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Abstract

In the paradigm of online active classification, the learner not only has to
predict the label of each incoming instance, but also must decide whether the
true label of that instance should be supplied, or not. The overall goal is to
minimize the number of prediction mistakes with few label queries. In this
paper, we focus on a novel framework for online active learning, with the aim
of handling high-dimensional classification problems. The key component of
our framework is to exploit both the margin-based predictive uncertainty and
the feature-based discriminative information of the current instance, in order
to determine whether it should be labeled. Based on this labeling strategy, we
propose several online active learning algorithms, for both binary classification
tasks and multiclass ones. For these algorithms, which use adaptive subgra-
dient methods for updating their linear model, expected mistake bounds are
provided. Experiments on high-dimensional (binary and multiclass) classifi-
cation datasets reveal the benefit of our label query strategy, and shows the
superiority of our algorithms over the existing methods.

Keywords. Online active learning, High dimensional data, Multi-class
active learning, Adaptive subgradient methods

1 Introduction

Online learning is well-studied framework in Machine Learning, with both theoretical
and practical appeals [Shalev-Shwartz, 2012]. For large-scale and possibly streaming
applications, online learning has received widespread attention, owing to its efficiency
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and scalability by handling instances one-by-one. Conceptually, online learning
for classification can be viewed as a sequential process, involving a learner and its
environment. At each round t, the learner first receives an instance xt, from which
it is required to predict a class or label according to its current predictor wt. Once
the learner has committed to its prediction, say ŷt, the environment reveals the true
label yt, and the learner incurs a loss which assesses the discrepancy between the
prediction ŷt and the response yt. Before proceeding to the next round, the learner
is allowed to choose a new predictor wt+1 in the hope of improving its predictive
performance for the subsequent rounds. In the past decades, various online learning
algorithms have been proposed, including online first-order [Crammer et al., 2006,
Shalev-Shwartz et al., 2011, Zhai et al., 2019, Zinkevich, 2003] and second-order
methods [Crammer et al., 2012, Hazan et al., 2007, Luo et al., 2016], online kernel
[Lu et al., 2016a, Song et al., 2017] and multiple kernel methods [Hoi et al., 2013],
online ensemble learning methods [Sun et al., 2016, Zhai et al., 2017], and so on.

According to the above protocol, online learning is a fully supervised learning
process, in which the label of each incoming instance is provided by the environment.
Although this protocol has been successful for handling large, fully labeled data
streams, it is ill-suited for dealing with applications where labels are scarce or expen-
sive to obtain. Consider for example the task of classifying web pages according to a
set of predefined topics. Collecting and encoding web pages as vectorized instances is
a fairly automated process, but assigning them a topic often requires time-consuming
and costly human expertise. Similarly, in personalized anti-spam filtering, various
techniques are known to encode incoming messages as feature vectors, but it is
unreasonable to assume that a user will label every message as a “spam” or a
“ham”. For such applications, a natural question arises: can we achieve strong online
classification performance while using only few labeled instances?

Online active learning has recently come up as a promising approach for handling
this issue. As usual, the learner starts each round t by making a prediction ŷt for an
incoming instance xt using its model wt. But the key difference with passive online
learning lies at the end of the round: in the active setting, the learner has to decide
whether the true label yt of the instance xt should be supplied, or not. If yt is queried,
then the complete example (xt, yt) is obtained and the learner uses the example to
derive a new predictor wt+1. Otherwise, the current predictor wt is left unchanged.

In the literature, there exists another line of active learning, namely, offline (or
pool-based) active learning [Lughofer, 2017, Settles, 2009], which assumes that a
pool of unlabeled instances is available before learning, and query decisions are made
by evaluating the whole pool of unlabeled instances. Various labeling strategies have
been developed in this offline scenario. Margin-based methods [Awasthi et al., 2015,
Balcan and Long, 2013, Zhang, 2018] query instances which are close to the estimated
decision boundary. Disagreement-based methods [Golovin et al., 2010, Hanneke,
2014, Tosh and Dasgupta, 2017] maintain a set of hypotheses that are consistent
with the currently labeled instances, and query the unlabeled instances about which
those hypotheses most disagree. Multi-criterion methods [Demir and Bruzzone, 2014,
Du et al., 2017, Huang et al., 2014, Wang and Ye, 2015] combine multiple criteria for
assessing the value of an unlabeled instance and querying the most valuable instances.

Contrastingly, online active learning is more suited for large-scale and streaming
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data, by handling instances one-by-one. In this protocol, the query strategy is applied
on each incoming, unclassified instance. Based on this online active learning frame-
work, several perceptron-based active learning algorithms that rely on a margin-based
query strategy have been proposed [Cesa-Bianchi et al., 2006]. At each round t, the
learner draws a random variable Zt ∈ {0,1} from a Bernoulli distribution with pa-
rameter b/(b+pt), where pt = |w⊤

t xt| is the prediction margin of the instance xt, and
b > 0 is a predefined hyperparameter used to control the probability of asking the label
yt of xt. This label is revealed only when Zt = 1 and, in that case, the predictorwt is
updated according to a first-order or second-order perceptron rule. The margin-based
label query was also advocated for the active versions of the Winnow algorithm[Cesa-
Bianchi et al., 2006] and the Passive-Aggressive algorithm [Lu et al., 2016b]. More
recently, Hao et al.[Hao et al., 2018] have proposed a new algorithm, called Second-
order Online Active Learning (SOAL), that exploits both the prediction margin and
the margin variance for asking label queries, and which updates the predictor using
a variant of the Adaptive Regularization Of Weights method [Crammer et al., 2013].

In practice, some second-order online active learning methods have shown better
performance than the first-order methods [Cesa-Bianchi et al., 2006, Hao et al., 2018].
In doing so, these second-order methods maintain a correlation matrix and use the
matrix to update the online predictor. In presence of high-dimensional data, main-
taining and using a full correlation matrix is prohibitive in time and space. Although
Hao et al.[Hao et al., 2018] has realized this problem and has extended SOAL to use
the diagonal correlation matrix, the empirical and theoretical analyses in the paper
are only for the full matrix version of SOAL, and not for the diagonal matrix version
of SOAL. On the other hand, first-order methods are more efficient in time and space
than second-order methods in handling high-dimensional data, but may suffer from
two critical limitations. First, their updating rules treat all dimensions of features
equally and update each dimension in the same learning rate, which is deficient given
that one feature may be seen hundreds of times, while another feature may be seen
only once. Second, their margin-based label query strategy ignores the feature-based
discriminative information of instances. At this point, it is well-known that infre-
quently occurring features are highly informative and discriminative [Crammer et al.,
2012, Duchi et al., 2011] and should be taken more notice when they occur. Therefore,
in the label query, when instances including such infrequent features appear, they
should be given more chances to be queried. In summary, existing research on effective
and efficient online active learning for high-dimensional data is still insufficient.

Furthermore, most of the aforementioned methods are designed only for binary
classification tasks and how to generalize them to the multi-class scenario is left
unknown. Indeed, to the best of our knowledge, there is only one research paper
handling the multi-class problems in the online active learning setting. In [Lu et al.,
2016b], Lu et al. extend their Passive-Aggressive Active learning algorithms (PAA)
for binary classification to the multi-class setting and propose the Multi-class PAA
(MPAA). MPAA uses the Multi-prototype method [Crammer et al., 2006] together
with the Multi-class Passive-Aggressive algorithms for constructing and updating
the multi-class classifier online, and also relies on a multi-class margin-based query
strategy to query labels. In the query strategy, a decision variable Zt ∈ {0,1} is
drawn according to the Bernoulli distribution with parameter b/(b+ pt), where pt
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is a quantity used to approximate the true multi-class predictive margin. MPAA
also suffer from two limitations. First, all dimensions of features are updated in
the same learning rate. Second, the query strategy also ignores the feature-based
discriminative information of instances.

