree trunk for sensors inside the forest or 
on a wooden pole for sensors outside the forest. To limit direct sunlight 
and overheating in response to light radiations, sensors were systemat
ically facing north and were shielded in white homemade PVC tubes (Ø 
= 10 cm, l = 15 cm) (See Zellweger et al., 2019 for the shielding design 
we used). The loggers recorded air temperatures at hourly resolution 
over the entire study period. 

2.2.2. Microclimate predictions 
Using the mechanistic microclimate model called microclima and 

implemented within R (see Maclean et al., 2019 for a description of the 
microclima package and for more information on how the underlying 
mechanistic model works), we predicted air temperature conditions 
near the ground (at 1-m height) at hourly resolution and over the same 
time period as the period covered by our 45 temperature loggers. We 
used a large set of variables to calculate the maps of microclimate pre
dictions (Table 1). First, from the input digital elevation model (DEM), 
the microclima model generates a map of the topographic incline to 
incorporate the effect of topography on microclimate processes. Then, 
among the other input data needed to run microclima, we provided in
formation on vegetation heights across the study area using either 
literature data or data acquired by the Global Ecosystem Dynamics 
Investigation (GEDI) satellite (see Table 1). For the area outside the 
forest of Compiègne we provided monthly maps of vegetation heights to 
account for height changes related to crop phenology over the studied 
period (information coming from literature review and agricultural 
technical institutes; Table S2). For the 41 other sites located inside the 
forest of Compiègne, map of forest canopy height, as measured in 2019 
by the GEDI satellite, was incorporated in the microclima model and 
considered stable over the study period. For vegetation height in the 
forest, we chose to use GEDI data rather than our airborne LiDAR 
because of the temporal mismatch between the LiDAR flight operated in 
2014 and our study period (2018–2019) and because forest manage
ment practices may have severely altered canopy height in several forest 
management units between 2014 and 2018. In addition to vegetation 
height and to also capture phenological changes inside the forest that 
cannot be captured through changes in canopy height, we used monthly 

data on NDVI as an additional input data to run the microclima model. 
We retained only one set of Sentinel-2 images per month with less than 
25 % cloud cover to compute NDVI (13 months with NDVI images over 
the 16-month of the study period). Based on these input data on vege
tation characteristics, the microclima model generates monthly data 
related to the effect of vegetation cover on microclimate processes, 
including surface albedo, fractional canopy cover and the ratio of ver
tical to horizontal projections of leaf foliage. Finally, the model com
bines all these variables related to the effect of vegetation cover on 
microclimate processes (i.e., surface albedo, fractional canopy cover and 
the ratio of vertical to horizontal projections of leaf foliage, all at 20-m 
resolution) with the variables describing topography (i.e., topographic 
incline and elevation). It also includes several layers of weather data 
available at relatively coarse spatial resolution (9 km × 9 km) across the 
entire study area (inside and outside the forest of Compiègne) but at a 
fine temporal resolution (hourly) to calculate the net radiation as the 
difference between shortwave and longwave radiation (longwave radi
ations being previously calculated by the model from meteorological 
data). From net radiation, the model generates hourly temperature maps 
from February 2018 to August 2019, with a spatial resolution of 20 m 
(see Fig. 2 for an example of hourly output on August 15th 2018 at 3:00 

Fig. 1. Localization of (a) the study region in France, (b) the study area inside the study region, and (c) the temperature loggers inside the state forest of Compiègne 
(41 blue dots) and its surroundings (four red dots) (for interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article). 

Table 1 
List of all variables used to run the microclima model.  

