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Tracking Sparse Linear Classifiers
Tingting Zhai, Frédéric Koriche, Hao Wang, Yang Gao, Member, IEEE

Abstract—In this paper, we investigate the problem of sparse
online linear classification in changing environments. We first
analyze the tracking performance of standard online linear clas-
sifiers, which use gradient descent for minimizing the regularized
hinge loss. The derived shifting bounds highlight the importance
of choosing appropriate step-sizes in presence of concept drifts.
Notably, we show that a better adaptability to concept drifts
can be achieved using constant step-sizes rather than the state-
of-the-art decreasing step-sizes. Based on these observations, we
then propose a novel sparse approximated linear classifier, called
SALC, which uses a constant step-size. In essence, SALC simply
rounds small weights to zero for achieving sparsity, and controls
the truncation error in a principled way for achieving a low
tracking regret. The degree of sparsity obtained by SALC is
continuous and can be controlled by a parameter which captures
the tradeoff between the sparsity of the solution and the regret
performance of the algorithm. Experiments on nine stationary
datasets shows that SALC is superior to the-state-of-the-art
sparse online learning algorithms especially when the solution is
required to be sparse; on seven groups of non-stationary datasets
with various total shifting amount, SALC also presents a good
ability to track drifts. When wrapped with a drift detector, SALC
achieves a remarkable tracking performance regardless of the
total shifting amount.

Index Terms—concept drift, sparse online learning, online
gradient descent, shifting regret.

I. INTRODUCTION

ONLINE linear classification is a well-studied problem
in machine learning, with various practical applications,

ranging from anti-spam filtering and fraud detection, to medi-
cal diagnosis and sentiment analysis. For example, in the anti-
spam filtering task, the learning algorithm receives at each
round t a vector representation xt ∈ Rd of an incoming email,
and it is required to predict whether xt ∈ Rd is a spam, or
not, using its current separating hyperplane wt ∈ Rd. Once
the learner has committed to its prediction, the true label yt
is revealed, and the learner incurs a loss f(wt; (xt, yt)) that
measures the inaccuracy of the prediction. In light of this
information, the learner is allowed to find another separating
hyperplane for the next round, in the hope of improving its
predictive performance.

In contrast with batch algorithms which are trained and
tested on separate data sets, online algorithms process in-
stances one-by-one, and are evaluated on the whole sequence
of instances. Thus, online learners can be significantly more
efficient and more practical than batch learners for handling
large-scale, and possibly streaming, data sets. Furthermore,
online algorithms do not require any distributional assumption
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about data instances; they are analyzed within an adver-
sarial scenario. Specifically, the usual metric advocated in
the literature of online learning is the static regret, defined
as the maximum difference in cumulative loss between the
online learner and the best separating hyperplane chosen with
the benefit of hindsight, on any possible sequence of data
instances. However, for modern applications involving high-
dimensional data streams, the online learning framework is
faced with two major challenges.

1) Curse of dimensionality: this issue is related to the
fact that in high-dimensional application domains, many
features are irrelevant for predicting the output label. For
example, in the anti-spam filtering task, the feature vector
of associated with an electronic message many involve
tens or even hundreds of thousands features, and many of
them are irrelevant for deciding whether the message is a
spam, or not. For such domains, standard linear classifiers
which predict using a separating hyperplane defined for
all features, are prone to overfit the data [9], [10].

2) Concept drift: this is related to gradual changes of the
underlying relation between the input data and the target
label [2]–[7]. For example, in personalized anti-spam
filtering tasks [8], a concept drift indicates that the user is
changing her opinion about separating “spam” messages
from “ham” ones. Similar concept drifts arise in fraud
detection, sentiment analysis, and many other applications
in which the best predictive model is susceptible to
change other time. Standard online algorithms which,
according to the notion of static regret, aims at competing
with a single model, are likely to perform poorly on
drifting data streams, due to the fact that the target model
is susceptible to change with concept drifts.

So far, a wide variety of online linear classification al-
gorithms have been proposed in the literature [11]–[16]. In
particular, gradient descent (GD) techniques are endowed
with an attractive combination of predictive accuracy and
computational efficiency. Namely, GD algorithms in [11], [12],
[14] are defined over the same weight updating rule, but
differ in the choice of the learning rate, which yields different
convergence guarantees. These techniques, however, cannot
handle the curse of dimensionality in high-dimensional data
streams. On the other hand, sparse models provide an elegant
solution to the curse of dimensionality, by reducing the number
of non-zero coordinates [9], [10]. Sparsity also promotes
interpretability of models and decreases the prediction time.
Informally, the sparsity of a predictor w ∈ Rd is measured by
its `0 pseudo-norm, that is, the number of non-zero coordinates
of w. Since the `0 pseudo-norm is non-convex, achieving
sparsity using this metric is far from easy. In the literature,
this difficulty is circumvented by three main techniques: (1)
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imposing an `1 norm constraint, (2) adding an `1 norm
regularization to the loss function, or (3) using `0 truncation.

Methods using an `1 norm constraint project the solution wt

obtained by gradient descent onto an `1 ball, using efficient
projection methods [17], [18]. The shortcoming of this ap-
proach is that the `1 norm constraint does not always guarantee
sparsity [19]. Methods using `1 regularization consider an
`1 norm regularized problem at each iteration. Duchi et al.
[20] proposed the FOBOS algorithm, which at each iteration,
first performs a sub-gradient descent to get an intermediate
solution, and then finds a new solution that has a low `1 norm
complexity and that stays close to the intermediate solution.
The second stage can be implemented efficiently by truncating
coefficients below a threshold in the intermediate solution.
Langford et al. [21] argued that such truncation operation is
too aggressive and proposed a truncated gradient algorithm
(TrunGrad), which gradually shrinks the coefficients to zero by
a small amount. In contrast with the above approaches, Jin et
al. [22] proposed an `0-based truncation method that satisfies
a predefined `0 pesudo-norm constraint at each iteration. Their
OFS algorithm [22] first projects the predictor wt (obtained
from gradient descent) onto an `2 norm ball, so that most of
the numerical values of wt are concentrated to their largest
elements, and then keeps only the B largest elements in wt,
where B is a pre-defined constant.

Yet, all the aforementioned sparse algorithms have been
developed and analyzed for stationary data streams. The goal
of this paper is to study sparse online linear classification
in drifting data. In such environments, the best predictor is
not fixed, but is susceptible to evolve over time, and the
challenge is to investigate the tracking behavior of sparse
online classifiers using a shifting regret metric. Informally, the
shifting regret captures the difference in cumulative loss be-
tween the online algorithm and the best sequence of separating
hyperplanes, which reflect the gradual changes to be made for
dealing with shifting data. To this point, very few is known
about the theoretical and practical tracking performance of
popular classifiers, such as Pegasos [14] and Norma [11]. Even
less known is the tracking ability of popular sparse classifiers.
In this paper, we make the following contributions:
1) We derive shifting regret bounds for the classic gradient-

descent technique, which provides a new insight that the
step-size choice takes a crucial part in the tracking per-
formance of the learner. Specifically, for gradient-descent
techniques, a better adaptability to concept drifts can be
achieved using constant step-sizes rather than standard
decreasing step-sizes.