In this study, we focus on novel online active learning methods, which can handle
high dimensional data effectively and efficiently and present good extensions to the
multi-class classification tasks. Our contributions are threefold:

1. Two novel online active learning algorithms for binary classification are pro-
posed, which use the adaptive subgradient methods [Duchi et al., 2011] to
update the online learner when the labels of instances are revealed and which
exploit not only the margin-based predictive uncertainty of incoming instances,
but also the feature-based discriminative information of instances to identify
critical instances to query. Our updating rules can endow different dimensions
of features with different learning rates by using a diagonal correlation matrix.
Our label query strategy can discover instances that significantly improve the
online predictive performance. In light of the above algorithmic design, the
proposed methods can handle high dimensional data effectively and efficiently.
Both algorithms have been extended to the multi-class scenario.

2. Expected mistake bounds for our proposed algorithms are provided and an-
alyzed. The bounds reveal that when the label query ratio is larger than a
certain value, our active learning algorithms are comparable to the best fixed
fully supervised classifier chosen in hindsight.

3. An ablation study on six high dimensional binary classification datasets show
the superiority of our label query strategy. Comparative experiments also indi-
cate that, at extensive label query ratios, our algorithms outperform (in terms
of online F1-measure) existing online active learning methods. Furthermore,
experiments on six multi-class classification datasets also show the advantage
of our multi-class active learning algorithms.

The paper is organized as follows. Section 2 provides the notation used through-
out this paper. Our proposed active learning algorithms for binary classification
are presented and analyzed in Section 3. Further, both algorithms are extended
to the multi-class classification tasks in Section 4. Experimental comparisons and
analyses are provided in Section 5. Finally, Section 6 concludes this study with some
perspectives of further research.

2 Notation

For a positive integer T , let [T ] denote the set {1,2, · · ·T}. For an event E, we
denote by 1[E] the indicator function in {0,1} of E. For a scalar a, we use sgn(a)
to denote the sign in {−1,+1} of a. The ith element of a vector xt is denoted
by xt,i. We use a1:t = [a1, · · · , at] to denote the (row) vector representation of a
scalar sequence {ai}ti=1. By extension, we use G1:t = [g1, · · · ,gt] to denote the d× t
matrix representation of a sequence {gi}ti=1 of (column) vectors in Rd, and here we
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use G1:t,i to denote the ith row of G1:t. The inner product of two vectors w and v
is denoted by w⊤v, and for any p ∈ [1,∞], we use ∥w∥p to denote the ℓp norm of w.
For a vector v, we denote by diag(v) the diagonal matrix with elements of v on the
diagonal line, and we use ∥v∥A to denote the Mahalanobis norm of v with respect

to a positive definite matrix A, which is given by
√
v⊤Av. Let I denote an identity

matrix. The trace of a matrix M is denoted by tr(M). Given a closed convex set
W ⊆ Rd, and a convex function f : Rd → R, the sub-differential set of f at the point
w ∈ W is denoted by ∂f(w). When f is differentiable, we use ∇f(w) to denote its
unique subgradient (called gradient) at w. We shall also exploit the next property.

Claim 1. [Duchi et al., 2011] Let {at}Tt=1 be an arbitrary sequence of scalars, and

assume that 0√
0
= 0. Then,

∑T
t=1

a2
t

∥a1:t∥2 ≤ 2∥a1:T∥2.

3 Active adaptive subgradient methods for binary
classification

3.1 Problem definition

We first focus on online active learning for binary classification. Let (x1, y1), · · · ,
(xT , yT ) be a sequence of input examples, where xt ∈ Rd and yt ∈ {−1,+1} for any
t ∈ [T ]. It should be noted that the entire sequence of examples can be arbitrary, but is
chosen beforehand. At each round t, the learner first observes an instancext ∈ Rd, and
next predicts the label ŷt = sgn(w⊤

t xt) using its current model wt ∈ Rd. Then, the
learner is given the choice of querying the true label yt, or not. A variable Zt ∈ {0,1}
is associated with the query decision. If Zt = 1, then yt is queried and a loss
f(wt; (xt, yt)) that measures the discrepancy between ŷt and yt is revealed. In light
of this information, the learner can compute a new predictorwt+1 ∈ Rd. On the other
hand, if Zt = 0, then yt remains unknown and the learner simply sets wt+1 = wt.

In what follows, ft(w) is used as an abbreviation of f(w; (xt, yt)). At each
online round t, the hinge loss ft(wt) = max{0,1− ytw

⊤
t xt} is used to measure the

inaccuracy of the prediction. In order to evaluate the number of prediction mistakes
made by our learner, we introduce two new symbols:

Mt = 1[ytw
⊤
t xt < 0] = 1[ŷt ≠ yt], Lt = 1[0 ≤ ytw

⊤
t xt < 1],

where Mt indicates whether the learner has made a prediction mistake at round
t, and Lt indicates whether the learner has made a correct prediction but without
sufficient confidence.

The main goal of an online active learner is to achieve a predictive performance
that is comparable to the corresponding fully supervised online learner, but using
few label queries. Therefore, we compare the expected number of prediction mistakes
made by our online learner, that is, E[

∑T
t=1Mt], with the cumulative hinge loss of the

best fully supervised classifier w∗, taken with the benefit of hindsight. Specifically,
w∗ = argminw∈Rd

∑T
t=1 ft(w) and its cumulative loss is given by

∑T
t=1 ft(w

∗). Im-
portantly, the prediction mistakes of our learner is evaluated on all rounds, including
those where true labels remain unknown.
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3.2 Adaptive subgradient methods for binary classification

Adaptive subgradient methods [Duchi et al., 2011] are a family of online algorithms
that can exploit the historically observed subgradients to perform more informative
learning and achieve asymptotically sub-linear regret. In this section, we introduce
two specific implementations of adaptive subgradient methods that are efficient in
time and space for high-dimensional data and that will be used for updating our
active learner. One implementation is based on dual averaging and the other one
is founded on mirror descent. Both implementation methods are fully supervised
and require to query each instance’s label. Both methods can endow each dimension
of the predictor with an adaptive learning step-size. In order to achieve this point,
a diagonal matrix Ht is computed at each round t as:

1 Query yt ∈ {−1,+1} and get gt ∈ ∂ft(wt)
2 Let G1:t = [g1, · · · ,gt]
3 Let Ht = δI+diag(st) where st,i = ||G1:t,i||2

where δ > 0 is a hyperparameter and Ht can be rewritten as

Ht = δI +diag

(
t∑

k=1

gkg
⊤
k

)1
2

= δI +diag

(
t∑

k=1

1[fk(wk) > 0]xkx
⊤
k

)1
2

.

Informally, Ht is used to approximate the Hessian of the functions ft(w) [Duchi
et al., 2011]. Relying on Ht, the updating rules for both methods at the end of
round t are defined as follows.