Input data Spatial 
resolution 
(m) 

Temporal 
resolution 

Source 

Elevation 25 NA IGN (https://geoservices.ign. 
fr/) 

NDVI 20 monthly Copernicus - Sentinel-2 
(https://scihub.copernicus. 
eu/) 

Forest height 30 NA Global Ecosystem Dynamics 
Investigation (https://glad. 
umd.edu/dataset/gedi) 

Crop height 20 monthly Literature 
2 m temperature 9000 hourly ERA-5 (https://cds.climate. 

copernicus.eu/cds 
app#!/dataset/reanalysis-er 
a5-land?tab=overview) 

2 m Relative 
humidity 

9000 hourly 

10 m u/v- 
components of 
wind 

9000 hourly 

Surface pressure 9000 hourly 
Cloud cover 9000 hourly 
Surface solar 

radiation 
downwards 

9000 hourly  
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pm). 

2.3. Model validation 

To assess the quality of the predictions from the mechanistic model 
implemented in the microclima R package, we compared hourly tem
perature predictions at a given logger location to the corresponding 
hourly temperature measurements from the focal logger, covering the 
entire period from February 1st 2018 to August 31st 2019. The strength 
of the relationship or coupling between predicted and measured hourly 
temperatures was first assessed for all loggers combined using a linear 
mixed-effects model (LMM) with the logger ID as a random intercept 
term to account for the fact that the data are not independent and to deal 
with the structure of longitudinal data (cf. time series of temperature 
values for each logger separately). 

In addition to the LMM that we fitted across all loggers to get an 
overall idea of the strength of the coupling between mechanistic pre
dictions and independent empirical measurements in the field, we also 
assessed the strength of the coupling between predicted and measured 
hourly temperatures throughout the entire study period but for each 
logger separately and independently, using a linear modelling (LM) 
approach (i.e., one LM per logger). We extracted the slope coefficient of 
the relationship but for each logger separately (i.e., one slope coefficient 
value per LM) and calculated the corresponding R2 and the Root Mean 

Square Error (RMSE) associated with each logger. The RMSE is recog
nized as an appropriate index to represent model performance for 
Gaussian data like temperature (Chai and Draxler, 2014). Then, to assess 
the seasonal signal in the coupling between mechanistic predictions and 
independent empirical measurements, we repeated the exact same 
procedure but running a LM for each month and each logger separately. 
We did not fit a LM for the months when there were logger failures, 
leading to a total of 630 slope coefficient values, 630 R2 values, and 630 

RMSE values. Then, in order to explain the observed variation in the 
monthly resolution of the slope coefficient and the R2 and RMSE values 
(i.e., our set of response variables), we built several models, using a 
LMM approach with logger ID as a random intercept term (see Eq. (1)), 
with a set of environmental variables (i.e., vegetation height, NDVI, 
elevation, and topographic incline) used as explanatory variables for the 
level of coupling between observed and mechanistically predicted 
values (i.e., as captured by the slope coefficient and R2 and RMSE 
values). We first verified the absence of strong pairwise correlation (r <
0.5) between the set of environmental predictor variables, using a 
Spearman correlation test, and then verified the absence of multi
collinearity between the variables (using the variance inflation factor: 
VIF < 5). In addition to vegetation height, NDVI, elevation and topo
graphic incline, we also tested the effect of seasonality by adding “sea
son” as a predictor variable interacting with NDVI (see Eq. (1)). To assess 
seasonality effect, we considered a factor variable with four levels: 
winter (total of 4 months: February 2018, December 2018, January 
2019, and February 2019); spring (total of 6 months: March 2018 to May 
2018 and March 2019 to May 2019); summer (total of 6 months: June 
2018 to August 2018 and June 2019 to August 2019t); and autumn 
(total of 3 months: September 2018 to November 2018). Differences in 
the level of correlation between predicted and observed temperatures 
across the four seasons were assessed by a Tukey post-hoc test.   

An interaction term was set between the NDVI and season variable, 
as the NDVI is season dependant. Quadratic effects were inserted into 
the equation to take into account possible non-linear relationships be
tween each predictors and the focal response variable (RMSE, R2 or the 
slope coefficient). 

Fig. 2. Example of output map of near-surface air temperature (◦C) generated by the microclima model at 20-m resolution across the forest of Compiègne and its 
surroundings, as of August 15th, 2018 at 3:00 pm. See Fig. S1 for a colorblind friendly version of this figure. 