2) We propose a novel sparse approximated linear
classification algorithm, abbreviated as SALC, which
uses a constant step-size. SALC achieves sparsity by
truncating small elements in the model at each round and
controls the truncation error in a natural way for ensuring
low regret. The sparsity parameter in SALC can control
the degree of sparsity from no sparsity to total sparsity. A
concise shifting regret bound of SALC is also provided
and analyzed.

3) Empirical evidence for the influence of the step-size
choice on the tracking performance of the learner is pro-

vided. Moreover, extensive experiments on nine stationary
datasets demonstrate the superiority of SALC especially
when high sparsity level of the solution is desired. On
seven groups of non-stationary datasets, SALC presents
good capability to track concept drifts. Wrapped with
a drift detector, SALC outperforms the state-of-the-art
sparse online learning algorithms significantly in tracking
performance no matter how large the amount of drifts is.

The remaining paper is organized as follows. Section II
introduces the notation and the problem definition. Section
III presents the GD-based techniques and derives the shifting
regret bounds for three classic step-size schedulings. The
proposed sparsity strategy and its corresponding regret analysis
are provided in Section IV. Comprehensive experiments on
both stationary and non-stationary datasets are given in Section
V. Section VI provides related works in online linear classifi-
cation and regret metrics in static and dynamic environments.
Finally, Section VII concludes the paper.

II. NOTATION AND PROBLEM DEFINITION

Let ||w|| and ||w||1 denote `2 norm and `1 norm of vector
w respectively. Let ||w||0 denote `0 pseudo-norm of w, that
is, the number of non-zeros elements in w. We use 1[a] to
denote the indicator function, that is, 1[a] = 1 if a is true,
otherwise 1[a] = 0.

Online linear classification can be viewed as a repeated
game between the learning algorithm and its environment.
During each trial t of the game, the environment supplies a
new instance vector xt ∈ Rd, where we assume that there
exists a constant R such that ||xt|| ≤ R for any t, then the
learner is required to choose a predictor wt ∈ Rd to classify
xt. Once the learner has committed to its choice, the true
label yt ∈ {−1,+1} of xt is revealed by the environment,
and the learner suffers a loss f(wt; (xt, yt)) that measures
the discrepancy between the predicted label and the true label.
For binary classification tasks, a natural metric is the 0-1 loss
function, that is, f(wt; (xt, yt)) = 1 if sgn(w>t xt) 6= yt, and 0
otherwise. However, the 0-1 loss function is non-convex, and
hence, hard to optimize. To alleviate this issue, we shall use
the convex hinge loss f(wt; (xt, yt)) = max{0, 1−ytw>xt},
which is a well-known surrogate of the 0-1 loss. In what
follows, we shall often use ft(w) as an abbreviation of
f(w; (xt, yt)).

The tracking performance of the learning algorithm is
measured using the notion of shifting regret [23]–[26],
which compares the cumulated loss of the learner against
an arbitrary time-varying sequence of separating hyperplanes
u1,u2, · · · ,uT ∈ (Rd)T chosen collectively in hindsight.
Formally, the shifting regret is defined as

RegretT ,
T∑
t=1

ft(wt)−
T∑
t=1

ft(ut).

A low shifting regret means that the learner can compete with
a broad family of time-varying classifiers. In order to provide
bounds on the shifting regret, we use the the maximum norm
of the comparator sequence, i.e. U = maxt ||ut||, together
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with the sum of the variation distances between each pair of
the time-adjacent comparators [23], [24], that is,

ST =

T−1∑
t=1

||ut − ut+1||.

Intuitively, ST captures the drifting behavior of the environ-
ment; a regret bound with a small dependence on ST is
preferable, as it captures a better robustness to changes.

III. GD-BASED LINEAR CLASSIFIERS (GD-LC)

Linear classification algorithms in [11], [12], [14] use GD
to produce a sequence of predictors (w1,w2, · · · ) ∈ (Rd)∞.
In each trial t, the regularized loss function is given by

ft(w) =
λ

2
||w||2 + max{0, 1− ytw>xt},

where λ is the regularization parameter for controlling the
complexity of the predictor. GD works as follows: Initially,
w1 = 0. At trial t, the new predictor wt+1 is constructed by

wt+1 = wt − ηt∇ft(wt),

where ηt < 1/λ is the step-size and ∇ft(wt) is the gradient
of ft(w) at wt. Given that

∇ft(wt) = λwt − γtytxt, (1)

where γt = 1[ytw
>
t xt < 1], the gradient descent update can

be rewritten as

wt+1 = (1− ληt)wt + ηtγtytxt.

Different choices of step-size ηt yield different instantiations
of GD-LC. Originally, the theoretical performance of GD-LC
was analyzed in stationary streams. We will extend its analysis
to non-stationary streams. The next two lemmas will help to
bound the shifting regret of GD-LC. Note that Lemma 1 is
based on one lemma from [27], however we still provide the
proof in Appendix A for completeness.

Lemma 1. Let f1, f2, · · · be a sequence of λ-strongly convex
functions w.r.t. w. Let w1,w2, · · · be a sequence of vectors in
Rd such that for t ≥ 1,wt+1 = wt−ηt∇ft(wt). Assume that
there exists a constant G such that ||∇ft(wt)|| ≤ G for all t.
For an arbitrary comparator sequence (u1,u2, · · · ) ∈ (Rd)∞,
the following inequality holds:
T∑
t=1

(ft(wt)−ft(ut))≤
T∑
t=1

(
Dt

2ηt
− λ

2
||wt − ut||2

)
+
G2

2

T∑
t=1

ηt,

where Dt = ||wt − ut||2 − ||wt+1 − ut||2 is the relative
progress towards ut in round t.

Lemma 2. GD-LC satisfies ||wt|| ≤ R
λ and ||∇ft(wt)|| ≤ 2R

for all t.

Proof. We prove by induction that ||wt|| ≤ R
λ . The base case

||w1|| = 0 ≤ R
λ . Assume that ||wk|| ≤ R

λ for t = k, then

||wk+1|| ≤ (1− ληk)||wk||+ ηk||γkykxk||

≤ (1− ληk)
R

λ
+ ηkR =

R

λ
.

Therefore, ||wt|| ≤ R
λ for all t. Proving ||∇ft(wt)|| ≤ 2R is

trivial since

||∇ft(wt)|| ≤ λ||wt||+ ||xt|| ≤ λ ·
R

λ
+R = 2R

is a direct result from Eq. 1.