Dual Averaging (DA) update: the new predictor is given by

wt+1 = argmin
w∈Rd

{
ηw⊤

(
t∑

k=1

gk

)
+

1

2
w⊤Htw

}
(1)

Mirror Descent (MD) update: the new predictor is given by

wt+1 = argmin
w∈Rd

{
ηg⊤t w+

1

2
(w−wt)

⊤Ht(w−wt)

}
(2)

Here η is the step-size hyperparameter. The updating rules (1) and (2) both
admit a closed form solution. For (1), we can get wt+1 = −ηH−1

t

∑t
k=1 gk and

for (2), we have wt+1 = wt − ηH−1
t gt. Informally, the above two methods give

frequently occurring features very low learning rates and infrequent features high
learning rates [Duchi et al., 2011], which is achieved by using Ht. So the value of
each diagonal element in Ht reflects, in some sense, how frequently the feature on
that dimension is seen during the online learning process.
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3.3 Active adaptive subgradient methods for binary classifi-
cation

In this section, we aim to develop novel online active learning algorithms. The core
challenges for designing an online active learner include (a) label query strategy:
how to identify critical instances to label so that the predictive performance of the
online learner can be significantly improved, and (b) updating rule: how to effectively
update the online learner when the true label of an incoming instance is revealed.
Our proposed algorithms adopt a novel discrimination-based label query and the
DA or MD updating rule to handle the above challenges.

Our label query strategy is motivated by the following idea. In various appli-
cations characterized by high-dimensional, yet sparse, data instances, infrequently
occurring features are known to be highly discriminative [Crammer et al., 2012, Duchi
et al., 2011]. The instances including such infrequent features are therefore important
for improving the predictive performance of the online predictor, and hence, it is
crucial to obtain their labels. To this point, recall that the usual margin-based query
strategy is to draw a random variable Zt ∈ {0,1} from a Bernoulli distribution with
parameter b/(b+ pt), where pt = |w⊤

t xt| and b > 0 is a predefined hyperparameter.
So, this strategy, advocated for example in [Cesa-Bianchi et al., 2006, Lu et al.,
2016b, Zhao and Hoi, 2013], does not take account of the feature-based discriminative
information of instances, but only considers the predictive uncertainty of instances.

Our query strategy takes full advantage of both aspects. Here, Zt is drawn from
a Bernoulli distribution with parameter b/(b+ qt1[qt > 0]) where

qt = |p̂t| −
η

2
atvt, with p̂t = w⊤

t xt, at ∈ [0,1] and vt = x⊤
t H

−1
t−1xt.

The value of at will be clarified in Section 3.4. The matrix Ht−1 is the diagonal
matrix maintained by the two adaptive subgradient methods in the previous section.
We later prove that such definition of qt helps to reduce the upper bound of the
online prediction mistakes made by our active algorithms. Intuitively, |p̂t| is used to
assess the uncertainty of classifying the instance xt, but this term is compensated by
vt, which quantifies the feature-based discrimination of xt. Recall that the smaller
value of the i-th diagonal element of Ht−1 implies, in some extent, the less frequently
occurring for the i-th dimensional feature. Thus, the larger is the value of vt, the
more is the infrequent features that xt contains and the more important is xt.
According to this strategy, labels of instances with small |p̂t| and large vt are given
high probability to be asked. Notably, when an instance exhibits a high value of
vt, i.e.

η
2atvt ≥ |p̂t|, its label is queried with certainty. If yt is queried then, in light

of this information, the new predictor wt+1 is computed according to (1) or (2).
Otherwise, set gt = 0 and keep the predictor unchanged.

We present the proposed Discrimination-based Active Dual Averaging (D-ADA)
algorithm and the Discrimination-based Active Mirror Descent (D-AMD) algorithm
in Algorithm 1, where discrimination refers to the margin-based uncertainty and
feature-based discrimination. Both algorithms are defined on the same query strategy
(Lines 5-6), and only differ in the choice of the updating rule (Line 13 for D-ADA
and Line 14 for D-AMD).
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Algorithm 1: D-ADA and D-AMD

Input: Hyperparameters δ > 0, η > 0 and b > 0

Initialization step
1 Set w1 = 0 and H0 = δI

Trials
2 for t = 1,2, · · · do
3 Observe xt and set p̂t = w⊤

t xt

4 Predict with ŷt = sgn(p̂t)

Discrimination-based query:

5 Set qt = |p̂t| − η
2atvt where vt = x⊤

t H
−1
t−1xt

6 Draw
a Bernoulli random variable Zt ∈ {1,0} of parameter b/(b+ qt1[qt > 0])

7 if Zt = 1 then
8 Query yt ∈ {−1,+1} and get gt ∈ ∂ft(wt)

9 else
10 Set gt = 0

11 Set G1:t = [g1, · · · ,gt]
12 Set Ht = δI+diag(st) where st,i = ||G1:t,i||2

13 DA: wt+1 = −ηH−1
t

t∑
k=1

gk

14 MD: wt+1 = wt − ηH−1
t gt

Our algorithms can be implemented in an efficient way. Indeed, using the fact

that s0 = 0, together with the fact that st,i =
√
s2t−1,i + g2t,i for i ∈ [d], the matrix

Ht can be computed at round t in time proportional to d′, the number of non-zero
elements in xt, by simply using the vector st−1 derived at round t − 1 and the
subgradient gt obtained at round t. Since Ht is diagonal, its inverse can also be
found in O(d′). Therefore, it is easy to observe that the per-round time complexity
of our algorithms is O(d′), and the per-round space complexity is O(d).

3.4 Theoretical analysis for D-ADA and D-AMD

The next theorem provides for D-ADA and D-AMD expected mistake bounds,
which refer to upper bounds for E

[∑T
t=1Mt

]
. In all results described below, ex-

pectations are taken with respect to the randomized query strategy, and w∗ =
argminw∈Rd

∑T
t=1 ft(w).

Theorem 1. If D-ADA and D-AMD are run with b ≥ 2, then the expected number
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of online prediction mistakes made by D-ADA for T rounds satisfies the inequality:

E
[ T∑
t=1

Mt

]
≤ E

[ T∑
t=1

Ztft(w
∗)
]
+

bA1

2η
tr(E[HT ])−

1

b
E
[ ∑
t:qt≤0

Lt

]
+

η

2b
E
[ ∑
t:qt≤0

at∥gt∥2H−1
t−1

]
+

η

2b
E
[ T∑
t=1

(1− at)∥gt∥2H−1
t−1

]
(3)

where A1 = ∥w∗∥2∞. For D-AMD, the following inequality holds:

E
[ T∑
t=1

Mt

]
≤ E

[ T∑
t=1

Ztft(w
∗)
]
+

A2 + (b− 1)2A1

ηb
tr(E[HT ])−

1

b
E
[ ∑
t:qt≤0

Lt

]
+

η

2b
E
[ ∑
t:qt≤0

at∥gt∥2H−1
t

]
+

η

2b
E
[ T∑
t=1

(1− at)∥gt∥2H−1
t

]
(4)

where A2 = maxt∈[T ] ∥w∗ −wt∥2∞ and A1 is defined as above.

Remark 1. Except the term E
[∑T

t=1Ztft(w
∗)
]
, the dominant components of our

mistake bounds depend on the expected trace of the diagonal matrix HT . Indeed,
for D-ADA, with the assumption that δ ≥ maxt ∥gt∥∞, we can get

T∑
t=1

∥gt∥2H−1
t−1

≤
T∑
t=1

g⊤t diag(st)
−1gt =

T∑
t=1

d∑
i=1

g2t,i
∥G1:t,i∥2

≤ 2

d∑
i=1

∥G1:T,i∥2

where the last inequality is derived from Claim 1. By contrast, for D-AMD, with-
out any assumptions about δ, we can also get

∑T
t=1 ∥gt∥2H−1

t

≤ 2
∑d

i=1 ∥G1:T,i∥2.
Therefore, for D-ADA, we have

E
[ ∑
t:qt≤0

at∥gt∥2H−1
t−1

]
+ E
[ T∑
t=1

(1− at)∥gt∥2H−1
t−1

]
≤ 2E

[ d∑
i=1

∥G1:T,i∥2
]
.