RMSE/R2/slope ∼ poly(NDVI, 2) × season + poly(vegetation height, 2) + poly(elevation, 2) + poly(topographic incline, 2) + (1|loggers ID)

(1)   
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3. Results 

Over the period starting from February 2018 to August 2019, the 
average temperature measured by all loggers (n = 45) was 14.08 ◦C 
(standard deviation = 8.08 ◦C) and the average temperature predicted at 
the same 45 locations by the mechanistic modelling approach used in 
microclima was 13.87 ◦C (standard deviation = 8.14 ◦C). 

All loggers combined (n = 45), we found that the strength of the 
coupling between empirically measured and mechanistically predicted 
temperatures at an hourly resolution was high with a mean slope coef
ficient estimate as provided by the LMM of 0.93 (i.e., very close to one or 
identity), a conditional R2 value of 0.88 (marginal R2 = 0.87), and an 
RMSE value of 2.92 ◦C (Fig. 3(a)). Regarding our LM results based on 
each logger independently, we noted important variation in the degree 
of coupling between measured and predicted temperatures, with values 
ranging from 0.80 to 1.12 for the slope coefficient (mean slope = 0.93), 
values ranging from 0.78 to 0.94 for the R2 coefficient (mean R2 = 0.88), 
and RMSE values ranging from 2.10 to 4.43 ◦C (mean RMSE = 2.90 ◦C) 
(see Table S3 in the Supplementary Material for detailed results per 
logger). On a logger-by-logger basis, most loggers located inside the 
forest showed a rather good coupling between hourly temperatures as 
recorded by our loggers and hourly temperatures as predicted by the 

microclima model (Fig. 3(b)). Yet, under some circumstances, we noted 
significant differences and deviations between the empirically measured 
and mechanistically predicted temperatures (Fig. 3(c) and (d)). For 
instance, hourly temperature measurements from a logger located in 
open conditions outside the forest (red dots in Fig. 1(c)) had a tendency 
to exceed hourly temperatures as predicted by the microclima model, 
especially so during the summer season (red dots in Fig. 3(c)). On the 
contrary, hourly temperature measurements as predicted by the micro
clima model had a tendency to overestimate hourly temperature as 
recorded from a logger located near a water body (e.g., a pond) in the 
forest, especially during the summer season (red dots in Fig. 3(d)). 

The level of coupling between empirically measured and mechanis
tically predicted temperatures varied across the four seasons (Fig. 4). 
The RMSE value was lower (i.e., best predictive performances), on 
average, during autumn and winter compared to spring and summer 
(Fig. 4(a)). The R2 value was higher (i.e., higher explanatory power of 
mechanistically predicted temperatures), on average, during autumn 
compared to other seasons (Fig. 4(b)). Finally, the slope coefficient was 
closer to one (i.e., perfect coupling), on average, during spring and 
winter in comparison to summer and autumn (Fig. 4(c)). Regarding our 
LMMs to explain the variation we observed in the degree of coupling 
between empirically measured and mechanistically predicted 

Fig. 3. Correlation between measured and predicted hourly temperatures (mechanistic modelling), for (a) all loggers combined, (b) a logger where measured 
temperatures are strongly coupled with predicted temperatures, (c) a logger where measured temperatures tend to exceed predicted temperatures, and (d) a logger 
where measured temperatures tend to be exceeded by predicted temperatures. Dashed line is the identity line and solid line is the regression line. 
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Fig. 4. Mean values of (a) the RMSE, (b) the R2, and (c) the slope coefficient of the relationship between empirically measured and mechanistically predicted 
temperatures, according to season. Error bars represent standard deviation. Different letters between two seasons indicate a significantly different mean estimate of 
the focal response variable (RMSE, R2, or slope coefficient) (p-value <0.05). 