We are now ready to present the main theorem on GD-LC,
that different choices of the step-size ηt yields very different
regret guarantees. Therefore, to handle non-stationary streams,
it is important to choose ηt wisely.

Theorem 1. GD-LC can achieve different shifting regret
bounds using different schedulings of the step-size ηt:

1) If ηt = 1/(λt), then

RegretTGD-LC ≤ 2RTST +
2R2

λ
(1 + lnT ).

2) If ηt = η/
√
t, where 0 < η < 1/λ, then

RegretTGD-LC ≤
R
√
T

λη
(ST + U) + 4ηR2

√
T .

Hence if we know ST in advance, setting η = Θ(
√
ST )

leads to a shifting regret bound of O(
√
TST ).

3) If ηt = η ∈ (0, 1/λ), then

RegretTGD-LC ≤
R

λη
(ST + U) + 2ηR2T.

Hence, setting η = Θ(
√
ST /T ) produces a bound of

order O(
√
TST ) which is in fact better than the bound

from ηt = η/
√
t by a constant factor.

Proof. See Appendix B.

Remarks The above bounds quantify how GD-LC with
various step-sizes are affected by changes in the environment.
On the one hand, when ST ≈ 0 and T is large enough, GD-
LC with ηt = 1/(λt) produces the smallest regret upper bound
of O(lnT ). On the other hand, when ST � 0, GD-LC with
ηt = η is more robust due to the fact that the dependence on
ST is sublinear in T . Thus, the step-size ηt = η/

√
t produces

a natural compromise between stationary case ST ≈ 0, and
non-stationary case ST � 0. We provide empirical evidence
in Section V-B, showing that for GD-LC, a better concept
tracking capability can be achieved using ηt = η than using
ηt = 1/(λt) or ηt = η/

√
t. Based on these observations,

we shall adopt a constant step-size in our proposed sparse
online learning algorithm, in order to achieve a better tracking
performance.

IV. A SPARSE APPROXIMATED LINEAR CLASSIFIER
(SALC)

Sparse models can alleviate the curse of dimensionality by
providing hyperplanes with few non-zero coordinates. In this
section, we explore a new option for achieving sparsity. As
mentioned earlier, constant step-size scheduling is used for
better tracking performance. Our idea for achieving sparsity is
to obtain a sparse approximated solution after the GD update at
each online round. The key of our approach is thus to control
the error between the exact solution and the approximated
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one in a principled way so that the algorithm can converge.
Our method, SALC (sparse approximated linear classifier), is
presented in Algorithm 1.

Algorithm 1: SALC
Input: Data {(xt, yt)}∞t=1, regularization parameter λ,

step-size η ∈ (0, 1/λ), error tolerance ε, the
acceptable minimum number of features κ ≥ 1

Output: {wt}∞t=1

1 w1 = 0;
2 for t = 1, 2, · · · do
3 Receive xt;
4 Predict the label of xt using wt;
5 Receive yt and suffer loss ft(wt) ;
6 zt+1 = (1− λη)wt + ηγtytxt;
7 if ||zt+1||0 > κ then
8 wt+1 = arg minw ||w||0

subject to ||w − zt+1|| ≤ ε and ||w||0 ≥ κ;

As we can see, Step 6 of Algorithm 1 computes a vector
zt+1 following the update rule of GD-LC. After that, sparsity
is achieved by Step 8, which essentially searches for the most
sparse vector wt+1 that is close to zt+1 and that has acceptable
number of non-zero features. The value of truncation error ε
controls how close wt+1 to zt+1, thus affects the sparsity of
wt+1. The parameter κ is a small integer, which helps to avoid
any improper situations where the value of ε is set too large.

Note that the general form of the optimization problem at
Step 8: minw ||w||0 subject to ||w −Hz|| ≤ ε, for a given
matrix H , a vector z and an error ε, is NP-hard [28]. However,
we find that when H is the identity matrix, the problem
can be efficiently solved using a simple greedy algorithm.
Specifically, at the t-th round, to implement Step 8 we do the
following: first let wt+1 be a copy of zt+1; then repeat setting
the non-zero element with the smallest absolute value in wt+1

to 0 until no more elements can be set to 0 without violating
the constraints ||wt+1 − zt+1|| ≤ ε and ||wt+1||0 ≥ κ.

Lemma 3. wt+1 obtained by the above greedy procedure is
an optimal solution of the minimization problem of Step 8 of
Algorithm 1.

Proof. The implementation process of Step 8 implies that
wt+1 is a feasible solution. Let C be the set of non-zero
elements in zt+1. Let Q be a subset of C, of which elements
are set to 0 in wt+1 and set Q̄ = C − Q. Let vj be an any
element in Q̄.

Note that when the greedy procedure terminates, both
constraints of the problem remain satisfied, but the marginal
case of at least one constraint is reached. In the first case, when
the marginal case of the constraint ||wt+1||0 ≥ κ is reached,
we have ||wt+1||0 = κ. In the second case, when the marginal
case of the constraint ||wt+1−zt+1|| ≤ ε is reached, we have∑
vi∈Q v

2
i + v2j > ε2. In the first case, it is obvious that wt+1

is an optimal solution. We next prove that in the second case,
wt+1 is also an optimal solution.

Let H =
{
w ∈ Rd : κ ≤ ||w||0 and ||w||0 < ‖wt+1‖0

}
.

Let I = {1, 2, · · · , ||wt+1||0 − κ}. For any k ∈ I , let

Ek = {w ∈ H : ||w||0 = k + κ− 1}. For any k ∈ I , also
let w∗k = arg minw∈Ek

||w − zt+1||. It is clear that for any
w∗k, all the non-zero elements of w∗k must belong to C.
Let s = arg mink∈I ||w∗k − zt+1||, then we can obtain that
||w∗s − zt+1|| ≤ ||w − zt+1|| holds for any w ∈ H , and
||w∗s ||0 must be equal to ||wt+1||0 − 1. Given the fact that
all the non-zero elements of w∗s belong to C, w∗s must be
obtained by setting the element in wt+1 with the smallest
absolute value to 0. Therefore, we have ||w∗s − zt+1|| > ε,
which means that ||w − zt+1|| > ε holds for any w ∈ H .
So any w ∈ H is infeasible and wt+1 is an optimal feasible
solution in the second case.

Lemma 4. SALC satisfies ||wt|| ≤ R
λ and ||∇ft(wt)|| ≤ 2R

for all t.

Proof. By using ‖wt+1‖ ≤ ‖zt+1‖, the proof is similar to
that of Lemma 2.

We can now prove a shifting regret bound of SALC.

Theorem 2. Let ε = ρη2, where ρ is a pre-defined parameter,
then SALC can achieve the following shifting regret bound:

RegretTSALC ≤
R

λη
(ST +U) + (2R2 +

ρR

λ
+ ρU)ηT +

ρ2η3T

2
.