Similarly, for D-AMD, the sum of the last two terms in (4) is also less than or equal

to 2E
[∑d

i=1 ∥G1:T,i∥2
]
. The facts that

∑d
i=1 ∥G1:T,i∥2 = tr(HT )−δd and tr(HT ) is

sublinear [Duchi et al., 2011] imply that as T increases, our algorithms can converge
to w∗ when the query hyperparameter b ≥ 2.

Remark 2. The expected mistake bounds can reveal the theoretical motivation
of our query rule. Taking D-ADA for example, if the query rule exploits only the
margin-based uncertainty of instances, that is, taking at = 0,∀t ∈ [T ], the sum of the

last two terms in (3) reaches its maximal value A = η
2bE[

∑T
t=1 ∥gt∥2H−1

t−1

]. However,

if the query rule also takes full advantage of the feature-based discrimination of
instances, namely, taking 0 < at ≤ 1,∀t ∈ [T ], then the sum of the last two terms
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in (3) is B = η
2bE
[∑

t:qt≤0 at∥gt∥2H−1
t−1

+
∑T

t=1(1 − at)∥gt∥2H−1
t−1

]
. In view of the

fact that A−B = C = η
2bE[

∑
t:qt>0 at∥gt∥2H−1

t−1

] ≥ 0, we can derive that using the

feature-based discrimination of instances tends to produce a smaller expected mistake
bound, since the non-negative term C is eliminated from the upper bound of the
expected number of online prediction mistakes made by D-ADA.

Remark 3. Three cases of at are considered:

• Case 1: If at = 0,∀t ∈ [T ], our query strategy becomes the margin-based
query strategy in which feature-based discrimination of instances is not utilized.

• Case 2: If at = 1,∀t ∈ [T ], the sums of the last two terms in (3) and (4)
reach their minimal value η

2bE[
∑

t:qt≤0 ∥gt∥2H−1
t−1

] and η
2bE[

∑
t:qt≤0 ∥gt∥2H−1

t

],

respectively, which would be ideal when the number of online rounds for which
qt ≤ 0, namely,

∑
t:qt≤0 1, is also less. But if

∑
t:qt≤0 1 cannot be made less,

the number of labels queried by our algorithms is at least
∑

t:qt≤0 1.

• Case 3: If at = 1/max{1,x⊤
t xt} ∈ (0,1],∀t ∈ [T ], taking D-ADA for example,

the sum of the last two terms in (3) is between η
2bE[

∑
t:qt≤0 ∥gt∥2H−1

t−1

] and

η
2bE[

∑T
t=1 ∥gt∥2H−1

t−1

], which tends to produce a larger bound than that in Case

2, but a smaller bound than that in Case 1. However, since at takes smaller
values than that in Case 2, the number of online rounds for which qt ≤ 0 can
be reduced so that smaller label query ratios can be obtained than in Case 2.

Remark 4. The expected number of labels queried by our algorithms is E[
∑

t:qt≤0 1+∑
t:qt>0

b
b+qt

], where the value of qt relies on at. As can be seen, our algorithms

query at least E[
∑

t:qt≤0 1] labels. By increasing the value of b, more label queries
are triggered. Since qt is data-dependent, we have been unable to provide an upper
bound for the query number.

4 Extension to online multi-class classification

4.1 Problem setting

In this section, we extend D-ADA and D-AMD to multi-class classification tasks.
To achieve the goal, both updating rules and query strategy need to be generalized
to the multi-class setting. In generalizing the updating rules, we choose to use
the multi-prototype method in [Crammer et al., 2006] since the method makes the
extension feasible and more importantly, it contributes to good theoretical proper-
ties of our extended multi-class active learning methods. At each online round t,
the method maintains a multi-class classifier Wt that consists of C class-specific

predictors w
(i)
t ∈ Rd,∀i ∈ [C]. For an incoming instance xt, the method predicts

the label of xt as ŷt = argmaxi∈[C]{(w
(i)
t )⊤xt}. Similarly to binary classification,

a label query strategy is used to decide whether to query the true label yt ∈ [C] of
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xt. Once yt is queried, a loss f(Wt; (xt, yt)) that measures the predictive inaccuracy
of Wt on the example (xt, yt) is incurred. Relying on this loss, Wt is updated to

Wt+1, which can be converted into updating each class-specific classifier w
(i)
t . If yt

is not queried, the current classifier Wt is kept unchanged.
In what follows, f(W ; (xt, yt)) is abbreviated as ft(W ). The loss that we use at

round t is the multi-class hinge loss ft(Wt)=max
{
0,1+(w

(rt)
t )⊤xt−(w

(yt)
t )⊤xt

}
where rt = argmaxi∈[C],i̸=yt(w

(i)
t )⊤xt. In order to evaluate the number of online

prediction mistakes made by our multi-class classifier, Mt and Lt are re-defined as

Mt=1[x
⊤
t w

(yt)
t < x⊤

t w
(rt)
t ] = 1[ŷt ≠ yt], Lt=1[0 ≤ x⊤

t w
(yt)
t −x⊤

t w
(rt)
t < 1].

Let W ∗ = [w
(1)
∗ , · · · ,w(C)

∗ ] be the best fully supervised multi-class classifier cho-

sen in hindsight, that is, W ∗ = argminW∈Rd×C

∑T
t=1 ft(W ). As usual, we compare

the expected number of prediction mistakes made by our learner, that is, E[
∑T

t=1Mt],

with the cumulative multi-class hinge loss of W ∗, given by
∑T

t=1 ft(W
∗).

4.2 Active adaptive subgradient algorithms for multi-class
classification

4.2.1 Multi-class updating rules

We use the dual averaging and mirror descent methods to update each class-specific

predictor w
(i)
t . At each online round t, both updating rules need to maintain C

class-specific diagonal matrix H
(i)
t computed in the following way:

1 Query yt ∈ [C] and get g
(1)
t , · · · ,g(C)

t

2 ∀i ∈ [C], let G
(i)
1:t = [g

(i)
1 , · · · ,g(i)t ]

3 ∀i ∈ [C], let H
(i)
t = δI+diag(s

(i)
t ) where ∀j ∈ [d], s

(i)
t,j = ||G(i)

1:t,j||2

where g
(i)
t is the partial derivative of ft(W ) with respect to w(i) at the point Wt.

If ft(Wt) > 0, we can get

g
(i)
t =


xt, if i = rt;

−xt, if i = yt;

0, otherwise.

Otherwise, it follows that g
(i)
t = 0, ∀i ∈ [C]. Based on the matrix H

(i)
t , each new

predictor w
(i)
t+1 at the end of round t is defined as follows.