Fig. 5. Impact of environmental variables on the magnitude of the focal response variable extracted from univariate linear model between mechanistically predicted 
and empirically measured temperatures. Transparent ribbons representing the standard deviation. Symbols: 0.01 < p-value <0.05 (*); 0.001 < p-value <0.01 (**); p- 
value <0.001 (***). 
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temperatures, we found that only vegetation height and the interaction 
effect between NDVI and season had a significant influence on the RMSE 
value and the slope coefficient (Fig. 5). The RMSE value was negatively 
correlated with vegetation height, reaching the lowest RMSE values (i. 
e., best predictive performances) in forest stands with canopies of 15 m 
or higher. Vegetation height also had a negative effect on the slope co
efficient such that the slope coefficient was higher than one (i.e., 
amplification of extreme values) in low-stature vegetation but lower 
than one under higher forest canopies (i.e., buffering effect), with the 
slope coefficient reaching one (i.e., perfect coupling) when vegetation 
height was around 5 m. The effect of NDVI on the RMSE value and the 
slope coefficient was altered by the season. We found RMSE reached the 
lowest values (i.e., best predictive performances) when NDVI was low 
during autumn and winter, and when NDVI was high during the winter. 
We also found a negative effect of NDVI on the slope coefficient during 
summer, such that the slope coefficient was lower than one when 
aboveground vegetation biomass was high but higher than one when 
aboveground vegetation biomass was low. In general, the slope coeffi
cient was reaching values close to one (i.e., perfect coupling) at inter
mediate NDVI values. Finally, the observed variation in the R2 value was 
not influenced by any of the variables we tested. 

4. Discussion 

Overall, our findings suggest that the microclima model developed by 
Maclean et al. (2019) performs relatively well at predicting hourly air 
temperature near the ground in temperate forest ecosystems. We found a 
relatively strong level of coupling across all hourly records between the 
empirically measured and mechanistically predicted temperatures, with 
a slope coefficient of 0.93 (i.e., close to one) and an overall R2 value of 
0.88. On the other hand, the RMSE of 2.92 ◦C is high and indicates a low 
accuracy in the prediction of temperatures near the ground by the 
microclima model. While the coefficient of determination (R2) is often 
used to assess the quality of a model, it can be misleading, especially 
when applied to data with a wide range of values, as is the case with 
temperatures ranging from − 20 ◦C to +50 ◦C in our study system. 
Indeed, a high R2 value may simply reflect the fact that predicted values 
are generally close to observed values, without necessarily indicating 
that the model is accurate. This is where the RMSE comes in, giving a 
more objective idea of the accuracy of predictions. In our case, the RMSE 
measures the mean difference between mechanistically predicted and 
empirically observed values, giving a direct indication of the model’s 
prediction error. So, even if the R2 is high, a substantial RMSE (close to 
3 ◦C in our case) should not be underestimated, as it indicates a signif
icant error in the model’s predictions. This is why it is essential to 
consider both R2 and RMSE values when evaluating the performance of a 
predictive model. In short, while R2 can be influenced by the range of 
observed values and is therefore dependent on the study system and 
temporal resolution, RMSE provides a more robust and objective mea
sure of model accuracy. 

We found that the modelling performances of the microclima model 
were the best, in terms of model accuracy (i.e., low RMSE values), 
during autumn while the level of coupling between predicted and 
observed temperatures was the best (i.e., slope coefficient close to one) 
during spring. Most importantly, we found that the RMSE value between 
the mechanistic predictions from the microclima model and our empir
ical observations across all our loggers was negatively related to vege
tation height. This suggests that the microclima model performs best, in 
terms of its accuracy at predicting air temperatures at an hourly interval 
closest to measurement values, under high forest canopies while its ac
curacy strongly decreases when canopy height is low, namely in fully 
open conditions (see Fig. 3(b) and (c) as two opposite extreme examples 
of loggers located under high canopy and in a fully open site outside the 
forest of Compiègne). We believe that a high canopy provides more 
space for several vegetation layers to develop and densify canopy cover 
than in areas with a low-stature canopy. Thus, solar radiation reaching 

the ground is less abundant under high canopies, reducing overheating 
of temperature sensors and resulting in lower RMSE values. Similarly, 
we found that the microclima model has a tendency to overestimate 
temperature conditions compared to empirical measurements (i.e., slope 
coefficient lower than one) under high forest canopies while it tends to 
underestimate temperature conditions compared to temperatures as 
recorded by loggers (i.e., slope coefficient higher than one) under low 
vegetation height and in fully open conditions. This is consistent with 
former findings suggesting that temperature loggers located outside 
forests in fully open conditions tend to overheat and thus overestimate 
the true air temperature (Maclean et al., 2021). 