When ST ≈ 0, by setting η = Θ
(

1/
√
T
)

, we obtain a regret

bound of O
(√

T
)

. When ST > 0, setting η = Θ
(√
ST /T

)
and assuming ST = o(T ), a sublinear regret bound o(T ) is
achieved; in particular, when ST = O

(
T

1
3

)
, a bound of order

O
(
T

2
3

)
can be achieved.

Proof. We consider the difference between wt+1 and ut.

||wt+1 − ut||2

= ||wt+1 − zt+1 + zt+1 − ut||2

= ||wt+1 − zt+1||2 + ||zt+1 − ut||2

+ 2(wt+1 − zt+1)>(zt+1 − ut)

≤1 ε2 + ||zt+1 − ut||2 + 2||wt+1 − zt+1|| · ||zt+1 − ut||
≤ ε2 + ||zt+1 − ut||2 + 2(||zt+1||+ ||ut||)ε

≤2 ε2 + ||zt+1 − ut||2 + 2(
R

λ
+ U)ε

≤3 ε2 + ||wt − ut||2 + 4η2R2 − 2η(ft(wt)− ft(ut))

+ 2(
R

λ
+ U)ε.

In the above calculation, ≤1 is due to the feasibility of wt+1

and Cauchy-Schwarz inequality. ≤2 is due to Lemma 4 and
the boundedness assumption ‖ut‖ ≤ U for any t. The last
inequality ≤3 is due to the fact that

||zt+1 − ut||2 = ||wt − ut − η∇ft(wt)||2

=||wt − ut||2 + η2||∇ft(wt)||2 − 2η(wt − ut)
>∇ft(wt)

≤||wt − ut||2 + 4η2R2 − 2η(ft(wt)− ft(ut)).
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Rearranging the terms and then summing over t, we have

RegretTSALC ≤
1

2η

T∑
t=1

(
||wt − ut||2 − ||wt+1 − ut||2

)
+ 2ηR2T +

1

2η

T∑
t=1

ε2 + (
R

λ
+ U)

T∑
t=1

ε

η

= A1 +A2 +A3 +A4.

Using directly the proof for Theorem 1, we can obtain

A1 ≤
R

λη
(ST + U).

Next, we only need to bound A3 and A4 caused by the sparsity
operation. Considering ε = ρη2, we obtain

A3 =
1

2η

T∑
t=1

(ρη2)2 =
ρ2η3T

2
,

A4 = (
R

λ
+ U)

T∑
t=1

ρη = (
R

λ
+ U)ρηT.

Combining these results, we get the stated bound.

Remarks The bound on RegretTSALC suggests that if the total
variation distance ST of an arbitrary time-varying classifier
sequence is sublinear, SALC can achieve average accumulated
loss as small as that of such a sequence as T approaches
infinity. The parameter ρ serves as an adjustor between sparsity
and regret. A larger value of ρ generally leads to a larger
approximation error ε, thus yields a sparser solution and more
regret. Conversely, a smaller value of ρ produces a denser
solution and less regret. If ρ = 0, we obtain immediately the
same bound as the non-sparse GD-LC with step-size ηt = η.

V. EXPERIMENTS

In order to study the empirical performance of our learning
algorithms, we have performed four experiments. The first
experiment is to investigate the adaptability of GD-LC under
different step-size schedulings, aiming to provide empirical
evidence for Theorem 1. The second experiment demonstrates
the effectiveness of SALC in producing discriminative sparse
solutions. The third and last experiments aim to check how
well SALC performs compared with existing state-of-the-
art sparse online classifiers on stationary and non-stationary
datasets respectively.

A. Datasets

Stationary datasets. We used 9 stationary two-class classi-
fication datasets from various domains and with various feature
sparsity levels. The characteristics of stationary datasets are
presented in Table I, where data density is the maximal
number of non-zero features of instances divided by the
number of all attributes. The task of arcene is to distinguish
cancer versus normal patterns from mass-spectrometric data.
Both dexter and farm ads are text classification problems
in a bag-of-words representation. The aim of gisette is to
separate the highly confusable digits ’4’ and ’9’. These four

datasets are from the UCI repository1. The datasets pcmac and
basehock are subsets extracted from 20Newsgroups2, which
contains news messages of 20 different newsgroups. The task
of pcmac is to separate documents from “ibm.pc.hardware”
and “mac.hardware”; and basehock is to distinguish “baseball”
versus “hockey”. Luad Brca, prostate GE, and SmkCan187
are from biological domains for disease state analysis, where
Luad Brca is extracted from the gene expression dataset RNA-
Seq in the UCI repository, while prostate GE and SmkCan187
are from the scikit-feature selection repository3.

TABLE I
A SUMMARY OF STATIONARY DATASETS.

Dataset # features # train # test density
arcene 10000 100 100 71.25%
dexter 20000 300 300 1.65%
gisette 5000 6000 1000 29.6%
basehock 26214 1197 796 6.48 %
pcmac 26214 1168 777 4.5%
farm ads 54877 3313 830 4.19%
Luad Brca 20532 331 110 90.57%
prostate GE 5966 81 21 100%
SmkCan187 19993 149 38 100%

Nonstationary datasets. Using 20Newsgroups, 7 groups
of non-stationary datasets were created.4 Each group con-
tains 10 datasets (thus there are 70 datasets in total),
each simulating the evolution of a particular user’s in-
terests in news messages. We used the first 760 news
messages from the following 6 newsgroups to create
datasets: “ibm.pc.hardware”, “mac.hardware”, “rec.autos”,
“rec.motorcycles”, “sci.electronics” and “sci.med”, thus each
dataset created contains 4,560 instances and 26,214 features.
The first group, zeroDt, was created to have no concept drifts.
The news messages of 6 newsgroups are uniformly distributed
in each dataset of zeroDt, and the labels of the news messages
in each dataset is obtained by randomly assigning 3 news-
groups as interesting (positive) and the others as not interesting
(negative). The remaining 6 groups of datasets were then
created by injecting concept drifts into the datasets in zeroDt.
Specifically, each dataset in zeroDt was split into p equally-
sized chunks; then for the adjacent two chunks, we obtained
the labels of the news message in the latter chunk by turning
randomly q interested newsgroups in the former chunk into
uninterested ones and also turning q uninterested newsgroups
in the former chunk into interested ones. Therefore, for each
concept drift, the user changes her interests in 2q newsgroups.
The specific value for p and q on each group can be seen in
Table II. We can see that ST in different groups differs in the
number of concept drifts and the amount of drifts; a larger
value of p and q lead to a larger ST .

1https://archive.ics.uci.edu/ml/index.php
2http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
3http://featureselection.asu.edu/datasets.php
4In fact, the datasets in zeroDt are stationary. Nonetheless, due to the strong

connection between zeroDt and the other groups, we often discuss these seven
groups of datasets together.
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TABLE II
A SUMMARY OF NON-STATIONARY DATASETS.

