
HAL Id: hal-04442588
https://hal.science/hal-04442588v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal controller synthesis for timed systems
Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier

To cite this version:
Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain Reynier. Optimal controller synthesis for
timed systems. Logical Methods in Computer Science, 2023, Volume 19, Issue 1, �10.46298/lmcs-
19(1:20)2023�. �hal-04442588�

https://hal.science/hal-04442588v1
https://hal.archives-ouvertes.fr

Logical Methods in Computer Science
Volume 19, Issue 1, 2023, pp. 20:1–20:77
https://lmcs.episciences.org/

Submitted Apr. 29, 2021
Published Mar. 15, 2023

OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS

DAMIEN BUSATTO-GASTON a, BENJAMIN MONMEGE b, AND PIERRE-ALAIN REYNIER b

aUniv Paris Est Creteil, LACL, F-94010 Creteil, France
e-mail address: damien.busatto-gaston@u-pec.fr

bAix Marseille Univ, LIS, CNRS, Marseille, France
e-mail address: benjamin.monmege@univ-amu.fr, pierre-alain.reynier@univ-amu.fr

Abstract. Weighted timed games are zero-sum games played by two players on a timed
automaton equipped with weights, where one player wants to minimise the cumulative
weight while reaching a target. Used in a reactive synthesis perspective, this quantitative
extension of timed games allows one to measure the quality of controllers in real-time
systems. Weighted timed games are notoriously difficult and quickly undecidable, even
when restricted to non-negative weights. For non-negative weights, a fragment of weighted
timed games that can be analysed has been introduced by Bouyer, Jaziri and Markey
in 2015. Though the value problem is undecidable even in this fragment, the authors
show how to approximate the value by considering regions with a refined granularity. In
this work, we extend this class to incorporate negative weights, allowing one to model
energy for instance, and prove that the value can still be approximated, with the same
complexity (provided that clocks are bounded). A restriction also allows us to obtain a
class of decidable weighted timed games with negative weights and an arbitrary number of
clocks. In addition, we show that a symbolic algorithm, relying on the paradigm of value
iteration, can be used as an approximation/computation schema over these classes. We
also consider the special case of untimed weighted games, where the same fragments are
solvable in polynomial time: this contrasts with the pseudo-polynomial complexity, known
so far, for weighted games without restrictions.

1. Introduction

We are interested in the design of programs sensitive to real-time, where keeping track of how
much time elapses between the decisions taken by the program is required to differentiate
the good and bad behaviours of the system. This is a common requirement for embedded
systems, as they interact with the real world. The design of such programs is a notoriously
difficult problem, because they must take care of delicate timing issues, and are difficult to
debug a posteriori. In order to ease the design of real-time software, it appears important
to automatise the process by using formal methods. The situation may be modelled into a

Key words and phrases: weighted timed games; computational game theory; timed automata; quantitative
constraints.

We thank the reviewers of this article, as well as the two conference versions from which most of the
results come from, for their valuable feedback.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(1:20)2023
© D. Busatto-Gaston, B. Monmege, and P.-A. Reynier
CC© Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0002-7266-0927
https://orcid.org/0000-0002-4717-9955
http://creativecommons.org/about/licenses

20:2 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

A C

B D

road
1h

road
1h

road
[2h, 3h]

highway
1h

highway
0.5h

road
[0.5h, 1h]

Figure 1: A ride-sharing decision diagram.

timed automaton [AD94], namely a transition system equipped with real-valued variables,
called clocks, evolving with a uniform rate. Transitions are equipped with timing constraints
expressed over the clocks, and may only be taken when these constraints are met. Finally,
clocks may be reset so as to keep track of how much time has elapsed since a particular
transition was taken.

In order to check whether the real-time system fulfils a certain specification, one de-
termines whether there exists an accepting execution in the timed automaton: this is the
classical model-checking problem. A simple, yet realistic specification asks that a target state
is reached at some point. It has been proven in early works [AD94] that the reachability
problem on timed automata is PSPACE-complete: in particular, the PSPACE upper bound
is obtained by partitioning the state space into a finite number of regions. While optimal
from a theoretical complexity point of view, practical tools tend to favour efficient symbolic
algorithms for solving such model-checking problems like reachability, that use zones instead
of regions, as they allow an on-demand partitioning of the state space. This leads to much
better performances, as witnessed by successful model-checking tools like Uppaal [LPY97],
Kronos [BDM+98], or TChecker [HPT19, HSW10].

Instead of verifying a system, we can try to synthesise one automatically. One setting
consists in using game theory. The set of configurations of the system is then partitioned
into two players: a controller whose role is to fulfil the specification, and an antagonistic
environment. The goal becomes to find automatically a good strategy for the controller,
which is called the controller synthesis problem. In timed systems, both players alternatively
choose transitions and delays in a timed automaton: this is called a timed game. Strategies
of players are recipes dictating how to play (timing delays and transitions to follow). In this
ambitious setting, we will focus on reachability objectives, and we are thus looking for a
strategy of the controller so that the target is reached no matter how the environment plays.
Reachability timed games are decidable [AM99], and EXPTIME-complete [JT07].

If the controller has a winning strategy in a given reachability timed game, several such
winning strategies could exist. Weighted extensions of these games have been considered
in order to measure the quality of the winning strategy for the controller [BCFL04]. This
means that the game now takes place over a weighted (or priced) timed automaton [BFH+01,
ALTP04], where edges are equipped with weights, and locations with rates of weights (the
cost is then proportional to the time spent in this location, with the rate as proportional
coefficient). The optimal reachability problem asks what is the lowest cumulative weight
that the controller can guarantee for reaching a target from a given initial state, against any
decision made by the antagonistic environment. The controller is therefore the minimiser

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:3

A

rdA→BhwA→B

rdA→C

B

C

rdC→D hwC→D

DrdD→B

1e/h

1e/h

2e/h 1e/h 0e/h−1e/h

x = 0 x = 1

x := 0
x = 0 1e

x = 1

x = 0

2 6 x 6 3

x = 0

1
2 6 x 6 1

x := 0

x = 0
1e

x = 1
2

x := 0

x = 0x = 1

Figure 2: A weighted timed game modelling Figure 1. Transitions are labelled by a guard
over clock x and by the reset x := 0 when needed. The cost of waiting in a state is
displayed in blue, the cost of taking a transition is in red. States and transitions
without costs have a weight of 0e

player, while the environment wants to maximise the weight accumulated along the execution.
This lowest weight is called the value of the game, and computing it can be seen as a natural
generalisation of the classical shortest path problem in a weighted graph to the case of
two-player timed games.

Example 1.1. As a motivating example, we present a ride-sharing scenario. As a driver,
we wish to travel from point A to point B, and must choose between several options, as
displayed in Figure 1. We can use a direct road, and reach B in two to three hours, or a
highway that lets us reach our destination in one hour. Alternatively, we can make a detour:
another traveller is waiting at point C, and wishes to reach point D. For this portion too, a
faster highway is available.

While all four possible paths satisfy the objective "reaching B", we want to select the
one that lets us spend as little money as possible for the trip. The cost of each path depends
on several factors. There are fixed entry fees (of 1e) for the highways, and we need to keep
track of fuel consumption, as the rate at which fuel is used differs in roads and highways.
Thus, we say that roads cost 1e per hour, while highways cost 2e per hour. Moreover, if we
share the portion from C to D, the other traveller will pay for his trip (at a rate of 2e/h),
and that can lower our costs. A shared road therefore costs us −1e per hour (negative rate
means we are making a profit), while a shared highway costs 0e/h.

The situation can be modelled as a weighted timed game, displayed in Figure 2. The
controller chooses delays and transitions in circle states, while the environment controls
the square ones. For example, if we choose to use the direct road from A to B, we go
(immediately) to state rdA→B, and stay there until going to state B. This requires letting
between two and three hours elapse in rdA→B, with a cost of 1e/h. The delay is chosen by
the environment, as it depends on external influences like traffic density.

In this example, the optimal strategy is to share the road from C to D. This lets us
ensure a total weight of at most 1.5e: going from A to C costs 1e in the worst case; going

20:4 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

from D to B similarly costs at most 1e; and sharing the trip from C to D is guaranteed to
bring us at least 0.5e.

While deciding whether the value of a weighted timed automata is lower than a given
threshold has been shown to be PSPACE-complete [BBBR07] (i.e. the same complexity as
the non-weighted version, that is the reachability problem), the same problem is known to be
undecidable in weighted timed games [BBR05]. This justifies the study of restrictions in order
to regain decidability, the first and most interesting one being the class of strictly non-Zeno
cost with only non-negative weights (in edges and locations) [BCFL04]: this hypothesis states
that every execution of the timed automaton that follows a cycle of the region abstraction
has a weight far from 0 (in the interval [1,+∞), for instance).

Less is known for weighted timed games in the presence of negative weights in edges and
locations. In particular, no results existed before this work for a class that does not restrict
the number of clocks of the timed automaton to 1. However, several clocks are needed to
keep track of how much time elapsed since multiple reference points, and negative weights are
particularly interesting from a modelling perspective, for instance in case weights represent
the consumption level of a resource (money, energy. . .) with the possibility to spend and gain
some resource. We thus introduce a generalisation of the strictly non-Zeno cost hypothesis in
the presence of negative weights, that we call divergence. Under the hypothesis that clocks
are bounded, we show the decidability of the class of divergent weighted timed games for the
optimal synthesis problem. The technique uses a value iteration procedure to solve weighted
timed games for a bounded horizon, i.e. when controller has a fixed number of steps to reach
his targets. It follows closely the framework of [ABM04], but is more symbolic and allows for
negative weights. We then show that optimal strategies in divergent weighted timed games
can be restricted to a bounded horizon, that matches the one obtained in the non-negative
case from the study of [BCFL04].

The techniques providing these decidability results cannot be extended if the conditions
are slightly relaxed. For instance, if we add the possibility for an execution of the timed
automaton following a cycle of the region automaton to have weight exactly 0, the decision
problem is known to be undecidable [BJM15], even with non-negative weights only. For this
extension, in the presence of non-negative weights only, it has been proposed an approximation
schema to compute arbitrarily close estimates of the optimal weight that the controller can
guarantee [BJM15]. To this end, the authors consider regions with a refined granularity so
as to control the precision of the approximation.

Our contribution on the approximation front is two-fold. We extend the class considered
in [BJM15] to the presence of negative weights, and provide an approximation schema
for the resulting class of almost-divergent games (again under the hypothesis that clocks
are bounded). We then show that the approximation can be obtained using a symbolic
computation, that avoids an a priori refinement of regions. Table 1 summarises our results
on weighted timed games.

The classes of weighted timed games that we study induce interesting classes of finite
weighted games when there are no clocks, that can be solved with a lower (polynomial)
complexity than arbitrary weighted games, see Table 2.

Other types of payoffs than the cumulative weight we study (i.e. total payoff) have been
considered for weighted timed games. For instance, energy and mean-payoff timed games have
been introduced in [BCR14]. They are also undecidable in general. Interestingly, a subclass
called robust timed games, not far from our divergence hypothesis, admits decidability results
for other payoffs. A weighted timed game is robust if, to say short, every simple cycle (cycle

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:5

Timed weights in N
divergent almost-divergent all WTG

Value pb. 2-EXPTIME
[BCFL04]+[ABM04]

undecidable
[BJM15]

undecidable
[BBR05]

Approx. pb. / 2-EXPTIME
[BJM15]+[ABM04] ?

Value +∞ EXPTIME-complete
[BCFL04]+[JT07]

Timed weights in Z
divergent almost-divergent all WTG

Value pb.
3-EXPTIME

EXPTIME-hard
Thm. 3.4

undecidable
[BJM15]

undecidable
[BGNK+14]

Approx. pb. / 3-EXPTIME
Thm. 3.9 ?

Value −∞ EXPTIME-complete
Prop. 3.11,5.5

undecidable
Prop. 3.12

Value +∞ EXPTIME-complete
Prop. 5.3

Membership PSPACE-complete
Thm. 3.4,3.9 /

Table 1: Solving weighted timed games with arbitrary weights

Untimed weights in N weights in Z
all games divergent almost-div. all games

Value pb. PTIME-complete
[KBB+08], Section 11.2.2

PTIME-complete
Thm. 11.4,11.6

pseudo-poly.
[BGHM16]

Value −∞ / PTIME-complete
Section 11.2.1

pseudo-poly.
[BGHM16]

Value +∞ PTIME-complete
[KBB+08], Section 11.2.2

PTIME-complete
Prop. 5.3, [BGHM16]

Membership /
NL-complete (unary wt.)

PTIME (binary wt.)
Thm. 11.4,11.6

/

Table 2: Solving finite weighted games with arbitrary weights

without repetition of a state) has a weight that is either non-negative or less than −ε, for a
fixed constant ε > 0 (the same constant for all cycles). Solving robust timed game can be done
in EXPSPACE, and is EXPTIME-hard. Moreover, deciding if a weighted timed game is robust
has complexity 2-EXPSPACE (and coNEXPTIME-hard). This contrasts with our PSPACE
results for the membership problem.1 It has to be noted that extending our techniques and
results to the case of robust timed games may not be possible: indeed, with weights in N

1While our divergent games have a similar definition, the two classes are incomparable.

20:6 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

every game is robust, making the value problem for this class undecidable [BBR05], with no
known approximation method.

This article is structured as follows. After some preliminary definitions of the models we
study in Section 2, we introduce the divergent and almost-divergent classes of weighted timed
games and state our results in Section 3. We study structural properties of these classes in
order to be able to decide their membership in Section 4. We then start solving these games
by studying the qualitative problem of deciding infinite values, using the crucial and central
notion of kernels, in Section 5. The approximation schema for almost-divergent timed games
is presented in Section 6 where we introduce and prove the correctness of a semi-unfolding of
the game. Section 7 explains how to compute the value of this semi-unfolding in the special
case of a tree-shaped game (without kernels) as previously studied in [ABM04]. We then
generalise our study in Section 8 to take kernels into account; we also consider the special case
of divergent timed games. The first approximation/computation we propose requires to first
compute strongly connected components and to build the semi-unfolding of the timed games,
which might be highly prohibitive as usual in the timed setting. Therefore, we present a
more symbolic algorithm in Section 9. In Section 10, we deduce from our study an algorithm
to synthesise finite-memory almost-optimal strategies in divergent timed games. Finally, we
treat the special case of almost-divergent untimed games in Section 11, where polynomial
time algorithms are provided in this case (to be compared with the pseudo-polynomial
complexity in general known so far).

This work is based on works published in [BGMR18, BGMR17]: compared to these
preliminary works, this article contains full and corrected proofs, as well as a detailed study
of the acyclic case in Section 7, used as a building block for our study. We have also extended
the work in the untimed case (Section 11) to incorporate almost-divergent weighted games.

2. Preliminaries

2.1. Modelling real-time constraints. We first introduce notions that let us express
timing constraints, useful to then define weighted timed games, and introduce classical tools
for their study.

Let X = {x1, . . . , xn} be a finite, non-empty set of variables called clocks. A valuation
ν : X → R>0 is a mapping from clocks to non-negative real numbers, such that ν(x1), . . . , ν(xn)
are called the coordinates of ν. Equivalently, ν can be seen as a point in space RX>0. We
denote 0 the valuation such that for all x ∈ X , ν(x) = 0. Given a real number d ∈ R, we
define ν + d as the valuation such that ∀x ∈ X , (ν + d)(x) = ν(x) + d if it exists.2 If d
is non-negative, we say that we performed a time elapse of delay d. The time-successors
of ν are the valuations ν + d with d > 0. Similarly, we refer to all ν + d in RX>0 with
d 6 0 as time-predecessors of ν. The set of points that are either time-predecessors or
time-successors of a valuation ν form the unique diagonal line in RX>0 that contains ν. If Y
is a subset of X , we define ν[Y := 0] as the valuation such that ∀x ∈ Y, (ν[Y := 0])(x) = 0
and ∀x ∈ X\Y, (ν[Y := 0])(x) = ν(x). This operation is called a reset of clocks Y.

We extend those notions to sets of valuations in a natural way. The set of time-successors
of Z ⊆ RX>0, denoted PostTime(Z), contains the valuations that are time-successors of
valuations in Z. The reset of Z ⊆ RX>0 by Y, denoted Z[Y := 0], contains the valuations
ν[Y := 0] such that ν ∈ Z.

2if d is negative, ν + d may not belong to RX>0

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:7

The term atomic constraint will refer to an affine inequality in one of the following forms:
• A strict (respectively non-strict) non-diagonal atomic constraint over clock x ∈ X and
constant c ∈ Q is an inequality of the form x ./ c with ./ ∈ {>,<} (respectively ./ ∈
{>,6}).
• A strict (respectively non-strict) diagonal atomic constraint over clocks x and y ∈ X and
constant c ∈ Q is an inequality of the form x− y ./ c with ./ ∈ {>,<} (respectively ./ ∈
{>,6}).

Let > and ⊥ denote two special atomic constraints, defined as x > 0 and x < 0 for an
arbitrary x ∈ X . A guard g over X is a finite conjunction of atomic constraints over clocks in
X . In particular, guards let us define x = c as shorthand for x 6 c ∧ x > c, and c1 < x < c2

as shorthand for x > c1 ∧ x < c2. A guard is said strict (respectively non-strict, diagonal,
non-diagonal) if all of its atomic constraints are strict (respectively non-strict, diagonal,
non-diagonal). Guards(X) denotes the set of all guards over X , and Guardsnd(X) the subset
of non-diagonal guards. For all constants c ∈ Q and ./ ∈ {>,6, >,<}, we say that valuation
ν ∈ RX>0 satisfies the atomic constraint x ./ c (respectively x− y ./ c), and write ν |= x ./ c
(respectively ν |= x− y ./ c), if ν(x) ./ c (respectively ν(x)− ν(y) ./ c). We say that valuation
ν ∈ RX>0 satisfies guard g, and write ν |= g, if ν satisfies all atomic constraints in g. For
g ∈ Guards(X), let JgK denote the set of all ν ∈ RX>0 such that ν |= g. Such sets are called
zones and form convex polyhedra of RX>0. A guard g is said satisfiable when the zone JgK is
non-empty, and a zone is called rectangular when the associated guard is non-diagonal. The
universal zone refers to J>K = RX>0 and the empty zone refers to J⊥K = ∅. Guard g is the
closed version of a satisfiable guard g where every strict constraint of comparison operator <
or > is replaced by its non-strict version 6 or >. The zone JgK is the topological closure of
Z = JgK, and is also denoted Z.

We will restrict ourselves to bounded clocks, so that clocks valuations will be point in
[0,M)X instead of RX>0, for some upper bound M ∈ N>0.3 We denote by Guards(X ,M)

(respectively Guardsnd(X ,M)) the set of guards (respectively the set of non-diagonal guards)
over X bounded by M , in the sense that |c| 6M for all constants c ∈ Q appearing in the
atomic constraints of the guards.

2.2. Regions. We will rely on the crucial notion of regions, as introduced in the seminal
work on timed automata [AD94]. Let QN = {a/N | a ∈ Z} be the set of rational numbers of
granularity 1/N for a fixed N ∈ N>0. Given a finite set of rational numbers S ⊆ Q, S is said
to be of granularity 1/N if S ⊆ QN . Such an N always exists, and one can find the smallest
one by decomposing elements of S as irreducible fractions c/c′ with c ∈ Z, c′ ∈ N>0 and use
the least common multiple of all c′ as N . A guard g is said to be of granularity 1/N if all
constants in the atomic constraints of g form a set of granularity 1/N . A zone is of granularity
1/N if it can be described by a guard of granularity 1/N . Let GuardsN (X ,M) denote the
set of guards over X bounded by M and of granularity 1/N , and let Guardsnd

N (X ,M) denote
the non-diagonal ones. Given a finite set of guards G ⊆ Guardsnd(X ,M), we can find N

such that G ⊆ Guardsnd
N (X ,M), by denoting S ⊆ Q the set of constants used in atomic

constraints of G and using N the smallest integer such that S is of granularity 1/N . For all
a ∈ R>0, bac ∈ N denotes the integral part of a, and fract(a) ∈ [0, 1) its fractional part, such
that a = bac+ fract(a).

3This assumption will be discussed and formalised later on in Hypothesis 3.

20:8 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 3: All 1/1-regions in Reg1({x1, x2}, 2) on the left, their refinement of granularity 1/3
in Reg3({x1, x2}, 2) on the right.

Definition 2.1. With respect to the set X of clocks, a granularity N ∈ N>0 and an upper
bound M ∈ N>0 on the valuation of clocks, we partition the set [0,M)X of valuations into
1/N -regions. We denote by RegN (X ,M) the set of 1/N -regions bounded by M . Each such
region is characterised by a pair (ι, β) where ι : X → [0,M) ∩QN and β is a partition of X
into subsets β0]β1]· · ·]βm (with m > 0), where β0 can be empty but βi 6= ∅ for 1 6 i 6 m.
A valuation ν of [0,M)X belongs to the region characterised by (ι, β) if
• for all x ∈ X , ι(x)N = bν(x)Nc;
• for all x ∈ β0, fract(ν(x)N) = 0;
• for all 0 6 i 6 m, for all x, y ∈ βi, fract(ν(x)N) = fract(ν(y)N);
• for all 0 6 i < j 6 m, for all x ∈ βi and all y ∈ βj , fract(ν(x)N) < fract(ν(y)N).

With granularity N = 1, we recover the classical notion of regions from [AD94] (in the
case of bounded clocks), and we omit N from previous notations about regions, such that
1/N -regions are simply called regions, and RegN (X ,M) is denoted Reg(X ,M). The set of
valuations contained in a 1/N -region r characterised by (ι, β) with β = β0] β1] · · ·] βm
can be described by the guard g0 ∧ g1 ∧ · · · ∧ gm with

g0 =
∧
x∈β0

(
x = ι(x)

)
, g1 =

∧
x,y∈β1

(
0 < x− ι(x) = x− ι(y) < 1/N

)
and for i ∈ {2, . . . ,m},

gi =
∧

x,y∈βi

(
z− ι(z) < x− ι(x) = y − ι(y) < 1/N

)
where z is any clock of βi−1. Therefore, every 1/N -region is a zone of granularity 1/N .

RegN (X ,M) indeed forms a finite partition of [0,M)X . We bound the number of regions
in the next lemma, making use of the fact that we only consider bounded regions of [0,M)X .

Lemma 2.2. The number of 1/N -regions is polynomial in MN and exponential in the
number of clocks n = |X |:

|RegN (X ,M)| 6 n!(2MN)n .

Proof. Since ι(x) ∈ {0, 1
N , . . . ,

M−1
N } for each clock x, there are (MN)n possible functions ι.

For each of them, the partition β can be described by a total ordering of clocks (there are n!
such orderings), and a mapping of each clock x to either = or >, so that the fractional part
of ν(x)N is either equal to the fractional part of ν(y)N where y is the clock immediately
preceding x in the ordering, or strictly greater than it. If the first clock of the ordering
is mapped to =, it belongs to β0, otherwise β0 = ∅. Therefore there are at most n!2n

possibilities for the partition β.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:9

If ν is a valuation in [0,M)X , [ν] denotes the unique region that contains ν. Valuations
in the same 1/N -region r satisfy the same guards in GuardsN (X ,M): we denote by r |= g
the satisfaction of the guard g for all valuations of the region r. In fact, zones associated to
guards in GuardsN (X ,M) can be described as a finite union of regions in RegN (X ,M). If r
is a 1/N -region in RegN (X ,M), then the time-successor valuations in PostTime(r)∩ [0,M)X

form a finite union of regions in RegN (X ,M), and the reset r[Y := 0] of Y ⊆ X is a region
in RegN (X ,M). A 1/N -region r′ is said to be a time successor of the 1/N -region r if there
exists ν ∈ r, ν ′ ∈ r′, and d > 0 such that ν ′ = ν + d.

Example 2.3. Figure 3 represents the 24 regions of granularity N = 1 with upper bound
M = 2 over two clocks. The green region is characterised by ι = (1, 0) and the partition β
into two sets β0 = {x1} and β1 = {x2}: it can be encoded with the guard 0 = x1− 1 < x2 < 1
and thus is equal to the zone Jx1 = 1 ∧ 0 < x2 < 1K. The red region is characterised by
ι = (0, 1) and the partition β into a single set β0 = {x1, x2}. The black region is characterised
by ι = (1, 1) and the partition β into three sets β0 = ∅, β1 = {x1} and β2 = {x2}. The
blue region is characterised by ι = (0, 0) and the partition β into two sets β0 = ∅ and
β1 = {x1, x2}.

2.3. Piecewise affine functions. We will heavily rely on the class of piecewise affine
functions, and a way to efficiently encode them, as developed in [ABM04]. These functions
will enable us to describe the value of weighted timed games and will therefore be restricted
to a domain [0,M)X , with values taken in R∞ = R ∪ {+∞,−∞}. Let n denote the number
of clocks, such that X = {x1, . . . , xn}. An affine function is a mapping f : [0,M)X → R∞
such that for all ν ∈ [0,M)X ,

f(ν) = a1 · ν(x1) + · · ·+ an · ν(xn) + b

with partial derivatives ai ∈ Q for 1 6 i 6 n, and additive constant b ∈ Q. In this case, we
say that f is defined by the equation y = a1x1 + · · · + anxn + b where the variable y 6∈ X
refers to f(x1, . . . , xn). We also consider infinite mappings ν 7→ +∞ and ν 7→ −∞ to be
affine functions, defined with null partial derivatives and an infinite constant b.

Intuitively, we define a piecewise affine function as a partition of [0,M)X into finitely
many polyhedra, called cells, each equipped by an affine function. Formally, an affine
inequality is an equation I of the form

a1x1 + · · ·+ anxn + b ≺ 0

where b ∈ Q is the additive constant of I, ≺ ∈ {<,6} is its comparison operator, and for
every 1 6 i 6 n, ai ∈ Q is the i-th partial derivative of I. Similarly, an affine equality is an
equation E of the form

a1x1 + · · ·+ anxn + b = 0 .

We say that ν ∈ RX>0 satisfies I (respectively E), and write ν |= I (respectively ν |=
E), if a1 · ν(x1) + · · · + an · ν(xn) + b ≺ 0 (respectively = 0) holds. In this case, JIK
(respectively JEK) refers to the set of valuations that satisfy I (respectively E). Equalities
(respectively inequalities) are equivalent when they are satisfied by the same valuations. In
particular, multiplying the additive constant b and all partial derivatives ai by the same
factor N ∈ N>0 gives an equivalent equality (respectively inequality), and we will therefore
assume that they are always integers.

20:10 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

2x1 + x2 − 2 = 0

x2 − 1 = 0

x1

x2

1 20

1

2

Figure 4: The cell 2x1 + x2 − 2 < 0 ∧ x2 − 1 < 0 in gray, and its borders in blue.

Definition 2.4. A cell is a set c ⊆ RX>0, defined by a conjunction of affine inequalities
I1 ∧ · · · ∧ Im, such that ν ∈ c if and only if for all 1 6 i 6 m, ν |= Ii. We write
c = JI1 ∧ · · · ∧ ImK in this case.

Cells are convex polyhedra, and the intersection of finitely many cells is a cell. From
every affine inequality I, we can extract an affine equality E(I), of identical partial derivatives
and additive constant. Then, we call borders of a cell c = JI1 ∧ · · · ∧ ImK the affine equalities
E(I1), . . . , E(Im). The closure c of a cell c is obtained by replacing every comparison operator
< by 6 in its affine inequalities. Note that regions and zones are particular cases of cells,
where borders are of the form x + b = 0 or x− y + b = 0. An example of cell and its borders
is given in Figure 4.

We use the notion of cells in order to describe specific cases of piecewise affine functions
that we will need in this article. First we use them to describe a partition of the space. Let
E be an affine equality of equation a1x1 + · · ·+ anxn + b = 0. We say that RX>0 is partitioned
by E into three cells:
• c<, defined by a1x1 + · · ·+ anxn + b < 0;
• c>, defined by a1x1 + · · ·+ anxn + b > 0, i.e. −a1x1 − · · · − anxn − b < 0;
• c=, defined by a1x1 + · · ·+ anxn + b = 0, i.e. the conjunction of a1x1 + · · ·+ anxn + b 6 0
and −a1x1 − · · · − anxn − b 6 0.

Then, given a set E = {E1, . . . , Em} of affine equalities, we denote cj<, c
j
> and cj= the three

cells obtained from Ej ∈ E . For every mapping φ : E → {<,>,=}, we define cφ as the
cell c1

φ(E1) ∩ · · · ∩ c
m
φ(Em). Every valuation of RX>0 belongs to some cφ, and if φ 6= φ′ then

cφ ∩ cφ′ = ∅: hence, the set of mappings {<,>,=}E provides a partition of RX>0 into 3m

cells. We say that RX>0 is partitioned by E into m′ ∈ N cells if m′ of those 3m cells are
non-empty. We denote Splits(m,n) the greatest m′ over any partition of RX>0 by m affine
equalities. Similarly, a cell c ⊆ RX>0 is partitioned by E into at most Splits(m,n) sub-cells
that have non-empty intersection with c. In particular, under the bounded clocks assumption
we will partition [0,M)X instead of RX>0.

Example 2.5. The Splits(2, 2) = 9 cells that partition [0, 2)X according to E = {2x1+x2−2 =
0, x2 − 1 = 0} are represented in Figure 5.

As a technical tool, we will need to better understand how the number of cells in a
partition grows with respect to the number of equalities used to describe this partition. In

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:11

x1

x2

1 20

1

2

Figure 5: A partition of [0, 2)X according to the two affine equalities of Figure 4.

fact, the number of cells Splits(m,n) is bounded by O((2m)n), which we will use abundantly
to compute the complexity of our algorithms. The technical proof is delayed in Appendix A.

Lemma 2.6. For all m,n > 0, Splits(m,n) 6 2n(m+ 1)n.

