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The need for clean, safe and efficient energy is a major societal 
issue that involves the development of new technologies for 
storage and energy production. The electrolytic media are at the 
center of the electrochemical devices like fuel cells, 
dye−sensitized solar cells, also called Grätzel, or super-
capacitors or lithium-ion batteries. The finding of new 
electrolytes is rather challenging as it must fit certain 
constraints such as wide electrochemical windows, sufficient 
ionic conductivities, excellent thermal stability and sufficient 
mechanical properties. Many studies have converged towards 
the study of hybrid electrolytes consisting of organic and 
inorganic phases, or polymer-ionic liquid mixtures, to obtain 
solid electrolytes and to fulfill all these constraints. Controlling 
the structure at the nanoscale and understanding their properties 
at various length and space scales are crucial for their 
optimization. Recent and different ways were proposed to 
design hybrid electrolytes opening new perspectives in the 
energy field. The genesis and the presentation of these 
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developments are presented through three main applications: 
the fuel cells, the organic photovoltaic cells and the energy 
storage. 

Introduction 
The consumption of energy is continuously increasing and one of the answer 

is to improve the energy devices. Then the need to develop new advanced 
materials for the production and storage of energy in safe, efficient and 
environmentally friendly conditions is prominent. Electrolytes, at the center of the 
various devices, follow an incremental evolution together with breakthroughs. 

Hybrid electrolytes have been widely investigated for various energy devices 
and fall into three broad types: (A) Hybrid membranes for Proton Exchange 
Membranes for Fuel Cells (PEMFCs) especially for temperatures up to 
120 degrees Celsius (°C), (B) Hybrid ionic conductor xerogels for organic 
photovoltaic devices, and (C) Hybrid polymer/ionic liquid membranes for use in 
the energy storage. All these hybrid electrolytes have recently experienced new 
advances by controlling their structure at various length scales from macro- to 
nano-scales. 

 
 
A - Hybrid Polymer Membranes for Proton Exchange 

Membranes for Fuel Cells 

The hybrid electrolytic polymer membranes have been extensively studied 
for fuel cells1-4. A scheme of fuel devices equipped with polymer membrane is 
presented in the figure 1. These membranes can be obtained by different 
processing routes after mixing the polymers and the inorganic components. The 
main processes are the casting5-6, the spray-coating7, the extrusion8 and more 
recently the electrospinning6. 
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Figure 1: Synoptic layout of a fuel cell with a proton exchange membrane and, 
in the enlargement, at both electrode/membrane interfaces, the catalytic redox 

reactions. 

a - Hybrid polymer membranes with inorganic fillers 
This family can be divided into several subfamilies depending on whether the 

polymer phase is an ionic conductor and whether the inorganic or hybrid phase 
contains ionic groups. One of the main families is constituted of membranes with 
a polymer electrolyte such as Nafion®-like perfluoroalkylsulfonic acid polymers 
(benchmark membranes)9-15, and sulfonated polyaromatic polymers16-17. These 
polymers include a second phase, (summarized in table 1) either an inorganic filler 
like mineral (laponite11, 16, 18, montmorillonite12-14, zinc oxide (ZrO2)19

, Silica 
(SiO2)20

, calcium hydrophosphonate10, titania (TiO2)13) or a heteropolyacid 
(hydrophosphoric acid21, orthophosphoric acid22-23, phosphotungstic acid19, 24-28, 
phosphomolybdic acid25-26, 29, silicotungstic acid25, 27, 30, phosphoantinomic acid31, 
zirconium phosphate sulfophenyl phosphate32, zirconium phosphate15, 27, 
mesoporous acid silicate16). 
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Table 1: Mineral fillers and heteropolyacids used in the hybrid membranes 
for fuel cells. 

Mineral fillers Formulae or composition 

Laponite18, 33 
(Southern Clay Co.) 