Group Name # concepts # drifting newsgroups
zeroDt p = 1 q = 0

oneDtTwo p = 2 q = 1

oneDtFour p = 2 q = 2

oneDtSix p = 2 q = 3

threeDtTwo p = 4 q = 1

threeDtFour p = 4 q = 2

threeDtSix p = 4 q = 3

B. Adaptability analysis of GD-LC
With this set of experiments, we investigated how the

three step-size schedulings presented in Theorem 1 affect the
tracking performance of GD-LC. We also compared GD-LC
with the shifting perceptron algorithm (SPA) [23], which is
an improved perceptron for dealing with drifting concept and
uses polynomial vector decaying scheme to diminish the im-
portance of early update stages. Experiments were performed
on the datasets in Table II. The optimal parameter setting for
each algorithm on each dataset was manually searched. Table
III displays the average online classification accuracy of GD-
LC and SPA on zeroDt datasets under one-pass (epoch = 1)
and multi-pass (epoch = 5, 10, 50, 100) learning respectively.
Note that multiple passes are allowed only on the stationary
datasets, of which the purpose is to simulate the one-pass
learning on a much longer data stream. Table IV presents the
results on the non-stationary datasets with ST > 0. The best
result on each dataset are shown in bold.

TABLE III
ONLINE CLASSIFICATION ACCURACY AND STANDARD DEVIATION [%]

ON ZERODT DATASETS UNDER MULTIPLE PASSES.

Epoch
GD-LC

SPA
ηt = 1/(λt) ηt = η/

√
t ηt = η

1 87.87 (2.86) 85.62 (4.07) 88.57 (2.84) 85.89 (2.57)
5 95.05 (1.21) 95.19 (1.43) 95.43 (1.17) 95.18 (1.13)
10 97.18 (0.79) 96.85 (0.94) 97.03 (0.83) 97.34 (0.65)
50 99.36 (0.17) 98.83 (0.37) 98.77 (0.40) 99.44 (0.15)
100 99.67 (0.09) 99.17 (0.26) 99.00 (0.34) 99.72 (0.07)

TABLE IV
ONLINE CLASSIFICATION ACCURACY AND STANDARD DEVIATION [%]

ON NON-STATIONARY DATASETS UNDER ONE-PASS CONSTRAINT.

Dataset
GD-LC

SPA
ηt = 1/(λt) ηt = η/

√
t ηt = η

oneDtTwo 84.22 (2.03) 82.46 (2.50) 84.74 (2.10) 83.25 (1.40)
oneDtFour 81.86 (2.61) 81.65 (2.46) 82.64 (2.68) 81.32 (2.36)
oneDtSix 79.81 (3.42) 80.88 (3.36) 81.28 (3.43) 80.09 (3.12)
threeDtTwo 79.93 (1.21) 80.17 (0.91) 81.00 (0.91) 80.14 (0.73)
threeDtFour 74.58 (1.12) 77.04 (1.60) 77.35 (1.53) 76.43 (1.72)
threeDtSix 69.99 (4.11) 75.03 (3.65) 75.26 (3.27) 74.24 (3.69)

We can observe from Table III that when one-pass learning
is required, GD-LC with ηt = η achieves the best online
performance; when multi-pass learning is allowed and epoch
≥ 10, GD-LC with ηt = 1/(λt) and SPA outperform GD-
LC with ηt = η. From Table IV, we can see that GD-LC

with ηt = η always beats SPA and GD-LC with the other
two step-size choices, exhibiting the best online performance
in spite of the number of drifts and the amount of drifts. In
conclusion, in terms of the three step-size choices of GD-LC,
ηt = 1/(λt) should be preferred on stationary data provided
that the number of instances is sufficient, and ηt = η should
be adopted on non-stationary data. The empirical evidence is
consistent with the theoretical results presented in Theorem 1.

C. Sparsity analysis of SALC

In this section, we demonstrate that SALC can work towards
a sparse solution and meanwhile does not degrade the learning
performance significantly. Experiments were performed on the
stationary datasets in Table I. For SALC, the regularization
parameter was set to λ = 0.01, the acceptable minimum
number of features was set to κ = 1, and the learning step-size
η on each dataset was chosen by minimizing the regularized
regret on that dataset. As in Section V-B, we use the multi-pass
trick to simulate the one-pass learning on a much longer data
stream. Specifically, SALC was run 10 times on each training
set, each time with τ passes and each pass with a new random
permutation on the set. The specific values of η and τ on each
dataset are shown in Table V. Fig. 1 & 2 plot the number of
non-zero features (namely, ||wt||0) and the average cumulated
loss 1

t

∑t
i=1 fi(wi) achieved by SALC with different values

of sparsity parameter ρ during the online learning process on
each dataset. The results are averaged on 10 runs.

TABLE V
LEARNING STEP-SIZE η AND THE NUMBER OF PASSES τ ON EACH

DATASET.

Dataset η τ Dataset η τ

arcene 10−8 500 dexter 10−5 100
gisette 10−8 100 basehock 10−3 100
farm ads 10−2 100 pcmac 10−2 100
Luad Brca 10−5.5 200 prostate GE 10−4 1500
SmkCan187 10−6 10000

We can observe from Fig. 1 & 2 that as the number of
instances increases, the number of features kept by SALC with
different values of ρ first decreases then tends to stabilize.
Meanwhile, the corresponding average cumulated loss dimin-
ishes to zero gradually. We also notice that large reduction in
the number of features only leads to small additional average
regret. Moreover, generally the larger ρ, the less features kept
and the more loss produced. Therefore, by adjusting the value
of ρ, solutions with different sparsity levels and different regret
performance can be obtained. These results suggest clearly that
SALC is an effective sparse online learning algorithm.

To further demonstrate that SALC can keep discriminative
sparse solutions, we compared SALC with GD-LC on the
above datasets. GD-LC used the same parameter settings
as SALC. For both algorithms, we recorded ||wt||0 at the
end of training and the corresponding test accuracy obtained
by evaluating wt on a separate testing set. The results are
displayed in Table VI. The bold font indicates that SALC can
achieve similar or better test accuracy even if it uses much
fewer non-zero features than GD-LC.
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Fig. 1. Number of non-zero features and average cumulated loss achieved by SALC during the online learning process.
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Fig. 2. Number of non-zero features and average cumulated loss achieved by SALC during the online learning process.

TABLE VI
NUMBER OF NON-ZERO FEATURES AT THE END OF TRAINING AND THE
CORRESPONDING TEST ACCURACY [%]. STANDARD DERIVATIONS ARE

IN PARENTHESES.