Multi-class Dual Averaging (M-DA) update:

w
(i)
t+1 = argmin

w∈Rd

{
ηw⊤

(
t∑

k=1

g
(i)
k

)
+

1

2
w⊤H

(i)
t w

}
,∀i ∈ [C] (5)
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Multi-class Mirror Descent (M-MD) update:

w
(i)
t+1 = argmin

w∈Rd

{
ηw⊤g

(i)
t +

1

2
(w−w

(i)
t )⊤H

(i)
t (w−w

(i)
t )

}
,∀i ∈ [C] (6)

Here η is again a step-size hyperparameter. According to (5) and (6), if ft(Wt) >

0, for (5), we obtainw
(i)
t+1 = −η

(
H

(i)
t

)−1∑t
k=1 g

(i)
k for i ∈ {yt, rt} andw

(i)
t+1 = w

(i)
t

for ∀i /∈ {yt, rt}, and for (6), we have w
(yt)
t+1 = w

(yt)
t + η (H

(yt)
t )−1xt, w

(rt)
t+1 =

w
(rt)
t − η (H

(rt)
t )−1xt and w

(i)
t+1 = w

(i)
t for ∀i /∈ {yt, rt}. If ft(Wt) = 0, then for

both updating rules, it holds that w
(i)
t+1 = w

(i)
t for ∀i ∈ [C].

From (5) and (6), it seems that each class-specific classifier w
(i)
t+1 is updated

independently of the others, but the fact is that all class-specific classifiers are
simultaneously updated for achieving one global objective. One clue is that for any i ∈
[C], g

(i)
t is connected with the common loss ft(Wt). Indeed, by following the similar

derivation process to that in [Duchi et al., 2011], one can easily prove that the above
two fully-supervised multi-class classification methods can achieve a sublinear regret,
which implies that they both asymptotically converge to the best hindsight W ∗.

4.2.2 Multi-class query strategy

The multi-class margin-based query strategy in [Lu et al., 2016b] uses an approxi-
mated margin to replace the genuine margin for measuring the predictive uncertainty.
Specifically, for an instance xt with the true label yt, the multi-class predictive

margin for xt is originally defined as mt = (w
(yt)
t )⊤xt − maxi∈[C],i̸=yt(w

(i)
t )⊤xt.

Since yt is unknown before label querying, mt cannot be computed. Therefore, an
approximated margin pt is used to replace mt:

pt = (w
(ŷt)
t )⊤xt − max

i∈[C],i̸=ŷt
(w

(i)
t )⊤xt. (7)

It satisfies pt ≤ |mt| for any t ∈ [T ]. The query strategy in [Lu et al., 2016b] then
draws a random variable Zt ∈ {0,1} from a Bernoulli distribution with parameter
b/(b+ pt), where b > 0 is still a scaling factor on pt. This strategy does not take
into account the feature-based discrimination of xt.

Our multi-class query strategy exploits both margin-based uncertainty and feature-
based discrimination of instances. According to the corresponding closed form solution
of (5) and (6), we can find that even if yt is queried at round t, for both updating rules,

it always holds that for ∀i /∈ {yt, rt}, w(i)
t+1 = w

(i)
t . This suggests that the example

(xt, yt) cannot improve all the other class-specific classifiers except w
(yt)
t and w

(rt)
t .

Therefore, it is pointless to evaluate the feature-based discrimination of xt for all the
other classes except the classes yt and rt. In view of the fact, we focus on evaluating the
feature-based discrimination of xt only for the two classes yt and rt, which is defined as

ρt = x⊤
t (H

(yt)
t−1 )

−1xt +x⊤
t (H

(rt)
t−1)

−1xt.

The larger is ρt, the more is the infrequent features that xt contains for the classes
yt and rt. Similarly, yt and rt are unknown before label querying and thus ρt cannot
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be computed. We use an approximated quantity vt to replace ρt:

vt = x⊤
t (H

(ŷt)
t−1 )

−1xt + max
i∈[C],i̸=ŷt

x⊤
t (H

(i)
t−1)

−1xt (8)

It is easy to observe that if yt = ŷt, then vt ≥ ρt; if yt ≠ ŷt, then rt = ŷt and it still
follows that vt ≥ ρt.

In our multi-class query strategy, Zt is drawn from a Bernoulli distribution with
parameter b/(b+ qt1[qt > 0]) where

qt = pt −
η

2
atvt with at ∈ [0,1] (9)

and pt and vt are defined in (7) and (8), respectively. Here at has the same defini-
tion and effect as that in the binary classification setting. It is easy to check that
qt ≤ |mt|− η

2atρt for any t ∈ [T ]. Once Zt = 1, M-DA update or M-MD update can

be used to improve the multi-class classifier Wt to Wt+1. Otherwise, set g
(i)
t = 0

for ∀i ∈ [C] and keep the classifier unchanged.
Based on the above discussion, we present the Multi-class D-ADA (MD-ADA)

algorithm and the Multi-class D-AMD (MD-AMD) algorithm in Algorithm 2.

Algorithm 2: MD-ADA and MD-AMD

Input: hyperparameters δ > 0, η > 0, and b > 0

Initialization step

1 ∀i ∈ [C], set w
(i)
1 = 0 and H

(i)
0 = δI

Trials
2 for t = 1,2, · · · do
3 Observe xt

4 Predict with ŷt = argmaxi∈[C]{(w
(i)
t )⊤xt}

Multi-class discrimination-based query:
5 Compute qt according to (9)
6 Draw

a Bernoulli random variable Zt ∈ {1,0} of parameter b/(b+ qt1[qt > 0])
7 if Zt = 1 then

8 Query yt ∈ [C] and get g
(1)
t , · · · ,g(C)

t

9 else

10 ∀i ∈ [C], set g
(i)
t = 0

11 ∀i ∈ [C], let G
(i)
1:t = [g

(i)
1 , · · · ,g(i)t ]

12 ∀i ∈ [C], let H
(i)
t = δI+diag(s

(i)
t ) where ∀j ∈ [d], s

(i)
t,j = ||G(i)

1:t,j||2

13 M-DA: ∀i ∈ [C], get w
(i)
t+1 by (5)

14 M-MD: ∀i ∈ [C], get w
(i)
t+1 by (6)
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4.3 Theoretical analysis for MD-ADA and MD-AMD

Theorem 2. If MD-ADA and MD-AMD are run with b ≥ 2, then the expected
number of online prediction mistakes made by MD-ADA for T rounds satisfies the
following inequality:

E
[ T∑
t=1

Mt

]
≤ E

[ T∑
t=1

Ztft(W
∗)
]
+

bA1

2η

C∑
i=1

tr(E[H(i)
T ])− 1

b
E
[ ∑
t:qt≤0

Lt

]
+

η

2b
E
[ ∑
t:qt≤0

C∑
i=1

at∥g(i)t ∥2
(H

(i)
t−1)

−1

]
+

η

2b
E

[
T∑
t=1

C∑
i=1

(1− at)∥g(i)t ∥2
(H

(i)
t−1)

−1

]

where A1 = maxi∈[C] ∥w
(i)
∗ ∥2∞. For MD-AMD, the following inequality holds:

E
[ T∑
t=1

Mt

]
≤ E

[ T∑
t=1

Ztft(W
∗)
]
+

A2 + (b− 1)2A1

ηb

C∑
i=1

tr(E[H(i)
T ])− 1

b
E
[ ∑
t:qt≤0

Lt

]
+

η

2b
E
[ ∑
t:qt≤0

C∑
i=1

at∥g(i)t ∥2
(H

(i)
t )−1

]
+

η

2b
E
[ T∑
t=1

C∑
i=1

(1− at)∥g(i)t ∥2
(H

(i)
t )−1

]
where A2 = maxi∈[C],t∈[T ] ∥w

(i)
∗ −w

(i)
t ∥2∞ and A1 is defined as above.

The analytical process is similar to that for Theorem 1, so we just skip it here.
The theorem reveals that our multi-class active learning algorithms can converge to
the best fixed fully-supervised classifier W ∗ as the label query hyperparameter b ≥ 2.