We summarise our representation of partitions with affine equalities in the following
definition:

Definition 2.7. A partition P is defined by a cell cP and a set EP of affine equalities, such
that P encodes the set of cells that partition cP according to EP , called base cells.

The cell cP is called the domain of P . We denote [ν]P the base cell that contains
valuation ν ∈ cP .

Definition 2.8. A partition function F defined over a partition P is a mapping from
the base cells of P to affine functions. It encodes a mapping from cP to R∞, denoted
JF K: if ν ∈ cP and F ([ν]P) is defined by y = a1x1 + · · · + anxn + b, then JF K(ν) equals
a1 · ν(x1) + · · ·+ an · ν(xn) + b.

A partition function F of domain cP is continuous if for all ν ∈ cP , for every base
cell cb such that ν ∈ cb, if F (cb) is defined by y = a1x1 + · · · + anxn + b then JF K(ν) =
a1 · ν(x1) + · · · + an · ν(xn) + b. In other words, the affine equations provided by F to
neighbouring cells should match on the borders that separate them.

Finally, we use a pair (P, F) where P is a partition of domain [0,M)X , and F is a
partition function defined over P , to encode a piecewise affine function JF K : [0,M)X → R∞.
The piecewise affine function is said continuous on regions if for every region r ∈ Reg(X ,M),
the restriction of JF K to domain r is continuous. There could be discontinuities in JF K, but
only at borders separating different regions. In particular, if a partition function is continuous
over regions, and JF K(ν) = +∞ (respectively −∞) for some ν, then for all ν ′ in the same
region as ν, JF K(ν ′) = JF K(ν).

2.4. Weighted timed games. We now turn our attention to (turn-based) weighted timed
two-player games with a shortest-path objective towards a set of target locations. We will
first define weighted timed games, giving their semantics in terms of an infinite transition
system on which the traditional notions of strategies and values are defined.

Definition 2.9. A weighted timed game (WTG) is a tuple G = 〈LMin, LMax,X , Lt, E,wt, fwt〉
with L = LMin]LMax a finite set of locations split between players Min and Max (in drawings,
locations belonging to Min are depicted by circles and the ones belonging to Max by squares),
X a finite set of clocks, E ⊆ L × Guards(X) × 2X × L a finite set of edges ` g,Y−−→ `′ from

20:12 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

location ` to location `′, labelled by a guard g and a set Y of clocks to reset, wt : E] L→ Z
a weight function associating an integer weight with each location and edge, Lt ⊆ LMin a
set of target locations for player Min, and fwt : Lt × RX>0 → R∞ is a function4 mapping each
target configuration to a final weight of R∞.

The semantics of a weighted timed game G is defined in terms of an infinite labelled
transition system JGK whose states are configurations (`, ν) ∈ L× RX>0. Configurations are
split into players according to the location `. A configuration (`, ν) is a target if ` ∈ Lt, and
its final weight is fwt(`, ν). The labels of JGK are given by R>0×E and will encode the delay
that a player wants to spend in the current location, before firing a certain edge. For every
delay d ∈ R>0, edge e = `

g,Y−−→ `′ ∈ E and valuation ν, there is a transition (`, ν)
d,e−−→ (`′, ν ′)

if ν + d |= g and ν ′ = (ν + d)[Y := 0]. The weight of such a transition takes into account
both discrete and continuous costs, and is given by d · wt(`) + wt(e).

Without loss of generality (since we can detect such deadlocks using classical attractor
techniques using regions we describe later, and add a new transition towards a sink location
in this case), we suppose the absence of deadlocks in JGK except on target locations:

Hypothesis 1. For each location ` ∈ L\Lt and valuation ν ∈ RX>0, there exist d ∈ R>0 and

e ∈ E such that (`, ν)
d,e−−→ (`′, ν ′), and no edges start from Lt.

Plays are maximal paths in the transition system JGK: thanks to the previous hypothesis,
they are either infinite or end in a target location. First and last elements of a finite play
ρ are denoted first(ρ) and last(ρ), respectively. For a player P ∈ {Min,Max}, the set of
non-maximal plays ρ (often called finite plays) such that last(ρ) ∈ LP is denoted FPlaysP.

A strategy σP for player P is a mapping FPlaysP → R>0×E, such that for all ρ ∈ FPlaysP

ending in configuration (`, ν), the transition system JGK contains a transition labelled by
σP(ρ) from (`, ν). A strategy is said positional (or memoryless) if for all ρ, ρ′ ∈ FPlaysP

ending in the same configuration, σP(ρ) = σP(ρ′). Let play((`0, ν0), σMin, σMax) denote the
unique maximal play starting from configuration (`0, ν0) such that for every prefix ρ of
play((`0, ν0), σMin, σMax) in FPlaysP, the next transition in play((`0, ν0), σMin, σMax) is labelled
by σP(ρ).

The objective of Min is to reach a target location, while minimising the cumulative weight
up to the target. Hence, we associate to every finite play ρ = (`0, ν0)

d1,e1−−−→ (`1, ν1) · · · dk,ek−−−→
(`k, νk) its cumulative weight

wtΣ(ρ) =

k∑
i=1

di · wt(`i−1) + wt(ei)

Then, the weight of a maximal play ρ, also denoted by wt(ρ), is defined by +∞ if ρ is infinite
and thus does not reach Lt, and wtΣ(ρ) + fwt(`, ν) if it is finite and ends in (`, ν) with ` ∈ Lt.
Then, the respective values of the strategies are defined by

ValG((`0, ν0), σMin) = sup
σMax

wt(play((`0, ν0), σMin, σMax))

ValG((`0, ν0), σMax) = inf
σMin

wt(play((`0, ν0), σMin, σMax))

4We restrict the type of functions allowed in Hypothesis 4: informally, we will only deal with piecewise
affine functions, as defined previously.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:13

Finally, we let

Val(`0, ν0) = sup
σMax

ValG((`0, ν0), σMax) Val(`0, ν0) = inf
σMin

ValG((`0, ν0), σMin)

be the lower and upper values of configuration (`0, ν0), respectively. We may easily show that
Val 6 Val. We say that a strategy σ?Min of Min is ε-optimal if, for all initial configurations
(`0, ν0)

ValG((`0, ν0), σ?Min) 6 Val(`0, ν0) + ε .

It is said optimal if this holds for ε = 0. A symmetric definition holds for optimal strategies
of Max.

We now impose some more hypotheses on the weighted timed games we consider in
this article. First, by mimicking the transformation used for timed automata [BPDG98,
Lemma 5], we can turn all diagonal guards into non-diagonal ones by keeping a bit of
information for each pair of clocks in the locations. Moreover, by multiplying each rational
number in guards by an appropriate positive integer, while doing the same transformation
on weights of transitions, we can turn every constant in guards into integers. We therefore
assume in the rest of this article that

Hypothesis 2. All guards of WTGs are non-diagonal and contain only integers constants.

Seminal works in weighted timed games [ABM04, BCFL04] have assumed that clocks
are bounded. This is known to be without loss of generality for (weighted) timed auto-
mata [BFH+01, Theorem 2]: it suffices to replace transitions with unbounded delays with
self-loop transitions periodically resetting the clocks. We do not know if it is the case for the
weighted timed games defined above. Indeed, the technique of [BFH+01] cannot be directly
applied. This would give too much power to player Max that would then be allowed to loop
in a location where an unbounded delay could originally be taken before going to the target.
In [BCFL04], the situation is simpler since the game is concurrent, and thus Min always has a
chance to move outside of such a situation. Trying to detect and avoid such situations in our
turn-based case seems difficult in the presence of negative weights, since the opportunities of
Max crucially depend on the configurations of value −∞ that Min could control afterwards:
we will see in Proposition 3.12 that detecting such configurations is undecidable, which is
an additional evidence to motivate the decision to focus only on bounded weighted timed
games. We thus suppose from now on that

Hypothesis 3. The WTGs are bounded, i.e. JGK is restricted to configurations in L× [0,M)X

where M ∈ N>0 is the greatest constant appearing in guards.

We need to be able to represent finitely the final weight functions of weighted timed
games. The simplest assumption, consisting in somehow disallowing final weights as usually
done in the literature, would be to map every target location to the weight 0. We keep
more complex final weights, since we will need them in the process of solving weighted timed
games. However, it will be sufficient to assume that:

Hypothesis 4. The final weight functions fwt are described by pairs (P, F) where P is
a partition of domain [0,M)X , and F is a partition function defined over P : they are
thus piecewise affine functions with a finite number of pieces (that are cells, as defined in
Definition 2.4), and are assumed to be continuous on regions.

In particular, infinite final weights are constant over regions, i.e. if some configuration
(`t, ν) has final weight +∞ or −∞, then for every valuation ν ′ in the same region as ν,

20:14 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

−2
`1

2

`2

`3

fwt = 0

−1
`4

−2
`5

x 6 2
x := 0
0

1 6 x < 3
1

x < 3; 0

2 6 x < 3
3 x < 3

0

x < 3; 0 x < 3; 0

x < 3
x := 0; 3

1 < x < 3
x := 0; 1

2/3 x

Val

0 1 2 3

0

1

2

3
Val(`4, ·)

Val(`2, ·)

Figure 6: A weighted timed game with a single clock x, and a depiction of its value function.
Weights are indicated in bold font on locations and edges. The target location is
`3, whose final weight function is zero. The blue curve is the values associated to
location `4, the green curve the values of location `2, obtained as the minimum
between the blue and the red curve, depicting the weight obtained from `2 when
Min decides to jump directly from `2 to `3.

fwt(`t, ν) = fwt(`t, ν
′). The zero final weight function satisfies this property. Moreover, the

computations we will perform in the following maintain this property as an invariant.

Example 2.10. An example of WTG satisfying the previous hypotheses is depicted on
Figure 6. Observe that location `1 (respectively `5) has value +∞ (respectively −∞). Indeed,
from any configuration (`1, ν) with ν ∈ [0, 3)X , player Max can play the self-loop on `1,
ensuring that the target `3 is never reached. Moreover, from any configuration (`5, ν) with
ν ∈ [0, 3)X , player Min can play the self-loop on `5, leading to a reset of clock x. From
(`5, (x = 0)) Min can pick a delay of 1.5, and loop again while accumulating a weight of
−2(1.5) + 1 = −2. This loop of `5 can be iterated arbitrarily many times before playing
the edge to `3, ensuring a weight arbitrarily low, hence every configuration on `5 (in the
bounded valuation domain [0, 3)X) has value −∞. As a consequence, the value in `4 is
only determined by the transition to `3 (since Max tries to avoid the target), and depicted
in blue in Figure 6. In location `2, the value that Min can get while jumping through the
transition to `3 is depicted in red. While jumping to `2 after a delay 0 (since wt(`2) > 0,
Min wants to minimise the time spent in this location), Min can also obtain the value of `4.
Therefore, the value of location `2 is obtained as the minimum of these two curves, depicted

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:15

in green. Observe the intersection point in x = 2/3 requiring to refine the usual regions (of
granularity 1).

It is known that (turn-based) weighted timed games are determined5, i.e. Val(`, ν) =
Val(`, ν) for each location ` and valuation ν, therefore we use the notation ValG to refer to
both values.

We denote by wLmax (respectively wEmax) the maximal weight in absolute values of locations
(respectively of edges) in G:

wLmax = max
`∈L
|wt(`)| and wEmax = max

e∈E
|wt(e)|

Moreover, we denote by wmax a bound on the weight of transitions in JGK, that exists since
clocks are bounded by M :

wmax = MwLmax + wEmax

The integer wmax is at most exponential in the size of G, and can thus be stored in polynomial
space.

We consider the value problem: given a WTG G, a location ` and a threshold α ∈
Q, we want to know whether ValG(`,0) 6 α. We also consider the +∞-value problem
(respectively −∞-value problem) asking if ValG(`,0) equals +∞ (respectively −∞). In the
context of timed games, optimal strategies may not exist, even for finite values.6 We thus
generally focus on the search for ε-optimal strategies, that guarantee the optimal value, up
to a small error ε ∈ R>0: this is the synthesis problem. Moreover, when the value problem
is undecidable, we also consider the value approximation problem that consists, given a
precision ε ∈ Q>0, in computing an ε-approximation of ValG(`,0). More generally, we will
try to compute an ε-approximation of the whole value function (and not only for an initial
configuration with all clocks being 0): this means that we want to compute (in the format of a
pair (P, F) with P a partition of domain [0,M)X and F a partition function, since we will show
that this is sufficient) a function V : L× [0,M)X → R∞ such that ‖ValG − V ‖∞ 6 ε, where
‖ · ‖∞ denotes the classical ∞-norm of mappings, so that ‖f‖∞ = supx |f(x)|. In particular,
we ask that ValG = V on all configurations where either function has infinite value, and as
such solving the infinite value problems will be a requirement.

For the purpose of stating complexity results we assume that the size needed to encode an
input WTG G = 〈LMin, LMax,X , Lt, E,wt, fwt〉 is linear in |L|, |E|, and n = |X |. We assume
that integer constants are encoded in binary, so that the input depends logarithmically in
wLmax, wEmax and M . Finally, we assume that the final weight function fwt is encoded as a
partition function (P, F), so that the input is linear in the number of affine expressions used
in P and F and logarithmic in the size of their constants. We encode all rational constants
as irreducible fractions of binary integers.

2.5. Related work. In the one-player case, computing the optimal value and an ε-optimal
strategy for WTGs (called weighted or priced timed automata) is known to be PSPACE-
complete [BBBR07]. In the two-player case, the value problem of WTGs (also called priced
timed games in the literature) is undecidable with 3 clocks [BBR05, BJM15], or even 2

5The result is stated in [BGH+15] for weighted timed games (called priced timed games) with one clock,
but the proof does not use the assumption on the number of clocks.

6For example, a player may want to let time elapse as much as possible, but with delay d < 1 because of a
strict guard.

20:16 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

clocks in the presence of negative weights [BGNK+14] (for the existence problem, asking if a
strategy of player Min can guarantee a given threshold).

To obtain decidability, one possibility has been to limit the number of clocks to 1: then,
there is an exponential-time algorithm to compute the value as well as ε-optimal strategies
in the presence of non-negative weights only [BBM06, Rut11, HIJM13], whereas the problem
is only known to be PTIME-hard. A similar result can be lifted to arbitrary weights, under
restrictions on the resets of the clock in cycles [BGH+15].

The other possibility to obtain a decidability result [BCFL04, ABM04] with non-negative
weights only is to enforce a semantical property of divergence, originally called strictly non-
Zeno cost: it asks that every play following a cycle of the region abstraction (see later
for a formal definition) has weight at least 1. In [BJM15], the authors slightly extend the
strictly non-Zeno cost property, to allow for cycles of weight exactly 0 while still preventing
those of weight arbitrarily close to 0. Unfortunately, this leads to an undecidable value
problem, but they propose a solution to the value approximation problem. This article
aims at extending these two restrictions in the presence of both non-negative
and negative weights calling it the divergence property, in order to obtain either
decidability of the value problem or approximations of the value for a large class
of multi-clocks weighted timed games in the presence of arbitrary weights.

Other objectives, not directly related to optimal reachability, have been considered
in [BCR14] for WTG, like mean-payoff and parity objectives. In this work, the authors
manage to solve these problems for the so-called class of δ-robust WTGs that they introduce.7

2.6. Region abstraction. The partition of the configuration space into regions can be
maintained throughout the play in a WTG. By forgetting about the precise valuation of
clocks, we obtain a region abstraction (that is usually called the region automaton in the
literature).

Definition 2.11. Given a WTG G = 〈LMin, LMax,X , Lt, E,wt, fwt〉 such that all clocks are
bounded by M and all guards belong to Guardsnd

N (X ,M) for some granularity 1/N , we define
the region abstraction of G as the finite labelled transition system 〈L × RegN (X ,M), T 〉
labelled over RegN (X ,M)× E, where T contains all transitions (`, r)

r′′,e−−→ (`′, r′) such that
e = `

g,Y−−→ `′ is an edge of G, r′′ is a time-successor of r, r′′ |= g and r′′[Y := 0] = r′.

The states of the region abstraction are called region states, and its paths are called region
paths. As there are finitely many regions, the region abstraction of G is a finite transition
system, where paths p represent sequences of regions alternating between letting time elapse
and taking edges. From a play ρ = (`0, ν0)

d1,e1−−−→ (`1, ν1)
d2,e2−−−→ . . . in G, we construct a

region path p = (`0, [ν0])
[ν0+d1],e1−−−−−−→ (`1, [ν1])

[ν1+d2],e2−−−−−−→ . . . , and say that ρ follows p.
From the region abstraction, we can construct a region game that can be seen as a

product of the original WTG with the region abstraction.

Definition 2.12. Given a WTG G = 〈LMin, LMax,X , Lt, E,wt, fwt〉 such that all clocks are
bounded by M and all guards belong to Guardsnd

N (X ,M) for some granularity 1/N , we define
the region game of G as the WTGRN (G) = 〈LMin×RegN (X ,M), LMax×RegN (X ,M),X , Lt×
RegN (X ,M), E′,wt′, fwt′〉 whose locations are region states, wt′ and fwt′ are obtained trivially

7As mentioned in introduction, while our divergent games have a similar definition, the two classes are
incomparable.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:17

from wt and fwt by forgetting about regions, and E′ is defined by transforming every transition
(`, r)

r′′,e−−→ (`′, r′) in T , where e is labelled by (g,Y), into an edge (`, r)
g′′,Y−−−→ (`′, r′), with g′′

a guard chosen arbitrarily so that Jg′′K = r′′ ⊆ JgK.

Every play in G exists in RN (G) as a play following a region path p, and conversely every
play in RN (G) is a valid play in G, by projecting away the region information of RN (G). We
thus obtain:

Lemma 2.13. Games G and RN (G) contain the same plays. For all ` ∈ L, 1/N -regions r,
and ν ∈ r, ValG(`, ν) = ValRN (G)((`, r), ν).

As we assume that guards have integer constants, we can use the granularity 1/N = 1,
and we will write R(G) instead of RN (G) in that case. Finally, we denote by |R(G)| the
number of locations in the region game, equal to |L||Reg(X ,M)|.

2.7. Corner-point abstraction. Despite all the interest and success of regions to study
timed systems, they are not sufficient to handle weighted timed automata/games. Indeed,
for a single-clock case, and in a location ` of weight 1, spending time in ` from region (0, 1)
to region {2} can cost any possible weight in the interval (1, 2). We therefore must also
keep a more precise information of where we are inside each region. This is the goal of the
corner-point abstraction introduced in [BFH+01, LBB+01] to study one-player WTGs with
non-negative weights, generalised in [BBBR07] to handle negative weights, and in [BBL08]
for the multi-cost setting.

If r is an 1/N -region, let r denote its topological closure, i.e. the smallest zone that
contains r associated to a non-strict guard. The corners of r are all the valuations in r that
belong to QXN . If r is characterised by (ι, β) with β the partition β0] β1] · · ·] βm, then ι is
a corner of r. If m = 0, then r = {ι}, otherwise r does not include its corners but contains
valuations arbitrarily close to them. The corners of r are the vertices of the polytope r, such
that r is their convex hull. There are at most n+ 1 corners in each 1/N -region. The corners
of the green region in Figure 3 are the valuations (1, 0) and (1, 1).

We call corner state a triple (`, r, v) that contains information about a region state (`, r)
of RN (G), and a corner v of the 1/N -region r.

Notice that reset operations preserve the corners, i.e., if v is a corner of the region r,
then v[x := 0] is a corner of the region r[x := 0]. This allows one to enrich the region game
with corner information:

Definition 2.14. The corner-point abstraction ΓN (G) of a WTG G is the WTG obtained as
a refinement of RN (G) where guards on edges are enforced to stay on one of the corners of the
current 1/N -region: the locations of ΓN (G) are all corner states of RN (G), associated to each

player accordingly, and edges are all (`, r, v)
g′′,Y−−−→ (`′, r′, v′) such that there exists a region

r′′, an edge t = (`, r)
g,Y−−→ (`′, r′) of RN (G) such that the model of guard g′′ is a corner v′′ of

region r′′ satisfying the guard g (recall that g is the closed version of g), v′′ ∈ PostTime(v),
v′ = v′′[Y := 0], r′ = r′′[Y := 0] (the two last conditions ensure that v′ is indeed a corner

of r′) and there exist two valuations ν ∈ r, ν ′ ∈ r′ such that ((`, r), ν)
d′,t−−→ ((`′, r′), ν ′) for

some d′ ∈ R>0 (the latter condition ensures that the edge between corners is not spurious,
i.e. created by the closure of guards). Weights of locations and edges are trivially recovered
from ΓN (G). We define the final weight function of ΓN (G) over the only valuation v reachable

20:18 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

in location (`, r, v) (with ` ∈ Lt) by fwt((`, r, v), v) = limν→v,ν∈r fwt(`, ν) (the limit is well
defined since fwt is piecewise affine with a finite number of pieces on region r, by Hypothesis 4).

We denote by |ΓN (G)| the number of locations in the corner-point abstraction, bounded
by |L||RegN (X ,M)|(n+ 1).

The WTG ΓN (G) can be seen as a finite weighted game, i.e. a WTG without clocks, by
removing guards, resets and rates of locations, and replacing the weights of edges by the
actual weight of jumping from one corner to another: an edge ((`, r), v)

g′′,Y−−−→ ((`′, r′), v′)
becomes a transition from ((`, r), v) to ((`′, r′), v′) with weight d ·wt(`) + wt(t), with d ∈ R>0

the only delay such that Jg′′K = {v + d}.8 Note that delay d is necessarily a rational of the
form α/N with α ∈ N, since it must relate corners of 1/N -regions. In particular, this proves
that the cumulative weight wtΣ(ρ) of a finite play ρ in ΓN (G) is indeed a rational number
with denominator N .

We will call corner play every play ρ in the corner-point abstraction ΓN (G): it can also
be interpreted as an execution in G where all guards are closed (as explained in the definition
above). It straightforwardly projects on a finite path p in the region game RN (G): in this
case, we say again that ρ follows p. Figure 7 depicts a play, its projected path in the region
game and one of its associated corner plays.

(`0, r0)

(`1, r1) (`2, r2)

(`3, r3)

ρ

ρ

g0,Y0 g1,Y1 g2,Y2

Figure 7: A play ρ (in blue), its projected path p in the region game (in black), and one of
its associated corner plays ρ (in green).

Let ρ be a corner play following a region path p. The weight of ρ refers to its weight in
ΓN (G). It is possible to find a play ρ following p close to ρ, in the sense that we control the
difference between their respective cumulative weights:

Lemma 2.15 [BBL08, Prop. 5]. For all ε > 0, all finite region paths p, and all corner plays
ρ following p, there exists a play ρ in G following p such that |wtΣ(ρ)− wtΣ(ρ)| 6 ε.

Thus, corner plays allow one to obtain faithful information on the plays that follow the
same path.

Lemma 2.16. If p is a finite region path in RN (G), the set of cumulative weights {wtΣ(ρ) |
ρ play of G following p} is an interval bounded by the minimum and the maximum values of
the set {wtΣ(ρ) | ρ corner play of ΓN (G) following p}.
Proof. The set {wtΣ(ρ) | ρ finite play following p} is an interval as the image of a convex set
by an affine function (see [BBBR07, Sec. 3.2] for an explanation).

The good properties of the corner-point abstraction allow us to conclude, since for every
play ρ following p, one can find a corner play following p of smaller weight and one of larger

8In case several edges lead to the same transition, for instance when two transitions with different guards
reset all clocks, we either allow for multi-transitions or choose the best weight according to the player owning
the current location.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:19

(`, r)

(`1, r1) (`2, r2)

(`, r)

(`, r)

Figure 8: A region cycle p in the region game (in black), its associated corner plays (in
green), and its folded orbit graph (in blue). Note that there is no edge between
the top right corner and the bottom right corner, as no corner play goes from the
former to the latter.

weight [BFH+01, Lemma 1], and for every corner play ρ following p and every ε > 0, one
can find a play following p whose weight is at most ε away from wtΣ(ρ) by Lemma 2.15.

An important property of the corner-point abstraction, derived from the assumption on
the absence of deadlocks in the game, is that corner plays cannot get stuck as long as they
follow a region path:

Lemma 2.17 [Pur00, Lem. 8]. Let p be a region path starting from (`, r) and ending in
(`′, r′). For all corners v of r, there exists a corner play following p that starts in (`, r, v).
For all corners v′ of r′ there exists a corner play following p that ends in (`′, r′, v′).

Useful theoretical tools stem from the corner-point abstraction. Notably, let us focus
on a cycle of the region abstraction. In order to study some properties of the corner plays
following this cycle, we only need to consider the aggregation of all the behaviours following
it. Inspired by the folded orbit graphs (FOG) introduced in [Pur00], we define the folded
orbit graph FOG(p) of a region cycle p = (`1, r = r1)

e1−→ (`2, r2)
e2−→ · · · ek−→ (`1, r) in RN (G)

as a graph whose vertices are the corners states of region r, and that contains an edge from
corner v to corner v′ if there exists a corner play ρ from (`1, r, v) to (`1, r, v

′) following p. We
fix ρ arbitrarily and label the edge between v and v′ in FOG(p) by this corner play: it is then
denoted by v

ρ−→ v′. An example is depicted in Figure 8.
The folded orbit graph inherits interesting topological properties from the corner-point

abstraction. Notably, by Lemma 2.17, for all vertices v, there exists at least one outgoing
edge v

ρ′−→ v′, and at least one incoming edge v′′
ρ′′−→ v in FOG(p).

2.8. Value iteration algorithm. The value of a game has been defined as a mapping of
each configuration (`, ν) to a value in R∞. We call value functions such mappings from
L×RX>0 to R∞. If V represents a value function, we denote by V` the mapping ν 7→ V (`, ν).
As observed in [BCFL04, ABM04], one step of the game is summarised in the following
operator F mapping each value function V to a value function V ′ = F(V) defined by

20:20 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

V ′` (ν) = fwt(`, ν) if ` ∈ Lt, and otherwise

V ′` (ν) =

sup
(`,ν)

d,e−−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMax

inf
(`,ν)

d,e−−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMin
(2.1)

where (`, ν)
d,e−−→ (`′, ν ′) ranges over valid transitions in G.

Then, starting from V 0 mapping every configuration (`, ν) to +∞, except for the targets
mapped to fwt(`, ν), we let V i = F(V i−1) for all i > 0. The value function V i contains
the value ValiG , which is intuitively what Min can guarantee when forced to reach the target
in at most i steps. More formally, we define wti(ρ) the weight of a maximal play ρ at
horizon i, as wt(ρ) if ρ reaches a target in at most i steps, and +∞ otherwise. Then,
ValiG(`, ν) = infσMin

supσMax
wti(play((`, ν), σMin, σMax)) refers to the value at horizon i.

Remark 2.18. In case of non-weighted games, with or without time, the value iteration
algorithm is generally called attractor. Starting from +∞ for every configuration, except for
the target mapped to 0, we compute the previous iterates (with all weights mapped to 0). In
this case, as shown in [AMPS98], values 0 or +∞ stay constant over each regions, and there
are thus a finite number of possible functions, which ensures that the computation ends in
finite time.

We compare value functions componentwise: if V ,V ′ are two value functions, we let
V 6 V ′ if V (`, ν) 6 V ′(`, ν) for all configurations (`, ν). Notice that F is a monotonic
operator, i.e. if V 6 V ′, then F(V) 6 F(V ′). Moreover, F(V 0) 6 V 0 since V 0 maps every
non-target state to +∞, and target states keep the same value. It follows that the sequence
(V i)i∈N is non-increasing, as V i = F i(V 0) > F i(F(V 0)) = V i+1.

Let us now present known results for the special case of games with no clocks. In this
case, the definition of the operator F of (2.1) is simplified into

V ′` =

{
min`→`

[
wt(`, `′) + V`′

]
if ` ∈ LMin

max`→`′
[
wt(`, `′) + V`′

]
if ` ∈ LMax

(2.2)

Notice that we remove the valuation part of the notation: configurations are thus simply
locations of the game. The value iteration algorithm proposed in [BGHM16] consists in
finding the greatest fixpoint of operator F , i.e. the limit of the sequence (V i)i∈N. Indeed,
this greatest fixpoint is known to be the vector of values of the game (see, e.g., [BGHM16,
Corollary 11]). For the special case of acyclic games of depth d, the fixpoint is reached
after d steps, and Val = V d. In this case, the infinite values in G (i.e. configurations `
with ValG(`) ∈ {−∞,+∞}) are derived from reaching targets with infinite final weights. If
the game contains cycles, infinite values can also come from arbitrarily long plays: a state
can have value +∞ if Max can force an infinite play, never reaching any target, and it can
have value −∞ if Min can enforce an arbitrarily low weight, e.g. by staying in a cycle of
negative cumulative weight. These +∞ states correspond to a safety objective for player Max,
and can be computed in polynomial time: it is shown in [BGHM16] that for all locations `,
ValG(`) = +∞ if and only if V |L|` = +∞. In contrast, deciding if a location has value −∞ has
no known polynomial solution (it is as hard as solving mean-payoff games). In [BGHM16],
it is shown that in the presence of negative weights the sequence (V i)i∈N stabilises after a
number of iterations pseudo-polynomial on states with value in R ∪ {+∞}, and that states

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:21

with value −∞ can be detected in this computation (they are those where the computed
value goes under a given threshold).

Such a computation of the greatest fixed point might not be possible in the timed setting,
since the value problem is undecidable in general. However, in [ABM04], it is shown that
starting from a value function V that is represented, for each location, by a pair (P, F)
where P is partition and F is a partition function defined over P , the same is true for
F(V). Indeed, cells are bounded, convex polyhedra, over which elementary operations
(emptiness, intersection and inclusion tests) can be performed with linear programming,
and thus in polynomial time. As we will formally recall in Section 7, this data structure
allows one to effectively compute the iterates (V i)i∈N. Contrary to the case without clocks,
recalled before, this sequence does not stabilise in general. The decidability results obtained
before (for tree-shaped weighted timed games [ABM04], or strictly non-Zeno weighted timed
games [BCFL04], e.g.), as well as the ones we obtain in this article, are all based on reasons
to either make the sequence stabilise or stop its computation after a sufficient number i of
turns to obtain a good approximation of the value.