Dataset SALC GD-LC
ρ ||wt||0 test acc. ||wt||0 test acc.

arcene
103.2/η 4100 (56) 82.80 (1.93)

9912 (8) 83.30 (1.25)103.4/η 2575 (60) 82.10 (1.73)
103.6/η 1297 (37) 81.40 (1.35)

dexter
150/η 1121 (47) 91.67 (1.23)

4260 (131) 91.23 (1.44)200/η 733 (17) 90.93 (1.53)
250/η 557 (14) 90.37 (1.44)

gisette
103.2/η 2270 (29) 97.74 (0.18)

4693 (14) 97.54 (0.24)103.4/η 1351 (28) 97.60 (0.21)
103.6/η 530 (18) 97.28 (0.40)

basehock
2/η 2791 (68) 95.28 (0.16)

8083 (178) 94.84 (0.12)3/η 1865 (67) 95.35 (0.55)
4/η 1307 (31) 95.68 (0.36)

farm ads
2/η 11553 (566) 90.39 (0.59)

44220 (280) 90.40 (0.36)3/η 5749 (867) 90.36 (0.57)
4/η 2636 (971) 90.22 (0.87)

pcmac
1/η 2742 (144) 88.29 (0.46)

7150 (45) 88.08 (1.25)2/η 1441 (207) 88.31 (0.96)
3/η 836 (302) 87.75 (2.15)

Luad Brca
100/η 2914 (164) 100.00 (0.00)

20148 (12) 100.00 (0.00)200/η 998 (134) 100.00 (0.00)
300/η 415 (30) 100.00 (0.00)

prostate GE
20/η 2146 (91) 90.00 (1.51)

5966 (0) 84.76 (4.38)30/η 1360 (55) 90.48 (0.00)
40/η 874 (88) 90.48 (0.00)

SmkCan187
10/η 16295 (49) 72.89 (1.27)

19993(0) 73.42(0.83)50/η 12543 (212) 72.11 (1.36)
100/η 9494 (191) 75.26 (2.54)

In Table VI, it is clear that on some datasets, SALC can
greatly reduce the number of non-zero features while keeping
slight test performance degradation, while on other datasets,
using much fewer non-zero features, SALC can enhance the
test performance. For example, on arcene, using nearly 40% of
the features kept by GD-LC, SALC suffers 0.5% performance
loss; on dexter, using 26% of the features kept by GD-LC,
SALC achieves 0.44% performance gain, however, using 17%
of the features by GD-LC leads to 0.3% performance loss;
similar slight performance loss or gain can also be observed
on gisette, basehock, farm ad, pcmac and SmkCan187 ; on
Luad Brca, SALC achieves the same test accuracy using
only 2% of the features by GD-LC; on prostate GE, SALC
outperforms GD-LC significantly, since using about 36%, or
23%, or 15% of the features kept by GD-LC, SALC all enjoys
more than 5% performance gain, which maybe is due to that
the dataset contains lots of noisy features and SALC can
reduce noisy features.

D. Comparison with sparse online classifiers on stationary
datasets

We compared SALC with the state-of-the-art sparse online
learning algorithms, including TrunGrad [21], FOBOS [20]
and the method that projects the solution after gradient descent
update onto an `1 ball at each online step (Proj L1, for short)
[17]. Experiments were performed on the stationary datasets.
The parameter settings of these algorithms were as follows.
1) TrunGrad. After every K rounds of GD update, TrunGrad

shrinks the coefficients in (−θ,−α) and (α, θ) by a small
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amount α and rounds the coefficients in [−α, α] to 0,
where α = ηKg. We fixed θ = +∞ and K = 10,
as suggested in [21] and searched the optimal η that
yields the minimum `1 regularized loss on the training
set from {10−9, 10−8.5, · · · , 10−1}. After θ, K and η
were determined, we varied the gravity parameter g for
different ranges to observe how much test accuracy could
be obtained under different sparsity levels.

2) FOBOS. We searched the optimal η as what we did for
TrunGrad, then fixed η and varied the `1 regularization
parameter to tune the sparsity of the solution and to observe
the test accuracy.

3) Proj L1. The optimal η was searched in the same way as
that for TrunGrad, then η was fixed and the radius r of `1
ball was varied to see the test accuracy.

4) SALC. We fixed λ = 10−2 and κ = 1, then searched the
optimal η that yields the minimum l2 regularized loss on
the training set from the same range as TrunGrad. When
λ, κ and η were determined, we varied the value of the
sparsity parameter ρ to see the test performance.

In order to obtain reliable results, under a given parameter
setting, each algorithm was run 10 times, each time with τ
passes on the training data and each pass with a new random
permutation, and then the models learnt were evaluated on a
separated test data. The value of τ on each dataset is in Table
V. Fig. 3 displays the average test accuracy of these algorithms
under different sparsity levels, where the number of non-zero
features of the solution is obtained at the end of training.

From Fig. 3, we see that, when the number of non-zero
features kept is larger, the performance gap between SALC
and the others is insignificant; however, as the number of
non-zero features decrease, the gap is growing larger and
larger. We also notice that both SALC and TrunGrad achieve
good performance on Luad Brca even if they keep very few
features, which maybe is due to that the dataset contains a
large number of redundant features and SALC and TrunGrad
can reduce such features. On prostate GE, as the number
of non-zero features kept increase, the test performance of
SALC degrades gradually, while that of TrunGrad fluctuates
a lot, which is probably caused by lots of noisy features
contained in the dataset. On prostate GE, FOBOS cannot
achieve continuous sparse solutions, we therefore just provide
its scatter plot. Moreover, note that FOBOS and Proj L1
almost cannot achieve sparse solutions on the three dense
biological datasets, Luad Brca, prostate GE and SmkCan187,
neither can TrunGrad on SmkCan187. In conclusion, the
promising results suggest clearly that SALC has significant
superiority when high sparsity level of the solution is desired.

E. Comparison with sparse online classifiers on non-
stationary datasets

To observe how algorithms are affected by concept drifting,
we performed experiments on the non-stationary datasets in
Table II. Besides TrunGrad, FOBOS and Proj L1, SALC was
also compared with algorithms equipped with a drift detector.
Specifically, we wrapped each compared algorithm with a
drift detector DDM [29]. DDM tracks the online error of

its wrapped algorithm, issues a warning when it observes
an increase of error reaching the warning level, and actually
alarms a drift when an increase of error reaches the drift
level. Algorithms wrapped with DDM will discard their old
model when a drift is alarmed and learn from scratch a new
model using the instances after warning level. Each algorithm
uses the same parameter setting as in Section V-D except the
learning step-size, which was set to 0.01 for all algorithms.

Different from the experiments on stationary datasets where
multi-pass was allowed, in the non-stationary experiment, only
one-pass of data was allowed. Fig. 4 plots online classification
accuracy against the number of non-zero features at the end
of learning on zeroDt datasets with ST = 0. The same plots
on the datasets with ST > 0 are presented in Fig. 5. The
experimental results are averaged on 10 datasets in each group.
Note that in order to avoid clutter, we did not display in Fig. 5
the plots for FOBOS and FOBOS+DDM since we observe that
on these datasets, the plot of FOBOS coincides with that of
Proj L1, while the plot of FOBOS+DDM coincides with that
of Proj L1+DDM.