(Na0,7
+[(Si8Mg5,5Li0,3)-

O0,2(OH)4)]0,7-)

MMT12 
MontMorillonite (Na+-MMT)18

(Na, Ca)0.3(Al, 
Mg)2Si4O10(OH)2·nH2O

m-MMT12 
modified MontMorillonite 
(dodecylamine-exchange montmorillonite)

as above 

Zirconium isopropoxide19 
(Alfa Co. Ltd)  

[Zr(OCH(CH3)2)4-(CH3)2CHOH] 

Heteropolyacids

hydrophosphoric acid21 H3PO2

Orthophosphoric acid22-23  H3PO4

12-PhosphoTungstic Acid (PTA or 
PWA)19, 24-27 

(H3(P(W3O10)4)·nH2O) 

Phosphomolybdic Acid (PMA or 
PMo12)25-26, 29 

(12(MoO3·2H2O)·H3PO4·4H2O) 

SilicoTungstic Acid (STA or SiWA)25, 27, 

30 
(H4(Si(W3O10)4)·nH2O)

Phosphatoantimonic acid (H3)31, 33-34 (HSb (PO4)2·nH2O)

Zirconium Phosphate Sulfophenyl 
Phosphonate (ZrPSPhP1.5)32

(Zr(HPO4)·(O3PC6H4SO3H)1.5) 

Zirconium Phosphate (ZrP)27, 35 (Zr(HPO4)2 nH2O)
The inorganic or hybrid fillers can also be embedded in non-ionic polymers, 

such as partially or perfluorinated polymers like Poly(Vinylidene Fluoride) 
(PVdF), Poly(Vinylidene Fluoride-co-HexaFluoroPropene) (P(VdF-HFP), and so 
forth36-37. The obtained membranes are known to be chemically and 
electrochemically stable, with respect to the potential window of the 
applications38. 

The overall objective of the hybrid approach is to decouple or couple the 
properties of the obtained membranes depending on the applications. For fuel 
cells, the properties include ionic conductivity, mechanical strength and/or water 
retention at elevated temperatures15. 
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Proton conductivity 
The addition of mineral fillers (layered silicates or metallic oxides) or 

heteropolyacids allows improving conductivities at low relative humidity (Figure 
2). Most of the fillers/heteropolyacids has a substantial hydrophilicity and/or 
significant acidity, which explains the high water uptake. The addition of 
inorganic fillers may decrease12 or increase31 conductivities while improving 
other properties. For heteropolyacids, there is often an optimal loading27, around 
7 weight-percent (wt.%), for example, for sulfonated polysulfones (SPS) 
/phosphotoantimonic acid (H3)31, 34, 39. The size and the shape of the fillers also 
have its importance34 since the different properties are highly dependent on the 
structuration of the fillers at the nanoscale and on the structuration of the organic 
components vs. inorganic ones at the various length scales. 

 
Figure 2: Ionic conductivity as a function of relative humidity (T∈ 0	, 120°  
for each relative humidity). The curves are the weighted average conductivities 
at each relative humidity between the different temperatures (i) for Nafion®, and 

(ii) of the conductivities of the hybrid membranes previously cited. 

The hydrophilic nature of these fillers should increase water uptakes and 
ionic conductivities in the final obtained composite membranes. The assumptions 
are questionable40 since the literature reported contradictory results on the role 
played by the inorganic fillers13-15. It can be noticed that the improvement of the 
proton conductivity was low the last 20 years4, 14-16 by using hybrid membranes in 
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the field of low/medium-temperature fuel cells. In the hybrid membranes, the 
interplay between the fillers and the polymer electrolytes is not clearly and 
definitely elucidated9-10, 16: (i) The water contained in the particles cannot easily 
be shared with the rest of the polymer electrolyte phase, and (ii) the conductivity 
of the inorganic/hybrid phase is in general at least one order lower than the one of 
the electrolytic organic phases. Nevertheless some composite membranes have 
worthwhile properties in the application uses12, 15. 

 
Mechanical properties 
Improving effects of the mechanical properties at the local scale and the 

localization of the crystalline zones10 are invoked to explain this paradox. The 
ionic transport has been shown to be intimately linked with the local mechanical 
properties41 and the multiscale structure42-43. 

The addition of heteropolyacids (Table 2) can reinforce the membrane, either 
with ionic charges (heteropolyacids) or not33. This addition can also weaken the 
membrane in the case of weak interactions. The system with sodiated forms of 
heteropolyacids25 shows that, if the interaction is not strong enough, the network 
is weakened. 

Table 2: Mechanical properties of hybrid membranes. 