Remark 2.19. In [ABM04], the domain of partitions is always a single region, and one
value function is associated to each region. We define value functions over [0,M)X instead, in
order to obtain a symbolic algorithm, independent of regions. This induces slight differences
in the way value functions are defined, because the mappings of [ABM04] are continuous
everywhere while ours can have discontinuities at borders between regions. They define their
partitions with overlaps over borders, such that RX>0 is partitioned by an affine equality into
two cells, c6 and c>, instead of the three c<, c> and c=. This changes the number of cells
Splits(m,n) to O(mn) instead of O((2m)n).

3. Divergent and almost-divergent WTGs

In this section, we introduce several classes of weighted timed games for which we state
the results that this article shows. All classes are defined in terms of the underlying timed
automaton, without making use of the partition of locations into players. Let us start with
the class of weighted timed games studied in [BCFL04], to our knowledge the greatest class
of WTG where the value problem is known to be decidable.

Definition 3.1. A weighted timed game G with non-negative weights satisfies the strictly
non-Zeno cost property when every finite play ρ in G following a cycle in the region automaton
R(G) satisfies wtΣ(ρ) > 1.

The intuition behind this class is that the weight of any long enough execution in G will
ultimately grow above any fixed bound, and diverge towards +∞ for an infinite execution.
Therefore, the value of G is equal to the value ValiG at some horizon i large enough (as defined
in Section 2.8), making the value problem decidable. It is shown in [BCFL04] that i can be
bounded exponentially in the size of G.

We introduce divergent weighted timed games, as a natural generalisation of the strictly
non-Zeno cost property to weights in Z.

Definition 3.2. A WTG G is divergent when every finite play ρ in G following a cycle in
the region automaton R(G) satisfies wtΣ(ρ) /∈ (−1, 1).

20:22 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

weights in Z weights in N

divergent strictly non-Zeno cost

almost-divergent simple

Figure 9: Classes of weighted timed games, and their respective restrictions to non-negative
weights.

If G has only non-negative weights on locations and edges, this definition matches with
the strictly non-Zeno cost property of [BCFL04], we will therefore refer to their class as the
class of divergent WTG with non-negative weights.

Remark 3.3. As in [BCFL04], we could replace (−1, 1) by (−κ, κ) to define a notion of
κ-divergence. However, since weights and guard constraints in weighted timed games are
integers, for κ ∈ (0, 1), a weighted timed game G is κ-divergent if and only if it is divergent.
This will be formally implied by Proposition 4.3 and Lemma 2.16.

Our contributions on divergent WTGs summarise as follows:

Theorem 3.4. The value problem over divergent WTGs is decidable in 3-EXPTIME, and
is EXPTIME-hard. Moreover, deciding if a given WTG is divergent is a PSPACE-complete
problem.

In [BJM15], the authors slightly extend the strictly non-Zeno cost property, to allow for
cycles of weight exactly 0 while still preventing those of weight arbitrarily close to 0:

Definition 3.5. A WTG G with non-negative weights is called simple when every finite
play ρ in G following a cycle in the region automaton R(G) satisfies wtΣ(ρ) ∈ {0} ∪ [1,+∞).

Unfortunately, it is shown in [BJM15] that the value problem is undecidable for simple
WTGs. They propose a solution to the value approximation problem, as a procedure
computing an approximation of the value of every configuration. The intuition is that cycles
of weight exactly 0 are only possible when every (non-negative) weight encountered along the
cycle equals 0, allowing one to define a subgame where every cyclic execution has weight 0.
One can then analyse this subgame separately, by applying a semi-unfolding procedure on
R(G).

We introduce a class of WTGs that will extend the notion of simple WTGs and allow
negative weights, so that cyclic executions of weight exactly 0 are allowed, but not those
close to 0. The first attempt would lead to the requirement that every finite play following a
cycle in the region automaton R(G) has a weight in (−∞,−1] ∪ {0} ∪ [1,+∞). However, we
did not obtain positive results for the value approximation problem on this class of WTGs
since cycles of weight exactly 0 do not have the good property presented above for simple
WTGs. Instead, we require a stability by decomposition for cycles of weight 0.

If p = (`0, r0)
r1,e0−−−→ (`1, r1)

r2,e1−−−→ · · · (`k−1, rk−1)
r0,ek−1−−−−→ (`0, r0) is a region cycle in

R(G), it is either simple (i.e. for all i, j such that 0 6 i < j < k, (`i, ri) 6= (`j , rj)) or we can
extract smaller cycles from it. Indeed, if p is not simple, there exists a pair (i, j) such that

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:23

0 6 i < j < k and (`i, ri) = (`j , rj). Then, for such a pair, we can write p = p1p2p3 such
that |p1| = i, |p3| = k − j. It follows that p2 and p3p1 are both region cycles around (`i, ri).
This process is called a decomposition of p into smaller cycles p′ = p3p1 and p′′ = p2.

Definition 3.6. A WTG G is almost-divergent if every play ρ following a cycle p of R(G)
satisfies wtΣ(ρ) ∈ (−∞,−1]∪ {0} ∪ [1,+∞), and if wtΣ(ρ) = 0 then for every decomposition
of p into smaller cycles p′ and p′′, and plays ρ′ and ρ′′ following p′ and p′′, respectively, it
holds that wtΣ(ρ′) = wtΣ(ρ′′) = 0.9

Clearly, every divergent WTG is almost-divergent. Moreover, as we will see in Proposi-
tion 4.4, when weights are non-negative, this class matches the simple WTGs of [BJM15]
therefore inheriting their undecidability result. We will thus refer to simple WTGs as
almost-divergent WTGs with non-negative weights. Figure 9 represents the hierarchy of the
classes of WTG that we introduced.

Example 3.7. Consider the WTG G in Figure 6. The self-loop on `1 contains a cycle of
R(G) around (`1,0) that jumps to the region 1 < x < 2. For every d ∈ (1, 2), there exists a
play ρ following this cycle that uses delay d, so that wtΣ(ρ) = 3− 2d ∈ (−1, 1). It follows
that G is neither divergent nor almost-divergent. Changing the guard on this self-loop to
2 6 x < 3 makes G divergent, as every region cycle left in G iterates the self-loops around
(`1,0) and (`5,0) of cumulative weights in (−3,−1] and (−5,−1), respectively.

Example 3.8. Consider the WTG G in Figure 10, and its region game R(G). We chose
an example where R(G) is isomorphic to G for readability reasons. R(G) contains one SCC
{`1, `2, `3, `4}, made of two simple cycles, p1 = `1 → `2 → `1 and p2 = `1 → `3 → `4 → `1,
so that:
• all plays following p1 have cumulative weight in the interval (1, 3),
• and all plays following p2 have cumulative weight 0. This can be checked by Lemma 2.16.
As every cycle p of R(G) either iterates p2 only, or contains p1, it holds that a play ρ following
p satisfies wtΣ(ρ) ∈ {0}∪ [1,+∞), and if wtΣ(ρ) = 0 then any decomposition of p into smaller
cycles p′ and p′′ implies that they all follow iterates of p2, so that plays along them must
have cumulative weight 0. Therefore, G is almost-divergent. If one removes `4, G becomes
divergent.

Our first result on almost-divergent WTGs is the following extension of the approximation
procedure for non-negative weights:

Theorem 3.9. Given an almost-divergent WTG G, a location ` and ε ∈ Q>0, we can compute
an ε-approximation of ValG(`,0) in time triply-exponential in the size of G and polynomial in
1/ε. Moreover, deciding if a WTG is almost-divergent is PSPACE-complete.

To obtain these results on divergent and almost-divergent WTGs, we follow a computation
schema that we now outline. First, we will always reason on the region game R(G) of the
almost-divergent WTG G. The goal is to compute an ε-approximation of ValR(G)((`0, [0]),0)
for some initial location `0. Techniques of [ABM04] (that we will recall in Section 7) allow
one to compute the (exact) values of a WTG played on a finite tree, using operator F of
Section 2.8. The idea is thus to decompose as much as possible the game R(G) as a WTG
over a tree. First, we decompose the region game into strongly connected components (SCCs,

9Once again, we could replace −1, 1 by −κ, κ with 0 < κ < 1 to define an equivalent notion of κ-almost-
divergence.

20:24 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

0

`0

1

`1

−1
`2

1

`3

0

`4

`t

fwt(x1, x2) = x1

0 < x1 < 1
x1 := 0

0

x2 < 2
1 < x1 < 2

x2 := 0

0

1 < x1 < 2
x1 := 0

1
x2 = 1
x2 := 0

1
x1 = 1

0

1 < x1 < 2, x2 < 1
x1 := 0

−2

x2 = 0

0

x1

x2

1 20

1

2

`0,0

x1

x2

1 20

1

2

`1,1

x1

x2

1 20

1

2

`2,−1

x1

x2

1 20

1

2

`3,1

x1

x2

1 20

1

2

`4,0

x1

x2

1 20

1

2

`t

fwt(x1, x2) = x1

0

0
1 1 0

−2

0

Figure 10: A weighted timed game G with two clocks x1 and x2, and the portion of its region
game R(G) accessible from configuration (`0, (0, 0)). The states of R(G) are
labelled by their associated region, location and weight, and edges are labelled by
a representation of their guards and resets. For example, the edge from (`0, r0)
to (`1, r1) in R(G) highlights the time successors of the region r0 that satisfy the
guard 0 < x1 < 1, and the arrow represents the direction in which this set of
points is projected by the clock reset x1 := 0, so that we end up in the region r1.

left of Figure 11): we must think about the final weight functions as the previously computed
approximations of the values of SCCs coming after the current one in the topological order.
We will keep as an invariant that final weight functions are piecewise affine with a finite
number of pieces, and are continuous on each region.

For an SCC of R(G) and an initial state (`0, [0]) of R(G) provided by the SCC decom-
position, we show that the game on the SCC is equivalent to a game on a tree built from a
semi-unfolding (see middle of Figure 11) of R(G) from (`0, [0]) of finite depth, with certain
nodes of the tree being kernels (parts of R(G) that contain all cycles of weight 0). The
semi-unfolding is stopped either when reaching a final location, or when some location (or
kernel) has been visited for a certain fixed number of times. Notice that, for divergent WTGs,
there are no kernels, which simplifies the computation.

Then, we compute an approximation of ValG(`0,0) with a bottom-up computation on the
semi-unfolding. This computation is exact on nodes labelled by a single region state s, but
approximate on kernel nodes Ks. For the latter, we use the corner-point abstraction (right

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:25

s0

s

Ks′

s

s

sf

Ks′′

sf

stopped leaf

fwt(sf)

0 1

−3 −1 2 1

2

3

1

4

−3

1

−3

Figure 11: Static approximation schema: SCC decomposition of R(G), semi-unfolding of an
SCC, corner-point abstraction for the kernels

of Figure 11) over 1/N -regions to compute values, and prove that, with an appropriately
chosen N , this provides an ε-approximation of values.

This resolution of the value problem for divergent WTGs and approximation problem
for almost-divergent WTGs heavily relies on the region abstraction, and requires one to
construct R(G) entirely and compute its SCCs, before unfolding it partially in a tree-shaped
structure. Our second result is a more symbolic approximation schema based on the value
iteration algorithm only (in case we are able to rule out the presence of configurations with
value −∞, which could in particular be true if there are only non-negative weights): the
computations are not performed on the region abstraction, but instead use the cell partitions
introduced in Section 2.3 that can cover several regions.

Theorem 3.10. Let G be an almost-divergent WTG such that ValG(`, ν) > −∞ for every
configuration (`, ν). Then the sequence (ValkG)k>0 converges towards ValG and for every
ε ∈ Q>0, there exists an integer P such that ValPG is an ε-approximation of ValG for all
configurations.

Note that we have to control for configurations (`, ν) of value −∞, where the non-
increasing sequence (ValkG(`, ν))k∈N (that starts at +∞) will diverge towards −∞, but has
no hope of approximating it. However, we will show that the configurations with value −∞
can be computed in advance:

Proposition 3.11. Given an almost-divergent WTG G and an initial location `0, the decision
problem asking whether ValG(`0,0) = −∞ is EXPTIME-complete.

The exponential upper bound is obtained in Section 5. This contrasts with the general
case (not necessarily almost-divergent), where the −∞-value problem is undecidable (among
other problems), as detailed in Proposition 3.12.

3.1. Hardness of value problems. The EXPTIME-hardness result of Theorem 3.4 (re-
spectively Proposition 3.11) is a reduction from the problem of solving timed games with
reachability objectives [JT07].

To a reachability timed game G, we simply set the weight of each edge to 1 and the weight
of each location to 0, making it a divergent WTG. We set the final weight of every target
configuration at 0 (respectively −∞). Then, Min wins the reachability timed game if and

20:26 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

only if the value in the WTG is lower than threshold α = |R(G)| (respectively equals −∞).
One direction of this statement is immediate by definition of having a value smaller than +∞,
and the other comes from the fact that reachability in the timed game implies reachability
in the region game in less than α transitions, in turn implying that Min can ensure target
reachability in the WTG with cumulative weight below α, i.e. ValG(s, ν) 6 α + fwt, with
fwt = 0 (respectively −∞).

Proposition 3.12. Given a WTG G and an initial location `0, the decision problem asking
whether ValG(`0,0) = −∞ is undecidable.

Proof. The proof goes via a reduction to the existence problem on turn-based WTG: given a
WTG G (without final weight function), a non-negative integer threshold α and a starting
location `0, does there exist a strategy for Min that can guarantee reaching the unique target
location `t from `0 with weight < α. In the setting with non-negative weights in G, it is
proven in [BBM06] that the problem is undecidable for the comparison 6 α. In the setting
with arbitrary weights, formal proofs are given for all comparison signs in [BGNK+14].

Consider the WTG G′ built from G by adding a transition from `t to `0, without guards
and resetting all the clocks, of discrete weight −α. We add a new target location `′t, and
add transitions of weight 0 from `t to `′t. Locations `t and `′t belong to Min. Let us prove
that ValG′(`0,0) = −∞ if and only if Min has a strategy to guarantee a weight < α in G.
Assume first ValG′(`0,0) = −∞. If ValG(`0,0) = −∞, we are done. Otherwise, Min must
follow in G′ the new transition from `t to `0 to enforce a cycle of negative value, and thus
enforce a play from (`0,0) to `t with weight less than α. Therefore, there exists a strategy
for Min in G that can guarantee a weight < α. Reciprocally, if there exists a strategy for Min
in G that can guarantee a weight < α, then Min can force a negative cycle play in G′ and
ValG′(`0,0) = −∞.

4. Deciding divergence and almost-divergence

In this section, we will study properties that region cycles must satisfy in divergent or
almost-divergent WTGs. This will give us a better understanding of the modelling power
these classes confer, as well as enable us to provide procedures of optimal complexity to
decide if a WTG fulfils the divergence or almost-divergence conditions.

4.1. Cycles in an almost-divergent WTG. Let us start with properties that hold for all
almost-divergent weighted timed games G. A region cycle p of R(G) is said to be a positive
cycle (respectively a negative cycle, a 0-cycle) if every finite play ρ following p satisfies
wt(ρ) > 1 (respectively wt(ρ) 6 −1, wt(ρ) = 0).

We start by showing that, in an almost-divergent game, all cycles p = t1 · · · tk of R(G)
(with t1, . . . , tk edges of R(G)) are either 0-cycles, positive cycles or negative cycles10, and
we can classify a cycle by looking only at one of the corner plays following it:

Lemma 4.1. Let G be an almost-divergent WTG. A region cycle p is a positive cycle
(respectively a negative cycle, a 0-cycle) if and only if there exists a corner play ρ following p
with wtΣ(ρ) > 0 (respectively wtΣ(ρ) < 0, wtΣ(ρ) = 0). Moreover, every region cycle in G is
either positive, negative, or a 0-cycle.

10In contrast, Definition 3.6 only requires that each play following a region cycle has weight in (−∞,−1]∪
{0} ∪ [1,+∞), without disallowing a region cycle to contain plays of different types.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:27

v0 v1 vk = v` vk+1 v`−1

v′0 v′1 v′k = v′` v′k+1 v′`−1

ρ0 ρ′0 ρ1 ρk ρ′k ρk+1
ρ`−1

ρ′`−1

Figure 12: Proof scheme of Lemma 4.2. The top labels are corners of first(p), the bottom
ones are corners of first(p′), and edges represent corner plays.

Proof. If p is a positive cycle (respectively a negative cycle, a 0-cycle), every such corner play ρ
will have weight above 0 (respectively under 0, equal to 0), by Lemma 2.16. Reciprocally, if
such a corner play exists, all corner plays following p have weight above 0 (respectively under 0,
equal to 0): otherwise the set {wtΣ(ρ) | ρ play following p} would have non-empty intersection
with the set (−1, 0) ∪ (0, 1) by Lemma 2.16, which would contradict that the game is almost-
divergent.

Let p be a region cycle of G. All the plays following p have a weight in (−∞,−1] ∪
{0}∪ [1,+∞). If it has a play in two different subintervals (−∞,−1], {0}, and [1,+∞), then
Lemma 2.16 implies also that a play following p will have a weight in (−1, 0) ∪ (0, 1), which
is forbidden by Definition 3.6.

An important result is that the sign of cycles is stable by rotation. This is not trivial
because plays following a cycle can start and end in different valuations, therefore changing
the starting region state of the cycle could a priori change the plays that follow it and the
sign of their weights.

Lemma 4.2. Let p and p′ be region paths of an almost-divergent WTG. If pp′ is a positive
cycle (respectively a negative cycle, a 0-cycle), then p′p is a positive cycle (respectively a
negative cycle, a 0-cycle).

Proof. Since p1 = pp′ is a cycle, first(p) = last(p′) and first(p′) = last(p), so p2 = p′p is a
cycle as well. First, since there are finitely many corners, by constructing a long enough play
following an iterate of p′p, we can obtain a corner play that starts and ends in the same
corner. Formally, we define two sequences of region corners (vi ∈ first(p))i and (v′i ∈ first(p′))i.
We start by choosing any v0 ∈ first(p). Let v′0 be a corner of first(p′) such that v′0 is accessible
from v0 by following p with a corner play ρ0. For every i > 0, let vi be a corner of first(p)
such that vi is accessible from v′i−1 by following p′ with a corner play ρ′i, and let v′i be a corner
of first(p′) such that v′i is accessible from vi by following p with a corner play ρi. We stop
the construction at the first index ` such that there exists k < ` with v` = vk. Additionally,
we let ρ` = ρk. We know that this process never gets stuck—i.e. we can always find such
corner plays iteratively—by Lemma 2.17, and it is bounded since first(p) has at most |X |+ 1
corners.

For every 0 6 i 6 `, let wi be the weight of the corner play ρi from vi to v′i along p,
and let w′i be the weight of the corner play ρ′i from v′i to vi+1 along p′. The concatenation
of the two plays has weight wi + w′i > 0 (respectively wi + w′i < 0, wi + w′i = 0), since it
follows the positive cycle (respectively negative cycle, 0-cycle) p1. For every 0 6 i < `, the

20:28 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

concatenation of the corner play ρ′i from v′i to vi+1 with the corner play ρi+1 from vi+1 to v′i+1

is a play from v′i to v′i+1, of weight w
′
i +wi+1, following p2. Since p2 is a cycle, and the game

is almost-divergent, all possible values of w′i + wi+1 have the same sign by Lemma 4.1.
Finally, we can construct a corner play from v′k to v′` by concatenating the plays

ρ′k, ρk+1, . . . , ρ`−1, ρ
′
`−1, ρ`. We denote the weight of that play W , and

W =

`−1∑
i=k

(w′i + wi+1) =

`−1∑
i=k

(wi + w′i)

since wk = w`. As wi + w′i > 0 (respectively wi + w′i < 0, wi + w′i = 0) holds for every i, we
obtain W > 0 (respectively W < 0, W = 0).

This implies that the terms w′i + wi+1, of constant sign, are all above 0 (respectively un-
der 0, equal to 0). As a consequence, the concatenation of ρ′k and ρk+1 is a corner play
following p2 of weight above 0 (respectively under 0, equal to 0). By Lemma 4.1, we conclude
that p2 must be a positive cycle (respectively a negative cycle, a 0-cycle).

Therefore, region cycles in almost-divergent games are well-behaved: we can compose
and rotate them while preserving their sign in the expected way.

4.2. SCC-based characterisations. After studying the properties of region cycles, we
now focus on strongly connected components (SCCs) of the region abstraction R(G). An
SCC S of R(G) is said to be positive (respectively negative) if every cycle in S is positive
(respectively negative), i.e. if every play ρ following a region cycle in S satisfies wtΣ(ρ) > 1
(respectively wtΣ(ρ) 6 −1).

Proposition 4.3. A weighted timed game G is divergent if and only if, each SCC of R(G)
is either positive or negative.

Likewise, an SCC S of R(G) is said to be non-negative (respectively non-positive) if
every region cycle in S is either a positive cycle or a 0-cycle (respectively either a negative
cycle or a 0-cycle), i.e. every play ρ following a region cycle in S satisfies either wtΣ(ρ) > 1
or wtΣ(ρ) = 0 (respectively either wtΣ(ρ) 6 −1 or wtΣ(ρ) = 0). We obtain:

Proposition 4.4. A WTG G is almost-divergent if and only if each SCC of R(G) is either
non-negative or non-positive.

We now prove these two results. First, note that if G is divergent it has no 0-cycle, and
Proposition 4.4 implies that each SCC of R(G) is either positive or negative. Conversely, if
each SCC of R(G) is either positive or negative, Proposition 4.4 implies that G is divergent.
Therefore, Proposition 4.3 is a corollary of Proposition 4.4. The rest of this section now
proves Proposition 4.4.

To prove the reciprocal implication of Proposition 4.4, we only need to show that non-
negative (respectively non-positive) SCCs of R(G) satisfy the definition of almost-divergent
WTGs. By definition, they only contain executions ρ following region cycles p such that
wtΣ(ρ) ∈ {0} ∪ [1,+∞) (respectively wtΣ(ρ) ∈ (−∞,−1] ∪ {0}). Then, assume wtΣ(ρ) = 0
and that p can be decomposed into smaller cycles p′ and p′′. Definition 3.6 requires us to show
that all plays ρ′ and ρ′′ following p′ and p′′, respectively, are such that wtΣ(ρ′) = wtΣ(ρ′′) = 0,
i.e. p′ and p′′ are 0-cycles. Note that by Lemma 4.2, p′p′′ is a 0-cycle. As p′ and p′′ are
contained in the same SCC, they are either both non-negative cycles or both non-positive
cycles. Let ρ′ρ′′ be a play following p′p′′, so that ρ′ follows p′ and ρ′′ follows p′′. Then,

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:29

v v′

P

P ′

C C ′

Figure 13: Proof scheme of Lemma 4.5, with paths and cycles around corners of the graph
FOG(p, p′).

wtΣ(ρ′ρ′′) = wtΣ(ρ′) + wtΣ(ρ′′) = 0, it follows that wtΣ(ρ′) = wtΣ(ρ′′) = 0, i.e. p′ and p′′ are
0-cycles.

For the direct implication, the situation is more complex: we need to be careful while
composing cycles with each other. To help us, we rely on the folded orbit graphs of region
cycles. Suppose that G is almost-divergent, and consider two cycles p and p′ in the same
SCC of R(G). We need to show that they are both either non-positive or non-negative.
Lemma 4.5 will first take care of the case where p and p′ share a region state (`, r).

Lemma 4.5. If G is almost-divergent and two cycles p and p′ of R(G) share a region
state (`, r), they are either both non-negative or both non-positive.

Proof. Suppose by contradiction that p is negative and p′ is positive. We assume that (`, r) is
the first region state of both p and p′, possibly performing a rotation of the cycles if necessary
(in particular this preserves their sign by Lemma 4.2). We will rely on the folded orbit graphs
that have been defined on page 19. We construct a graph FOG(p, p′) as the union of FOG(p)
and FOG(p′) (that share the same set of vertices), colouring in blue the edges of FOG(p) and
in red the edges of FOG(p′). A path in FOG(p, p′) is said blue (respectively red) when all of
its edges are blue (respectively red).

Since FOG(p) and FOG(p′) are finite graphs with no deadlocks (every corner has an
outgoing edge by Lemma 2.17), from every corner of FOG(p, p′), we can reach a blue simple
cycle, as well as a red simple cycle. Since there are only a finite number of simple cycles
in FOG(p, p′), there exists a blue cycle C and a red cycle C ′ that can reach each other in
FOG(p, p′). Denote by v and v′ the first corners of cycles C and C ′, respectively.

We assume first v = v′. Let k and k′ be the respective lengths of C and C ′, so that C

can be decomposed as v
ρ1−→ · · · ρk−→ v and C ′ as v

ρ′1−→ · · ·
ρ′
k′−−→ v, where ρi are corner plays

following p and ρ′i are corner plays following p′. Let ρ be the concatenation of ρ1, . . . , ρk,
and ρ′ be the concatenation of ρ′1, . . . , ρ′k′ . Recall that w = |wtΣ(ρ)| and w′ = |wtΣ(ρ′)| are
integers. Since p is negative, so is pk, the concatenation of k copies of p (the weight of a
play following it is a sum of weights all below −1). Therefore, ρ, that follows pk, has a
weight wtΣ(ρ) 6 −1 by Lemma 2.16. Similarly, wtΣ(ρ′) > 1. Let ρ′′ be the play obtained by
concatenating w′ copies of ρ and w copies of ρ′. Then, wtΣ(ρ′′) = wtΣ(ρ)w′ + wtΣ(ρ′)w = 0,
and therefore the region cycle p′′ composed of w′ copies of pk and w copies of p′k

′
is a 0-cycle.

This contradicts the almost-divergence of G, since p′′ can be decomposed into smaller cycles
that are not 0-cycles.

Therefore, v and v′ are different, but can reach each other in FOG(p, p′). Let P be a
path from v to v′, and P ′ be a path from v′ to v. The situation is depicted in Figure 13.
Consider the cycle C ′′ obtained by concatenating P and P ′. As a cycle of FOG(p, p′), we can
map it to a cycle p′′ of R(G) (alternating p and p′ depending on the colours of the traversed
edges), so that C ′′ is a cycle (of length 1) of FOG(p′′). As G is almost-divergent, p′′ is either

20:30 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

positive, negative or a 0-cycle. Moreover, p′′ cannot be a 0-cycle as it can be decomposed
into smaller cycles that are not 0-cycles. Suppose for instance that it is positive. Since (`, r)
is the first region state of both p and p′′, we can construct the FOG(p, p′′), in which C is
a blue cycle and C ′′ is a red cycle, both sharing the same first vertex. We then conclude
with the previous case. A similar reasoning with p′ applies to the case that p′′ is negative.
Therefore, in all cases, we reach a contradiction.

To finish the proof of the direct implication of Proposition 4.4, we suppose that the
two cycles p and p′, one positive and the other negative, in the same SCC of R(G), do not
share any region states. By strong connectivity, in R(G), there exists a path p1 from the
first state of p to the first state of p′, and a path p2 from the first state of p′ to the first
state of p. Consider the cycle p′′ of R(G) defined by pp1p′p2. By the almost-divergence of G,
p′′ must be either positive, negative or a 0-cycle. Since it shares a state with both p and
p′, Lemma 4.5 allows us to prove a contradiction in both positive and negative cases, and
therefore p′′ must be a 0-cycle. This contradicts the hypothesis as one of the decompositions
of p′′ into smaller cycles produces p and p1p′p2, with p a non-0-cycle. This concludes the
proof of Proposition 4.4.

Remark 4.6. These characterisations of divergent or almost-divergent WTGs in term of
SCCs provide an intuitive understanding of the modelling power these classes hold. For
divergence, the model should have a global structure (the SCC decomposition) linking
modules in an acyclic fashion. For each module, we have to choose between a positive
dynamic, where weights always eventually increase, and a negative dynamic, where weights
always eventually decrease. For almost-divergence, the modules may also have portions that
are (eventually) neutral with regard to weight accumulation. In both classes, arbitrarily
small weights should not be allowed to accumulate.

4.3. Deciding membership. We study the membership problem for divergent (respect-
ively almost-divergent) WTGs, i.e. the decision problem that asks if a given WTG is divergent
(respectively almost-divergent). As mentioned in Theorems 3.4 and 3.9, we show that it is
PSPACE-complete for both of these classes.

Relying on the previous characterisation of Propositions 4.3 and 4.4, the algorithms
will consist in only considering region cycles of length bounded by the number of corners in
the corner-point abstraction Γ(G). For divergent WTGs, this will be correct by using the
following result:

Lemma 4.7. Let G be a WTG. An SCC S of R(G) is positive (respectively negative) if and
only if every region cycle in S, of length at most |Γ(G)|, is positive (respectively negative).

Proof. The direct implication holds by definition. Reciprocally, let us assume that every
cycle in S of length at most |Γ(G)| is positive (respectively negative), and prove that every
cycle p in S is positive (respectively negative), by induction on the length of p. If p has
length above |Γ(G)|, every corner play ρ following p can be split as ρ = ρ1ρ2ρ3, with ρ2

a corner play that starts and ends in the same corner. Then we can write p = p1p2p3,
with ρ1 (respectively ρ2, ρ3) following p1 (respectively p2, p3). Observe that p2 and p1p3

are region cycles of S, both positive (respectively negative) by induction. It follows that
wtΣ(ρ2) > 1 (respectively wtΣ(ρ2) 6 −1), and wtΣ(ρ1ρ3) > 1 (respectively wtΣ(ρ1ρ3) 6 −1),
as ρ1ρ3 is a valid corner play following p1p3. We can therefore conclude that wtΣ(ρ) > 1

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:31

(respectively wtΣ(ρ) 6 −1). This holds for all corner plays following p, and by Lemma 2.16
p is positive (respectively negative).