When ST = 0, we can see that SALC outperforms signif-
icantly TrunGrad, FOBOS and Proj L1 when the number of
non-zero features kept is less; as the number of non-zero fea-
tures increases, the gap in online performance grows smaller
and eventually vanishes. This phenomenon is consistent with
that in Section V-D.

When ST > 0, we have the following observations:

1) When ST is smaller on oneDtTwo and oneDtFour, SALC
performs better than the other algorithms, just like the ob-
servations in stationary case; as ST grows on threeDtFour
and threeDtSix, the other algorithms overtake SALC when
the number of non-zero features kept is larger, however,
SALC can beat them when smaller number of non-zero
features is kept.

2) As the amount of drifts increases, seen from Fig. 5a-
5c or Fig. 5d-5f, algorithms wrapped with DDM achieve
increasing performance superiority over their counterparts
without DDM. The reason is that when the divergence of
time-adjacent concepts is growing large, discarding the old
model directly and learning from scratch a new model on
the most recent data is superior to incrementally updating
the old model.

3) We notice that the maximum number of non-zero features
achieved by algorithms with DDM on threeDtFour and
threeDtSix datasets is around 7,200, which is less than their
counterparts without DDM. This phenomenon is due to
that algorithms without DDM cannot forget the old concept
quickly and thus keep features both in the old and new con-
cepts while algorithms with DDM only keep discriminative
features in the new concept. The phenomenon does not
occur on threeDtTwo datasets owing to the less divergence
of time-adjacent concepts: most of discriminative features
in the old concept remain discriminative in the new concept
and thus are kept.

4) SALC with DDM is superior to all the other algorithms no
matter how large ST is. The advantage is significant when
the number of non-zero features kept is smaller.
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Fig. 3. The test performance under different sparsity levels on stationary datasets. Note that the plots for FOBOS and Proj L1 do not appear on Luad Brca
since their plots fall outside the specified range.
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Fig. 4. Online classification accuracy against the number of non-zero features
on zeroDt datasets.

In conclusion, we can see that when ST = 0, SALC achieves
the best online performance when high sparsity level of the
solution is required, meanwhile when ST > 0, SALC wrapped
with DDM still can keep the performance superiority.

F. Comparison with online feature selection

We also compared SALC with the online feature selection
algorithm OFS [22] in terms of online tracking capability.
SALC differs from OFS in that SALC, like most of online
sparse learning algorithms, imposes only soft restrictions on
the number of non-zero features and does not explicitly ad-
dress the feature selection problem. In spite of the differences,
we compared both algorithms in the online classification tasks.
Experiments were performed on the non-stationary datasets
with ST > 0. Both algorithms used the regularization pa-
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Fig. 5. Online classification performance against the number of non-zero features on the datasets with ST > 0.

rameter λ = 0.01 and step-size η = 0.01; SALC also set
κ = 1; we varied the sparsity parameter ρ in SALC to obtain
a solution with various sparsity level and let OFS select the
exact number of features as SALC did. Fig. 6 presents the
online classification accuracy when the number of non-zero
features kept is less than 2000. Note that as the number of
features kept continues to grow, the gap in online accuracy
between both algorithms will disappear gradually. From Fig. 6,
we can clearly see that when the amount of drifts is smaller,
SALC is slightly better than OFS, however, as the amount of
drifts increases, the difference in online accuracy is growing.
These observations demonstrate the superiority of SALC over
OFS in dynamic environments.

VI. RELATED WORK

Our study is closely related to online linear classification
and regret metrics in static and dynamic environments. Next
we review important related works in these research areas.

Online linear classification According to the information
used during the updating, online linear classifiers can be
divided as first-order and second-order methods. First-order
methods only use the sub-gradient information, such as [11]–
[14], [30], which have low updating cost and low memory
requirement and thus are very suitable for large-scale applica-
tions. In spite of the slow convergence rate, first-order methods
can yield good generalization performance in classification
tasks [15]. Second-order methods, such as [16], [31], [32],
exploit the second derivation information of the objective
function, so they have expensive updating cost and memory

requirement but can often achieve faster convergence rate.
Despite extensive research in online linear classifiers, most
of studies only focus on stationary environments where an
optimal fixed classifier with hindsight is pursued. In contrast,
our work also focuses on non-stationary environments where
an optimal classifier is allowed to change with time gradually,
which is also a more challenging problem than traditional
online classification.

Static and dynamic regrets The main performance metric
for traditional online learning is the static regret, defined as
the difference between the cumulated loss of the algorithm and
that of the best fixed predictor, chosen from a given hypothesis
class to minimize the cumulated loss over all trials of learning.
Formally, the static regret of the algorithm over T trials is
defined as

RegretT ,
T∑
t=1

ft(wt)−min
u

T∑
t=1

ft(u).

Yet, in changing environments, the static regret is no longer
appropriate for assessing the performance of online classifiers,
since the best predictor is not constant, but is susceptible to
evolve over time. We must therefore turn to a more general
notion of dynamic regret. So far, two dynamic regret metrics
have been proposed or adopted, including shifting regret [24],
[26] and adaptive regret [33]–[35]. Shifting regret [24], [26]
measures the cumulated loss of the algorithm against an
arbitrary time-varying sequence of comparators in a given
hypothesis class. Such metric is valuable for evaluating how
the algorithm detects and adapts to concept drifting. Adaptive
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Fig. 6. Online classification performance with different number of features on the non-stationary datasets with ST > 0.

regret [33] is defined as the maximum regret the algorithm
achieves over any contiguous time intervals. Formally,

RegretT , max
[r,s]∈[1,T ]

{
s∑
t=r

ft(wt)−min
u

s∑
t=r

ft(u)

}
.

Since the optimal predictor varies with the time interval,
adaptive regret actually evaluates how well the algorithm
approximates the best predictor locally. Shifting regret and
adaptive regret are closely related and the relationship between
the two has been discussed in [24].

VII. CONCLUSION

This paper extends the convergence analysis of GD-LC
to changing environments and establishes its shifting regret
bounds under different step-size choices. The derived bounds
suggest that the step-size choice plays an important part in
the tracking performance of GD-LC. Specifically, the step-
size ηt = 1/(λt) helps GD-LC to achieve the least regret,
given enough instances in the stationary environments, while
the step-size ηt = η helps GD-LC to adapt to the dynamics
in the non-stationary environments. Experimental results are
shown to be consistent with the theoretical results.