We can observe a tendency of the microclima model to underestimate 
the warmest temperatures, in some conditions. These temperature dif
ferences are reflected in the high RMSE value of 2.92 ◦C we obtained 
when analysing the loggers altogether. Seasonally, the largest differ
ences were observed during spring and summer. These differences may 
be due to measurement errors of the loggers’ sensors caused by their 
greater exposure to solar radiation during spring and summer and low 
air-mixing due to low wind exposure, causing an overheating and thus 
an overestimation of the measured temperature by the loggers. We used 
a similar approach to identify variations in correlation levels depending 
on the time of the day, and also observed a decrease in correlation level 
for the coldest (i.e., from 1am to 6am) and warmest hours (i.e., from 
1pm to 6pm) (Table S4). Congruently, Maclean et al. (2021) found that 
loggers accuracy in open habitats can be altered by overheating during 
the warmest periods of the day or year, and overcooling during the 
coldest periods of the night or year. Then, the authors suggest that their 
use should be avoided in locations exposed to direct sunlight/moonlight 
and close to the soil where wind speed can dramatically slow down, 
limiting air circulation. Additionally, the high RMSE value could also 
partially be due to the temporal offset between measured and predicted 
temperatures. Indeed, the minimum and maximum of measured tem
peratures are reached after the minimum and maximum of predicted 
temperatures, with a time difference ranging between one and two hours 
(Fig. S2). 

Other results of our study support this view. First, the correlation 
level between hourly measured and predicted temperatures varies 
spatially depending on the environmental characteristics of the forest 
(Fig. 5). We found that the difference between mechanistically predicted 
and empirically measured temperatures decreased with increasing 
vegetation height, with the smallest differences observed in areas with 
vegetation heights of 15 m or more. Some studies found that vegetation 
height is one of the main factors influencing temperature near the 
ground, by limiting effects of exposure to direct solar radiation (e.g., 
Green et al., 1984; Yu et al., 2018) and so limiting the risk of overheating 
effect from the loggers. Second, in open areas, such as crop fields located 
near the outer edge of the forest, the correlation level between hourly 
measured and predicted temperatures was notably lower than in forest 
stands. However, in our case study, loggers were installed 1 m above the 
ground, and were thus most of the time above the vegetation canopy in 
open areas. To better evaluate the accuracy of the model in open eco
systems, it might be more interesting to consider loggers set at the 
ground surface. 

While the microclima model can be useful for mechanistically pre
dicting temperature near the ground within forest habitats, it is not 
without limitations. One major issue is that the model is heavily 
dependent on the quality of the data that is fed into it. For example, we 
used GEDI data (satellite-borne LiDAR) to estimate forest vegetation 
height, but it would be more informative to use airborne LiDAR data 
whenever available to have a more accurate estimation of vegetation 
height at an even finer spatial resolution (Lenoir et al., 2022). This 
problem is especially true for ecosystems with low vegetation height 
changing rapidly over time (e.g., crops, grasslands). In our study, we 
took this into account by modelling monthly vegetation height maps in 
cultivated areas. In addition, in its current implementation, the micro
clima model does not integrate all variables that can alter the 
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microclimate conditions. For instance, the effects of the vertical 
complexity of the vegetation structure, in terms of vegetation layering, 
on understory temperature are not integrated, even though sub-canopy 
and understory layers are recognized as strong microclimate drivers, and 
should be included in the microclima model for better estimation of 
temperature near the ground (Kovács et al., 2017; Stickley and Fra
terrigo, 2021; Gril et al., 2023). This information can reflect the method 
of forest management and the age of a forest stand, which both alter tree 
and shrub density as well as the amount of solar radiation reaching the 
ground (Lindenmayer et al., 2022). Finally, the model does not fully 
account for the influence of the surrounding landscape when computing 
the microclimate temperature within each pixel. As such, the model may 
predict the same time series of understory temperatures towards the 
edge or the interior of a forest stand if all implemented parameters are 
otherwise equal. However, it is well-established that an edge-interior 
temperature gradient exists in forests and forest stands (Meeussen 
et al., 2021), which may not be reflected in NDVI of vegetation heights 
values as currently implemented in microclima. A possible perspective 
would be to use a sliding window approach to account for landscape 
effects on microclimate temperatures (Ma et al., 2017). 