Then, to decide if a game is not divergent, using Proposition 4.3, it suffices to search for an
SCC of the region automaton containing a cycle such that there exists a corner play following
it of non-negative weight, and a cycle such that there exists a corner play following it of
non-positive weight, both of length bounded by B = |Γ(G)| 6 |L| × |Reg(X ,M)| × (|X |+ 1).
We can test this condition in NPSPACE: we guess a starting region for each cycle, use
standard reachability analysis [AD94] to check that they are in the same SCC of R(G) (in
PSPACE), and use the following result with comparison > 0 and 6 0, respectively, to check
the sign of each cycle.

Lemma 4.8. Consider a WTG G, a region state (`, r) of R(G), a bound B ∈ N, and a
comparison operator ./ ∈ {<,>,6,>,=, 6=}. Deciding if there exists a corner play ρ following
a cycle p of R(G) starting from (`, r), such that |p| 6 B and wtΣ(ρ) ./ 0, is in PSPACE
(i.e. it can be done using space polynomial in |G| and log(B)).

Proof. We guess a starting corner v of r for ρ, and we guess on-the-fly the transitions of p
and ρ, i.e. a sequences of regions with one of their corners, keeping in memory the cumulative
weight of ρ and the length |p|. At every step, we check that |p| 6 B in space polynomial in
log(B) and log(|p|) 6 log(|R(G)|), with log(|R(G)|) polynomial in |G|.11 Similarly, we can
check that ρ is following p in polynomial space. At some point, we guess that the cycle is
complete, and we check that the current region state equals (`, r). Finally, we check that
wtΣ(ρ) ./ 0 in space polynomial in log(wtΣ(ρ)). Note that wtΣ(ρ) is an integer bounded (in
absolute value) by B × wmax, and can thus be stored in polynomial space. This shows that
the problem is in NPSPACE, and thus in PSPACE using Savitch’s theorem [Sav70].

Since the bound B is at most exponential in |G|, this check can be performed in
PSPACE. This shows that the membership problem for divergent weighted timed games is in
coNPSPACE = coPSPACE = PSPACE by Savitch [Sav70].

Let us now show the (co) PSPACE-hardness by a reduction from the reachability problem
in a timed automaton. Consider a timed automaton with a starting location and a different
target location without outgoing edges. We construct from it a weighted timed game by
distributing all locations to Min, and equipping all edges with weight 1, and all locations
with weight 0. We also add a loop with weight −1 on the target, and an edge from the target
location to the initial location with weight 0, both with guard > and resetting all clocks.
Then, the WTG is not divergent if and only if the target can be reached from the initial
location in the timed automaton.

For almost-divergent WTGs, the length of the required region cycles is bigger, because
of the possible presence of 0-cycles.

Lemma 4.9. Let G be a WTG. An SCC S of R(G) is non-negative (respectively non-positive)
if and only if every region cycle in S, of length at most |Γ(G)|2, is either a positive cycle or a
0-cycle (respectively either a negative cycle or a 0-cycle).

Proof. The direct implication holds by definition. Reciprocally, suppose that every cycle
in S of length at most |Γ(G)|2 is either a positive cycle or a 0-cycle (respectively either a
negative cycle or a 0-cycle). Let us prove that every cycle p in S is either a positive cycle

11The global clock bound M is at most exponential in the size of G, and |R(G)| is at most exponential in
|X | but polynomial in M , therefore |R(G)| is at most exponential in |G|.

20:32 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

or a 0-cycle (respectively either a negative cycle or a 0-cycle), by induction on the length
of p. Consider a region cycle p with length above |Γ(G)|2. Let us show that for all corner
plays ρ, ρ′ following p, either wtΣ(ρ) = wtΣ(ρ′) = 0, or both wtΣ(ρ) > 1 and wtΣ(ρ′) > 1
(respectively both wtΣ(ρ) 6 −1 and wtΣ(ρ′) 6 −1) hold. This will allow us to conclude by
Lemma 2.16.

From a pair of corner plays ρ and ρ′ following p, we can extract a sequence of pairs of
corners states ((`i, ri, vi), (`i, ri, v

′
i)), such that (`i, ri) is the i-th region state of p, and vi

(respectively v′i) is the i-th corner of ρ (respectively ρ′). Since |p| > |Γ(G)|2, there must exist
two indexes, j and k, such that j < k, (`j , rj) = (`k, rk) and (vj , v

′
j) = (vk, v

′
k). In other

words, we can write p = p1p2p3, with p2 and p1p3 region cycles of S, and ρ, ρ′ can be split as
ρ = ρ1ρ2ρ3, ρ′ = ρ′1ρ

′
2ρ
′
3, with ρl (respectively ρ′l) following pl (respectively p′l) for l ∈ {1, 2, 3},

such that ρ2 and ρ′2 are corner cycles, i.e. first(ρ2) = last(ρ2) and first(ρ′2) = last(ρ′2).
Then, by induction either wtΣ(ρ2) = wtΣ(ρ′2) = 0, or both wtΣ(ρ2) > 1 and wtΣ(ρ′2) > 1
(respectively both wtΣ(ρ2) 6 −1 and wtΣ(ρ′2) 6 −1) hold. The same property holds for ρ1ρ3

and ρ′1ρ′3, both valid corner plays following p1p3. It follows that either wtΣ(ρ) = wtΣ(ρ′) = 0,
or both wtΣ(ρ) > 1 and wtΣ(ρ′) > 1 (respectively both wtΣ(ρ) 6 −1 and wtΣ(ρ′) 6 −1)
hold.

Then, to decide if a game is not almost-divergent, we distinguish two cases:
• There exists a region cycle, of length at most B = |Γ(G)|2, and two corner plays ρ and ρ′,
both following p, such that wtΣ(ρ) = 0 and wtΣ(ρ′) 6= 0.
• An SCC of the region automaton contains a cycle such that there exists a corner play
following it of negative weight, and a cycle such that there exists a corner play following it
of positive weight, both of length bounded by B = |Γ(G)|2.

We can test both conditions in NPSPACE, by guessing the starting regions of these cycles
and using respectively Lemma 4.8 (for the second condition) and the following result (for
the first condition):

Lemma 4.10. Consider a weighted timed game G, a region state (`, r) of R(G), a bound
B ∈ N, and comparison operators ./, ./′ ∈ {<,>,6,>,=, 6=}. Deciding if there exists a cycle
p of R(G) starting from (`, r), and two corner plays ρ and ρ′, both following p, such that
|p| 6 B, wtΣ(ρ) ./ 0 and wtΣ(ρ′) ./′ 0, is in PSPACE.

Proof. We follow the same non-deterministic procedure as Lemma 4.8, but this time we guess
two corner plays on-the-fly instead of one.

This shows that the membership problem for divergent weighted timed games is in
coNPSPACE = coPSPACE = PSPACE [Sav70].

Let us now show the (co) PSPACE-hardness by a reduction from the reachability problem
in a timed automaton, similar to the one we used for the PSPACE-hardness of deciding
divergence. We consider a timed automaton with a starting location and a different target
location without outgoing edges. We construct from it a weighted timed game by distributing
all locations to Min, and equipping all edges with weight 0, and all locations with weight 0.
We also add a loop with weight 1 on the initial location, one with weight −1 on the target
location, and an edge from the target location to the initial location with weight 0, all three
with guard > and resetting all clocks. Then, the weighted timed game is not almost-divergent
if and only if the target can be reached from the initial location in the timed automaton.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:33

5. Deciding infinite values

There are three reasons for an infinite value to appear in a WTG:
• an infinite value (+∞ or −∞) could appear in a final weight function and be propagated
along a play;
• a value +∞ could be obtained if Min is not able to reach a target location;
• a value −∞ could be obtained if Min is able to reach a negative cycle, loop arbitrarily
many times inside, and then reach a target location.
This section explains how to detect the three situations in the region game R(G) of an

almost-divergent WTG G. Before that, let us start by formalising a way to safely remove
region states of R(G) for which the value of all their associated configurations is known to be
infinite. Let S+∞ be a subset of S = L× Reg(X ,M), such that ValR(G)((`, r), ν) = +∞ for
all (`, r) ∈ S+∞ and ν ∈ r. If a configuration of G is in the attractor of Max towards S+∞

(see Remark 2.18), then Max has a strategy giving it value +∞. Moreover, the attractor
being computable using regions, either all configurations in the same region have value +∞,
or none have value +∞: therefore we could add this region to S+∞. We will thus assume
that S+∞ is closed by attractor for Max, i.e. the attractor of Max towards S+∞ equals S+∞.
We can define the same notion for a set S−∞ of states with value −∞, that can be assumed
closed by attractor of Min.

Lemma 5.1. In R(G), let S+∞ be a set of region states of value +∞ closed by attractor of
Max, and let S−∞ be a set of region states of value −∞ closed by attractor of Min. Removing
the region states S+∞ ∪ S−∞ from R(G) will not change any other value.

Proof. We only prove the result for the removal of region states from S−∞, since the proof
for S+∞ is entirely symmetrical. Let S′ = S′Min] S′Max denote S\S−∞, and let R(G)′ denote
the restriction of R(G) to S′. Let us show that for all region states (`, r) ∈ S′ and ν ∈ r,
ValR(G)((`, r), ν) = ValR(G)′((`, r), ν)).

If σMin is a strategy of Min in R(G), and σ′Min is a strategy of Min in R(G)′, such
that for all plays ρ in FPlaysMin

R(G)′ σMin(ρ) = σ′Min(ρ), we say that σMin coincides with σ′Min.
We define the same notion for strategies of Max. All strategies of Min and Max in R(G)′

can be extended arbitrarily to become strategies in R(G) that coincide, by making the
same choices on plays that stay in R(G)′, and making arbitrary choices otherwise. It
follows that if σMin and σ′Min are strategies of Min that coincide, then for all strategies
σ′Max of Max in R(G)′, there exists a corresponding strategy σMax in R(G), such that
playR(G)′(((`, r), ν), σ′Min, σ

′
Max) = playR(G)(((`, r), ν), σMin, σMax), and therefore

ValR(G)′(((`, r), ν), σ′Min) 6 ValR(G)(((`, r), ν), σMin)

as the supremum over strategies of Max in R(G) is at least equal to the one in R(G)′.
Similarly, if σMax and σ′Max are strategies of Max that coincide, then

ValR(G)′(((`, r), ν), σ′Max) > ValR(G)(((`, r), ν), σMax)

By closure by attractor of Min, all transitions starting in a region state of S′Min must end
in a region state of S′ (otherwise the first state would belong to the attractor of Min towards
S−∞). Therefore, every strategy of Min in R(G) has a corresponding strategy in R(G)′ that
makes the same choices. In particular, if we consider an ε-optimal strategy σMin of Min in
R(G), and its corresponding strategy σ′Min in R(G)′, it holds that

ValR(G)′((`, r), ν) 6 ValR(G)′(((`, r), ν), σ′Min)

20:34 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

by definition of Val as an infimum over strategies, and

ValR(G)′(((`, r), ν), σ′Min) 6 ValR(G)(((`, r), ν), σMin)

as explained before. Finally, ValR(G)(((`, r), ν), σMin) 6 ValR(G)((`, r), ν) + ε by ε-optimality
of σMin, and thus ValR(G)′((`, r), ν) 6 ValR(G)((`, r), ν) + ε. Since this holds for all ε > 0, we
get that ValR(G)′((`, r), ν) 6 ValR(G)((`, r), ν).

From every state s of S′Max, a positional strategy that chooses a transition jumping
into S−∞ must have value −∞. Any other choice would thus be equal or better, and by
closure by attractor of Min, there must exist a transition starting in (`, r) that ends in S′.
Therefore, there exists an ε-optimal strategy σMax of Max in R(G) with a corresponding
strategy σ′Max in R(G)′. Then, it holds that ValR(G)′((`, r), ν) > ValR(G)′(((`, r), ν), σ′Max) >
ValR(G)(((`, r), ν), σMax) > ValR(G)((`, r), ν)− ε. We conclude since this holds for all ε.

5.1. Infinite final values. As a first step, we explain how to compute and remove all region
states with value +∞, and region states with value −∞ because of final weights. The only
states with infinite value that will remain are some states that derive a value of −∞ from
arbitrary accumulation of negative weights, and we will deal with them later.

Recall that the final weight function fwt has been supposed piecewise affine with a finite
number of pieces and is continuous on each region. In particular, final weights +∞ or −∞
are given to entire regions. Then, let S−∞t ⊆ Lt × Reg(X ,M) (respectively S+∞

t) denote the
set of target region states that fwt maps to −∞ (respectively +∞).

Proposition 5.2. If a region state of G is in the attractor of Min towards S−∞t (respectively in
the attractor of Max towards S+∞

t), then it has value −∞ (respectively +∞). Moreover, if
we remove those states from R(G), the value of the other configurations does not change.

Proof. If a region state (`, r) is in the attractor of Min towards S−∞t , then clearly Min has a
(positional) strategy giving value −∞ from (`, r), and ValR(G)((`, r), ν) = −∞ for all ν ∈ r.
An attractor of Min is always closed by attractor of Min, so we can apply Lemma 5.1 and
conclude. Once again, a symmetrical proof lets us deal with the attractor of Max towards
S+∞
t .

Then, assuming that all final weights are finite, configurations with value +∞ are those
from which Min cannot reach the target region states: thus, they can also be computed and
removed using the attractor algorithm.

Proposition 5.3. If fwt maps all configurations to values in R, then a configuration ((`, r), ν)
has value +∞ if and only if (`, r) is not in the attractor of Min towards region states
Lt × Reg(X ,M). Moreover, if we remove those region states from R(G), the value of the
other configuration does not change.

Proof. If a region state (`, r) is not in the attractor of Min towards Lt×Reg(X ,M), then Max
has a (safety) strategy giving value +∞ from all configurations ((`, r), ν) with ν ∈ r, and
ValR(G)((`, r), ν) = +∞. Conversely, if (`, r) is in the attractor of Min towards Lt×Reg(X ,M),
then Min has a strategy giving finite value from ((`, r), ν), and ValR(G)((`, r), ν) < +∞. We
conclude by Lemma 5.1.

We can now assume that all configurations have value in R ∪ {−∞} and that all target
region states have final weight in R: the precomputation needed so far consists only of
attractor computations, that can be performed in time linear in |R(G)|.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:35

t1

t2

t3

t4

t5

pt5

pt4

pt3

pt2

pt1

Figure 14: Application of the claim in the proof of Proposition 5.4

As previously explained, finding all states of value−∞ is harder (in particular undecidable
in general), but whenever we do manage to find them we can safely remove them by
Lemma 5.1. The solution is quite simple for divergent WTGs, and slightly more involved in
almost-divergent WTGs, because of the appearance of 0-cycles. In order to only present one
uniform solution, we directly deal with the more general almost-divergent case. To do so, we
introduce a new tool, the kernels, that will also be very useful in the rest of the study.

5.2. Kernel of an almost-divergent WTG. Kernels of an almost-divergent WTG are a
way to group all 0-cycles of the game. We study those kernels and give a characterisation
allowing computability. In [BJM15], kernels have also been studied, and contain exactly all
transitions and locations of weight 0. Contrary to their non-negative case, the situation is
more complex in our case with arbitrary weights since 0-cycles could go through locations
or transitions that have weight different from 0. Moreover, it is not trivial (and may not
be true in a non almost-divergent WTG) to know whether it is sufficient to consider only
simple 0-cycles, i.e. cycles without repetitions.

We will now construct the kernel K as the subgraph of R(G) containing all 0-cycles.
Formally, let TK be the set of edges of R(G) belonging to a simple 0-cycle, and SK be the set
of states covered by TK. We define the kernel K of R(G) as the subgraph of R(G) defined by
SK and TK. Edges in T\TK with starting state in SK are called the output edges of K. We
define it using only simple 0-cycles in order to ensure its computability. However, we now
show that this is of no harm, since the kernel contains exactly all the 0-cycles, which will be
crucial in our approximation schema.

Proposition 5.4. A cycle of R(G) is entirely in K if and only if it is a 0-cycle.

Proof. We prove that every 0-cycle is in K by induction on the length of the cycles. The
initialisation contains only cycles of length 1, that are in K by construction. If we consider a
cycle p of length above 1, it is either simple (and thus in K, by definition), or it can be rotated
and decomposed into p′p′′, p′ and p′′ being smaller cycles. Let ρ be a corner play following p′p′′.
We denote by ρ′ the prefix of ρ following p′ and ρ′′ the suffix following p′′. It holds that
wtΣ(ρ′) = −wtΣ(ρ′′), and in an almost-divergent SCC this implies wtΣ(ρ′) = wtΣ(ρ′′) = 0.
Therefore, by Lemma 4.1 both p′ and p′′ are 0-cycles, and they must be in K by induction
hypothesis.

We now prove that every cycle in K is a 0-cycle. By construction, every edge t ∈ TK is
part of a simple 0-cycle. Thus, to every edge t ∈ TK, we can associate a path pt such that

20:36 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

tpt is a simple 0-cycle (rotate the simple cycle if necessary). The situation is exemplified in
Figure 14. We can prove the following claim by relying on another pumping argument on
corners:

Claim. If t1 · · · tk is a path in K, then t1t2 · · · tkptk · · · pt2pt1 is a 0-cycle of R(G).

Proof of Claim. We prove the property by induction on k. For k = 1, the property is
immediate since t1pt1 is a 0-cycle. Consider then k such that the property holds for k, and let
us prove that it holds for k+1. We will exhibit two corner plays following t1 · · · tk+1ptk+1

· · · pt1
of opposite weight and conclude with Lemma 4.1.

Let v0 be a corner of last(tk+1). Since tk+1ptk+1
is a 0-cycle, there exists w ∈ Z, a

corner play ρ0 following tk+1 ending in v0 with weight w and a corner play ρ′0 following ptk+1

beginning in v0 with weight −w. We name v′0 the corner of last(tk) where ρ′0 ends. We
consider any corner play ρ1 following tk+1 from corner v′0. The corner play ρ′0ρ1 follows the
path ptk+1

tk+1 that is also a 0-cycle by Lemma 4.2, therefore ρ1 has weight w. We denote by
v1 the corner where ρ1 ends. By iterating this construction, we obtain some corner plays
ρ0, ρ1, ρ2, . . . following tk+1 and ρ′0, ρ′1, ρ′2, . . . following ptk+1

such that ρ′i goes from corner vi
to v′i, and ρi+1 from corner v′i to vi+1, for all i > 0. Moreover, all corner plays ρi have weight
w and all corner plays ρ′i have weight −w. Consider the first index ` such that v` = vj for
some j < l, which exists because the number of corners is finite.

We apply the induction hypothesis to find a corner play following t1 · · · tkptk · · · pt1 , going
through the corner v′j in the middle: more formally, there exists wα, a corner play ρα following
t1 · · · tk ending in v′j with weight wα and a corner play ρ′α following ptk · · · pt1 beginning in v′j
with weight −wα. We apply the induction hypothesis a second time with corner v′`−1: there
exists wβ, a corner play ρβ following t1 · · · tk ending in v′`−1 with weight wβ and a corner
play ρ′β following ptk · · · pt1 beginning in v′`−1 with weight −wβ .

The corner play ραρj+1ρ
′
j+1ρj+2ρ

′
j+2 · · · ρ′`−1ρ

′
β, of weight wα + (w − w)(`− j)− wβ =

wα − wβ, follows the cycle t1 · · · tk(tk+1ptk+1
)`−jptk · · · pt1 . The corner play ρβρ`ρ

′
jρ
′
α, of

weight wβ + w − w − wα = wβ − wα, follows the cycle t1 · · · tktk+1ptk+1
ptk · · · pt1 . Since

the game is almost-divergent, and those two corner plays are of opposite sign and in the
same SCC, both have weight 0. The second corner play of weight 0 ensures that the cycle
t1 · · · tk+1ptk+1

· · · pt1 is a 0-cycle, by Lemma 4.1. 4

Now, if p is a cycle of R(G) in K, there exists a cycle p′ such that pp′ is a 0-cycle. Since
R(G) is an almost-divergent WTG, p is a 0-cycle.

5.3. Values −∞ coming from negative cycles. Equipped with the kernels, we are now
ready to remove the only remaining configurations having a value −∞ in R(G).

Proposition 5.5. In an SCC of R(G), the set of configurations with value −∞ is a union
of regions computable in time linear in the size of R(G). Moreover, if we remove those states
from R(G), the value of the other configurations does not change.

Proof. If the SCC is non-negative, the cumulative weight cannot decrease along a cycle, thus,
there can be no configurations with value −∞.

If the SCC is non-positive, let Tt be the set of edges of R(G) whose end state has location
in Lt. We prove that a configuration has value −∞ if and only if it belongs to a region state
where player Min can ensure the LTL formula on edges φ = (G¬Tt) ∧ ¬FGTK: in simple

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:37

words, this means that Min can ensure to see an edge from Tt, or exit TK if we enter the
kernel at some point.

If (`, r) is a region state where Min can ensure φ, Min can ensure a value of −∞ from all
configurations in (`, r) by avoiding St for as long as desired, while not getting stuck in K,
and thus going through an infinite number of negative cycles by Proposition 5.4. Conversely,
suppose that (`, r) is a region state from which Min cannot ensure φ. The winner of an
ω-regular timed game only depends on the (finite) region abstraction [WTH92], and finite
turn-based ω-regular games are determined [BL69]. Thus, we know that Max can ensure
¬φ = (FTt) ∨ FGTK. Then, from (`, r), Max must be able to reach St or stay in K forever.
In both cases, Max can ensure a value above −∞.

The procedure to detect −∞ states thus consists in checking LTL formula (G¬Tt) ∧
¬FGTK, and thus can be performed via three attractor computations in time linear in |R(G)|.
The set of region states with value −∞ can then be removed safely from R(G), by Lemma 5.1
(since it is closed by attractor of Min).

From this point on, we assume that no configurations of R(G) have value +∞
or −∞, and that the final weight function maps all configurations to R. Since fwt
is piecewise affine with finitely many pieces, fwt is bounded. Let wt

max denote the supremum
of |fwt|, ranging over all target configurations.

6. Semi-unfolding of WTGs

Given an almost-divergent WTG G, we describe the construction of its semi-unfolding T (G)
(as depicted in Figure 11). This crucially relies on the absence of states with value −∞ which
has been explained in Section 5.

We only build the semi-unfolding T (G) of an SCC of G starting from some state
(`0, r0) ∈ S of the region game, since it is then easy to glue all the semi-unfoldings together
to get the one of the full game. We thus assume in this section that R(G) is an SCC.
Since every configuration has finite value, we will prove that values of the game are bounded
by |R(G)|wmax +wt

max. As a consequence, we can find a bound γ linear in |R(G)|, wmax and
wt

max such that a play that visits some state outside the kernel more than γ times has weight
strictly above |R(G)|wmax + wt

max, hence is useless for the value computation. This leads
to considering the semi-unfolding T (G) of R(G) (nodes in the kernel are not unfolded, see
Figure 11) such that each node not in the kernel is encountered at most γ times along a
branch: the end of each branch is called a stopped leaf of the semi-unfolding. In particular,
the depth of T (G) is bounded by |R(G)|γ, and thus is polynomial in |R(G)|, wmax and wt

max.
Leaves of the semi-unfolding are thus of two types: target leaves that are copies of target
locations of R(G) for which we set the target weight as in R(G), and stop leaves for which
we set their target weight as being constant to +∞ if the SCC R(G) is non-negative, and
−∞ if the SCC is non-positive.

More formally, if (`, r) is in K, we let K`,r be the part of K accessible from (`, r) (note
that K`,r is an SCC as K is a disjoint set of SCCs). We define the output edges of K`,r as
being the output edges of K accessible from (`, r). If (`, r) is not in K, the output edges
of (`, r) are the edges of R(G) starting in (`, r).

We define a tree T whose nodes are either labelled by region states (`, r) ∈ S\SK or by
kernels K`,r, and whose edges are labelled by output edges in R(G). The root of the tree T
is labelled with an initial region state (`0, r0), or K`0,r0 (if (`0, r0) belongs to the kernel),

20:38 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

and the successors of a node of T are then recursively defined by its output edges. When a
state (`, r) is reached by an output edge, the child is labelled by K`,r if (`, r) ∈ K, otherwise
it is labelled by (`, r). Edges in T are labelled by the edges used to create them. Along
every branch, we stop the construction when either a final state is reached (i.e. a state not
inside the current SCC) or the branch contains 3|R(G)|wmax + 2wt

max + 2 nodes labelled by
the same state ((`, r) or K`,r). Leaves of T with a location belonging to Lt are called target
leaves, others are called stopped leaves.

We now transform T into a WTG T (G), by replacing every node labelled by a state (`, r)

by a different copy (˜̀, r) of (`, r). Those states are said to inherit from (`, r). Edges of T
are replaced by the edges labelling them, and have a similar notion of inheritance. Every
non-leaf node labelled by a kernel K`,r is replaced by a copy of the WTG K`,r, output edges
being plugged in the expected way. We deal with stopped leaves labelled by a kernel K`,r

by replacing them with a single node copy of (`, r), like we dealt with node labelled by a
state (`, r). State partition between players and weights are inherited from the copied states
of R(G). The only initial state of T (G) is the state denoted by (˜̀

0, r0) inherited from (`0, r0)
in the root of T (either (`0, r0) or K`0,r0). The final states of T (G) are the states derived
from leaves of T . If R(G) is a non-negative (respectively non-positive) SCC, the final weight
function fwt is inherited from R(G) on target leaves and set to +∞ (respectively −∞) on
stopped leaves.

The semi-unfolding of the WTG from Figure 10 can be found in Figure 18 of Appendix B.

Proposition 6.1. Let G be an almost-divergent WTG, and let (`0, r0) be some region state
of R(G). The semi-unfolding T (G) with initial state (˜̀

0, r0) (a copy of a region state (`0, r0))
is equivalent to G, i.e. for all ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0).

The rest of this section aims at proving Proposition 6.1, only in the case where R(G)
is an SCC, since the general result then follows easily. First, we need information on the
weight of finite plays in the region game.

Lemma 6.2. All finite plays in R(G) have cumulative weight (ignoring final weights) at
least −|R(G)|wmax in the non-negative case, and at most |R(G)|wmax in the non-positive
case. Moreover, values of the game are bounded by |R(G)|wmax + wt

max.

Proof. Suppose first that R(G) is a non-negative SCC. Consider a play ρ following a path p.
This path p can be decomposed into p = p1pc1 · · · pkpck such that every pci is a cycle, and
p1 . . . pk is a simple path in R(G) (thus

∑k
i=1 |pi| 6 |R(G)|). Let us define all plays ρi and ρci

as the restrictions of ρ on pi and pci . Now, since all plays following cycles have cumulative
weight at least 0,

wtΣ(ρ) =

k∑
i=1

wtΣ(ρi) + wtΣ(ρci) >
k∑
i=1

−wmax|ρi|+ 0 > −|R(G)|wmax

Similarly, we can show that every play in a non-positive SCC has cumulative weight at most
|R(G)|wmax.

For the bound on the values, consider again two cases. If R(G) is a non-negative SCC,
consider a positional attractor strategy σMin for Min toward St. Since all states have values
below +∞, all plays obtained from strategies of Max will follow simple paths of R(G),
that have cumulative weight at most |R(G)|wmax in absolute value. Similarly, if R(G) is
a non-positive SCC, following the proof of Proposition 5.5, since all values are above −∞,

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:39

Max can ensure ¬φ, i.e. (FTt) ∨ FGTK on all states. Then we can construct a strategy σMax

for Max combining an attractor strategy toward St on states satisfying FTt, a safety strategy
on states satisfying GTK, and an attractor strategy toward the latter on all other states.
Then, all plays obtained from strategies of Min will either not be winning (GTK) or follow
simple paths of R(G). Both cases imply that the values of the game are bounded by
|R(G)|wmax + wt

max.

We can use this to obtain similar results in the semi-unfolding T (G).

Lemma 6.3. All plays in T (G) from the initial state (˜̀
0, r0) to a stopped leaf have cumulative

weight at least 2|R(G)|wmax + 2wt
max + 1 if the SCC R(G) is non-negative, and at most

−2|R(G)|wmax − 2wt
max − 1 if it is non-positive.

Proof. Note that by construction, all finite paths in T (G) from the initial state to a stopped
leaf can be decomposed as p′p1 · · · p3|R(G)|wmax+2wt

max+1 with all pi being cycles around the
same state. Additionally, those cycles cannot be 0-cycles by Proposition 5.4, since they take
at least one edge outside of K. Therefore the restriction of ρ to p1 · · · p3|R(G)|wmax+2wt

max+1

has weight at least 3|R(G)|wmax + 2wt
max + 1 (in the non-negative case) and at most

−3|R(G)|wmax − 2wt
max − 1 (in the non-positive case). The beginning of the play, following

p′, has cumulative weight at least −|R(G)|wmax (in the non-negative case) and at most
|R(G)|wmax (in the non-positive case), by Lemma 6.2.

Consider two plays of the same length k in R(G) and T (G), respectively:

ρ = ((`1, r1), ν1)
d1,t1−−−→ · · ·

dk−1,tk−1−−−−−−→ ((`k, rk), νk)

ρ̃ = ((˜̀
1, r1), ν1)

d1,,t̃1−−−→ · · · dk−1,t̃k−1−−−−−−→ ((˜̀
k, rk), νk) .

They are said to mimic each other if every (˜̀
i, ri) is inherited from (`i, ri) and every edge t̃i

is inherited from the edge ti of R(G). Combining Lemmas 6.2 and 6.3, we obtain:

Lemma 6.4. If R(G) is a non-negative (respectively non-positive) SCC, every play from the
initial state and with cumulative weight less than |R(G)|wmax +2wt

max +1 (respectively greater
than −|R(G)|wmax − 2wt

max − 1) can be mimicked in T (G) without reaching a stopped leaf.
Conversely, every play in T (G) reaching a target leaf can be mimicked in R(G).