According to the above theoretical results, a novel sparse ap-
proximated linear classifier, called SALC, is proposed. SALC
adopts the constant step-size scheduling so as to achieve good
tracking performance. SALC achieves sparsity by rounding
small model coefficients to zero at each online round, and
controls the truncation error in a very smart way. By control-
ling the value of the sparsity parameter in SALC, the sparsity

level of the solution can change continuously from no sparsity
to total sparsity. We also provide the shifting regret bound
of SALC. Experiments have shown that SALC can keep dis-
criminative features and meanwhile does not hurt the learning
performance much; in some cases, SALC even improves the
generalization by reducing noisy features. We also demonstrate
the superiority of SALC compared with the state-of-the-art
sparse online classifiers on nine stationary datasets. On seven
groups of non-stationary datasets with various shifting amount,
SALC presents good tracking performance when the shifting
amount is not that large; however, when wrapped with a drift
detector, SALC outperforms all the other algorithms regardless
of the shifting amount. We are further working on extending
our sparsity strategy to online kernel learning.

APPENDIX A
PROOF OF LEMMA 1

Proof.

Dt = ||wt − ut||2 − ||wt − ηt∇ft(wt)− ut||2

= 2ηt(wt − ut)
>∇ft(wt)− η2t ||∇ft(wt)||2

≥ 2ηt(wt − ut)
>∇ft(wt)− η2tG2.

Rearranging the terms, we get

(wt − ut)
>∇ft(wt) ≤

Dt

2ηt
+
ηtG

2

2
.

Given that ft is a λ-strongly convex function, we obtain

(wt − ut)
>∇ft(wt) ≥ ft(wt)− ft(ut) +

λ

2
||wt − ut||2.
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Combining the above two inequalities and then summing over
t, we get the stated inequality.

APPENDIX B
PROOF OF THEOREM 1

Proof. The pre-conditions in Lemma 1 hold for GD-LC, thus
the inequality stated in Lemma 1 holds. Now, for three differ-
ent step-size schedulings we prove Theorem 1 respectively.

Case 1: ηt = 1/(λt).
Substituting ηt = 1/(λt) and G = 2R into the inequality

in Lemma 1, we obtain

RegretTGD-LC ≤
λ

2

T∑
t=1

(
(t− 1)||wt − ut||2 − t||wt+1 − ut||2

)
+

2R2

λ

T∑
t=1

1

t

=
λ

2

T∑
t=1

((t− 1)||wt||2 − t||wt+1||2)− λ

2

T∑
t=1

||ut||2

+ λ

T∑
t=1

(tw>t+1ut − (t− 1)w>t ut) +
2R2

λ

T∑
t=1

1

t

= −λT
2
||wT+1||2 −

λ

2

T∑
t=1

||ut||2 + λTw>T+1uT

+ λ

T−1∑
t=1

tw>t+1(ut − ut+1) +
2R2

λ

T∑
t=1

1

t

≤ −λT
2
||wT+1||2 −

λ

2

T∑
t=1

||ut||2 + λTw>T+1uT

+R

T−1∑
t=1

t||ut − ut+1||+
2R2

λ
(1 + lnT ).

The last inequality is due to (1) Cauchy-Schwarz inequality
a>b ≤ ||a|| · ||b|| for any a and b, (2) the fact that ||wt+1|| ≤
R/λ and (3) the fact that

∑T
t=1

1
t ≤ 1 + lnT .

Furthermore, we have

− λT

2
||wT+1||2 −

λ

2

T∑
t=1

||ut||2 + λTw>T+1uT

≤1 −
λT

2

(
||wT+1||2 + || 1

T

T∑
t=1

ut||2
)

+ λTw>T+1uT

≤2 − λT ||wT+1|| · ||
1

T

T∑
t=1

ut||+ λT ||wT+1|| · ||uT ||

= λT ||wT+1|| · (||uT || − ||
1

T

T∑
t=1

ut||)

≤3 R

T−1∑
t=1

t||ut − ut+1||,

where ≤1 is due to Jensen’s inequality

1

T

T∑
t=1

||ut||2 ≥ ||
1

T

T∑
t=1

ut||2,

≤2 is due to ||a||2+||b||2 ≥ 2||a||·||b|| and a>b ≤ ||a||·||b||,
and ≤3 is due to ||wt+1|| ≤ R/λ and

||uT ||−||
1

T

T∑
t=1

ut|| ≤ ||uT−
1

T

T∑
t=1

ut|| ≤
1

T

T∑
t=1

||uT−ut||

≤ 1

T

T∑
t=1

T−1∑
i=t

||ui − ui+1|| =
1

T

T−1∑
t=1

t||ut − ut+1||.

Combing the above inequalities, we finally get

RegretTGD-LC ≤ 2R

T−1∑
t=1

t||ut − ut+1||+
2R2

λ
(1 + lnT )

≤ 2RTST +
2R2

λ
(1 + lnT ).

Case 2: ηt = η/
√
t.

Substituting ηt = η/
√
t and G = 2R into the inequality in

Lemma 1, we have

RegretTGD-LC ≤
1

2η

T∑
t=1

√
t(||wt − ut||2 − ||wt+1 − ut||2)

+ 2ηR2
T∑
t=1

1√
t
.

The first sum can be expanded and bounded as

1

2η

T∑
t=1

√
t(||wt||2 − ||wt+1||2) +

1

η

T∑
t=1

√
t(w>t+1ut −w>t ut)

≤
√
T

2η

T∑
t=1

(||wt||2 − ||wt+1||2) +

√
T

η

T∑
t=1

(w>t+1ut −w>t ut)

=−
√
T

2η
||wT+1||2 +

√
T

η

(
w>T+1uT +

T−1∑
t=1

w>t+1(ut − ut+1)

)

≤R
√
T

λη
(U +

T−1∑
t=1

||ut − ut+1||).

The second sum can be bounded as

2ηR2
T∑
t=1

1√
t
≤ 2ηR2(1 +

∫ T

1

1√
x
dx)

= 2ηR2(2
√
T − 1) < 4ηR2

√
T .

Combining the two sums, we obtain

RegretTGD-LC ≤
R
√
T

λη
(ST + U) + 4ηR2

√
T .

Case 3: ηt = η.
Substituting ηt = η and G = 2R into the inequality in

Lemma 1, we get

RegretTGD-LC ≤
1

2η

T∑
t=1

(
||wt − ut||2 − ||wt+1 − ut||2

)
+2ηR2T.
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The first sum can be expanded and bounded as

1

2η

T−1∑
t=1

(
||wt||2 − ||wt+1||2

)
+

1

η

T∑
t=1

(w>t+1ut −w>t ut)

=− 1

2η
||wT+1||2 +

1

η
w>T+1uT +

1

η

T−1∑
t=1

w>t+1(ut − ut+1)

≤ R

λη
(ST + U).

Hence, we have proved that in this case

RegretTGD-LC ≤
R

λη
(ST + U) + 2ηR2T.
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