Hybrid membrane Ultimate tensile 
strength/MPa (σ)

Young 
Modulus/MPa (E)

Elongation at 
break/% (ε) 

Nafion (23°C, 
50%RH)44

23/28 288/281 252/311 

NaSTA/Nafion®11725 
NaPMA/Nafion®117 
NaPTA/Nafion®117 
(wet) 

14 
8 
3 

 45 
70 
170 

 

SPS 1.1 mol H+·kg-1 
3.5/7.1/12 wt.% of 
H3

39 

  
158/88/59 

 
6.4/5.4/1.9 

SPS 3/25 wt.% of H3
39 370/340 48/60 

Degradation temperatures 

The effect of heteropolyacids, which globally has high degradation 
temperatures, is not systematically studied (Table 3). In general, the obtained 
composites do not exhibit very different degradation temperatures from those of 
associated polymers. This observation seems logical since the degradation is 
always conditioned by the least stable component. For NaSTA/Nafion, the 
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degradation temperature is lower than that of Nafion alone. In the case of the 
composite made of phosphotungstic acid/SBPS, the addition of the mineral acid 
only reduces the degradation temperature of the low degrees of sulfonation (-44°C 
between 20 and 60 mol.% of sulfonation). This fact means that the acidic 
functional groups are more or less protected as the degree of sulfonation, the 
loading, the level of interaction (from repulsion to ionic crosslinking), and acid or 
alkaline forms of the heteropolyacid45. The ionic interactions of phosphotungstic 
acid/SBPS is such that the degradation temperature increases with the sulfonation 
rate instead of decreasing as for the pure ionomer(+64°C between 20 and 60 
mol.% of sulfonation). The composites formed of non-ionic polymers and 
heteropolyacids have high degradation temperatures (>300°C). The combination 
of components having high degradation temperatures explains this observation. If 
all other characteristics are combined, they would be relevant candidates for 
"medium temperature" PEMFCs. 

Table 3: Degradation temperatures at 5 wt.% of weight loss of hybrid 
membranes. 

Hybrid ionomers/fillers Degradation 
temperature/°C 

(Inert atmosphere 
10°C·min-1) 

Nafion/MMT(3/5/7 wt.%)12 
Nafion/m-MMT(3/5/7 wt.%)

340/330/330 
340/340/350 

Sulfonated PolyEtherEtherKetone/MMT(10 wt.%)18 
Sulfonated PolyEtherEtherKetone /Laponite(10 wt.%)

320 
320 

Hybrid polymers/mineral fillers/acids

Al2O3 (50 wt.%) + H2SO4 (6 mol·L-1) + 
Poly(VinylideneFluoride)/15 mol.%HexaFluoroPropylene 
(PVdF-HFP)46 

180 

Zr/Polydimethylsiloxane/H3PO4
19 300 

Hybrid ionomers/heteropolyacids

NaSTA/ Nafion®25 300 

phosphotungstic acid24 
phosphotungstic acid/Sulfonated bisphenolsulfone (SPBS) 
20/40/60 (6/4) 

T>800 
347/359/411 

Polymer/heteropolyacids

phosphotungstic acid/bisphenolsulfone24 313 
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b - Polymer membranes with hybrid particles 
Many associated properties still remain elusive, such as the sizes, the 

distribution and the structure of the inorganic or hybrid particles, the interactions 
and the interplay of structure/property relationships between these subsystems. 
The structural studies of such hybrid membranes are very rare, notably due to the 
presence of two subsystems. Despite this complexity, the investigation of 
multiscale materials using direct and reciprocal spaces allows reaching a thorough 
structural description47-48. Bulk and surface information are obtained in a large 
range of characteristic length scales ranging from the nanometer to angstrom 
scale. In the reciprocal space, the size, shape and interface effects can be 
discriminated between the different subsystems due to the large gaps between the 
related characteristic correlation lengths. The distribution and the size of the 
hybrid particles are notably investigated47-49. 