Proof. We prove only the non-negative case, since the other case is symmetrical. Let ρ be
a play of R(G) with cumulative weight less than |R(G)|wmax + 2wt

max + 1. Consider the
branch of the unfolded game it follows. If ρ cannot be mimicked in T (G), then a prefix of ρ
reaches the stopped leaf of that branch when mimicked in T (G). In this situation, ρ starts
by a prefix of weight at least 2|R(G)|wmax + 2wt

max + 1 by Lemma 6.3 and then ends with a
suffix play of weight at least −|R(G)|wmax by Lemma 6.2, and that contradicts the initial
assumption. The converse is true by construction.

Then, intuitively, the plays of R(G) starting in an initial configuration that cannot be
mimicked in T (G) are not useful for value computation. To obtain Proposition 6.1, we now
prove that for all valuations ν0 ∈ r0, ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0). By Lemma 2.13, we
already know that ValG(`0, ν0) = ValR(G)((`0, r0), ν0). Recall that we only left finite values in
R(G) (in the final weight functions, in particular), and more precisely |ValR(G)((`0, r0), ν0)| 6
|R(G)|wmax +wt

max by Lemma 6.2. We first show that the value is also finite in T (G). Indeed,
if ValT (G)((˜̀

0, r0), ν0) = +∞, since we assumed all final weights of R(G) bounded, we are
necessarily in the non-negative case, and Max is able to ensure stopped leaves reachability.

20:40 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Claim. If ValT (G)((˜̀
0, r0), ν0) = +∞, then there are no strategies in R(G) for Min ensuring

weight less than |R(G)|wmax + wt
max + 1 from (`0, r0).

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) > |R(G)|wmax + wt
max.

Proof of Claim. By contradiction, consider a strategy σMin of Min ensuring weight A 6
|R(G)|wmax + wt

max + 1 in R(G). Then, for all σMax, the cumulative weight of the play
playR(G)(((

˜̀
0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at most equal to

A − fwt(`, ν) 6 |R(G)|wmax + 2wt
max + 1, and by Lemma 6.4 this play does not reach a

stopped leaf when mimicked in T (G), which is absurd. 4

If ValT (G)((˜̀
0, r0), ν0) = −∞, we are necessarily in the non-positive case, and, by

construction, this implies that Min ensures stopped leaves reachability in T (G).

Claim. If ValT (G)((˜̀
0, r0), ν0) = −∞, then there are no strategies in R(G) for Max ensuring

weight above −|R(G)|wmax − wt
max − 1 from (`0, r0).

Thus, we can obtain the contradiction ValR(G)((`0, r0), ν0) < −|R(G)|wmax − wt
max.

Proof of Claim. By contradiction, consider a strategy σMax of Max ensuring weight A >
−|R(G)|wmax − wt

max − 1 in R(G). Then, for all σMin, the cumulative weight of the play
playR(G)(((

˜̀
0, r0), ν0), σMin, σMax) (reaching target configuration (`, ν)) is at least A−fwt(`, ν),

thus at least −|R(G)|wmax − 2wt
max − 1. By Lemma 6.4, this play does not reach a stopped

leaf when mimicked in T (G), which is absurd. 4

If R(G) is non-negative, for all ε > 0 we can fix an ε-optimal strategy σMin for Min
in T (G). Every play derived from σMin in T (G) reaches a target leaf, and can thus be
mimicked in R(G) by Lemma 6.4. Therefore, σMin can be mimicked in R(G), where it keeps
the same value. From this we deduce ValR(G)((`0, r0), ν0) 6 ValT (G)((˜̀

0, r0), ν0). If R(G)
is non-positive, the same reasoning applies by considering an ε-optimal strategy for Max
in T (G).

Let us now show the reverse inequality. If R(G) is non-negative, let us fix 0 < ε < 1,
an ε-optimal strategy σMin for Min in R(G), and a strategy σMax of Max in R(G). Let
ρ be their outcome playR(G)(((`0, r0), ν0), σMin, σMax), ρk be the finite prefix of ρ defining
its cumulative weight and (`k, νk) be the configuration defining its final weight, such that
wtR(G)(ρ) = wtΣ(ρk) + fwt(`k, νk). Then,

wtR(G)(ρ) 6 ValR(G)((`0, r0), ν0) + ε < |R(G)|wmax + wt
max + 1

therefore

wtΣ(ρk) < |R(G)|wmax + wt
max + 1− fwt(`k, νk) 6 |R(G)|wmax + 2wt

max + 1

and by Lemma 6.4 all such plays ρ can be mimicked in T (G), so that

ValT (G)((˜̀
0, r0), ν0) 6 ValR(G)((`0, r0), ν0)

Once again, if R(G) is non-positive, the same reasoning applies by considering an ε-optimal
strategy for Max in R(G). This ends the proof of Proposition 6.1.

Remark 6.5. Note that the semi-unfolding procedure of an SCC depends on wt
max, where

fwt can be the value function of an SCCs under the current one. Assuming all configurations
have finite values, we can extend the reasoning of Lemma 6.2 and bound all values in the

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:41

full game by |R(G)|wmax +wt
max, which lets us bound uniformly the unfolding depth of each

SCC and gives us a bound on the depth of the complete semi-unfolding tree:

|R(G)|(3|R(G)|wmax + 2wt
max + 2) + 1 (6.1)

7. Computing values for acyclic WTGs

In this section, we focus on the class of acyclic WTGs where the value problem is decidable,
as shown by [ABM04]. In our context, this will give us a way to compute the value of the
semi-unfolding T (G) of an almost-divergent WTG that contains no kernels: this is equivalent
for the WTG to be divergent indeed. This section is particularly technical, and can thus
be skipped by non-interested readers. We have chosen to give such detailed explanations of
the techniques used in [ABM04] (with independent proofs) for several reasons. On the one
hand, our setting is more general, in the sense that we allow for negative weights and for
final weights, where the authors of [ABM04] do not do so explicitly. On the other hand, their
result is stated for concurrent games, a generalisation of the turn-based games we consider.
This leads to simplifications in the proofs, and makes easier some parts of the complexity
analysis. We will need, in Section 8, to bound the partial derivatives of the functions we
compute. This cannot be deduced from their result directly. We present their techniques
in a new, more symbolic light, by performing computations on the entire state-space at
once instead of region by region. For reasons detailed in Section 7.4 and in [BG19], we are
not able to replicate their (incomplete) complexity analysis. We will therefore rely on a
doubly-exponential upper bound instead of the exponential one claimed in [ABM04]. Last
but not least, this detailed analysis allows us to solve the synthesis of ε-optimal strategies
for both players, as will be detailed in Section 10.

The main result of this section is a symbolic algorithm for computing the value V i = ValiG
defined in Section 2.8.

Theorem 7.1. Given i > 0, computing ValiG can be done in time doubly-exponential in i
and exponential in the size of G.

The intuition behind the result is the observation that the mappings V 0
` are piecewise

affine for all `, and a proof that F preserves piecewise affinity, so that all iterates V i
` can be

computed using piecewise affine functions. In order to bound the size of V i
` (in particular,

its number of pieces), we need the fine encoding via cells and partition functions defined in
Section 2.3.

7.1. About complexity bounds. In this section we will assume without loss of generality
that the number of clocks n > 1. The case n = 0 (finite weighted games) will be detailed
in Section 11. The piecewise affine value function V is encoded as pairs (P`, F`)`∈L such
that JF`K = V` for all ` ∈ L. We detail now how we measure the complexity of a pair (P, F).
As mentioned before, we assume without loss of generality that (in)equalities involved in
the definition of cells only use integers. This is not the case for value functions which are
described by equations y = a1x1 + · · · + anxn + b with ai and b in Q. In order to track
their size, we instead write ayy = a1x1 + · · ·+ anxn + b, with all ai and b integers of Z, and
ay ∈ N>0.

20:42 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Definition 7.2. Let (P, F) be a pair composed of a partition P and a value function F
defined on that partition. The complexity of (P, F) is the pair 〈m,β〉 where the size complexity
m and the constant complexity β are defined as follows. First, we define the size complexity
as m = |EP | + m0, where m0 denotes the number of inequalities in the encoding of the
domain cP .12 Second, the constant complexity β is the smallest natural number that upper
bounds (in absolute value) every finite constant (partial derivatives and additive constants)
in the affine (in)equalities of P and F . Given a piecewise affine value function (P, F) of
complexity 〈m,β〉, we say that (P, F) has complexity at most 〈m′, β′〉 if m 6 m′ and β 6 β′.

From this definition, we can bound the memory needed to store a partition function:

Lemma 7.3. Let V be represented by a pair (P, F) of complexity at most 〈m,β〉. Then it
can be represented using a space in O(2n(n+ 2)(m+ 1)n+1dlog βe).

Proof. Storing P requires storing m affine expressions, each stored in space (n+ 1)dlog βe.
Moreover, each affine expression of the value function F , one for each base cell of P , is stored
in space (n + 2)dlog βe. P has at most 2n(m + 1)n base cells by Lemma 2.6, and storing
each base cell explicitly requires storing at most m borders per base cell. In total, V can be
represented in space 2n+1(n+ 2)(m+ 1)n+1dlog βe.

7.2. Operations over value functions. Our goal is now to compute the value function
F(V) encoded by (P ′`, F

′
`)`∈L, when V is encoded by (P`, F`)`∈L. We decompose the

computation into smaller operations that we first introduce and compute over partitions,
while explaining how they affect the complexity parameter 〈m,β〉.

If P1 and P2 are partitions over the same domain cP , let P1 ⊕ P2 denote the coarsest
partition consistent with both P1 and P2: each base cell cb of P1 ⊕ P2 corresponds to
an intersection c1 ∩ c2, with c1 a base cell of P1 and c2 a base cell of P2. It is obtained
from EP1⊕P2 = EP1 ∪ EP2 . Note that if P1 . . . Pq are partitions of complexity at most
〈m,β〉, P1 ⊕ · · · ⊕ Pq is a partition of size complexity at most 〈qm, β〉. Now, the minimum
(respectively maximum) of a finite set of piecewise affine value functions can be computed
with partitions.

Lemma 7.4 [ABM04, Thm. 1]. Let (Pi, Fi)16i6q be piecewise affine value functions, defined
over the same domain cP , where each (Pi, Fi) has complexity at most 〈m,β〉. There exists
a piecewise affine value function (P ′, F ′) of domain cP and complexity at most 〈m′, β′〉,
where m′ = qm + q2, and β′ = 2β2, such that JF ′K = min16i6qJFiK (respectively JF ′K =
max16i6qJFiK).

Proof. Let P ′ be P1 ⊕ · · · ⊕ Pq. Let c denote a base cell in P ′, corresponding to an
intersection c1 ∩ · · · ∩ cq of base cells of P1, . . . , Pq respectively. Consider the affine value
functions F1(c1), . . . , Fq(cq). Each of these is defined by an equation of the form ayy =
a1x1 + · · ·+ anxn + b, that can be seen as affine equalities over variables X] {y}, denoted
E1, . . . , Eq, or equivalently as sets of points in RX]{y}, denoted JE1K, . . . , JEqK. If E and E′
are such equalities, of equations ayy = a1x1 + · · ·+ anxn + b and a′yy = a′1x1 + · · ·+ a′nxn + b′,
the intersection JEK ∩ JE′K is either empty or, by elimination of y, it satisfies the equation

(aya
′
1 − a′ya1)x1 + · · ·+ (aya

′
n − a′yan)xn + (ayb

′ − a′yb) = 0 .

12If cP = [0,M)X , then m0 = n.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:43

This describes an affine equality over X , that we denote E ∩y E′, with constant complexity
at most 2β2. Now, let us partition P1 ⊕ · · · ⊕ Pq by the set of all such intersections

{Ei ∩y Ej | 1 6 i, j 6 q ∧ JEiK ∩ JEjK 6= ∅} .
On every sub-cell c′ of this partition, there exists j ∈ {1, . . . , n} such that for every ν ∈ c′,
JFjK(ν) = min16i6qJFiK(ν). Therefore, we define F ′ on c′ as equal to Fj(cj). The partition
P1⊕ · · ·⊕Pq has size complexity at most qm, and we added at most q2 intersections E ∩y E′,
resulting in a partition of the expected complexity.

For all ν ∈ [0,M)X , let dν = sup{d | ν + d ∈ [0,M)X } ∈ R>0 denote the greatest valid
delay from ν (in fact, dν = M − ‖ν‖∞). Consider the following operations:
• If Y ⊆ X is a set of clocks and ` ∈ L, let UnresetY(V`) : [0,M)X → R∞ denote the value
function such that for all ν,

UnresetY(V`)(ν) = V`(ν[Y := 0]) .

• If g is a guard over X and ` ∈ L, let Guardg(V`) : [0,M)X → R∞ denote the value function
such that for all ν,

Guardg(V`)(ν) =

V`(ν) if ν |= g

−∞ if ν 6|= g ∧ ` ∈ LMax

+∞ if ν 6|= g ∧ ` ∈ LMin .

The values +∞ and −∞ in Guardsg ensure that players cannot choose invalid delays: By
the no-deadlocks assumption, from every configuration there exists a transition in JGK,
whose value will win against +∞ or −∞ in the subsequent equality (7.2).
• If e ∈ E is an edge from ` to `′, let Pree(V`′) : [0,M)X → R∞ denote the value function
such that for all ν,

Pree(V`′)(ν) =

{
supd∈[0,dν)

[
d · wt(`) + wt(e) + V`′(ν + d)

]
if ` ∈ LMax

infd∈[0,dν)

[
d · wt(`) + wt(e) + V`′(ν + d)

]
if ` ∈ LMin .

(7.1)

Then, if V ′ = F(V), it holds that

V ′` =

V` if ` ∈ Lt

maxe=(`,g,Y,`′) Pree(Guardg(UnresetY(V`′))) if ` ∈ LMax

mine=(`,g,Y,`′) Pree(Guardg(UnresetY(V`′))) if ` ∈ LMin\Lt

(7.2)

where e ranges over the edges in G that start from `. We have detailed in Lemma 7.4 how one
can perform the min and max operations over partitions. Let us now focus on the Guardg
and UnresetY operations.

Lemma 7.5. Let (P, F) be a piecewise affine value function of complexity at most 〈m,β〉.
Let g be a non-diagonal guard in G. Then there exists a piecewise affine value function
(P ′, F ′) of complexity at most 〈m′, β′〉, where m′ = m+ 2n and β′ = max(β,M), such that
JF ′K = Guardg(JF K).

Proof. The non-diagonal guard g can be encoded as a cell I1 ∧ · · · ∧ I2n, with one upper and
one lower inequality for each clock. We define P ′ from P with the set of affine equalities
EP ∪{E(I1), . . . , E(I2n)}. It follows that each base cell of P ′ is either entirely included in g or
entirely outside of it. We can thus define F ′ appropriately, such that JF ′K = Guarde(JF K).

We continue our study with the reset of clocks, that we illustrate in Figure 15.

20:44 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

x1

x2

1 20

1

2

x1

x2

1 20

1

2

Figure 15: On the left, the partition of Figure 5. On the right, the corresponding partition
obtained by applying Lemma 7.6 for reset Y = {x2}. The affine value function of
the grey cell on the right is obtained from the grey cell on the left, by setting the
partial derivative of x2 to 0.

Lemma 7.6. Let (P, F) be a piecewise affine value function of complexity at most 〈m,β〉.
Let Y be a set of clocks. Then there exists a piecewise affine value function (P ′, F ′) of
complexity at most 〈m,β〉 such that JF ′K = UnresetY(JF K).

Proof. If E : a1x1 + · · · + anxn + b = 0 is an affine equality, let UnresetY(E) denote the
affine equality a′1x1 + · · · + a′nxn + b = 0, with a′i = 0 if xi ∈ Y and a′i = ai otherwise,
for i ∈ [1, n]. We extend this operator to affine inequalities I in the same way. For each
valuation ν ∈ RX>0, and E an affine equality (respectively inequality) ν |= UnresetY(E) if and
only if ν[Y := 0] |= E. Then, if c = I1 ∧ · · · ∧ Ip is a cell, let UnresetY(c) denote the cell
UnresetY(I1)∧ · · · ∧UnresetY(Ip). It follows that ν ∈ UnresetY(c) if and only if ν[Y := 0] ∈ c.
In particular, if c does not intersect the sub-space where every clock in Y equals 0, then
UnresetY(c) = ∅.

Similarly, if c is a base cell of P and F maps c to the affine value function y =
a1x1 + · · ·+ anxn + b, let UnresetY(F (c)) denote the affine function y = a′1x1 + · · ·+ a′nxn + b
with for i ∈ [1, n], a′i = 0 if xi ∈ Y and a′i = ai otherwise. Then, for every ν ∈ UnresetY(c), it
holds that V (ν[Y := 0]) = UnresetY(F (c))(ν).

We construct P ′ from P by replacing cP by UnresetY(cP), and by replacing EP =
{E1, E2, . . .} by {UnresetY(E1),UnresetY(E2), . . .}. If c is a base cell of P , and UnresetY(c)
is non-empty, we let F ′(c) = UnresetY(F (c)). The result is a partition P ′ with the desired
complexity, and a partition function F ′ such that JF ′K = UnresetY(JF K).

7.3. Tubes and diagonals. All that is left is the Pree operation. It is more challenging,
and requires some extra machinery, that we now detail, related to diagonal behaviours that
naturally arise when dealing with time-elapses.

An affine inequality (respectively equality) is diagonal if the sum of its partial derivatives
is null, i.e. a1 + · · ·+ an = 0. It follows that if ν satisfies a diagonal I then ν + d |= I for all
d ∈ R. A cell is called a tube when all of its inequalities are diagonal. When the cell is a
sub-cell of some domain cP in a partition P , we relax this definition slightly, to allow for
non-diagonal borders inherited from cP .

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:45

x1

x2

1 20

1

2

Figure 16: The atomic tube partition derived from the partition of Figure 5 by Lemma 7.7.

A tube partition is a partition P where the set EP of affine equalities is split between the
set EdP of diagonal affine equalities and the set EndP of non-diagonal ones. A tube partition
induces a partition of cP by EdP into base cells that are tubes, called the base tubes of P .

Given two affine equalities E : a1x1 + · · ·+anxn+b = 0 and E′ : a′1x1 + · · ·+a′nxn+b′ = 0,
let A = a1 + · · · + an and A′ = a′1 + · · · + a′n denote the sums of their respective partial
derivatives. We define their diagonal intersection as

E ∩d E′ : (Aa′1 −A′a1)x1 + · · ·+ (Aa′n −A′an)xn + (Ab′ −A′b) = 0

Observe that E ∩dE′ is a (possibly empty) diagonal equality that contains E ∩E′. Moreover,
if E (respectively E′) is diagonal then E∩dE′ is equivalent to E (respectively E′). Now, given
a cell c = I1 ∧ · · · ∧ Im and a set E of affine equalities, let E denote13 E ∪ {E(I1), . . . E(Im)},
and let Tube(c, E) denote {E ∩d E′ | E,E′ ∈ E}. The pair (c, E) is said atomic if c is
partitioned by Tube(c, E) in only one cell (equal to c). Intuitively, (c, E) is atomic if the affine
equalities in E and in the borders of c do not intersect within the smallest tube that contains
c.

A tube partition is atomic if for every base tube c in the partition of cP by EdP , the pair
(c, EndP) is atomic. Intuitively, this means that in the non-diagonal part of P , the equalities
that split cells into sub-cells do not intersect within their base tube. Tube partitions can be
made atomic, by introducing a bounded amount of diagonal affine equalities.

Lemma 7.7 [ABM04, Lem. 3]. Let (P, F) be a piecewise affine value function of complexity
at most 〈m,β〉. Then there exists a piecewise affine value function (P ′, F ′) where P ′ is an
atomic tube partition, of complexity at most 〈m′, β′〉, where14 m′ = m+m2Splits(m,n) and
β′ = 2nβ2, such that JF ′K = JF K.

Proof. We add a set of new diagonal equalities, that contain all equalities E ∩d E′ derived
from the base cells included in base tubes of P . Then, there are at most m2 new diagonals
for each base cell, and the resulting tube partition must be atomic, as any E ∩d E′ belongs
to E , and base cells of P cannot be partitioned by E . As |A|, |A′| 6 nβ, we can bound by
2nβ2 the constants in inequalities E ∩d E′.

13Given an affine inequality I, E(I) denotes the associated affine equality, see page 10.
14Splits(m,n) has been defined on page 10.

20:46 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Figure 16 represents the atomic tube partition P ′ associated to the partition P displayed
in Figure 5. The tube partition P ′ has 2 diagonal equalities in green, resulting in 5 base
tubes. The result P ′ is therefore an atomic tube partition of complexity 〈6, 2〉.15

We can now compute Pree(V`′), with V`′ a value function encoded as a tube partition
(P, F), and e ∈ E an edge from ` to `′, using (7.1). We will assume in the following that ` is
a location of Max, but the case of Min is symmetrical. Let us fix a valuation ν ∈ [0,M)X .
For every delay d ∈ [0, dν), consider the term V`′(ν+d) of (7.1). The valuations ν+d belong
to a diagonal line of RX>0, and range from ν to ν + dν . The segment [ν, ν + dν] intersects a
finite set Cν of base cells in P . For each such cell c, we isolate from the segment [ν, ν + dν]
two delays:

d1 = inf{d ∈ [0, dν] | ν + d ∈ c} and d2 = sup{d ∈ [0, dν] | ν + d ∈ c}

As d 7→ JF K(ν+d) is affine over c, so is d 7→ d ·wt(`)+wt(e)+ JF K(ν+d), thus the supremum
of d · wt(`) + wt(e) + JF K(ν + d) for ν + d ∈ c must either be reached at (or arbitrarily close
to) d1, or at (or arbitrarily close to) d2. Note that ν + d2 must belong to a non-diagonal
border of c, while ν + d1 either belongs to a non-diagonal border of c or equals ν (whenever
ν ∈ c). Thus, the optimal value of d for evaluating the supremum must correspond to either
delay 0 or to a delay leading ν to a non-diagonal border (this is also proven in [ABM04]).

If B is a non-diagonal border of c, and ν is a valuation of RX>0, there exists a unique
d ∈ R such that ν + d ∈ JBK. In fact, if B is described by a1x1 + · · · + anxn + b = 0 and
A = a1 + · · ·+ an, then

d = −a1 · ν(x1) + · · ·+ an · ν(xn) + b

A

We denote this delay dν,B . Observe that it must belong to [0, dν] as JBK is reachable from ν
by time-elapse.16

If c is a cell of Cν , let Bν(c) denote the non-diagonal borders of c reachable from ν by
time-elapse. The supremum Pree(JF K)(ν) is then equal to

max
(
JF K(ν), max

c∈Cν
max

B∈Bν(c)
[dν,B · wt(`) + wt(e) + JF (c)K(ν + dν,B)]

)
where JF K(ν) corresponds to the delay 0, and JF (c)K(ν + dν,B) corresponds to a jump in cell
c arbitrarily close to B.17

If the tube partition (P, F) is atomic, it follows that every other valuation in the same cell
ν ′ ∈ [ν]P can reach the same set of borders by time elapse, i.e. Cν = Cν′ and Bν(c) = Bν′(c)
for all c ∈ Cν . As a result, we rename those sets Cc′ and Bc′(c) if c′ = [ν]P and c ∈ Cc′ . We
introduce an operator Pree,c,B , indexed by an edge, a cell and a non-diagonal border of the cell,
that maps a partition function F to the value function ν 7→ dν,B ·wt(`)+wt(e)+JF (c)K(ν+dν,B).
As a consequence, for each base cell cb of P , Pree(JF K) restricted to domain cb equals

max(JF K,max
c∈Ccb

max
B∈Bcb (c)

Pree,c,B(F)) (7.3)

Lemma 7.8. Let (P, F) be a piecewise affine value function of complexity at most 〈m,β〉,
where P is an atomic tube partition. Let cb be a base cell of P , e be an edge from ` to `′,

15the size complexity includes the two borders of the domain
16Note that it can be equal to dν , as x−M = 0 is a border of the cell [0,M)X .
17In particular, if ν + dν,B 6∈ c then F (c) evaluated on ν + dν,B may not equal JF K(ν + dν,B).

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:47

c be a cell in Ccb and B be a border in Bcb(c). Then there exists an affine value function f
with constants bounded by β′ = 4nβ2 max(wLmax, w

E
max), such that f = Pree,c,B(F) on cb.

Proof. Let ν be a valuation in cb. As B ∈ Bcb(c) it holds that dν,B ∈ [0, dν], such that

Pree,c,B(F)(ν) = dν,B · wt(`) + wt(e) + JF (c)K(ν + dν,B) .

Let ayy = a1x1 + · · · + anxn + b be the equation of F (c), and let A = a1 + · · · + an. Let
a′1x1 + · · ·+ a′nxn + b′ = 0 be the equation of B, with A′ = a′1 + · · ·+ a′n 6= 0 the sum of its
partial derivatives. We obtain the following equalities:

dν,B = −a
′
1 · ν(x1) + · · ·+ a′n · ν(xn) + b′

A′

JF (c)K(ν + dν,B) =
a1 · ν(x1) + · · ·+ an · ν(xn) +Adν,B + b

ay

JF (c)K(ν + dν,B) ·A′ay = (A′a1 −Aa′1) · ν(x1) + · · ·+ (A′an −Aa′n) · ν(xn) + (A′b−Ab′)

Pree,c,B(F)(ν) ·A′ay =

n∑
i=1

(A′ai −Aa′i − aya′i · wt(`)) · ν(xi)

+ (A′b−Ab′ − ayb′ · wt(`) +A′ay · wt(e))

Thus Pree,c,B(F)(ν) is described by an equation afy y = af1x1 + · · ·+afnxn+bf . The announced
bound on constants holds for n > 1.

Let us now bring everything together for the value iteration operator F .

Proposition 7.9. Let V = (P`, F`)`∈L be a piecewise affine value function, where every
(P`, F`) has complexity at most 〈m,β〉, Let q = |E| be the number of edges in G. Then there
exists a piecewise affine value function V ′ = (P ′`, F

′
`)`∈L such that V ′ = F(V). In addition,

every (P ′`, F
′
`) has complexity at most 〈m′, β′〉 where m′ = 36q2(4m+ 8n+ 6)3n(n+2) and β′

is polynomial in n, max(wLmax, w
E
max) and β.

Proof. Fix a location ` ∈ LMin. The case LMax is symmetrical and will not be detailed. If
` ∈ Lt, let (P ′`, F

′
`) = (P`, F`) of complexity at most 〈m,β〉. Otherwise,

V ′` = min
e=(`,g,Y,`′)

Pree(Guardg(UnresetY(V`′))) .

For every edge e = (`, g,Y, `′), we construct a piecewise affine value function (Pe, Fe)
encoding Pree(Guardg(UnresetY(V`′))).

We construct from (P`, F`), by Lemmas 7.5, 7.6 and 7.7, an atomic tube partition (P1, F1)
encoding Guardg(UnresetY(V`′)). Following complexity results given in these lemmas, we end
up with a complexity at most 〈m1, β1〉, such that:{

m1 = (m+ 2n)(1 + (m+ 2n)Splits(m+ 2n, n))
β1 = 2nmax(β,M)2

As explained before (see equation 7.3), Pree(JF1K) is obtained using computations on base
cells of P1 followed by a minimum with JF1K . Given a base cell cb of P1, a cell c in Ccb , and
a border B in Bcb(c), we can apply Lemma 7.8 to deduce the existence of an affine value
function fe,c,B such that fe,c,B = Pree,c,B(F1) on cb. We then have, for ν in base cell cb:

Pree(JF1K)(ν) = min(JF1K(ν),minc∈Ccb minB∈Bcb (c) Pree,c,B(F1)(ν))

= min(JF1K(ν),minc∈Ccb minB∈Bcb (c) fe,c,B(ν))

20:48 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

More precisely, for each base cell cb of P1, we can compute the affine value function fe,c,B
over cb, with Lemma 7.8, with coefficients bounded by β2 = 4nβ2

1 max(wLmax, w
E
max). There

are at most Splits(m,n) cells in Ccb and at most 2 borders in Bcb(c), thus the above formula
for Pree(JF1K) involves a maximum amongst q1 = 2Splits(m1, n) + 1 elements. Applying
Lemma 7.4, we can thus compute a piecewise affine value function (Pcb , Fcb) representing
Pree(JF1K) over cb. Using complexity results given in Lemma 7.4, we can deduce that constant
complexity is bounded by β3 = 2β2

2 , and that size complexity is bounded by m3 = q1m1 + q2
1 .

Then, we can use all (Pcb , Fcb) to define a unique (Pe, Fe), by merging all Pcb using the
operator ⊕ and by setting JFeK(ν) = JFcbK(ν) with cb = [ν]P1 . The resulting size complexity
me thus satisfies me ≤ m3Splits(m1, n), while the constant complexity is left unchanged with
βe = β3.

Finally, we can apply Lemma 7.4 to compute mine=(`,g,Y,`′)JFeK. The result is a partition
function (P ′`, F

′
`) encoding V ′` . Regarding complexity, Lemma 7.4 ensure that the value

function V ′` has complexity at most 〈m′, β′〉, with:
m′ = qme + q2 and β′ = 2β2

e

Putting everything together, we obtain :

Splits(m,n) 6 (2m+ 2)n (Lemma 2.6)

m1 6 (2m+ 4n+ 2)n+2 (1 6 Splits(m+ 2n, n))

Splits(m1, n) 6 (4m+ 8n+ 6)n(n+2) ((2xn+2 + 2)n 6 (2x+ 2)n(n+2))

q1 6 3(4m+ 8n+ 6)n(n+2)

m3 6 18(4m+ 8n+ 6)2n(n+2) (q1m1 + q2
1 6 2q2

1)

me 6 18(4m+ 8n+ 6)3n(n+2)

m′ 6 36q2(4m+ 8n+ 6)3n(n+2) (qme + q2 6 2q2me)

Regarding constant complexity, we have:

β′ = 2(βe)
2 = 2(β3)2 = 23β4

2

= 23(4nβ2
1 max(wLmax, w

E
max))4 (β2 = 4nβ2

1 max(wLmax, w
E
max))

= 211 max(wLmax, w
E
max)4 n4 (2nmax(β,M)2)8 (β1 = 2nmax(β,M)2)

= 219 max(wLmax, w
E
max)4 n12 max(β,M)16

Now that we know how to perform one step of computation of F , we can estimate the
complexity of iterated computations of this operator.