5 Experiments

Two series of experiments have been conducted for evaluating the empirical perfor-
mance of our proposed algorithms. The first series evaluates D-ADA and D-AMD
for online binary classification tasks. The second series evaluates MD-ADA and
MD-AMD for online multi-class classification tasks.

5.1 Evaluation of D-ADA and D-AMD for binary classifica-
tion tasks

5.1.1 Binary classification datasets

We have randomly chosen six high-dimensional datasets to perform experiments. On
these datasets, maintaining a full correlation matrix for updating the classifier is
infeasible, so one has to use a diagonal matrix. The datasets are described in Table
1. Basehock and Pcmac are subsets extracted from 20Newsgroups1. Farm ads was
collected from text ads found on twelve websites dealing with farm animal related

1http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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topics, and the goal is to identify whether the content owner approves of the ad,
or not. Gisette is a handwritten digit recognition problem, for which the task is to
separate the digits ’4’ and ’9’. Both farm ads and gisette can be downloaded from
UCI repository. Spam corpus [Katakis et al., 2009], collected from the anti-spam
platform SpamAssasin, contains 9,324 emails, each encoded as a boolean bag-of-words
vector, and around 20% of these emails are spams. Url day0, a subset of the URL
dataset [Ma et al., 2009], contains all Day 0’s URLs, each represented by its lexical
and host-based features. The task is to separate malicious URLs from benign ones,
and around 33% of these URLs are malicious.

Table 1: A summary of binary classification datasets in the experiments

Dataset # inst.# fea. Dataset # inst.# fea. Dataset # inst.# fea.

Basehock 1993 11148 Pcmac 1945 9877 Farm ads 4143 54877

Gisette 7000 5000 Spam corpus 9324 39916 Url day0 16000 74113

1“# inst.” = the number of instances, “# fea.” = the number of features.

5.1.2 Evaluation of our label query strategy

We perform an ablation study to demonstrate the benefit of our label query strategy.
We compare the following two groups of algorithms:

1. R-ADA, M-ADA, D-ADA, D-ADA-I: these algorithms use the same dual
averaging updating rule, but different label query strategy.

2. R-AMD, M-AMD, D-AMD, D-AMD-I: these algorithms use the same mirror
descent updating rule, but different label query strategy.

Different query strategies are as follows:

1. R-ADA and R-AMD use the random query strategy.

2. M-ADA and M-AMD use the margin-based query strategy which is equivalent
to our query strategy that adopts at = 0, ∀t ∈ [T ] in Algorithm 1.

3. D-ADA and D-AMD use our query strategy that adopts at = 1/max{1,x⊤
t xt},

∀t ∈ [T ] in Algorithm 1.

4. D-ADA-I and D-AMD-I also use our proposed query strategy, but adopt
at = 1, ∀t ∈ [T ] in Algorithm 1.

We evaluate the online F1-measure achieved by these algorithms at the label
query ratio in {10−1,10−0.9, · · · ,10−0.1}, where F1−measure = 2∗precision∗recall

precision+recall .
For each algorithm, hyperparameter optimization is carried out using grid search
with cross validation. In performing cross validation, only one pass over the training
splits is allowed. Once hyperparameters at each certain query ratio are determined,
each algorithm is run 20 times, each time with a different random permutation of
examples in the dataset. The online F1-measure achieved by these active learners
at different query ratios is averaged over the 20 runs, and reported in Fig. 1 and 2.

15



10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

84

86

88

90

92

94

96

98
O

nl
in

e 
F1

-m
ea

su
re

 (
%

)
Basehock

R-ADA
M-ADA
D-ADA
D-ADA-I

(a)

10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

76

78

80

82

84

86

88

90

O
nl

in
e 

F1
-m

ea
su

re
 (

%
)

Pcmac

R-ADA
M-ADA
D-ADA
D-ADA-I

(b)

10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

82

84

86

88

90

92

94

96

O
nl

in
e 

F1
-m

ea
su

re
 (

%
)

Farm_ads

R-ADA
M-ADA
D-ADA
D-ADA-I

(c)

10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

84

86

88

90

92

94

96

98

O
nl

in
e 

F1
-m

ea
su

re
 (

%
)

Gisette

R-ADA
M-ADA
D-ADA
D-ADA-I

(d)

10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

84

86

88

90

92

94

96

98
O

nl
in

e 
F1

-m
ea

su
re

 (
%

)
Spam_corpus

R-ADA
M-ADA
D-ADA
D-ADA-I

(e)

10-1 10-0.8 10-0.6 10-0.4 10-0.2 100

Log of query ratio 

84

86

88

90

92

94

96

98

O
nl

in
e 

F1
-m

ea
su

re
 (

%
)

Url_day0

R-ADA
M-ADA
D-ADA
D-ADA-I

(f)

Figure 1: Comparison of these algorithms based on dual averaging update at various
query ratios.

From Fig. 1, we observe that R-ADA performs the worst, M-ADA the second
worst, and D-ADA and D-ADA-I perform the best. This fact shows that using
margin-based uncertainty is better than using nothing in the query strategy, while
exploiting both margin-based predictive uncertainty and feature-based discrimination
is also more beneficial than using only margin-based uncertainty. D-ADA-I sometimes
cannot achieve low query ratios, for example, on the first three datasets. By using
smaller at, D-ADA can achieve lower query ratios, but mostly at the price of
performance degradation. Thus, the performance of D-ADA is generally better than
that of M-ADA but worse than that of D-ADA-I. On Gisette, D-ADA behaves
similarly to M-ADA since this dataset has very large feature values which leads to a
small value of at. According to Algorithm 1, if at tends to zero, D-ADA will degrade
to M-ADA. Similar phenomenon can also be observed from Fig. 2. These results
corroborate the fact that exploiting feature-based discrimination of instances helps to
identify the critical instances in the label queries and enhance predictive performance.

5.1.3 Comparison with existing algorithms

In this section, we have compared the following algorithms:

• PAA-II [Lu et al., 2016b]: Passive Aggressive Active learning.

• SOP [Cesa-Bianchi et al., 2006]: selective sampling Second-Order Perceptron.

• SOAL [Hao et al., 2018]: Second-order Online Active Learning.
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Figure 2: Comparison of these algorithms based on mirror descent update at various
query ratios.

• D-ADA, D-AMD, D-ADA-I and D-AMD-I: as described in the previous section.

• DA and MD: the fully supervised version of D-ADA and D-AMD.

Notably, the diagonal matrix versions of SOAL and SOP that keep only diagonal
elements of the full correlation matrix are used here. D-ADA and D-AMD are used
on the first three datasets, while D-ADA-I and D-AMD-I are used on the remaining
ones. Similarly to the previous experiments, grid search with cross validation is
used to optimize hyperparameters. Each algorithm is run 20 times on each dataset
and the online F1-measure achieved by these algorithms at different query ratios is
averaged over the 20 runs, and reported in Fig. 3. Moreover, we also report in Table
2 the results at the query ratio near 10−1 and 10−0.7.

The most telling observation from Fig. 3 is that, our algorithms outperform all
compared active learning algorithms at extensive label query ratios. Specifically,
SOP performs the worst, PAA-II the second worst, then it comes to SOAL, which
is inferior to our algorithms. Moreover, D-ADA (D-ADA-I) sometimes outperforms
D-AMD (D-AMD-I), but sometimes not. We also notice that our algorithms can
achieve comparable F1-measure to their fully supervised counterpart, but using
fewer label queries on these datasets. From Table 2, according to paired t-tests at
95% confidence level, we observe that only on Farm ads at query ratio near 10%,
our algorithms perform comparably to SOAL, while in the rest of all cases, our
algorithms are significantly better than the other competitors. These experimental
results demonstrate the superiority of our algorithms over the existing ones.
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Figure 3: Online F1-measure achieved by each active learning algorithm at different
query ratios.