A recent study of an original composite membrane composed of conducting 
polystyrenesulfonic acid-grafted silica particles (Figure 3) into a PVdF-HFP 
matrix37 was used to address and clarify these questions49. 
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Figure 3: SAXS absolute intensity as a function of the scattering-vector modulus 
q for (i) a swelled composite membrane with 50 wt.% of fillers at room 

temperature, (ii) a simulation of the form factor due to the hybrid particles with 
core-shell spheres having shell thicknesses equal to 70 nm distributed according 

a Schulz distribution (=0.5) and a core radius equal to 60 nm as well as the 
contribution of the polyelectrolyte chains, and (iii) the experimental contribution 

of the polymer matrix (Reproduced with permission from reference 47. 
Copyright [2015][the Royal Society of Chemistry]). 

The structural variation of the various phases constituting the composite 
membranes i.e. the aggregates of particles, the polymer crystalline phase and their 
interactions, as a function of the amount of hybrid particles, were also described. 
The SAXS study, presented in the figure 3, shows the deconvolution of these 
different contributions. An incremental approach allowed to simulate the form 
factor of the hybrid particles with relevant parameters, to isolate the contribution 
of the polymer matrix, and to describe the polyelectrolyte chains of the hybrid 
particles. These results stress the possibility of a dichotomous interpretation 
leading to an overall quantitative and qualitative description of the nanostructure. 

 
c - Nanostructured polymer membranes coupling 

electrospinning and sol-gel chemistry 
Understanding the relationship, between the nanostructure and the properties, 

is also highlighted by recent studies on hybrid membranes including silica sol-gel 
chemistry with precursors having sulfonic acid functions and PVdF-HFP4, 50-52. In 
fact, it has been possible to locate and to control the inorganic phase (size, 
structure)6-7, 52-53, even at the nanoscale6. The figure 4 shows the Small Angle 
Neutron Scattering (SANS) spectra (the absolute intensity as a function of the 
scattering-vector modulus q in nm-1) of membranes obtained by electrospinning 
coupled to the sol-gel chemistry54-55 compared with the membrane having the 
same composition obtained by casting. These results clearly demonstrate the 
ability of the hybrid strategy to control the multiscale structure of these hybrid 
membranes particularly at the nanoscale. Thus, it is possible to modify the 
organization of ionic/hydrophilic domains (large q), of the semi-crystalline phase 
of the polymer phase (intermediate q), and at longer distances (small q), which 
describes the characteristic correlation lengths of the fibers. 
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Figure 4: Scattered intensity versus scattering-vector modulus q of electrospun 

and casting membranes with 55 wt.% of inorganic phase. 

The control of the ionic inorganic hybrid phase has significantly enabled to 
improve the ionic conductivity up to 80°C56 with values in the same order of 
magnitude as Nafion membranes. This innovative coupling has achieved notable 
mechanical properties56. Beyond the macroscopic properties, this family has 
deepened the understanding of proton transport in an ionic multiscale host matrix. 
Indeed the original nanostructure is made of fibers with cylindrical hybrid "mille-
feuille" structure6, 43, 56. This system allowed to increase knowledge in the field of 
multiscale transport in such membranes. By various techniques, the dynamics of 
the proton have been then described from the nano- to the macro-scales43, 57. 

The hybrid membranes for fuel cells have been widely studied in the past 50 
years. Renewed interest has also been held to increase the operation temperature 
up to 120 or even 150°C. But these membranes are struggling to replace the 
benchmark perfluorinated membranes. Hybrid membranes are evolved from 
polymer blended with inorganic materials to nanostructured hybrid membranes. 
This complexity, both with the choice of components, such as hybrid particles, 
and with different process and chemistry options, shows the importance of the 
obtained multiscale structures to improve the performance of electrolytes. The 
control of these structures at different scales including the nanoscale seems to be 
a key to their evolution towards an application. Indeed recent studies present 
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results distinguished from those of the previous families by coupling sol-gel 
chemistry and electrospinning as elaboration process6, 43, 56. 