Corollary 7.10. Let V = (P`, F`)`∈L be a piecewise affine value function, where every
(P`, F`) has complexity at most 〈m,β〉. Let q = |E| be the number of edges in G. For
every i ≥ 1, we can compute a piecewise affine value function V (i) = (P

(i)
` , F

(i)
`)`∈L such

that V (i) = F i(V). In addition, every (P
(i)
` , F

(i)
`) has complexity at most 〈m(i), β(i)〉 where

m(i) = max(m, 8n+ 6, 10q)(6n(n+2))i and β(i) is polynomial in n, max(wLmax, w
E
max) and β.

Proof. The result can be obtained by induction on i. The initialisation is m 6 m(0). For
the induction step, by Proposition 7.9 we must show 36q2(4m(i) + 8n+ 6)3n(n+2) 6 m(i+1).
Observe that 36q2 6 (2q)3n(n+2), and 8n+6, 10q 6 m(i), so that 36q2(4m(i)+8n+6)3n(n+2) 6
(10qm(i))3n(n+2) 6 (m(i))6n(n+2) 6 m(i+1). This bound is crude but sufficient for our results.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:49

We note that even finer bounds on the iteration of m 7→ 36q2(4m+ 8n+ 6)3n(n+2) lead to
doubly-exponential complexities.

Thanks to Lemma 7.3, it will follow that V i, obtained by applying i times the operator
F over V 0 of bounded complexity, can be stored using a space depending polynomially on
m0 and β0, exponentially on n, and doubly-exponentially on i. Moreover, the operations
that we have described can be performed with a time complexity at most linear in the size
of the output. This provides a doubly-exponential upper bound on the complexity (with
respect to i) of computing V i. This concludes the proof of Theorem 7.1.

7.4. Exponential vs doubly-exponential. Let us now discuss the result of [ABM04],
where an exponential upper bound on the bounded value problem is obtained with a non-
symbolic algorithm on a slightly different setting (with non-negative weights only, without
final weights, in a concurrent setting).

Whereas the concurrent setting they use generalizes ours, the sign of weights has seemingly
no impact in the proofs, and the symbolic version requires minor changes related to the
continuity of value functions and to the way guards are handled. These changes should not
affect the complexity significantly. The main difference with their work is that their partition
object is nested, it forms a tree structure where cells are partitionned into sub-cells as needed.
Our techniques can be extended to nested partitions in the same way, and this has been
detailed in [BG19, Chapter 10]. However, even with nested partitions the complexity of
our techniques is still doubly-exponential, and the reason for this exponential gap is not
apparent.

As a tentative answer, we make the following observation. If the game has no resets,
i.e. Y = ∅ on all edges, the complexity of our approach becomes exponential.18 In [ABM04],
the way one should deal with resets is not detailed, it is therefore left open whether we could
obtain an exponential bound or whether their solution is in fact doubly-exponential.

As an additional point of interest, it is shown in [BG19, Chapter 10.1.4] that there exists
a tube partition P , of complexity m, such that if P ′ of complexity m′ is obtained after
applying F , then m′ = Θ(mn−1). This is the root of the issue, as we would need m′ = O(m)
in order to obtain an exponential bound when nesting F .

7.5. Bounding partial derivatives. In the previous analysis, we explained that constants
(partial derivatives and additive constants) grow polynomially at each elementary step, which
is enough for an exponential upper bound (double-exponential growth of their value, stored in
binary). This rough analysis will not be fine enough for some of our results. In particular, the
approximation results of Section 8 will be sensitive to the partial derivatives in a linear (and
not logarithmic) way. In this section, we study the growth of these partial derivatives more
closely. This time, our focus will not be on the space required to store affine equations, but
rather on mathematical properties of the value functions, namely their Lipschitz-continuity,
closely related to bounds on partial derivatives. As a result, we revert to denoting affine
equations as terms y = a1x1 + · · ·+ anxn + b with rational constants instead of using integers
with a separately stored denominator ay.

18This requires nested partitions and a more involved complexity analysis detailed in [BG19, Chapter 10].
In this case, the UnresetY steps can be skipped, and in Proposition 7.9 we end up with a linear growth of the
complexity with respect to m, instead of polynomial.

20:50 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Definition 7.11. A value function V : L×RX>0 → R∞ is said to be Λ-Lipschitz-continuous on
regions, with Λ ∈ R>0 when, for all regions r and all ` ∈ L, |V (`, ν)−V (`, ν ′)| 6 Λ‖ν−ν ′‖∞
for all valuations ν, ν ′ ∈ r, where ‖ν‖∞ = maxx∈X |ν(x)| is the ∞-norm of vector ν ∈ RX .
The function V is said to be Lipschitz-continuous on regions if it is Λ-Lipschitz-continuous
on regions, for some Λ ∈ R>0.

Since final weight functions fwt are piecewise affine and continuous on regions, they
are Lipschitz-continuous on regions, so is V 0. We will maintain as an invariant that V i is
Lipschitz-continuous on regions:

Proposition 7.12. If every final weight in a WTG G is Λ-Lipschitz-continuous on regions
(and piecewise affine), and i > 0, then ValiG is Λ′-Lipschitz-continuous on regions, with Λ′

polynomial in Λ, wLmax and n, and exponential in i. More precisely, Λ′ is bounded by

max(n− 1, 2)i − 1

max(n− 2, 1)
wLmax + (n− 1)i max(Λ, wLmax) .

Note that for a piecewise affine function with finitely many pieces, being Λ-Lipschitz-
continuous on regions is equivalent to being continuous on regions and having all partial
derivatives bounded by Λ in absolute value. The rest of this section is dedicated to proving
Proposition 7.12, as a corollary of the following result.

Lemma 7.13. If for all ` ∈ L, V` is piecewise affine with finitely many pieces that have all
their partial derivatives bounded by Λ in absolute value, then for all ` ∈ L, F(V)` is continuous
on regions and piecewise affine with partial derivatives bounded by max(Λ, |wt(`)|+ (n− 1)Λ)
in absolute value.

Proof. We will show that for every region r, F(V) restricted to r has those properties. Note
that they are transmitted over finite min and max operations. The continuity on regions is
easy to prove because it is stable by infimum and supremum. There exists a partition function
(P`, F`) for each ` ∈ L that represents V . As explained before, a crucial property is that, for
a given valuation ν, the delays d that need to be considered in the infimum and supremum of
F(V)`(ν) correspond to the intersection points of the diagonal half line containing the time
successors of ν and borders of cells (if νb is such a valuation, d = ‖νb− ν‖∞ is the associated
delay). In particular, there is a finite number of such borders, and the final F(V)` function
can be written as a finite nesting of finite min and max operations over affine terms, each
corresponding to a choice of delay and an edge to take. Formally, there are several cases to
consider to define those terms, depending on delay and edge choices. For each available edge
e, those terms can either be:
• If a delay 0 is taken and all clocks in Y ⊆ X are reset by e, then

wtΣ((`, ν)
0−→ (`, ν)

e−→ (`′, ν[Y := 0])) = wtΣ(e) + V`′(ν[Y := 0])

• If a delay d > 0 (leading to valuation νb on border B) is taken and all clocks in Y ⊆ X are
reset by e, then

wtΣ((`, ν)
d−→ (`, νb)

e−→ (`′, νb[Y := 0])) = wtΣ(`) · d+ wtΣ(e) + V`′(ν
b[Y := 0])

In the first case, the resulting partial derivatives are 0 for clocks in Y, and the same as
the partial derivatives in V`′ for all other clocks, which allows us to conclude that they are
bounded by Λ. We now consider the second case. We argue that it can be decomposed as a

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:51

x1

x2

ν ν ′

B

νb

ν ′b
c

Figure 17: A cell c as described in the proof of Lemma 7.13. Dashed lines are borders of c,
dotted lines are proof constructions.

delay followed by an edge of the first case, meaning that we can assume Y = ∅ without loss
of generality.

There are again two cases: the border B being inside a region or on the frontier of a
region.

If the border is not the frontier of a region, it is the intersection points of two affine
pieces of V`′ whose equations (in the space Rn+1 whose n first coordinates are the clocks
(x1, . . . , xn) and the last coordinate y corresponds to the value V`′(x1, . . . , xn)) can be written
y = a1x1 + · · ·+anxn + b (before the border) and y = a′1x1 + · · ·+a′nxn + b′ (after the border).
Therefore, valuations at the borders all fulfill the equation

(a′1 − a1)x1 + · · ·+ (a′n − an)xn + b′ − b = 0 (7.4)

We let A = (a′1 − a1) + · · · + (a′n − an). Consider that ` is a location of Min (the very
same reasoning applies to the case of a location of Max). Since F computes an infimum, we
know that the function mapping the delay d to the weight obtained from reaching ν + d is
decreasing before the border and increasing after. These functions are locally affine which
implies that their slopes satisfy:

wt(`) + a1 + · · ·+ an 6 0 and wt(`) + a′1 + · · ·+ a′n > 0 (7.5)

We deduce from these two inequalities that A > 0. The case where A = 0 would correspond
to the case where the border contains a diagonal line, which is forbidden, and thus A > 0.
Consider now a valuation ν and another valuation ν ′ of coordinates (ν(x1), . . . , ν(xk−1), ν(xk)+
λ, ν(xk+1), . . . , ν(xn)) with λ small enough. The delays d and d′ needed to arrive to the
border starting from these two valuations are such that ν + d and ν ′ + d′ both satisfy (7.4).
We can then deduce

d′ − d = λ
ak − a′k
A

It is now possible to compute the partial derivative of F(V)` in the k-th coordinate using
the limit when λ tends to 0 of the quotient

F(V)`,ν′ −F(V)`,ν
λ

=
wt(`)(d′ − d) + V`′,ν′+d′ − V`′,ν+d

λ
(7.6)

20:52 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

We may compute it by using the equations of the affine pieces before or after the border. We
thus obtain

F(V)`,ν′ −F(V)`,ν
λ

=
ak − a′k
A

(
wt(`) + a1 + · · ·+ an

)
+ ak

F(V)`,ν′ −F(V)`,ν
λ

=
ak − a′k
A

(
wt(`) + a′1 + · · ·+ a′n

)
+ a′k

In the case where ak > a′k, the first equation, with (7.5), allows us to obtain that the quotient
(and thus the partial derivative) is at most ak. The second equation, with (7.5), allows us to
obtain that the partial derivative is at least a′k. In case a′k > ak, we obtain similarly that the
partial derivative is at most a′k and at least ak. Since ak and a′k are bounded in absolute
value by Λ, so is the partial derivative.

We now come back to the case where the border is on the frontier of a region. Then, it is
a segment of a line of equation xk = c for some k and c. Moreover, V`′ contains at most three
values for points of B: the limit coming from before the border, the value at the border, and
the limit coming from after the border. The computation of F(V) considers values obtained
from all three and takes the minimum (or maximum).

Now, let y = a1x1 + · · ·+ anxn + b be the equation defining the affine piece of V`′ before
the border (respectively at the border, after the border). Consider a valuation ν and another
valuation ν ′ of coordinates (ν(x1), . . . , ν(xj−1), ν(xj) + λ, ν(xj+1), . . . , ν(xn)) with λ small
enough. The delays d and d′ needed to arrive to the border starting from these two valuations
are such that ν + d and ν ′ + d′ both satisfy xk = c. We can then deduce that d′ − d = 0
if j 6= k and d′ − d = −λ if j = k. It is now possible to compute the partial derivative of
F(V)` in the j-th coordinate using (7.6) again. We may compute it by using the equations
of the affine piece before the border (respectively at the border, after the border). Then,

V`′,ν+d = a1(x1 + d) + · · ·+ an(xn + d) + b =

n∑
i=1,i 6=k

ai(xi + d) + akc+ b

V`′,ν′+d′ =
n∑

i=1,i 6=k
ai(xi + d′) + akc+ b

We thus obtain

F(V)`,ν′ −F(V)`,ν
λ

=

{
aj if j 6= k

−wt(`)−
∑n

i=1,i 6=k ai otherwise

Then, the partial derivatives are bounded, in absolute value, by |wt(`)|+ (n− 1)Λ.

As a corollary, we obtain Proposition 7.12 by a simple induction on i.

8. Computing values

In this section we conclude the proofs of Theorems 3.4 and 3.9, with a triply-exponential upper
bound on computing (respectively approximating) values in divergent (respectively almost-
divergent) weighted timed games.

These upper bounds are obtained by computations performed on the semi-unfolding
T (G) described in Section 6. Whereas the computation is direct for divergent WTGs, we then
extend it to almost-divergent WTGs by first explaining how to compute value approximations
in kernels.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:53

8.1. Divergent WTGs. We first explain how to compute the values of a divergent WTG
G, thus proving Theorem 3.4. By definition, in such a divergent WTG, there are no 0-cycles,
and thus the kernel K is empty. In this case, the semi-unfolding T (G) is a tree of depth
i exponential in G, and thus of doubly-exponential size. Proposition 6.1 ensures that the
values of T (G) coincide with the values of G. By Theorem 7.1, we can compute the (exact)
values in T (G) in time doubly-exponential in i and exponential in the size of T (G). We thus
obtain a triply-exponential algorithm computing the value of a divergent WTG. Equivalently,
this shows that the value problem is in 3-EXPTIME for divergent WTGs.

8.2. Approximation of kernels. In order to generalise our computations from divergent
to almost-divergent WTGs, we start by approximating a kernel K of a WTG G by extending
the region-based approximation schema of [BJM15]. More precisely, we thus consider here
a WTG G composed of a kernel (a subgraph of a region game containing only 0-cycles,
as defined in Section 5.2) and some target locations equipped with final weights. In the
setting of [BJM15], not only cycles but all finite plays in kernels have weight 0, allowing for
a reduction to a finite game. In our setting, we have to approximate the timed dynamics
of runs, and therefore resort to the corner-point abstraction (as shown in the right part
of Figure 11).

Our goal is to compute an ε-approximation of the value of the kernel (in a given initial
configuration). Since final weight functions are piecewise affine with a finite number of pieces
and continuous on regions, they are Λ-Lipschitz-continuous on regions, for a given constant
Λ > 0. The technique to obtain the approximation is to consider regions of a refined enough
granularity: we thus pick

N(ε,Λ) =

⌈
wLmax |R(G)|+ Λ

ε

⌉
(8.1)

later denoted N when the parameters ε and Λ are clear from context.
Consider then the corner-point abstraction ΓN (G) described in Section 2.4, with locations

of the form (`, r, v) such that v is a corner of the 1/N -region r. Two plays ρ of G and ρ′ of
ΓN (G) are said to be 1/N -close if they follow the same path p in RN (G). In particular, at
each step the configurations (`, ν) in ρ and (`′, r′, v′) in ρ′ (with v′ a corner of the 1/N -region
r′) satisfy ` = `′ and ν ∈ r′, and the edges taken in both plays have the same discrete weights.
Close plays have close weights, in the following sense:

Lemma 8.1. For all 1/N -close plays ρ of G and ρ′ of ΓN (G),

|wtG(ρ)− wtΓN (G)(ρ
′)| 6 ε

Proof. Since ρ and ρ′ encounter the same locations of G, one reaches a target location if and
only if the other does. In the case where they do not reach a target location, both weights are
infinite, and thus equal. We now look at the case where both plays reach a target location,
moreover in the same step.

Consider the region path p of the run ρ: it can be decomposed into a simple path with
maximal cycles in it. The number of such maximal cycles is bounded by |R(G)| and the
remaining simple path has length at most |R(G)|. Since all cycles of a kernel are 0-cycles,
the parts of ρ that follow the maximal cycles have weight exactly 0.

Consider the same decomposition for the play ρ′. Cycles of p do not necessarily map to
cycles over locations of ΓN (G), since the 1/N -corners could be distinct. However, Lemma 2.16
shows that, for all those cycles of p, there exists a sequence of finite plays of G whose weight

20:54 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

tends to the weight of ρ′. Since all those finite plays follow a cycle of the region game R(G)
(with G being a kernel), they all have weight 0. Hence, the parts of ρ′ that follow the maximal
cycles of p have also weight exactly 0.

Therefore, the difference |wtG(ρ)− wtΓN (G)(ρ
′)| is concentrated on the remaining simple

path of p: on each edge of this path, the maximal weight difference is 1/N ×wLmax since 1/N
is the largest difference possible in time delays between plays that stay 1/N -close (since they
stay in the same 1/N -regions). Moreover, the difference between the final weight functions is
bounded by Λ/N , since the final weight function fwt is Λ-Lipschitz-continuous and the final
weight function of ΓN (G) is obtained as limit of fwt. Summing the two contributions, we
obtain as upper bound the constant (wLmax |R(G)|+ Λ)/N 6 ε.

In particular, if we start in some configurations (`, ν) of G, and ((`, r, v), v) of ΓN (G),
with ν ∈ r, since both players have the ability to stay 1/N -close all along the plays, a
bisimulation argument allows us to obtain that the values of the two games are also close in
(`, ν) and ((`, r, v), v), respectively:

Lemma 8.2. For all locations ` ∈ L, 1/N -regions r, valuations ν ∈ r and corners v of r,

|ValG(`, ν)− ValΓN (G)((`, r, v), v)| 6 ε

Proof. To obtain the result, we prove that

ValG(`, ν) 6 ValΓN (G)((`, r, v), v) + ε and ValΓN (G)((`, r, v), v) 6 ValG(`, ν) + ε

By definition and determinacy of turn-based WTGs, this is equivalent to proving these two
inequalities:

inf
σMin

sup
σMax

wtG(play((`, ν), σMin, σMax)) 6 inf
σ′Min

sup
σ′Max

wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max)) + ε

sup
σ′Max

inf
σ′Min

wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max)) 6 sup

σMax

inf
σMin

wtG(play((`, ν), σMin, σMax)) + ε

To show the first inequality, it suffices to show that for all σ′Min, there exists σMin such that
for all σMax, there is σ′Max verifying

|wtG(play((`, ν), σMin, σMax))− wtΓN (G)(play(((`, r, v), v), σ′Min, σ
′
Max))| 6 ε (8.2)

For the second, it suffices to show that for all σ′Max, there exists σMax such that for all σMin,
there is σ′Min verifying the same equation (8.2). We will detail the proof for the first, the
second being syntactically the same, with both players swapped.

Equation (8.2) can be obtained from Lemma 8.1, under the condition that the plays
play((`, ν), σMin, σMax) and play(((`, r, v), v), σ′Min, σ

′
Max) are 1/N -close. Therefore, we fix a

strategy σ′Min of Min in the game ΓN (G), and we construct a strategy σMin of Min in G, as well
as two mappings f : FPlaysMin

G → FPlaysMin
ΓN (G) and g : FPlaysMax

ΓN (G) → FPlaysMax
G such that:

• for all ρ ∈ FPlaysMin
G , ρ and f(ρ) are 1/N -close, and if ρ is consistent with σMin and starts

in (`, ν), then f(ρ) is consistent with σ′Min and starts in ((`, r, v), v);
• for all ρ′ ∈ FPlaysMax

ΓN (G), g(ρ
′) and ρ′ are 1/N -close, and if ρ′ is consistent with σ′Min and

starts in ((`, r, v), v), then g(ρ′) is consistent with σMin and starts in (`, ν).
We build σMin, f , and g by induction on the length k of plays, over prefixes of plays of length
k − 1, k and k, respectively. For k = 0 (plays of length 0 are those restricted to a single
configuration), we let f(`, ν) = ((`, r, v), v) and g((`, r, v), v) = (`, ν), leaving the other values
arbitrary (since we will not use them).

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:55

Then, we suppose σMin, f , and g built until length k − 1, k and k, respectively (if
k = 0, σMin has not been build yet), and we define them on plays of length k, k + 1 and
k + 1, respectively. For every ρ ∈ FPlaysMin

G of length k, we note ρ′ = f(ρ). Consider
the decision (d′, e′) = σ′Min(ρ′) and ρ′+ the prefix ρ′ extended with the decision (d′, e′). By
timed bisimulation, there exists (d, e) such that the prefix ρ+ composed of ρ extended
with the decision (d, e) builds 1/N -close plays ρ+ and ρ′+. We let σMin(ρ) = (d, e). If
ρ+ ∈ FPlaysMin

G , we also let f(ρ+) = ρ′+, and otherwise we let g(ρ′+) = ρ+. Symmetrically,
consider ρ′ ∈ FPlaysMax

ΓN (G) of length k, and ρ = g(ρ′). For all possible decisions (d′, e′), by
timed bisimulation, there exists a decision (d, e) in the prefix ρ such that the respective
extended plays ρ′+ and ρ+ are 1/N -close. We then let g(ρ′+) = ρ+ if ρ+ ∈ FPlaysMax

G and
f(ρ+) = ρ′+ otherwise. We extend the definition of f and g arbitrarily for other prefixes of
plays. The properties above are then trivially verified.

We then fix a strategy σMax of Max in the game G, which determines a unique play
play((`, ν), σMin, σMax). We construct a strategy σ′Max of Max in the game ΓN (G) by building
the unique play play(((`, r, v), v), σ′Min, σ

′
Max) we will be interested in, such that each of its

prefixes is in relation, via f or g, to the associated prefix of play((`, ν), σMin, σMax). Thus,
we only need to consider a prefix of play ρ′ ∈ FPlaysMax

ΓN (G) that starts in ((`, r, v), v) and is
consistent with σ′Min, and σ

′
Max built so far. Consider the play ρ = g(ρ′), starting in (`, ν) and

consistent with σMin, and σMax (by assumption). For the decision (d, e) = σMax(ρ) (letting
ρ+ be the extended prefix), the definition of f and g ensures that there exists a decision
(d′, e′) after ρ′ that results in an extended play ρ′+ that is 1/N -close, via f or g, with ρ+. We
thus can choose σ′Max(ρ

′) = (d′, e′).
We finally have built two plays play((`, ν), σMin, σMax) and play((`′, ν ′), σ′Min, σ

′
Max) that

are 1/N -close, as needed, which concludes this proof.

We can thus obtain an ε-approximation of ValG(`, ν) by computing ValΓN (G)((`, r, v), v)
for any corner v of r. Recall that ΓN (G) can be considered as an untimed weighted game
(with reachability objective). Thus we can apply the result of [BGHM16], where it is
shown that the optimal values of such games can be computed in pseudo-polynomial time
(i.e. polynomial with respect to the number of locations |ΓN (G)|, at most (n+ 1)|RN (G)|,
and the weights of transitions wmax encoded in unary, instead of binary): more precisely, the
value ValΓN (G) is obtained using the operator F of (2.2) (page 20), as the i-th iteration with
i = ((2|ΓN (G)| − 1)wmax + 1)|ΓN (G)|, polynomial in |L|, wmax, M and N , and exponential
in n. We then define an ε-approximation of ValG , named Val′N , on each 1/N -region by
interpolating the values of its 1/N -corners in ΓN (G) with a piecewise affine function: If ν is
a valuation that belongs to the 1/N -region r, then ν can be expressed as a (unique) convex
combination of the 1/N -corners v of r, so that ν =

∑
v αvv with αv ∈ [0, 1] for all v, and we

let Val′N (`, ν) =
∑

v αvValΓN (G)((`, r, v), v) for all locations ` of G.
Moreover, we can control the growth of the Lipschitz constant of the approximated value

for further use.

Lemma 8.3. Val′N is an ε-approximation of ValG, i.e. ‖Val′N −ValG‖∞ 6 ε. Moreover, Val′N
is piecewise affine with a finite number of pieces and 2(wLmax |R(G)|+ Λ)-Lipschitz-continuous
over regions.

Proof. By construction, the approximated value is piecewise affine with one piece per 1/N -
region. To prove the Lipschitz constant, it is then sufficient to bound the difference between
ValΓN (G)((`, r, v), v) and ValΓN (G)((`, r, v

′), v′), for v and v′ two corners of a 1/N -region r. We

20:56 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

can pick any valuation ν in r and apply Lemma 8.2 twice, between ν and v, and between ν
and v′. We obtain |ValΓN (G)((`, r, v), v)− ValΓN (G)((`, r, v

′), v′)| 6 2(wLmax |R(G)|+ Λ)/N =

2(wLmax |R(G)|+ Λ)‖v − v′‖∞.

The time complexity needed to compute Val′N is polynomial in |L|, wmax, M and N ,
and exponential in n.

8.3. Approximation of almost-divergent WTGs. We now explain how to approximate
the value of an almost-divergent WTG G, thus proving Theorem 3.9. After having computed
the semi-unfolding T (G) described in Section 6, we perform a bottom-up computation of the
approximation. The addition of kernels (with respect to the case of divergent WTGs studied
before) requires us to compute an approximation instead of the actual value. Notice that the
techniques used in Theorem 7.1, applied for i = 1 step (and not for the whole tree as for
divergent WTGs), allow us to compute the value of a non-kernel node of T (G), depending
on the values of its children. There is no approximation needed here, so that if we have
computed ε-approximations of all its children, we can compute an ε-approximation of the
node. More formally, this is justified by the following lemma with i = 1:

Lemma 8.4. Let G and G′ be two WTGs that only differ on the final weight functions fwt and
fwt′. Then, ‖ValG − ValG′‖∞ 6 ‖fwt− fwt′‖∞. Moreover, for all i ∈ N, ‖ValiG − ValiG′‖∞ 6
‖fwt− fwt′‖∞.

Proof. Consider two strategies σMin and σMax for both players in G and G′ (since both games
are identical up-to the final weight functions, they share the same sets of strategies for
both players). Then, from an initial configuration (`, ν), the plays playG((`, ν), σMin, σMax)
and playG′((`, ν), σMin, σMax) are the same, and their weights only differ by the final weight
functions taken at the same configurations. Thus,

|wt(playG((`, ν), σMin, σMax))− wt(playG′((`, ν), σMin, σMax))| 6 ‖fwt− fwt′‖∞
In particular,

wt(playG((`, ν), σMin, σMax)) 6 wt(playG′((`, ν), σMin, σMax)) + ‖fwt− fwt′‖∞
so that, taking infimum over all σMin and supremum over all σMax gives

ValG(`, ν) 6 ValG′(`, ν) + ‖fwt− fwt′‖∞
A symmetrical argument allows us to conclude that ‖ValG − ValG′‖∞ 6 ‖fwt − fwt′‖∞.
Using the bounded horizon versions of Val and wt in the previous proof, we also obtain
‖ValiG − ValiG′‖∞ 6 ‖fwt− fwt′‖∞ for any i.

We now explain in detail the full process of approximation of the value ValG(`0, ν0)
of an almost-divergent WTG G: it is a bottom-up computation on the tree T rooted in
(`0, r0) (with r0 the region of ν0) that we used to describe the semi-unfolding T (G). By
Proposition 6.1, the value we want to approximate is equal to ValT (G)((˜̀

0, r0), ν0). For a
node s in T , let Vs denote the exact value function of the corresponding node in T (G).
In particular, the value function at the root of T is equal to ν 7→ ValT (G)((˜̀

0, r0), ν). Our
algorithm iteratively computes an approximated value function V ′s for all nodes s of T .

To obtain an adequate ε-approximation of ValG(`0, ν0), we will thus need to guarantee a
precision in kernels that depend on the number of kernels we visit in the semi-unfolding. Let
α be the maximal number of kernels along a branch of the tree T . For a given node s in T ,

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:57

we also let α(s) be the maximal number of kernels along the branches of the subtree rooted
in s. Finally, let us denote by h(s) the maximal length of a branch in the subtree rooted in s.

We will maintain, along the bottom-up computation, that V ′s is a Λs-Lipschitz-continuous
mapping on regions such that

Λs 6 max(2, n)h(s)(2wLmax |R(G)|+ Λ) and ‖Vs − V ′s ‖∞ 6 α(s)ε/α (8.3)

where Λ is the maximal Lipschitz constant of the final weight functions of G. In particular,
at the root of T where α(s) = α, we indeed recover an ε-approximation of the value of the
game in configuration (`0, ν0).

For each leaf node s of T , Vs and V ′s are equal to the final weight function fwt of T (G),
and we thus get the invariant (8.3) for free (knowing that α(s) = h(s) = 0).

For an internal node s of T (that either gives rise to a single state (`, r) of T (G), or to a
kernel K`,r), let us suppose that the value of each child s′ of s in T have been computed and
verify the invariant (8.3).

If s is a node of the form (`, r) (that is not part of a kernel), we define two WTGs G̃ and
G̃′ that contain the state (`, r) as well as its children in T . The children s′ are made target
states with respective final weight functions given by Vs′ and V ′s′ . Moreover, we know that

α(s) = max
s′

α(s′) and h(s) = max
s′

h(s′) + 1

By definition, Vs is equal to ν 7→ ValG̃(s, ν) and thus to ν 7→ Val1G̃(s, ν) since G̃ is acyclic
of depth 1. Our approximation algorithm consists in letting V ′s = ν 7→ Val1G̃′(s, ν). By
Lemma 8.4 (with i = 1 and ε being maxs′ α(s′)ε/α), ‖Vs−V ′s ‖∞ 6 α(s)ε/α. By Lemma 7.13,
V ′s is Λs-Lipschitz-continuous on regions with Λs 6 max(maxs′ Λs′ , |wt(`)|+(n−1) maxs′ Λs′):
with the help of the invariant (8.3) for all children s′, and since |wt(`)| 6 wLmax and h(s′) 6
h(s)− 1, we obtain Λs 6 max(2, n)h(s)(2wLmax |R(G)|+ Λ).