5.1.4 Sensitivity analysis

In this section, we focus on analyzing the sensitivity of the proposed algorithms to
the hyperparameters. Specifically, we observe that (a) when the hyperparameter b
is fixed as b = 1, how online F1-measure and query ratio vary with different δ and
η; (b) when the hyperparameter δ is fixed as δ = 0.001, how online F1-measure and
query ratio vary with different η and b; (c) when the hyperparameter η is fixed as
η = 0.01, how online F1-measure and query ratio vary with different δ and b. Due
to the space constraint, we only present the results for D-ADA on Basehock in Fig.
4, where different colors represent different F1-measure or query ratio.

From Fig. 4, we observe a common phenomenon that under many small query
ratios, D-ADA can obtain F1-measures that are comparable to or even better than
that under large query ratios, which implies the advantage of D-ADA. From Fig. 4a,
4d, 4c and 4f, we find that bad hyperparameters that lead to high query ratios, but
low F1-measures often have a large δ. This is consistent with Theorem 1, since a
large δ implies a large tr(HT ), and thus leads to a large mistake bound. In practice,
a small δ is preferred. Once δ is fixed, η should be neither too large nor too small,
according to Fig. 4b. In the mistake upper bound for D-ADA, there exists one term
proportional to η and also another term proportional to 1/η. Too large or too small
η also leads to a large mistake bound. So the optimal η should be searched around
1. From Fig. 4b, 4e, 4c and 4f, we observe that when δ and η are fixed, the minimal
query ratio that D-ADA can attain is determined accordingly. Although the query
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Table 2: Online F1-measure obtained at the label query ratio near 10−1 and 10−0.7.
Algorithm F1measure (%) query (%) F1measure (%) query (%) F1measure (%) query (%)

Basehock Pcmac Farm ads
PAA-II 87.50±1.40 9.68±0.41 76.56±2.42 9.45±0.61 84.66±0.47 9.68±0.43
SOP 82.02±2.05 9.75±0.55 70.12±3.39 9.53±0.57 79.92±1.30 10.07±0.45
SOAL 87.58±4.14 9.53±0.54 79.22±1.94 10.31±0.55 84.96±1.56 9.78±0.47
D-ADA 91.96±1.12 9.59±0.45 80.33±1.70 10.04±0.68 84.72±1.05 9.61±0.50
D-AMD 92.62±0.72 9.52±0.34 80.62±2.75 10.20±0.82 85.10±0.80 9.68±0.33

Gisette Spam corpus Url day0
PAA-II 92.88±0.48 9.63±0.23 91.67±0.83 9.92±0.15 93.15±0.34 9.77±0.15
SOP 88.72±0.62 10.24±0.47 87.85±1.01 10.03±0.45 83.77±1.00 10.01±0.28
SOAL 93.89±0.76 9.73±0.23 94.83±0.39 9.65±0.25 94.63±0.28 9.81±0.17

D-ADA-I 95.44±0.16 10.79±0.18 95.58±0.32 9.49±0.33 95.77±0.10 9.38±0.17
D-AMD-I 95.33±0.19 9.49±0.28 95.36±0.40 9.58±0.30 96.00±0.11 9.51±0.29

Basehock Pcmac Farm ads
PAA-II 91.49±0.86 19.04±0.58 82.04±1.64 19.22±0.51 86.72±0.39 19.61±0.46
SOP 86.95±0.97 19.22±0.77 75.26±1.45 19.61±0.52 82.47±0.70 20.14±0.69
SOAL 92.60±1.24 18.86±0.68 84.87±2.14 19.10±0.95 88.09±0.31 19.06±0.55
D-ADA 95.00±0.42 18.96±0.33 86.57±0.74 18.95±0.48 88.42±0.41 19.25±0.56
D-AMD 94.52±0.60 18.74±0.36 86.61±0.65 18.59±0.48 88.36±0.38 19.25±0.47

Gisette Spam corpus Url day0
PAA-II 94.10±0.21 19.50±0.27 93.31±0.45 19.69±0.16 94.57±0.11 19.52±0.14
SOP 91.12±0.40 20.27±0.62 90.64±0.62 19.80±0.41 87.39±0.37 19.99±0.41
SOAL 94.84±0.18 19.36±0.32 95.02±0.30 19.45±0.57 95.06±0.13 19.84±0.34

D-ADA-I 95.61±0.15 18.99±0.36 95.76±0.33 19.49±0.69 95.90±0.08 19.02±0.42
D-AMD-I 95.51±0.20 18.96±0.62 95.57±0.33 19.31±0.71 96.11±0.10 19.00±0.59
1 The best result and its comparable ones (according to paired t-tests at 95% confidence
level) on each dataset are displayed in bold.

ratio decreases with diminishing b, but one can only obtain a query ratio above the
minimal query ratio. In summary, we recommend to first find an appropriate δ, then
find the best η by a grid search, finally tune b to get the desired query ratio.

5.2 Evaluation of MD-ADA and MD-AMD for multi-class
classification tasks

5.2.1 Multi-class classification datasets

Six multi-class datasets are chosen randomly to perform the experiments. These
datasets are described in Table 3 and can be downloaded from LIBSVM website2.

Table 3: A summary of multi-class classification datasets

Dataset # inst.# fea.# classDataset # inst.# fea.# classDataset # inst. # fea.# class

20newsgroups 18,846 26,214 20 Letter 15,000 16 26 Mnist 60,000 780 10

Connect4 67,557 126 3 Acoustic 78,823 50 3 Covtype581,012 54 7

5.2.2 Performance comparison

We have compared the following online multi-class active learning algorithms:

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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Figure 4: Evaluation of the hyperparameter sensitivity for D-ADA on Basehock.

• MPAA-II [Lu et al., 2016b]: Multi-class Passive Aggressive Active learning
which uses the MPA-II updating rule and the multi-class margin-based label
query strategy.

• MDA and MMD: the fully supervised versions of Algorithm 2, which query
the labels of all incoming instances.

• MR-ADA and MR-AMD: use our multi-class updating rules, but the random
label query strategy.

• MM-ADA and MM-AMD: use our multi-class updating rules, but the multi-
class margin-based label query strategy. They are equivalent to Algorithm 2
that adopts at = 0,∀t ∈ [T ].

• MD-ADA and MD-AMD: Algorithm 2 with at = 1/max{1,x⊤
t xt},∀t ∈ [T ].

• MD-ADA-I and MD-AMD-I: Algorithm 2 that adopts at = 1,∀t ∈ [T ].

The experimental setting is similar to that for binary classification except that
online accuracy is used for the performance metric. Fig. 5 and Fig. 6 present the
online accuracy achieved by these algorithms at different query ratios. Note that
one line (originally one point) is drawn for the fully supervised MDA and MMD. To
clearly measure the performance difference, we also report in Table 4 the results at
the fixed query ratio near 10−1 and 10−0.7.