 
 
B - Electrolytic Xerogels for Organic Photovoltaic Cells 

Among the technologies available to the global energy mix, photovoltaic 
conversion appears as a key player. This renewable and inexhaustible energy is 
mainly based on silicon technology. Its interesting performances helped the 
photovoltaic industrialization. However, the manufacturing cost of silicon 
photovoltaic cells remains a real drawback to its development. Described for the 
first time in the seventies, organic photovoltaic materials are an interesting 
alternative to inorganic materials. Specifically, the new flexible photovoltaic 
devices with photosensitized dyes have great potential due to their low cost, low 
weight, flexibility and ability to large scale implementation. Recent studies point 
to their high potential energy payback58. However, to become a true complement 
to the inorganic technology, several challenges must be overcome, particularly in 
relation to the conversion efficiency, which is still extremely low. Indeed, the best 
yields reported in the literature for organic cells are nearly 11-13% in the 
laboratory against 15-25% for silicon cells. 

 
a - Organic Solar cells 
Dye−sensitized solar cells DSSCs made of a mesoporous network of 

interconnected titania (TiO2) nanocrystals are an interesting alternative to 
conventional inorganic photovoltaic devices because of their high−efficiency and 
low−cost59. But the presence of liquid electrolyte causes often sealing problems 
that impact the long term operation of the devices and raises safety issues60. 
Therefore, different strategies to solidify the electrolyte have been explored61. The 
most studied ones are based on hole conductors (HTM) such as inorganic 
materials, conjugated polymers or small doped molecules62. Such cells are 
reaching performances of 7.2%63 but are still limited by their naturally low 
electronic conductivity, by the insufficient penetration of solid electrolytes in the 
nanoporous electrodes64 which can reduce the cell performances by 10 to 20%65. 
Alternatively, the ionic conductor may play a role of solid electrolyte to obtain an 
efficiency up to 8.1%66. An original approach is the use of quasi-solid electrolytes 
like gels. But electrolyte gels do not achieve the objectives of security and stability 
required by the technology for a sustainable industrial development. Indeed 
organic solvents are trapped in the matrix and have a high risk of instability at 
high temperatures, due to the increase of their volatilities, and flammability67. 
Moreover, these liquid electrolytes can corrode electrodes and dyes. 

In Grätzel cells, the electrolyte contains a redox couple which carries 
electrons from the cathode to the molecules of the photosensitized dye. The most 
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promising redox couple discovered to date is the iodide/triiodide (I- / I3
-)68. Ionic 

liquids (ILs), which are organic salts having a melting temperature below 100°C, 
have key advantages over organic solvents: thermal and chemical stability, low 
volatility, non-flammability, and wide electrochemical window69. Among the 
various existing ionic liquids, imidazolium salts have been extensively tested as 
electrolytes for Grätzel cells. However, pure imidazolium iodide/triiodide (I-/I3

-) 
exhibit high viscosity, which often yield DSSCs with poor performance. 
Therefore, the search for alternative electrolytes remains a strategic issue for 
practical applications. Recently, eutectic ternary mixtures of iodide ionic liquids 
as electrolyte, combined with nano−crystalline TiO2 particles as photo−electrode, 
lead to DSSCs with efficiency close to 8% under spectra (of 1 sun, 1000 W/m2 at 
25°C perpendicular to the cell plane) [AM 1.5] illuminations70. However, the 
long−term stabilities of such DSSCs have not been reported. 

 
b - Ionogels 
The development of ionogels, solid or semi-solid electrolytes, containing 

ionic liquids is an original way to overcome the limitations of certain electrolytes 
or to meet new specifications71. The ionogels are composed of an ionic liquid and 
an organic network, constraining the liquid within a solid system, to provide a 
physical barrier between the electrodes and thereby prevent any short circuits. 
Accordingly, electrolytic ionogels should be safer and more suitable for the design 
of flexible devices. But some articles also disclose the use of electrolytes based 
on ionic liquids, including silica nanoparticles or networks to improve the 
performance of the obtained systems. Cells containing ionogels as electrolytes 
reached a yield of 7% in a Grätzel cell, and ionogels based on protic ionic liquids 
have shown significant transport properties72. 