In terms of prospects, the model’s behaviour could be assessed by 
working on daily temperature aggregates (instead of the hourly tem
peratures used in the present study). This approach could lead to lower 
RMSE values because daily aggregates might smooth over potential 
mismatches between model and data at fine temporal resolution as seen 
in Fig. S2. Interestingly, while RMSE values would be lower on daily 
aggregates (i.e., indicating a better accuracy of the model), R2 values 
might also be lower, due to the decreased range of temperatures. It 
should be noted that working on daily aggregates would be sufficient for 
many applications, such as for ecologists seeking to understand the 
relationship between biodiversity and microclimate, especially if later 
on, monthly or yearly means and ranges are to be calculated. Another 
prospect would be to improve not only the microclima model, but also 
the in-situ measurements. For example, the white PVC tubes we used to 
protect the loggers may have little capacity to limit overheating effects 
in open habitats, contrary to our expectations. The accuracy of the 
measured temperatures could be improved by using a ventilated shelter 
to limit the overheating effect. So, the dependence of logger’s accuracy 
on solar radiation and wind exposure may partly explain the differences 
observed in our study between predicted and measured temperatures, 
for instance in the context of open areas or in places near water. 
Moreover, using fine-wire thermocouples, which have a better capacity 
for measuring air temperatures without overheating (Maclean et al., 
2021), would make it possible to approach the “absolute truth” in terms 
of microclimate temperature. Finally, it should be noted that the 
microclimc model, a “sister model”, has been tested for its reliability in a 
forest ecosystem (Maclean and Klinges, 2021). This point-based model 
has made it possible to improve the prediction of below-canopy tem
peratures on a fine temporal scale, by considering transient processes 
such as heat and vapour exchange within and below forest canopy. As 
our particular research question was to provide gridded temperature 
maps, it would be interesting to incorporate the specificities of micro
climc in a new model in order to improve the fine-scale spatiotemporal 
prediction of temperatures under the forest canopy. 

5. Conclusion 

Our findings support the idea that the microclima package in R is an 
effective mechanistic model for predicting temperatures near the ground 
in temperate forest habitats. This model considers various factors such as 
radiation exposure, wind speed, topography, and vegetation character
istics to predict how temperatures vary spatially and temporally across 
forest stands. By incorporating these factors, the model can predict the 
temperature gradients that exist within the forest, which are critical for 
understanding how different species of plants and animals will interact 
with their environment. Our study thus allows us to better optimize the 