If s is a node of the form K`,r, we define two WTGs G̃ and G̃′, that contain the locations
of the kernel K`,r of T (G), as well as the children of s in T (reached by output edges of
K`,r). The children s′ are made target states of respective final weight functions Vs′ and V ′s′ .
Moreover, we know that

α(s) = max
s′

α(s′) + 1 and h(s) = max
s′

h(s′) + 1

Thus, games G̃ and G̃′ are identical, except for their final weight functions that are ε-
close. Thus, we know by Lemma 8.4 that ‖ValG̃ − ValG̃′‖∞ 6 maxs′ α(s′)ε/α. Moreover, by
definition, Vs is equal to ν 7→ ValG̃(s, ν). Our approximation algorithm consists in letting
V ′s be equal to an ε/α-approximation of ValG̃′ , obtained by Lemma 8.3 with a granularity
N(ε/α,maxs′ Λs′): we thus have ‖ValG̃′(s, ·)−V

′
s ‖∞ 6 ε/α, and V ′s is Λs-Lipschitz-continuous

on regions with Λs 6 2(wLmax |R(G)|+ maxs′ Λs′). By triangular inequality, we deduce that
‖Vs − V ′s ‖∞ 6 (maxs′ α(s′))ε/α+ ε/α = αsε/α. Moreover, with the help of invariant (8.3)
for Λs′ , we once again obtain that Λs 6 max(2, n)h(s)(2wLmax |R(G)|+ Λ).

We thus obtain an algorithm that faithfully computes an ε-approximation of the value of
the game. Let us now discuss the complexity of the algorithm. Overall, the biggest Lipschitz
constant for V ′ is max(2, n)h(2wLmax |R(G)| + Λ) with h the height of the semi-unfolding
that is |R(G)|(3|R(G)|wmax + 2wt

max + 2) + 1 as noticed in (6.1) (page 41). This Lipschitz
constant is thus at most doubly-exponential with respect to the size of G. Therefore, the
biggest granularity N used in kernel approximations (described in (8.1)) can be globally

20:58 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

bounded as doubly-exponential in the size of G and polynomial in 1/ε. This entails that
each kernel approximation can be performed in time doubly-exponential in the size of G,
and polynomial in 1/ε. As the height of the semi-unfolding is at most exponential in the
size of G, the number of kernel approximations needed is at most doubly-exponential. The
rest of the algorithm consist in applying Theorem 7.1, outside of the kernels. To obtain the
overall complexity, we prove for kernel nodes an equivalent to Proposition 7.9, explaining
how one step of computation on the semi-unfolding increases the complexity of the encoding
of piecewise affine value functions.

Lemma 8.5. For a kernel WTG G̃′, if all piecewise affine value functions V ′s′ of target
children s′ of s in T have complexity at most 〈m,β〉, then V ′s , obtained by Lemma 8.3
with granularity N , has complexity at most 〈m′, β′〉 with m′ = n(n + 2)(MN + 1) and
β′ = (wmax + nβ)(n+ 1)!(MN)n+2, where n denotes the number of clocks.

Proof. The bound on m′ comes from the fact that value function V ′s is obtained by inter-
polating the value computed for all 1/N -corners. The partition thus needs to separate each
1/N -region from others (in the worst case). By the characterisation following Definition 2.1,
we thus need all (hyperplane) equations of the form Nxi = k with k ∈ {0, 1, . . . ,MN}
(there are n(MN + 1) such equations), and N(xi − xj) = k with 1 6 i < j 6 n and
k ∈ {−MN,−MN + 1, . . . ,MN} (there are n(n+ 1)/2× (2MN + 1) such equations). In
total, we thus need n(MN + 1) + n(n+ 1)(2MN + 1)/2 6 n(n+ 2)(MN + 1) equations in
the worst case.

Once multiplied by N , these equations use constants bounded by MN in absolute
value. To bound β′, we also need to bound the constants appearing in the partition function
F describing V ′s on each base cell (that is a 1/N -region). We deduce from [BGHM16,
Proposition 19] that the value of each of the corners in the 1/N -region game ΓN (G) is the
value of an acyclic path in the untimed game ΓN (G) (since Max always has a memoryless
optimal strategy), and is thus the sum of a final weight and of the weight of at most
(n+ 1)|L||RegN (X ,M)| transitions (this is the number of states of the untimed game).

• The final weight is obtained by taking the value of the partition function Fs′ of one of
the children of s in T at a corner of a 1/N -region. If Fs′ is described by the equation
ayy = a1x1 + · · · + anxn + b (with integers |ay|, |a1|, . . . , |an|, |b| 6 β) then the value at
corner (x1 7→ k1/N, . . . , xn 7→ kn/N), with natural numbers 0 6 k1, . . . , kn 6 NM , is of
the form (a1k1 + · · ·+ ankn)/(Nay) + b/ay. It can thus be written A/B with |A| and |B|
integers at most nMNβ.
• Each transition of ΓN (G) has a weight of the form dwt(`) + wt(e) with d a delay that
separates two corners: thus d ∈ {0, 1/N, 2/N, . . . ,MN/N}, and the weight can be written
as A/B with |A| and |B| integers at most MNwLmax +NwEmax.

In total, corners have values that can be written as A/B with |A| and |B| integers at most
MN(wmax + nβ).

The partition function F describing V ′s on a 1/N -region r is obtained by interpolating
the values of each of its corners. Fix ν ∈ r: it can be expressed as a (unique) convex
combination of the 1/N -corners v1, . . . , vn+1 of r, so that ν =

∑n+1
i=1 αivi with αi ∈ [0, 1].

Then, we let JF K(ν) =
∑n+1

i=1 αiValΓN (G)((s, r, v), v). To further bound β′, we need to express

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:59

the coefficients αi in terms of ν(x1), . . . , ν(xn). Indeed, we have the matricial relation
ν(x1)
...

ν(xn)
1

 =

v1(x1) v2(x1) · · · vn+1(x1)

...
...

...
v1(xn) v2(xn) · · · vn+1(xn)

1 1 · · · 1

×

α1
...
αn
αn+1

the last line coming from the fact that the sum of coefficients αi must be equal to 1. The
square matrixM of this equality can be shown invertible, since no three corners of a 1/N -
region are aligned. Therefore, each coefficient αi can be written as an affine expression
over ν(x1), . . . , ν(xn) whose coefficients are given by the inverse of matrixM. By Cramer’s
rule, this inverse can be written as the cofactor matrix C divided by the determinant of
M. Coefficients of C are determinants of n × n submatrices of M. Since coefficients of
M are of the form k/N with k ∈ {0, . . . ,MN}, coefficients of C are of the form k/Nn

with k ∈ {0, 1, . . . , n!(MN)n}. The determinant of M is similarly of the form k′/Nn+1

with k′ ∈ {1, . . . , (n+ 1)!(MN)n+1}. We can thus write each αi as an affine coefficient of
ν(x1), . . . , ν(xn) whose coefficients are of the form Nk/k′ with k ∈ {0, 1, . . . , n!(MN)n} and
k′ ∈ {1, . . . , (n+ 1)!(MN)n+1}. Multiplying these coefficients with the values of corners, we
obtain that each partial derivative and additive constant of the equalities defining F on each
1/N -region is bounded by MN(wmax + nβ)(n+ 1)!(MN)n+1.

Pairing this lemma with Proposition 7.9 that explains how the complexity grows along a
non-kernel node, we obtain (as in Corollary 7.10) the maximal complexity of the partition
functions obtained from the leaves of the semi-unfolding in i steps. Notice that the m-
complexity is reset each time we go through a kernel, while the β-complexity continues to
grow polynomially in β (but exponentially in n which does not change the final computations).
Thus, we conclude once again that the partition functions after i steps have a complexity
doubly-exponential in i, and thus (since the height h of the semi-unfolding is exponential in
the size of the game), we obtain a triply-exponential algorithm computing an ε-approximation
of the value of an almost-divergent WTG, which concludes the proof of Theorem 3.9. This
complexity is polynomial in 1/ε as N is linear in 1/ε. An example of execution of the
approximation schema can be found in Appendix B.

9. Symbolic algorithms

The previous approximation result suffers from several drawbacks. It relies on the SCC
decomposition of the region automaton. Each of these SCCs have to be analysed in a
sequential way, and their analysis requires an a priori refinement of the granularity of regions.
We show that this can be overcome, in case we suppose that no configuration has value −∞
(which could be guaranteed by the designer of the game for some particular reasons; this is
for instance always the case if only non-negative weights are used). We prove in this section
that the symbolic approach based on the value iteration paradigm, i.e. the computation of
iterates of the operator F , recalled in page 20, is an approximation schema, as stated in
Theorem 3.10.

20:60 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

9.1. Symbolic approximation algorithm. Notice that configurations with value +∞ are
stable through value iteration, and do not affect its other computations. Since Theorem 3.10
assumes the absence of configurations of value −∞, we will therefore consider in the following
that all configurations have finite value in G (we discuss further this hypothesis in Section 9.2).

Consider first a game G that is a kernel, with final weight functions that are Λ-Lipschitz-
continuous on regions. By Lemma 8.2, there exists an integer N such that solving the
untimed weighted game ΓN (G) computes an ε/2-approximation of the value of 1/N corners.
We denote N(ε,Λ) this granularity, and recall that

N(ε,Λ) =

⌈
2wLmax |R(G)|+ 2Λ

ε

⌉
.

Using the results of [BGHM16] for untimed weighted games, we know that those values
are obtained after a finite number of steps of (the untimed version of) the value iteration
operator, depending on the number |ΓN(ε,Λ)(G)| 6 |L||RegN(ε,Λ)(X ,M)|(n+ 1) of locations
of the corner-point abstraction. More precisely, if one considers a number of iterations

PK(ε,Λ) = |ΓN(ε,Λ)(G)|(2(|ΓN(ε,Λ)(G)| − 1)wmax + 1) ,

then Val
PK(ε,Λ)
ΓN(ε,Λ)(G)((`, r, v), v) = ValΓN(ε,Λ)(G)((`, r, v), v). From this observation, we deduce the

following property of PK(ε,Λ):

Lemma 9.1. If G is a kernel with no configurations of infinite value and with final weight
functions that are Λ-Lipschitz-continuous on regions, and ε > 0, then it holds for all
configurations (`, ν) of G that |ValG(`, ν)− Val

PK(ε,Λ)
G (`, ν)| 6 ε.

Proof. We already know that Val
PK(ε,Λ)
ΓN(ε,Λ)(G)((`, r, v), v) = ValΓN(ε,Λ)(G)((`, r, v), v) for all con-

figurations ((`, r, v), v) of ΓN(ε,Λ)(G). Moreover, Lemma 8.2 ensures that |ValG(`, ν) −
ValΓN(ε,Λ)(G)((`, r, v), v)| 6 ε/2 whenever ν is in the 1

N(ε,Λ) -region r. Therefore, we only

need to prove that |Val
PK(ε,Λ)
G (`, ν)−Val

PK(ε,Λ)
ΓN(ε,Λ)(G)((`, r, v), v)| 6 ε/2 to conclude. This is done

as for Lemma 8.2, since Lemma 8.1 (that we need to prove Lemma 8.2) does not depend
on the length of the plays ρ and ρ′, and both runs reach the target state in the same step,
i.e. both before or after the horizon of PK(ε,Λ) steps.

Once we know that value iteration converges on kernels, we can use the semi-unfolding
of Section 6 to prove that it also converges on non-negative SCCs when all values are finite.

We define the following notations:
• let h be the height of the semi-unfolding of G,
• let α be the maximum number of kernels in a branch of the semi-unfolding,
• let (Λi)i∈N be a sequence of Lipschitz constants, defined by Λ′0 = Λ and by

Λi+1 =
max(n− 1, 2)PK(ε

α
,Λi) − 1

max(n− 2, 1)
wLmax + (n− 1)PK(ε

α
,Λi)Λi ,

• a number of iterations P+(ε,Λ) = h+ α(PK(εα ,Λh)− 1).
In the worst case, P+(ε,Λ) can be non-elementary: PK(εα ,Λ) grows polynomially in Λ,

so that Λh is a tower of α exponentials.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:61

Lemma 9.2. If G is a non-negative SCC with no configurations of infinite value and
with final weight functions that are Λ-Lipschitz-continuous on regions, and ε > 0, then
|ValG(`, ν)− Val

P+(ε,Λ)
G (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. The idea is to unfold every kernel of the semi-unfolding game T (G) according to its
bound in Lemma 9.1. More precisely, consider a non-negative SCC G, a precision ε, and
an initial configuration (`0, ν0). Let T (G) be its finite semi-unfolding (obtained from the
labelled tree T , as in Section 6), such that ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0). Let α be the
maximum number of kernels along one of the branches of T .

We describe a bottom-up transformation of T into T ′, that keeps track of the Lipschitz
constants and the precision of the approximation, and define a new weighted timed game
T ′(G) from T ′ by applying the method used to create T (G) in Section 6.

Leaf nodes are left unchanged, with final weight functions that are Λ-Lipschitz-continuous
on regions. Note that the associated state in T (G) has the same value. For an internal node
s of T (that gives rise to a single state (`, r) of T (G), or a kernel K`,r), let us suppose that
the value of all children s′ of s in T ′ are Λi-Lipschitz-continuous on regions, for some Λi, and
that they are εi-close to their values in T (G).

If s is a node of the form (`, r) (that is not part of a kernel), we keep it unchanged in T ′,
and therefore by Lemma 8.4 the value of s in T ′(G) is εi-close to its value in T (G), and is
max(Λi, |wt(`)|+ (n− 1)Λi)-Lipschitz-continuous on regions by Lemma 7.13.

If s is a node of the form K`,r, we replace it by an unfolding of K`,r of depth PK(εα ,Λi),
where P is the bound of Lemma 9.1 for the kernel K`,r. Then, by Lemmas 9.1 and 8.4, the
value of s in T ′(G) is εi + ε

α -close to its value in T (G), and is Λi+1-Lipschitz-continuous on
regions by Proposition 7.12, with

Λi+1 =
max(n− 1, 2)PK(ε

α
,Λi) − 1

max(n− 2, 1)
wLmax + (n− 1)PK(ε

α
,Λi)Λi .

In particular, note that PK(εα ,Λi) is polynomial in Λi, therefore Λi+1 is exponential in Λi.
Since PK(εα ,Λi) > 1, Λi+1 is greater than the max(Λi, |wt(`)|+(n−1)Λi) expression obtained
for non-kernel nodes. Thus, we can bound the Lipschitz constants globally by Λh, so that
each kernel is unfolded for at most PK(εα ,Λh) steps.

At the root of T ′, we recover a node whose value function in T ′(G) is ε-close to its value
in T (G), and that is Λh-Lipschitz-continuous on regions.

Observe that T ′(G) is not a semi-unfolding, it is instead a (complete) unfolding of R(G),
of a certain bounded depth P+(ε,Λ) (at most (h− α) plus α times PK(εα ,Λh)).

Finally, let us show that the value computed by Val
P+(ε,Λ)
G on the root state (˜̀

0, r0)
is bounded between ValG and ValT ′(G), which allows us to conclude. Consider T ′′(G), the
(complete) unfolding of R(G) with unfolding depth P+(ε,Λ), where kernels are also unfolded.
By construction, ValT ′′(G)((˜̀

0, r0), ν0) = Val
P+(ε,Λ)
T ′′(G) ((˜̀

0, r0), ν0). Then, we can prove that

Val
P+(ε,Λ)
T ′′(G) ((˜̀

0, r0), ν0) = Val
P+(ε,Λ)
G (`0, ν0) (same strategies at bounded horizon P+(ε,Λ)),

which implies ValG(`0, ν0) = ValR(G)((`0, r0), ν0) 6 ValT ′′(G)((˜̀
0, r0), ν0) (the function Valk

decreases monotonously as k increases). By another monotonicity argument, we can also
prove ValT ′′(G)((˜̀

0, r0), ν0) 6 ValT ′(G)((˜̀
0, r0), ν0): the tree T ′′(G) contains T ′(G) as a prefix,

and therefore one can construct T ′(G) from T ′′(G) by replacing sub-trees of T ′′(G) by
stopped leaves of final weight +∞ (remember that we are in a non-negative SCCs). Bringing
everything together we obtain |Val

P+(ε,Λ)
G (`0, ν0)− ValG(`0, ν0)| 6 ε.

20:62 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Proving the same property on non-positive SCCs requires more work, because the semi-
unfolding gives final weight −∞ to stop leaves, which does not integrate well with value
iteration (initialisation at +∞ on non-target states). However, by unfolding those SCCs
slightly more (at most |R(G)| more steps), we can obtain the desired property with a similar
bound P−(ε,Λ) = h+ |R(G)|+ α(PK(εα ,Λh+|R(G)|)− 1).

Lemma 9.3. If G is a non-positive SCC with no configurations of infinite value and with final
weight functions that are Λ-Lipschitz-continuous on regions, and ε > 0, then |ValG(`, ν)−
Val

P−(ε,Λ)
G (`, ν)| 6 ε for all configurations (`, ν) of G.

Proof. Consider a non-positive SCC G, a precision ε, and an initial configuration (`0, ν0).
Let T (G) be its finite semi-unfolding (obtained from the labelled tree T , as in Section 6),
such that ValG(`0, ν0) = ValT (G)((˜̀

0, r0), ν0).
We now change T , by adding a subtree under each stopped leaf: the complete unfolding

of R(G), starting from the stopped leaf, of depth |R(G)|. Let us name T+ this unfolding
tree. We then construct T +(G) as before, based on T+. Since we are in a non-positive
SCC, T +(G) must have final weight −∞ on its stopped leaves. It is easy to see that
ValG(`0, ν0) = ValT +(G)((˜̀

0, r0), ν0) still holds (the proof of Lemma 9.2 was based on branches
being long enough, and we increased the lengths). We now perform a small but crucial
change: the final weight of stopped leaves in T +(G) is set to +∞ instead of −∞. Trivially
ValT (G)((˜̀

0, r0), ν0) 6 ValT +(G)((˜̀
0, r0), ν0) (we increased the final weight function). Let us

prove that
ValT +(G)((˜̀

0, r0), ν0) 6 ValT (G)((˜̀
0, r0), ν0) .

For a fixed η > 0, consider σMin an η-optimal strategy for player Min in T (G). Let
us define σ+

Min, a strategy for Min in T +(G), by making the same choice as σMin on the
common prefix tree, and once a node that is a stopped leaf in T (G) is reached, we switch to
a positional attractor strategy of Min towards target states. Consider any strategy σ+

Max of
Max in T +(G), and let σMax be its projection in T (G). Let ρ+ denote the (maximal) play

playT +(G)(((`0, r0), ν0), σ+
Min, σ

+
Max)) ,

and ρ be playT (G)(((`0, r0), ν0), σMin, σMax)). By construction, ρ+ does not reach a stopped
leaf in T +(G). If the play ρ+ stays in the common prefix tree of T and T+, then ρ = ρ+, and

wtT +(G)(ρ
+) 6 ValT (G)((˜̀

0, r0), ν0) + η .

If it does not, then ρ+ has a prefix that reaches a stopped leaf in T (G): this must be ρ. This
implies (see Lemma 6.4) that

wtT +(G)(ρ
+) < −|R(G)|wmax − wt

max 6 ValT (G)((˜̀
0, r0), ν0) .

Since this holds for all η > 0, we proved ValT +(G)((˜̀
0, r0), ν0) 6 ValT (G)((˜̀

0, r0), ν0), which
finally implies that the two values are equal.

Then, we can follow the proof of Lemma 9.2 (with T+ and T +(G) instead of T and
T (G)) in order to conclude.

Now, if we are given an almost-divergent WTG G and a precision ε, we can add the
bounds for value iteration obtained from each SCC by Lemmas 9.2 and 9.3, and obtain a
final bound P such that for all k > P , ValkG is an ε-approximation of ValG . This concludes
the proof of Theorem 3.10.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:63

Remark 9.4. We note that one can get a (non-elementary) upper bound for P without
constructing the semi-unfolding nor the region game, by using the inequalities |R(G)| 6
|L|n!(2M)n, |ΓN(ε,Λ)(G)| 6 |L|n!(2N(ε,Λ)M)n(n+ 1) and α 6 h 6 |R(G)|(3|R(G)|wmax +

2wt
max + 2) + 1 to fix global values for α = h, followed by observing P+(ε,Λ) 6 P−(ε,Λ) so

that P 6 |R(G)|P−(ε,Λ).

9.2. Discussion. This symbolic procedure avoids the three drawbacks (SCC decomposition,
sequential analysis of the SCCs, and refinement of the granularity of regions) of the previous
approximation schema if we assume that no configuration has value −∞. However, computing
the number of steps P of Theorem 3.10 is non-elementary, with an upper bound complexity
that is of the order of a tower of α exponentials, with α exponential in the size of the input
WTG. Instead, we could directly launch the value iteration algorithm on the game G, and
stop the computation whenever we are satisfied enough by the approximation computed:
however, there are no formal guarantees whatsoever on the quality of the approximation
before the number of steps P given above.

If G is not guaranteed to be free of configurations of value −∞, then we must first
perform the SCC decomposition of R(G), and, as G is almost-divergent, identify and remove
regions whose value is −∞, by Proposition 5.5. Then, we can apply the value iteration
algorithm.

We also note that if G is a divergent WTG, the unfolding of kernels is not needed, so
that Lemmas 9.2 and 9.3 construct bounds P+(ε,Λ) and P−(ε,Λ) allowing one to compute
the exact values of G. Moreover, these bounds become exponential in the size of G instead of
being non-elementary, so that the overall complexity of the symbolic algorithm is 3-EXPTIME,
matching the result of Section 8.

As a final remark, notice that our correctness proof strongly relies on Section 8.2, and
thus would not hold with the approximation schema of [BJM15] (which does not preserve
the continuity on regions of the computed value functions, in turn needed to define final
weights on 1

N(ε,Λ) -corners).

10. Strategy synthesis

We are also interested in the synthesis problem, that asks for an ε-optimal strategy of Min.
In this section, we will prove the following result:

Theorem 10.1. Let ε > 0 and let G be a divergent WTG. We can compute in triple
exponential time an ε-optimal strategy for Min.

Recall that in the value iteration algorithm of Section 2.8, one step of the game is
summarised by the operator F mapping each value function V to a value function V ′ = F(V)
defined by

V ′` (ν) =

fwt(`, ν) if ` ∈ Lt ,

sup
(`,ν)

d,e−−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMax ,

inf
(`,ν)

d,e−−→(`′,ν′)

[
d · wt(`) + wt(e) + V`′(ν

′)
]

if ` ∈ LMin .

(10.1)

Intuitively, ε-optimal strategies can be extracted from the value iteration operator, by
mapping each play that ends in (`, ν) with ` ∈ LMin to a choice (d, e) such that the transition

20:64 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

(`, ν)
d,e−−→ (`′, ν ′) is ε-optimal. However, the choice depends on the step i in the value

iteration computation. Formally, if A is a set, f is a mapping from A to R∞ and ε > 0, let
arginf εa∈Af(a) denote the set of elements a∗ ∈ A such that f(a∗) 6 infa∈A f(a) + ε. Then,
let us name σi,εMin a strategy defined from the application of (10.1) in V i = F(V i−1), so that
for all finite plays ρ ending in (`, ν) and ` ∈ LMin,

σi,εMin(ρ) ∈ arginf ε
(`,ν)

d,e−−→(`′,ν′)

(
d · wt(`) + wt(e) + V i−1

`′ (ν ′)
)

(10.2)

Now, let σ?,i,εMin denote a strategy that maps every finite play ρ ending in LMin \ Lt to
(d, e) = σj,εMin(ρ), with j = max(0, i− |ρ|).

Proposition 10.2. The strategy σ?,i,εMin is εi-optimal for Min during the first i steps:

|Vali((`, ν), σ
?,i,ε/i
Min)− Vali(`, ν)| 6 ε

Proof. Let us show by induction on i that for all configurations (`, ν) in G, ValiG((`, ν), σ?,i,εMin) 6
V i
` (ν) + εi. If i = 0, both sides are equal to either +∞ or to fwt(`, ν) if ` ∈ Lt. Let us

assume that Vali−1
G ((`, ν), σ?,i−1,ε

Min) 6 V i−1
` (ν) + ε(i− 1).

We note that for all strategies σMin, if ` ∈ LMax then

ValiG((`, ν), σMin) = sup

(`,ν)
d,e−−→(`′,ν′)

[
d · wt(`) + wt(e) + Vali−1

G ((`′, ν ′), σ′Min)
]
,

where σ′Min appends (`, ν)
d,e−−→ (`′, ν ′) in front of paths and then calls σMin. In particular,

if σMin = σ?,i,εMin then σ′Min matches the definition of σ?,i−1,ε
Min . Then, ValiG((`, ν), σ?,i,εMin) 6

V i
` (ν) + ε(i− 1).

Similarly, if ` ∈ LMin\Lt then

ValiG((`, ν), σMin) = d · wt(`) + wt(e) + Vali−1
G ((`′, ν ′), σ′Min)

where (`, ν)
d,e−−→ (`′, ν ′) is the decision made by σMin on (`, ν) and σ′Min appends (`, ν)

d,e−−→
(`′, ν ′) in front of paths and then calls σMin. Then,

ValiG((`, ν), σ?,i,εMin)− ε 6 d · wt(`) + wt(e) + Vali−1
G ((`′, ν ′), σ?,i−1,ε

Min) 6 V i
` (ν) + ε(i− 1)

Finally, if ` ∈ Lt then ValiG((`, ν), σ?,i,εMin) = V i
` (ν) = fwt(`, ν).

We now explain how to extract some strategies σi,εMin from the partition functions, in
order to solve the synthesis problems on acyclic and divergent games (games where a known
i ∈ N implies Val = Vali).

We will use affine inequalities over n+ 1 variables to encode constraints on the choice of
delays. Formally, an affine delay inequality is an equation I of the form add ≺ a1x1 + · · ·+
anxn + b, with all ai, b and ad integers of Z, ad 6= 0 and ≺ ∈ {<,6}. We say that I is a
lower bound if ad < 0, and that it is an upper bound if ad > 0.

Definition 10.3. A partition strategy function S defined over a partition P is a mapping
from the base cells of P to a tuple (e, Il, Iu, p), where e is an edge of G, Il and Iu are two
affine delay inequalities that are respectively lower and upper bounds, and finally p ∈ {l,u}
selects one of the two.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:65

Given a precision ε > 0, a partition strategy function encodes a mapping from cP
to pairs (e, dε) denoted JSKε, with e ∈ E and dε ∈ R>0. Let ν ∈ cP and S([ν]P) be
equal to (e, Il, Iu, p), with Il defined by add ≺ a1x1 + · · · + anxn + b and Iu defined by
a′dd ≺′ a′1x1 + · · ·+ a′nxn + b′. Let D ⊆ R>0 denote the interval of delays d that satisfy both
add ≺ a1ν(x1) + · · ·+ anν(xn) + b and a′dd ≺′ a′1ν(x1) + · · ·+ a′nν(xn) + b′. We denote by dl
and du the lower and upper bounds of D. Let Dε denote D ∩ (dl − ε, dl + ε) if p = l, and
D ∩ (du − ε, du + ε) if p = u. We denote by dεl and dεu the lower and upper bounds of Dε.
Then, JSKε(ν) = (e, dε) with dε =

dεl +dεu
2 ∈ Dε.

We argue that partition strategy functions can be used to compute a positional strategy
σi,εMin given an encoding of Vali−1

G as partition functions, so that (10.2) holds.
We assume that for all ` ∈ L, V i

` is piecewise affine with finitely many pieces and
is Λ-Lipschitz-continuous over regions. By Proposition 7.12, we know that Λ is at most
exponential in the size of G and i.

Proposition 10.4. For all ε > 0 and i ∈ N>0, we can compute in time doubly-exponential
in i and exponential in the size of G a partition P i` and a partition strategy function Si` for
each location ` ∈ LMin\Lt, so that JSi`K

ε
Λ (ν) = σi,εMin(`, ν).

Proof. In Section 7, we detailed how to compute piecewise affine value functions (P i` , F
i
`)

encoding V i
` for all locations ` and a fixed horizon i. We will now explain how Si` can be

obtained as a side-product of the step V i = F(V i−1).
Recall that if ` ∈ LMin\Lt, it holds that

V i
` = min

e=(`,g,Y,`′)
Pree(Guardg(UnresetY(V i−1

`′)))

where e ranges over the edges in G that starts from `. We can identify, for every base cell
c of the resulting partition P i` , an edge e so that V i

` restricted to domain c is equal to
Pree(Guardg(UnresetY(V i−1

`′))). This is the edge that Si` will play on c. For the choice of
delay, let us explain how to obtain the delay inequalities Il and Iu, and the selection choice
p, from the computation of Pree.