From Fig. 5 and 6, we observe thatMD-ADA-I andMD-AMD-I cannot achieve low
query ratios on many datasets, but at those query ratios they can obtain, they mostly
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Figure 5: Comparison of algorithms based on dual averaging update with existing
methods.

perform the best. Such a relationship of accuracy can be observed on all datasets: MD-
ADA-I ≥ MD-ADA≥ MM-ADA > MR-ADA, and MD-AMD-I ≥ MD-AMD≥ MM-
AMD > MR-AMD. The fact shows again the importance of exploiting the feature-
based discrimination of instances in the query strategy. MM-ADA outperforms
MPAA-II on four datasets and MM-AMD outperforms MPAA-II on all six datasets,
which shows that our second-order updating rules generally lead to better performance
than the first-order rule of MPAA-II. From Table 4, we further observe that MD-
AMD-I or MD-AMD significantly outperform the other algorithms on all six datasets,
according to paired t-tests at 95% confidence level. We also find that using the same
label query strategy, MD updating tends to bring better performance than DA up-
dating on these datasets. In conclusion, we discover that our updating rules, working
together with our query strategy, can make very promising results on multi-class tasks.

6 Conclusion

In this paper, two novel online active learning algorithms for binary classification,
called D-ADA and D-AMD, have been proposed and analyzed. Both algorithms
maintain a diagonal matrix for recording the updating information of all dimensions
and exploit the matrix to endow different dimensions with adaptive learning rates.
Especially, D-ADA uses the dual averaging idea to update its predictor, while D-AMD
uses the mirror descent idea. In order to identify critical instances to label, different
from the usual margin-based methods that only use the predictive uncertainty of
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Figure 6: Comparison of algorithms based on mirror descent update with existing
methods.

instances, D-ADA and D-AMD also take full advantage of the feature-based discrimi-
native information of instances. Further, D-ADA and D-AMD have been extended to
the multi-class classification setting. The expected mistake bounds for our proposed
algorithms are provided, which show that when the label query ratio exceeds a
certain value, our active learning algorithms are comparable to the best fixed fully
supervised classifier chosen in hindsight. Experiments on six high-dimensional binary
classification datasets corroborate the merits of our label query strategy and demon-
strate that D-ADA and D-AMD outperform existing second-order and first-order
active learning methods, at various label query ratios. Experiments on six multi-class
classification datasets also show the superiority of our multi-class active learning
algorithms. In the future, it is interesting to investigate how to extend our methods
to the multi-label classification setting and the cost-sensitive setting.
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Table 4: Online accuracy obtained at the label query ratio near 10−1 and 10−0.7.
Algorithm accuracy (%) query (%) accuracy (%) query (%) accuracy (%) query (%)

20newsgroups Letter Mnist
MPAA-II 64.71±0.41(3) 9.67±0.10 48.21±0.74(5) 9.74±0.18 86.44±0.10(5) 9.68±0.08
MR-ADA 60.50±0.79(5) 10.11±0.10 45.09±0.65(7) 10.11±0.11 84.54±0.24(7) 10.04±0.10
MM-ADA 64.66±0.65(3) 9.75±0.15 47.58±0.71(6) 9.95±0.29 86.92±0.14(4) 9.86±0.07
MD-ADA 66.75±0.55(2) 9.59±0.14 49.19±0.55(4) 9.78±0.20 87.68±0.10(3) 9.86±0.24
MR-AMD 61.90±0.80(4) 10.03±0.35 51.88±0.51(3) 10.35±0.00 85.86±0.24(6) 10.00±0.07
MM-AMD 66.67±0.60(2) 9.66±0.16 53.85±0.67(2) 10.00±0.27 88.41±0.12(2) 9.84±0.13
MD-AMD 68.57±0.54(1) 9.57±0.1358.48±0.66(1) 9.85±0.2089.20±0.18(1) 9.73±0.40

Connect4 Acoustic Covtype
MPAA-II 70.80±0.18(7) 9.98±0.25 67.29±0.09(4) 9.65±0.27 69.18±0.15(4) 9.79±0.16
MR-ADA 71.16±0.17(6) 9.99±0.06 65.80±0.26(5) 9.89±0.06 67.29±0.07(6) 10.01±0.05
MM-ADA 71.77±0.18(5) 10.12±0.29 68.07±0.17(3) 10.02±0.28 68.93±0.12(5) 10.04±0.11
MD-ADA 71.90±0.12(4) 10.07±0.20 68.42±0.12(2) 9.93±0.33 69.55±0.11(3) 9.98±0.17
MR-AMD 72.27±0.20(3) 10.03±0.15 65.79±0.15(5) 9.93±0.03 68.83±0.10(5) 10.01±0.04
MM-AMD 72.55±0.27(2) 10.14±0.20 68.43±0.17(2) 10.09±0.38 70.19±0.10(2) 9.95±0.06
MD-AMD 72.97±0.19(1)10.09±0.2268.97±0.16(1)10.12±0.4070.62±0.13(1) 9.90±0.36

20newsgroups Letter Mnist
MPAA-II 73.12±0.25(5) 19.25±0.19 55.09±0.58(4) 19.49±0.22 87.93±0.09(7) 19.51±0.11
MR-ADA 69.50±0.48(7) 19.88±0.08 51.92±0.58(6) 20.06±0.17 86.81±0.14(8) 19.94±0.08
MM-ADA 73.85±0.31(4) 19.42±0.26 54.40±0.64(5) 19.88±0.27 88.53±0.10(6) 19.72±0.14
MD-ADA 76.33±0.42(2) 19.08±0.23 55.24±0.34(4) 19.54±0.37 89.00±0.08(5) 19.82±0.34
MD-ADA-I - - - - 89.85±0.09(3) 19.33±0.41
MR-AMD 70.34±0.50(6) 20.10±0.30 58.23±0.53(3) 19.58±0.00 87.90±0.14(7) 19.99±0.16
MM-AMD 75.39±0.23(3) 19.35±0.16 60.28±0.35(2) 20.07±0.35 89.42±0.09(4) 19.81±0.15
MD-AMD 77.62±0.28(1)19.01±0.2062.65±0.42(1)19.62±0.28 89.96±0.12(2) 19.54±0.62
MD-AMD-I - - - - 90.38±0.07(1)19.22±0.70

Connect4 Acoustic Covtype
MPAA-II 72.10±0.12(8) 19.81±0.21 67.58±0.08(6) 19.64±0.21 70.02±0.04(5) 19.62±0.13
MR-ADA 72.69±0.14(7) 19.94±0.11 66.23±0.17(7) 20.00±0.11 68.43±0.07(8) 19.94±0.05
MM-ADA 73.00±0.11(6) 20.04±0.18 68.29±0.11(5) 20.06±0.25 69.96±0.05(6) 19.95±0.11
MD-ADA 73.14±0.11(5) 20.00±0.19 68.52±0.10(4) 19.87±0.34 70.46±0.10(4) 19.87±0.47
MD-ADA-I 73.69±0.07(4) 19.68±0.19 68.63±0.09(3) 19.93±0.33 70.56±0.06(3) 19.67±0.39
MR-AMD 73.64±0.10(4) 19.84±0.04 66.26±0.16(7) 20.18±0.10 69.86±0.05(7) 19.99±0.05
MM-AMD 73.91±0.14(3) 20.13±0.26 68.78±0.13(2) 20.26±0.43 70.61±0.10(3) 19.83±0.12
MD-AMD 74.05±0.09(2) 20.06±0.1969.01±0.16(1)20.02±0.35 71.29±0.05(2) 19.52±0.87
MD-AMD-I74.44±0.09(1)19.85±0.3169.04±0.12(1)19.82±0.4471.34±0.05(1)19.68±0.25

1“-” represents that the algorithm cannot attain the query ratio.
2 The best result and its comparable ones (paired t-tests at 95% confidence level) are
displayed in bold. The number in brackets shows the ranking of each algorithm.
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