modelling of predicted temperatures in more open ecosystems and 
highlights the need to validate predictions with observed temperature 
data. Based on our findings, we conclude that the microclima model can 
be safely extended to other temperate forest habitats with high vegeta
tion height that do not have in-situ microclimate measurements data to 
predict microclimate temperature variations near the ground. However, 
the capabilities of themicroclima model to estimate temperatures in open 
or low-stature vegetation environments is questioned due to the sensi
tivities of temperature loggers to overheating. There is still a lack of 
research that focuses on predicting microclimate in open area systems 
(e.g., crops and grasslands). The use of loggers placed close to the 
ground, under the crop canopy, especially high-performance fine-wire 
thermocouples, could reduce this sensitivity to overheating. 
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Hylander, K., Kreyling, J., Kruijt, B., Macek, M., Málǐs, F., Man, M., Manca, G., 
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Helfter, C., Hepenstrick, D., Herberich, M., Herbst, M., Hermanutz, L., Hik, D.S., 
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M., Kovács, B., Kreyling, J., Lamprecht, A., Lang, S.I., Larson, C., Larson, K., 
Laska, K., le Maire, G., Leihy, R.I., Lens, L., Liljebladh, B., Lohila, A., Lorite, J., 
Loubet, B., Lynn, J., Macek, M., Mackenzie, R., Magliulo, E., Maier, R., Malfasi, F., 
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Compiègne. 

Pincebourde, S., Salle, A., 2020. On the importance of getting fine-scale temperature 
records near any surface. Glob. Change Biol. 26, 6025–6027. https://doi.org/ 
10.1111/gcb.15210. 

Rita, A., Bonanomi, G., Allevato, E., Borghetti, M., Cesarano, G., Mogavero, V., Rossi, S., 
Saulino, L., Zotti, M., Saracino, A., 2021. Topography modulates near-ground 
microclimate in the Mediterranean Fagus sylvatica treeline. Sci. Rep. 11, 8122. 
https://doi.org/10.1038/s41598-021-87661-6. 

Scheffers, B.R., Edwards, D.P., Diesmos, A., Williams, S.E., Evans, T.A., 2014. 
Microhabitats reduce animal’s exposure to climate extremes. Glob. Change Biol. 20, 
495–503. https://doi.org/10.1111/gcb.12439. 

Song, Y., Zhou, D., Zhang, H., Li, G., Jin, Y., Li, Q., 2013. Effects of vegetation height and 
density on soil temperature variations. Chin. Sci. Bull. 58, 907–912. https://doi.org/ 
10.1007/s11434-012-5596-y. 

Stickley, S.F., Fraterrigo, J.M., 2021. Understory vegetation contributes to microclimatic 
buffering of near-surface temperatures in temperate deciduous forests. Landscape 
Ecol. 36, 1197–1213. https://doi.org/10.1007/s10980-021-01195-w. 

Terando, A.J., Youngsteadt, E., Meineke, E.K., Prado, S.G., 2017. Ad hoc instrumentation 
methods in ecological studies produce highly biased temperature measurements. 
Ecol. Evol. 7, 9890–9904. https://doi.org/10.1002/ece3.3499. 

Vinod, N., Slot, M., McGregor, I.R., Ordway, E.M., Smith, M.N., Taylor, T.C., Sack, L., 
Buckley, T.N., Anderson-Teixeira, K.J., 2023. Thermal sensitivity across forest 
vertical profiles: patterns, mechanisms, and ecological implications. New 
Phytologist. 237, 22–47. https://doi.org/10.1111/nph.18539. 

Woods, H.A., Dillon, M.E., Pincebourde, S., 2015. The roles of microclimatic diversity 
and of behavior in mediating the responses of ectotherms to climate change. 
J. Therm. Biol. 54, 86–97. https://doi.org/10.1016/j.jtherbio.2014.10.002. 

Yu, Q., Acheampong, M., Pu, R., Landry, S.M., Ji, W., Dahigamuwa, T., 2018. Assessing 
effects of urban vegetation height on land surface temperature in the City of Tampa, 
Florida, USA. Int. J. Appl. Earth Obser. Geoinform. 73, 712–720. https://doi.org/ 
10.1016/j.jag.2018.08.016. 

Yue, W., Xu, J., Tan, W., Xu, L., 2007. The relationship between land surface temperature 
and NDVI with remote sensing: application to Shanghai Landsat 7 ETM+ data. Int. J. 
Remote Sens. 28, 3205–3226. https://doi.org/10.1080/01431160500306906. 

Zellweger, F., Coomes, D., Lenoir, J., Depauw, L., Maes, S.L., Wulf, M., Kirby, K.J., 
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