An alternative method for producing ionogels relies on the synthesis, in one 
step by sol-gel chemistry, of a silica network immobilizing in-situ ionic liquids73-

74. But the ionic liquids are only trapped in the silica network and are not bound 
to the silica network leading to problems of leakage and therefore long-term 
stability. A modification of these strategies with silica nanoparticles, preformed 
and assembled with ionic liquids modified with silane groups, has been 
proposed75. The control of the “chemistry” allows obtaining powders in which the 
silica nanoparticles are connected to each other via imidazolium functions. 

 
c - Mono-ionic xerogels 
An original and innovative route is to obtain an ionogel by a simple 

elaboration in one step, while (i) maintaining the main properties of gels trapping 
ionic liquids, and while (ii) mitigating their prohibitive functional drawbacks. 
Indeed, the approach is to co-condense a silica precursor with a functionalized 
ionic liquid with a trialkoxysilane function in acidic conditions to form a silica 
network wherein the cation or the anion of the ionic liquid is bonded to the silica 
network via covalent bonds (Figure 5). This approach is well positioned relative 
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to technological constraints of safety and efficiency, and uses the advantages of 
ionic liquids while avoiding the usual drawbacks during operation of a cell. 

 
 

Figure 5: a) Example of an ionic liquid precursor: 1,3-di(3-
trimethoxysilylpropyl)imidazolium iodide, and b) schematic of the organization 

of the imidazolium groups into the silica network. 

In particular, this approach is interesting because the synthesis of the ionogels 
occurs directly into the DSCCs (see figure 6) and, as a consequence, a better 
control of the electrolyte/electrode interfaces may be achieved, enhancing the 
performances of the DSSCs76. More precisely, the DSSCs are filled with the liquid 
electrolyte that becomes gel with time. Thus, the electrode/electrolyte interfaces 
will be enhanced and then the reaction with the hole and the iodide will be 
facilitated, avoiding electron/home (e-/hole) recombination. The presence of 
covalent bonds between silica and ionic liquids may avoid leaks or volatilization 
of ionic liquids and prevent electrolyte losses. These conditions are more 
favorable for long term performances. Furthermore this cation immobilization 
strategy may have the same effect as its absorption on the semiconductor77, i.e. to 
induce the oxidation of iodide ions via a fast mechanism. 
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Figure 6: Schematic representation of the DSSC using an in-situ reaction of the 
ionic liquid precursor with silica precursor (Reproduced with permission from 

reference 78. Copyright [2013] [the Centre National de la Recherche 
Scientifique (CNRS) and the Royal Society of Chemistry]). 

This concept of new materials immediately removes some critical limitations 
such as the penetration of semiconductor pores, volatility and exudation. The wide 
selection of precursors of the sol-gel chemistry, the nature (lengths, ionic groups, 
and functionality) of ionic liquid precursors and additives will create a model 
family and will be a relevant lever to evaluate and optimize the performance of 
the obtained gels. To adjust the concentrations, volumes and steric flexibility of 
ionic functions will indeed have a decisive influence on the transport properties 
and the structure of the ionic liquid xerogels. As it was ascertained, it is possible 
to obtain ionic mobilities identical to those obtained in the corresponding pure 
ionic liquids78-80. Varying the concentration of diiodine directly alters the ratio of 
ion pairs81 and therefore the conduction mechanisms. Various parameters impact 
the diffusion coefficient of I3

-. 
 
d - Description of the nanostructure by Small and Wide 

Angle X−rays scattering( SWAXS) 
The ionic liquid subunits influence the nanostructure of the ionogels as 

observed by SWAXS performed on ionogels with various wt.% of the ionic-liquid 
monomer (Figure 7). 
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Figure 7: SWAXS absolute intensity as a function of the scattering-vector 

modulus q for different weight content of the ionic-liquid monomer (Reproduced 
with permission from reference 78. Copyright [2013] [the Centre National de la 

Recherche Scientifique (CNRS) and the Royal Society of Chemistry]). 

All the xerogels exhibit a broad peak at q  16.5 nm-1 that is characteristic of 
the silica tetrahedrons within the amorphous silica network. For xerogels 
containing more than 60% in weight of the ionic-liquid monomer, a peak is also 
observed at q = 4.4 nm-1. This distance is related to the length of the ionic liquid 
subunits, and is very close to the lengths found in ionic silica nanoparticle 
networks including ligands with one imidazolium chloride unit82 as well as in the 
bulk liquid-like ionic liquid83. A shoulder is also observed ca. 9 nm-1. It 
corresponds to a correlation length of 0.7 nm, close to the one reported in literature 
for π stacking interactions84-86. Accordingly, this distance was attributed to the 
correlation length between the aromatic units in between the ionic liquid 
backbones. Additionally, the curves profile at low q is highly dependent on the 
quantity of ionic liquid precursor in the ionogels. For ionogel with more than 60% 
of the ionic liquid, the flat profile at low q indicates that no aggregate and no 
domain, up to a size of 100 nm, are present in the xerogels. The system appears 
homogeneous at this scale. Conversely, the intensity increases toward low q 
values for xerogels containing less ionic-liquid precursor. This would correspond 
to the existence of small cross−linked domains in the 20 nm range. The broad 
peak between 0.8 and 0.9 nm-1 indicates a correlation length of  8 nm for 
ionogels containing up to 25 wt.% of ionic-liquid monomers. Xerogels with 30 
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and 40 wt.% of ionic-liquid monomer exhibit an upturn at low q. Correlation 
length of about 1 nm was obtained. The observed results clearly show that the 
presence of functionalized ionic liquid dramatically influence the nanostructure 
of the resulting ionogels. 

The knowledge gained on the ionic transport, multi-scale structure and their 
correlation in these mono-ionic ionogels allow developments in other applications 
such as in energy storage systems or fuel cells operating to over 100°C. Indeed, 
an understanding of mechanisms of gelation with ionic-liquid precursors and the 
involvement of the structure on ion transport will support the choice of the 
precursors according to the intended applications and theoretical developments of 
the ion dynamics in an ionic confined medium. To take few examples, modulate 
or change the I2 concentration in a Grätzel cell has a direct implication on the role 
of the Grotthuss mechanism. In a fuel cell, the choice of the mobile cation is 
essential for the electrode reactions. In general, the expected benefits go beyond 
Grätzel cells, since this approach by immobilization is also relevant in fuel cells87 
and batteries. 

 
The history of electrolytes for DSSCs showed the possibility to lift the 

various scientific and technological challenges. These latest results, including 
solid electrolytes without liquid phases, especially make possible to solve a large 
part of these obstacles. This evolution is possible through the structuring of the 
host matrix in a wide range of spatial and temporal scales in these 
inorganic/organic hybrid environments, which are ionic and confined. 
Furthermore, to control the nanostructure of these systems allows an improvement 
of their properties. Indeed this new generation of electrolytes for application in 
future Grätzel cells permits to correlate the ion transport properties and the 
diffusion of species. The use of ionic liquid precursors, regularly cited for use in 
"green chemistry"88, co-condensed by sol-gel chemistry, called "soft chemistry"54, 
also allows to propose a class of electrolytes using little energy resources and 
widespread molecules having lower toxicity than usual solvents89-90. 

 

C – Polymer/Ionic Liquid Electrolytes for Energy Storage 

In the last few years, academic and industry research have had to overcome 
many challenges in the fields of environment, production, storage and conversion 
of energy but also in the reduction of costs in the transportation. Thus, polymer 
materials scientists have focused on the design and development of new functional 
polymer materials with unprecedented physical properties via the introduction of 
ionomers, nanoparticles or block copolymers91-93. Recently, the use of ionic 
liquids (ILs) as functional additives of thermosets as well as thermoplastics has 
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opened new horizons in polymer science94-98. In fact, ILs have been investigated 
as building blocks of polymer matrices and as ionic conducting agents of polymer 
electrolytes99-100. 

 
a - Gel-like electrolytes 
For several years, “gel” electrolytes based on the combination of polar 

organic solvents and electrolyte salts have been widely studied in the fields of 
ionic devices, sensors and secondary batteries101-102. However, their volatility and 
their toxicity have led researchers to a new alternative through the use of ILs 
known for their excellent thermal stability, their low vapor pressure and their high 
ionic conductivity103-104. Thus, different routes to design polymer electrolytes 
have been described: 1) impregnation of gel electrolytes with hydrophilic or 
hydrophobic ILs71 and 2) inclusion of polymers in ILs105-106. 

Many polymer matrices have been also investigated such as 
poly(acrylonitrile) (PAN), poly(ethylene oxide) (PEO), 
poly(methylmethacrylate) (PMMA) and fluorinated polymers 
(polytetrafluoroethylene (PTFE) and poly(vinylidene fluoride) (PVDF)) where 
good ionic conductivities, high mechanical strength and transparency are 
obtained107-108. Very recently, research has focused on the development of solid 
or quasi-solid polymer electrolytes requiring a good confinement of the organic 
salts in the “host” polymer matrix as well as the high thermal-mechanical 
properties109-111. Thus, different authors have investigated the influence of the 
chemical nature (pyridinium, phosphonium, imidazolium) of the ILs on the 
structuration and the final properties of thermosets based on epoxy networks112-

115. They have highlighted that the decomposition of pyridinium or imidazolium 
salts induces the formation of imidazole and pyridine which act as catalyst of the 
homopolymerization of epoxy networks112-113. In addition, the use of a small 
amount of ILs in epoxy-amine networks led to an increase of the storage modulus 
combined with a plasticizer effect by a decrease of the glass transition temperature 
(Tg). Then , Livi and coworkers highlighted that phosphonium ionic liquids 
associated with phosphinate, dicyanamide or phosphate counter anions, could be 
used as curing agents of epoxy prepolymer composed of diglycidylether of 
bisphenol A (DGEBA). Thus, nanostructured thermosets based on epoxy-IL 
mixtures have been designed with glass transition temperature included between 
80 °C and 140 °C coupled with excellent mechanical performances116-118. 
Nevertheless, improving the ionic conductivity of these new systems remains a 
real challenge. 

 
b - Nanostructured polymer/ionic liquid electrolytes 
Another way was to develop nanostructured polymer/ionic liquid electrolytes 

with enhanced mechanical, thermal and barrier properties. Thus, ionic liquids 
were used in small amounts as building blocks in fluorinated matrices99. The 
influence of the chemical nature of the counter anion as well as the cation on the 
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morphology and on the final properties of polymer matrices has been also 
investigated99. For the first time, pyridinium, imidazolium and phosphonium ILs 
have been synthesized and used as functional additives in PTFE matrix. The 
authors have demonstrated that imidazolium and pyridinium salts led to the phase 
separation characterized by the presence of ionic clusters (nm to µm) whereas 
phosphonium ionic liquid combined with iodide anion induced a “spider web” 
morphology (Figure 8). 

 

Figure 8:Mechanical curves and TEM micrographs of PTFE without and with 
phosphonium ionic liquids. 

The behavior of the ionic liquid is very similar to ionomers where interactions 
between the polymer matrix and the cation-anion pairs are the key parameter of 
the phase separation inducing by the formation of multiplet structures119-120. 
Moreover, the mechanical performances were significantly improved with 
increases in the Young's modulus (E) of 160 % coupled with an exceptional 
increase of the strain at break (+ 190 %). Very recently, Yang et al. have also 
demonstrated that phosphonium ILs are excellent nanostructuration agents on a 
semicrystalline copolymer denoted Poly(Vinylidene Fluoride-
ChloroTriFluoroEthylene [P(VdF-CTFE)]121. In addition, the authors have 
highlighted that the addition of few percent of ILs induced more polar β-phase 
and more homogeneous distribution morphology as well as an excellent 
compromise between stiffness and strain to failure121. These early results showed 
the feasibility of creating efficient polymer electrolytes based on epoxy networks 
or fluorinated matrices. Nevertheless, the challenge to overcome is to introduce 
the electrolyte salts in these membranes without changing the final properties of 
the materials obtained. 
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In conclusion, these different approaches based on endless ionic liquids 
combinations open up new horizons in the development of high-performance 
polymer electrolytes. However, a lot of work is required to obtain good 
mechanical strength and excellent ionic conductivity. 

 
Conclusion and Brief Summary 
Hybrid electrolytes with improved properties were obtained for three energy 

devices (Fuel Cells, Organic Photovoltaic and energy storage). These new family 
of electrolytes, in their respective applications, tend to lessen the disadvantages 
of liquid phases present in the conventional electrolytes while improving their 
properties. These evolutions were possible thanks to an elucidation of the 
multiscale complex structure of the hybrid electrolytes and then the control of 
their nano-structuration. Beyond these improvements, this overall comprehension 
gives an opportunity to better understand various related properties including the 
mechanical properties and the transport mechanisms. 
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