Let (P, F) be an atomic tube partition encoding Guardg(UnresetY(V i−1
`′)). If cb is a base

cell of P , recall that Ccb is the set of cells reachable from cb by time elapse, and that if
c ∈ Ccb , Bcb(c) is the set of borders of c reachable from cb by time-elapse. In particular, Bcb(c)
contains either one non-diagonal border (a single choice of delay reaches c from any ν ∈ cb)
or two non-diagonal borders (in which case there is a range of delays reaching c). Then,
Pree(JF K) restricted to domain cb equals min(JF K,minc∈Ccb minB∈Bcb (c)[Pree,c,B(F)]). These
minimum operators are applied over piecewise affine value functions, and we can identify,
for every base cell c′ of the output, the arguments that optimise them. In particular, the
base cells c′ where Pree(JF K) = JF K correspond to a choice of delay zero, so that Si` maps
c′ to (e,−d 6 0, d 6 0, l). Alternatively, the base cells c′ where Pree(JF K) = Pree,c,B(F) for
some c ∈ Ccb and some B ∈ Bcb(c) correspond, for all ν ∈ c′, to a choice of delay arbitrarily
close to dν,B, the delay that lets valuation ν reach JBK by time-elapse. Recall that if B is
described by a1x1 + · · ·+ anxn + b = 0 and A = a1 + · · ·+ an, then

−Adν,B = a1 · ν(x1) + · · ·+ an · ν(xn) + b

There are now two cases. If Bcb(c) = {B}, then Si` maps c′ to (e, Il, Iu, l), with Il defined by
−Ad 6 a1x1+· · ·+anxn+b and Iu defined by Ad 6 −a1x1−· · ·−anxn−b. Otherwise Bcb(c) =

20:66 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

{Bl, Bu}, with Bl the lower border and Bu the upper one.19 As Bl and Bu are borders of c,
they correspond to affine inequalities a1x1 + · · ·+ anxn + b≺0 and a′1x1 + · · ·+ a′nxn + b′≺′0,
respectively. Let A = a1 + · · · + an and A′ = a′1 + · · · + a′n. We let Il be defined by
−Ad ≺ a1x1 + · · ·+ anxn + b and Iu be defined by A′d ≺′ −a′1x1 − · · · − a′nxn − b′. Then we
let Si` map c′ to (e, Il, Iu, p), where p = l if B = Bl and p = u if B = Bu.

It follows that JSi`K
ε(ν) corresponds to a choice of edge e and delay d from (`, ν) leading

to a valuation (`′, ν ′), so that ‖(ν + d)− (ν + dν,B)‖∞ < ε, with dν,B the optimal delay for
minimizing the Pree step. As the output piecewise affine functions are Λ-Lipschitz-continuous
over regions, |V i

` (ν + d)− V i
` (ν + dν,B)| < Λε. Then by definition of Pree we obtain

JSi`K
ε(ν) ∈ arginf Λε

(`,ν)
d,e−−→(`′,ν′)

(
d · wt(`) + wt(e) + V i−1

`′ (ν ′)
)

By Proposition 10.2, we can therefore solve the synthesis problem in triple exponential
time for all weighted time games G so that ValG = ValiG with i at most exponential in the
size of G. This holds for acyclic games, where i is bounded by |R(G)|, and also for divergent
games, where i can be bounded by the results of Section 9.1 (Lemmas 9.2 and 9.3 in the
special case with no kernel), assuming that an exponential time pre-computation using
Proposition 5.5 is used to remove the valuations of value −∞. This concludes the proof of
Theorem 10.1.

11. Weighted timed games with no clocks

In this section, we study weighted timed games where the set of clocks is empty. Their
semantics is a finite transition system, so we will simply call them (finite) weighted games.
For notational convenience, we omit guards, resets, valuations and delays from all notations,
and merge the notions of locations and configurations into the notion of states. We also
assume that all delays are null and that weights are integers.

Definition 11.1. A weighted game20 is a tuple G = 〈SMin, SMax, St, T,wt, fwt〉 with S =
SMin]SMax a finite set of states split between players Min and Max, T ⊆ S×S a finite set of
transitions s→ s′ from state s to state s′, wt : T → Z a weight function associating an integer
weight with each transition21, St ⊆ SMin a set of target states for player Min, and fwt : St →
Z∞ is a function mapping each target state to a final weight of Z∞ = Z ∪ {−∞,+∞}.

A cycle is a finite play ρ, of length at least 1, such that first(ρ) = last(ρ).

11.1. Solving weighted games. Let G be a finite weighted game. The value iteration
algorithm described in Section 2.8 can be applied on G as a greatest fixpoint computation
over a vector of |S| numbers, as detailed in [BGHM16]. This algorithm computes the value
of any finite weighted game in pseudo-polynomial time. In particular, along the fixpoint
computation states with a value of −∞ will be associated with a sequence of values that
converges towards −∞. When the value of such a state gets low enough, it is recognised as a
−∞ state and is set to its fixpoint value directly.

19We can assume without loss of generality that dν,Bl 6 dν,Bu for all ν ∈ cb as the tube partition (P, F)
is atomic.

20Weighted games are called min-cost reachability games in [BGHM16].
21If t = s→ s′ is a transition in G, we denote wt(s, s′) the weight wt(t).

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:67

11.1.1. Optimal strategies. Let us fix an initial state s. By definition of lower and upper
values, there exists for each player P ∈ {Min,Max} a sequence of strategies (σiP)i∈N such that
limi→∞ ValG(s, σiP) = ValG(s) and such that the sequence (ValG(s, σiMin))i∈N is non-increasing
over Z∞, while (ValG(s, σiMax))i∈N is non-decreasing. If the sequence (ValG(s, σiP))i∈N stabilizes
for all i > k, then σkP is an optimal strategy of player P for s, i.e. ValG(s, σkP) = ValG(s).
Therefore, if ValG(s) > −∞ then Min must have an optimal strategy for s (an infinite
decreasing sequence over Z stabilizes), and if ValG(s) < +∞ then Max has an optimal
strategy for s. Moreover, if an optimal strategy for P exists for all states s, then they can be
combined into an (overall) optimal strategy for P.

In fact, there always exists a positional strategy σ?Max for Max that is optimal, even if some
states have value +∞. The strategy σ?Max can be obtained in the value iteration algorithm, by
memorizing for every state s ∈ SMax the transition that maximizes maxs→s′

[
wt(s, s′) + Vs′

]
in the last application of F . However, this does not hold for Min, as there might be no
sequence of positional strategies for player Min whose value at s converges towards ValG(s).
In [BGHM16], it is shown that value iteration can also compute an optimal strategy for Min
(or a sequence of strategies in the −∞ case), by switching between two positional strategies
σ?Min and σ†Min: σ

?
Min accumulates negative weight by following negative cycles, and σ†Min

ensures reaching a target. The optimal strategy of Min follows the decisions of σ?Min, until
switching to the decisions of σ†Min when the length of the play is greater than a finite bound
k. These strategies thus require finite memory in the form of a counter.

An interesting case happens if G has no cycles of negative cumulative weight, e.g. if
weights are non-negative.

Lemma 11.2. If G has no cycles of negative cumulative weight, then both players have
optimal strategies that are positional. Moreover, ValG = Val

|S|
G and the optimal strategies can

be computed in polynomial time.

Proof. Any strategy of Min is optimal on states of value +∞, so we will ignore those. As
there are no negative cycles, value −∞ can only be obtained through reaching a target
with final weight −∞. As a consequence, Min has an optimal strategy σMin that switches
between σ?Min and σ†Min when the length of the play is greater than some k, as detailed
in [BGHM16]. The strategy σ?Min is only compatible with cycles of negative cumulative
weight, and k > |S|+ 1, therefore σ†Min is never used. Thus, Min has an optimal strategy σ?Min

that is positional. Then, consider Val
|S|
G , the value with bounded horizon |S|. For every state

s, we have Val
|S|
G (s, σ?Min) = ValG(s), so that Val

|S|
G 6 ValG . As ValG 6 ValkG holds for any

k ≥ 0, ValG = Val
|S|
G . Finally, since value iteration converges in |S| steps, the computation of

optimal strategies described in [BGHM16] runs in polynomial time.

11.2. Divergent and almost-divergent weighted games. Our contribution on finite
weighted games is to solve in polynomial time the value problem, for a subclass of finite
weighted games. This class corresponds to the games that are almost-divergent when seen as
timed games with zero clocks. To the best of our knowledge, this is the first attempt to solve
a non-trivial class of weighted games with arbitrary weights in polynomial time.

Let us first define the class of divergent weighted games in the untimed setting:

Definition 11.3. A weighted game G is divergent if every cycle ρ of G satisfies wtΣ(ρ) 6= 0.

20:68 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

In particular, if G is seen as a weighted timed game with no clocks, then R(G) is
isomorphic to G, so that divergent weighted games are divergent weighted timed games. We
will obtain the following results:

Theorem 11.4. The value problem over finite divergent weighted games is PTIME-complete.
Moreover, deciding if a given finite weighted game is divergent is an NL-complete problem
when weights are encoded in unary, and is in PTIME when they are encoded in binary.

With divergent weighted games, we described a class where the value problem is poly-
nomial instead of pseudo-polynomial. This gain in complexity came at a cost, the absence
of cycles of weight 0. We argue that some of those cycles can be allowed, and apply the
almost-divergent notion to the untimed setting.

Definition 11.5. A weighted game G is almost-divergent if every 0-cycle ρ of G satisfies the
following property: for every decomposition of ρ into smaller cycles ρ′ and ρ′′, ρ′ and ρ′′ are
0-cycles.

We will obtain the following results, extending Theorem 11.4:

Theorem 11.6. The value problem over finite almost-divergent weighted games is PTIME-
complete. Moreover, deciding if a given finite weighted game is almost-divergent is an
NL-complete problem when weights are encoded in unary, and is in PTIME when they are
encoded in binary.

We prove Theorems 11.4 and 11.6 at the same time, by proving a PTIME upper bound
for the value problem on almost-divergent game, a PTIME lower bound on divergent games,
and finally by studying the decision problems associated with membership to the divergent
and almost-divergent classes.

11.2.1. Polynomial upper bound. Our algorithm solving almost-divergent games in polynomial
time follows the semi-unfolding scheme, that we detailed in the timed setting as a proof of
Theorem 3.9. The SCC characterisation of almost-divergence and the notion of kernel apply,
and the only changes concern the complexity analysis. In particular, with 0 clocks, we have
|R(G)| = |G|, therefore computing the kernel and the states of value +∞ or −∞ can be done
in polynomial time. Moreover, the semi-unfolding of Section 6 has polynomial depth.

In order to compute the value of a state s0 of G, one could construct the semi-unfolding
of root s0, and compute its value. Indeed, every cycle in T (G) belongs to K, so they must
all be 0-cycles, therefore by Lemma 11.2 we can compute ValT (G)(s̃0) in time polynomial in
the size of T (G). However, this would be an exponential time algorithm, since the number
of nodes in T can be exponential in |S|. We argue that this exponential blow-up can be
avoided: when two nodes of T are at the same depth and are labelled by the same state
they can be merged, producing a graph T that is acyclic instead of tree-shaped, with at
most quadratically many states. This does not change the value of the resulting weighted
game T (G) at its root, because the two merged nodes had the same sub-tree, and therefore
were states with the same value in T (G). This optimization on the construction of T (G) is
performed on-the-fly, while the semi-unfolding is constructed, such that constructing T (G)
(and solving it by Lemma 11.2) can be done in time polynomial in the size of G.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:69

11.2.2. Polynomial lower bound. Let us show that the value problem is PTIME-hard on
divergent weighted games. This comes from a reduction (in logarithmic space) of the problem
of solving finite games with reachability objectives [Imm81]. To a reachability game, we
simply set the weight of every transition to 1 and the final weight of every target to 0,
making it a divergent weighted game. Then, Min wins the reachability game if and only if
the value in the weighted game is lower than |S|. The same reduction can be used to show
the PTIME-hardness of the +∞ and −∞-value problems on divergent weighted games.

11.2.3. Deciding divergence and almost-divergence. Let us study the membership problem
for divergent and almost-divergent weighted games, i.e. the decision problem that asks if a
given weighted game is divergent or almost-divergent, and prove the results of Theorems 11.4
and 11.6.

We start with almost-divergent games, and will rely on the characterization of almost-
divergent games in term of SCCs given in Proposition 4.4. First, we note that simple cycles
are enough to ensure that an SCC is non-negative (respectively non-positive), providing us
with an efficient way to check this property:

Lemma 11.7. An SCC S is non-negative (respectively non-positive) if and only if every
simple cycle in S is non-negative (respectively non-positive). Moreover, deciding if an SCC
is non-negative (respectively non-positive) is in NL when weights are encoded in unary, and
is in PTIME when they are encoded in binary.

Proof. The direct implication holds by definition. Reciprocally, let us assume that every
simple cycle in S is non-negative (respectively non-positive), and prove that every cycle ρ in
S is non-negative (respectively non-positive). The cycle ρ can be decomposed into simple
cycles, all belonging to S. Therefore they are all non-negative (respectively non-positive).
As the cumulative weight of ρ is the sum of the cumulative weights of these simple cycles, ρ
must be non-negative (respectively non-positive).

As a corollary, an SCC S is non-negative (respectively non-positive) if and only if every
cycle in S, of length at most |S|, is non-negative (respectively non-positive).

To decide if a strongly connected G is non-negative (respectively non-positive), we
outline two procedures: one is deterministic and will provide the polynomial upper bound
on time-complexity, the other will guess a logarithmic number of bits and provide NL
membership.

The deterministic algorithm proceeds as follows: with Floyd-Warshall’s algorithm, one
can compute the shortest paths (respectively greatest paths) adjacency matrix M in cubic
time, such that M(s, s′) contains the minimal (respectively maximal) value in the finite set
{wt(ρ) | ρ simple path from s to s′}. Then, S is non-negative (respectively non-positive) if
and only if for every state s it holds that M(s, s) > 0 (respectively M(s, s) 6 0). If there
exists a state s such that M(s, s) < 0 (respectively M(s, s) > 0), then S is not non-negative
(respectively non-positive) as there is a negative (respectively positive) cycle. Conversely,
if M(s, s) > 0 (respectively M(s, s) 6 0), we know that all simple paths from s to s have
non-negative (respectively non-positive) weight.

Let us now assume that weights are encoded in unary, and present a non-deterministic
procedure. Then, note that a (binary) register containing integer values in [−B,B], with
B polynomial in wmax and |S|, requires a number of bits at most logarithmic in the size of
G. An SCC is not non-negative (respectively not non-positive), if and only if it contains a
cycle of positive (respectively negative) cumulative weight, of length bounded by |S|. We

20:70 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

can guess such a cycle ρ on-the-fly, keeping in memory its cumulative weight (smaller than
B = wmax × |S| in absolute value), its initial state, and its current length, all in logarithmic
space. If the length of the cycle exceeds |S|, the guess is invalid. Similarly, we can verify
that the last state equals the first, and that the computed cumulative weight is indeed
positive (respectively negative). Therefore, deciding if S is non-negative (respectively not
non-positive) is in coNL = NL [Imm88, Sze88]. Note that when weights are encoded in binary
this procedure only gives coNP membership.

Let us now explain why the membership problem is an NL-complete problem when
weights are encoded in unary. First, to prove the membership in NL, notice that a weighted
game is not almost-divergent if and only if there is a positive cycle and a negative cycle, both
of length at most |S|, and belonging to the same SCC. This can be tested in NL, using a
non-deterministic procedure similar to the one from Lemma 11.7. We first guess a starting
state for both cycles. Verifying that those are in the same SCC can be done in NL by using
standard reachability analysis. Then, we once again guess the two cycles on-the-fly, keeping
in memory their cumulative weights in logarithmic space. Therefore, testing divergence is in
coNL = NL [Imm88, Sze88].

The NL-hardness (indeed coNL-hardness, which is equivalent [Imm88, Sze88]) is shown
by a reduction from the reachability problem in a finite graph. More precisely, we consider a
finite automaton with a starting state and a different target state without outgoing transitions.
We construct from it a weighted game by distributing all states to Min, and equipping all
transitions with weight 0. We also add a loop with weight 1 on the initial state, one with
weight −1 on the target state, and a transition from the target state to the initial state with
weight 0. Then, the game is not almost-divergent if and only if the target can be reached
from the initial state in the automaton.

When weights are encoded in binary, the previous decision procedure gives NP member-
ship. However, we can achieve a PTIME upperbound by computing the strongly connected
components and then using Lemma 11.7 to check that each SCC is either non-negative or
non-positive.

This concludes the proofs of Theorem 11.6. For the membership results in Theorem 11.4,
we note that a weighted game G is divergent if and only if it is almost-divergent and its kernel
is empty, i.e. G does not contain any simple cycle of weight zero. Variants of the previous
techniques can be used to either compute the kernel in polynomial time, guess a 0-cycle of
length at most |S| in NL when weights are encoded in unary, or prove NL-hardness.

12. Conclusion

We have obtained new results for several controller synthesis problems on timed automata,
that we now summarise. Our study of weighted timed games belongs to a series of works that
explore the frontier of decidability. We introduced the first decidable class of weighted timed
games with arbitrary weights and no restrictions on the number of clocks. We have given
an approximation procedure for a larger class of weighted timed games, where the exact
problem becomes undecidable. In addition, we have proved the correctness of a symbolic
approximation schema, that does not start by splitting exponentially every region, but only
does so when necessary. We argue that this paves the way towards an implementation of
value approximation for weighted timed games. Such tool would likely struggle with instances

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:71

of moderate size, but could help with the design and testing of alternative approaches that
trade theoretical guarantees with performance.

Another perspective is to extend this work to the concurrent setting, where both players
play simultaneously and the shortest delay is selected. It should be noted that several known
results on weighted timed games with non-negative weights [BCFL04, ABM04, BJM15] are
stated in such a concurrent setting. We did not consider this setting in this work because
concurrent WTGs are not determined, and several of our proofs rely on this property for
symmetrical arguments (mainly to lift results of non-negative strongly connected components
to non-positive ones).

A long-standing open problem is the approximation of weighted timed games, i.e. whether
one can compute an arbitrarily close approximation of the value of a given game. We
successfully solved this problem on the class of almost-divergent games, but we were not
able to extend further our techniques to more general games. As a first step, we could
try to consider the slightly larger class of 0-isolated games, where we ask for every cycle
of the region game to have a weight either > 1, or 6 −1, or exactly 0. We do not have
approximation results on this 0-isolated class, and as such it forms a natural intermediate
step between the best known decidable class and the general case. However we must prepare
ourselves to possibly negative answers: the value of a weighted timed game could be non
approximable, though we are not aware of any such game; especially we do not even know
what kind of real numbers (irrational, or even transcendental) could be obtained as the value
in the null valuation. Therefore, pursuing better lower bounds in various settings could help
in the future, in order to close the remaining complexity gaps.

The divergence and almost-divergence classes that we have studied in this article are
independent of the partition of locations into players. It would be interesting, as future work,
to investigate restrictions taking into account the interaction of the two players.

References

[ABM04] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability for weighted timed
games. In Proceedings of the 31st International Colloquium on Automata, Languages and
Programming (ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages 122–133.
Springer, 2004.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[ALTP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted timed
automata. Theoretical Computer Science, 318(3):297–322, 2004.

[AM99] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed automata.
In Hybrid Systems: Computation and Control, volume 1569 of Lecture Notes in Computer
Science, pages 19–30. Springer, 1999.

[AMPS98] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for timed
automata. IFAC Proceedings Volumes, 31(18):447–452, 1998.

[BBBR07] Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On the
optimal reachability problem of weighted timed automata. Formal Methods in System Design,
31(2):135–175, 2007.

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design, 32(1):3–23, 2008.

[BBM06] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results on
weighted timed automata. Information Processing Letters, 98(5):188–194, 2006.

20:72 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

[BBR05] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strategies.
In Proceedings of the Third international conference on Formal Modeling and Analysis of Timed
Systems (FORMATS’05), volume 3829 of LNCS, pages 49–64. Springer, 2005.

[BCFL04] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strategies in
priced timed game automata. In Proceedings of the 24th Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of LNCS, pages
148–160. Springer, 2004.

[BCR14] Romain Brenguier, Franck Cassez, and Jean-François Raskin. Energy and mean-payoff timed
games. In Proceedings of the 17th International Conference on Hybrid Systems: Computation
and Control (HSCC’14), pages 283–292. ACM, 2014.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine.
Kronos: A model-checking tool for real-time systems. In Alan J. Hu and Moshe Y. Vardi, editors,
Computer Aided Verification (CAV 1998), Proceedings, pages 546–550, Berlin, Heidelberg, 1998.
Springer Berlin Heidelberg.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Judi Romijn, and Frits W.
Vaandrager. Minimum-cost reachability for priced timed automata. In Proceedings of the 4th
International Workshop on Hybrid Systems: Computation and Control (HSCC’01), volume 2034
of Lecture Notes in Computer Science, pages 147–161. Springer, 2001.

[BG19] Damien Busatto-Gaston. Symbolic controller synthesis for timed systems: robustness and optim-
ality. Theses, Aix Marseille Université, December 2019. URL: https://hal.archives-ouvertes.
fr/tel-02436831.

[BGH+15] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, Engel Lefaucheux, and Benjamin Monmege.
Simple priced timed games are not that simple. In Proceedings of the 35th IARCS Annual Con-
ference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS’15),
volume 45 of LIPIcs, pages 278–292. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2015.

[BGHM16] Thomas Brihaye, Gilles Geeraerts, Axel Haddad, and Benjamin Monmege. Pseudopolynomial
iterative algorithm to solve total-payoff games and min-cost reachability games. Acta Informatica,
2016. doi:10.1007/s00236-016-0276-z.

[BGMR17] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Optimal reachability in
divergent weighted timed games. In Javier Esparza and Andrzej S. Murawski, editors, Proceedings
of the 20th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’17), volume 10203 of Lecture Notes in Computer Science, pages 162–178,
Uppsala, Sweden, April 2017. Springer. doi:10.1007/978-3-662-54458-7_10.

[BGMR18] Damien Busatto-Gaston, Benjamin Monmege, and Pierre-Alain Reynier. Symbolic Approx-
imation of Weighted Timed Games. In Sumit Ganguly and Paritosh Pandya, editors, 38th
IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2018), volume 122 of Leibniz International Proceedings in In-
formatics (LIPIcs), pages 28:1–28:16, Dagstuhl, Germany, 2018. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. URL: http://drops.dagstuhl.de/opus/volltexte/2018/9927, doi:
10.4230/LIPIcs.FSTTCS.2018.28.

[BGNK+14] Thomas Brihaye, Gilles Geeraerts, Shankara Narayanan Krishna, Lakshmi Manasa, Benjamin
Monmege, and Ashutosh Trivedi. Adding negative prices to priced timed games. In Proceedings
of the 25th International Conference on Concurrency Theory (CONCUR’14), volume 8704,
pages 560–575. Springer, 2014. doi:10.1007/978-3-662-44584-6_38.

[BJM15] Patricia Bouyer, Samy Jaziri, and Nicolas Markey. On the value problem in weighted timed games.
In Proceedings of the 26th International Conference on Concurrency Theory (CONCUR’15),
volume 42 of Leibniz International Proceedings in Informatics, pages 311–324. Leibniz-Zentrum
für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.311.

[BL69] J. Richard Büchi and Lawrence H. Landweber. Solving sequential conditions by finite-state
strategies. Transactions of the American Mathematical Society, 138:295–311, 1969.

[BPDG98] Béatrice Bérard, Antoine Petit, Volker Diekert, and Paul Gastin. Characterization of the
expressive power of silent transitions in timed automata. Fundamenta Informaticae, 36(2-3):145–
182, 1998.

[HIJM13] Thomas Dueholm Hansen, Rasmus Ibsen-Jensen, and Peter Bro Miltersen. A faster algorithm
for solving one-clock priced timed games. In Proceedings of the 24th International Conference

https://hal.archives-ouvertes.fr/tel-02436831
https://hal.archives-ouvertes.fr/tel-02436831
https://doi.org/10.1007/s00236-016-0276-z
https://doi.org/10.1007/978-3-662-54458-7_10
http://drops.dagstuhl.de/opus/volltexte/2018/9927
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.28
https://doi.org/10.1007/978-3-662-44584-6_38
https://doi.org/10.4230/LIPIcs.CONCUR.2015.311

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:73

on Concurrency Theory (CONCUR’13), volume 8052 of Lecture Notes in Computer Science,
pages 531–545. Springer, 2013.

[HPT19] Frédéric Herbreteau, Gerald Point, and Thanh-Tung Tran. Tchecker. http://www.labri.fr/
perso/herbrete/tchecker/index.html, 2019.

[HSW10] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness check for timed Bü-
chi automata. In Computer Aided Verification (CAV 2010), Proceedings, volume 6174 of Lecture
Notes in Computer Science, pages 148–161. Springer, 2010. doi:10.1007/978-3-642-14295-6\
_15.

[Imm81] Neil Immerman. Number of quantifiers is better than number of tape cells. Journal of Computer
and System Sciences, 22(3):384–406, 1981.

[Imm88] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal on
Computing, 17:935–938, 1988.

[JT07] Marcin Jurdziński and Ashutosh Trivedi. Reachability-time games on timed automata. In
Proceedings of the 34th International Colloquium on Automata, Languages and Programming
(ICALP’07), volume 4596 of LNCS, pages 838–849. Springer, 2007.

[KBB+08] Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, Vladimir Gurvich, Gabor
Rudolf, and Jihui Zhao. On short paths interdiction problems: Total and node-wise limited inter-
diction. Theory of Computing Systems, 43(2):204–233, 2008. doi:10.1007/s00224-007-9025-6.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas Hune, Paul Pettersson,
and Judi Romijn. As cheap as possible: Efficient cost-optimal reachability for priced timed
automata. In Proceedings of the 13th International Conference on Computer Aided Verification
(CAV’01), volume 2102 of Lecture Notes in Computer Science, pages 493–505. Springer, 2001.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. International Journal on
Software Tools for Technology Transfer, 1(1):134–152, Dec 1997. doi:10.1007/s100090050010.

[Mat02] Jiri Matousek. Lectures on Discrete Geometry. Springer-Verlag, Berlin, Heidelberg, 2002.
[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic Systems, 10(1-

2):87–113, 2000.
[Rut11] Michał Rutkowski. Two-player reachability-price games on single-clock timed automata. In Pro-

ceedings of the Ninth Workshop on Quantitative Aspects of Programming Languages (QAPL’11),
volume 57 of Electronic Proceedings in Theoretical Computer Science, pages 31–46, 2011.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192, 1970.

[Sze88] Róbert Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3):279–284, 1988.

[WTH92] Howard Wong-Toi and Gerard Hoffmann. The control of dense real-time discrete event systems.
Technical report, DTIC Document, 1992.

http://www.labri.fr/perso/herbrete/tchecker/index.html
http://www.labri.fr/perso/herbrete/tchecker/index.html
https://doi.org/10.1007/978-3-642-14295-6_15
https://doi.org/10.1007/978-3-642-14295-6_15
https://doi.org/10.1007/s00224-007-9025-6
https://doi.org/10.1007/s100090050010

20:74 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

Appendix A. Proof of Lemma 2.6

The number Splits(m,n) is known in discrete geometry as the number of faces obtained
when partitioning Rn by m hyperplanes. We refer to [Mat02, Chap. 6.1] for more details on
this problem, and make use of their vocabulary in this proof, so that cells are called faces
and affine equalities are called hyperplanes. The faces are relatively open convex sets, with
dimensions ranging from 0 to n. We call k-faces the faces of dimension k. For example, in
Figure 5 the 0-face is the point at the intersection of the two hyperplanes, the four 1-faces
are half-lines, and the four 2-faces partition the remaining points of R2.

According to [Mat02, Prop. 6.1.1], the number of n-faces in a space of dimension n

is
∑min(n,m)

`=0

(
m
`

)
. These faces are known as faces of full dimension. If n or m equals 0,

Splits(m,n) = 1. If n,m > 1, the (n − 1)-faces are obtained in each of our hyperplanes
(spaces of dimension n − 1), by considering their partition by the m − 1 other hyper-
planes. In these partitions, the (n− 1)-faces are of full dimension, so that each hyperplane
contains

∑min(n−1,m−1)
`=0

(
m−1
`

)
such faces. The total number of (n − 1)-faces is therefore

m
∑min(n−1,m−1)

`=0

(
m−1
`

)
. Let us now count the number of k-faces for k ∈ [0, n− 2].

As explained in [Mat02, Chap. 6.1], the number of faces is maximised when the hy-
perplanes are in general position, i.e. for any k ∈ [2,min(n + 1,m)], the intersection of
any set of k hyperplanes is (n − k)-dimensional.22 Then, if n > 2 the faces of dimension
k ∈ [max(0, n−m), n−2] lie at the intersection of n−k hyperplanes, and for each such intersec-
tion L the k-faces are obtained by partitioning L by them−n+k other hyperplanes. They are
faces of full dimension in L, so that L contains

∑min(k,m−n+k)
`=0

(
m−n+k

`

)
such faces. There are(

m
n−k
)
intersections L, so that the total number of k-faces is

∑min(k,m−n+k)
`=0

(
m
n−k
)(
m−n+k

`

)
.

Note that this formula matches the number of (n − 1)-faces and the number of n-faces
previously given, and that if m 6 n there are no faces of dimension k < n−m. Therefore,

Splits(m,n) =

n∑
k=max(0,n−m)

min(k,m−n+k)∑
`=0

(
m

n− k

)(
m− n+ k

`

)
.

Let us show Splits(m,n) 6 2n(m + 1)n. First, note that for all 0 6 ` 6 k 6 n

with n − k 6 m and ` 6 m − n + k, it holds that
(
m
n−k
)(
m−n+k

`

)
=
(

m
n−k+`

)(
n−k+`
n−k

)
6(

m
n−k+`

)(
n
k

)
. Then, Splits(m,n) 6

∑n
k=max(0,n−m)

[(
n
k

)∑min(k,m−n+k)
`=0

(
m

n−k+`

)]
. Moreover,∑min(k,m−n+k)

`=0

(
m

n−k+`

)
6
∑min(m,n)

`=0

(
m
`

)
.

Then, note that
∑n

`=0

(
m
`

)
is the number of selections of size at most n out of a set of m

elements, without repetitions. It is smaller than the number of selections of n elements, with
repetitions, in a set of size m + 1 (the extra element can be used as padding). Therefore,∑min(n,m)

`=0

(
m
`

)
6 (m + 1)n. On the other hand,

∑n
k=max(0,n−m)

(
n
k

)
6
∑n

k=0

(
n
k

)
= 2n. It

follows that Splits(m,n) 6 2n(m+ 1)n.

Appendix B. Example of an execution of the approximation schema

Consider the WTG G in Figure 10 and some ε > 0. We want to compute an ε-approximation
of its value in location `0 for the valuation (x1=0, x2=0), denoted ValG(`0, (0, 0)). In this
example, we will use ε = 15 because the computations would not be readable with a smaller

22for n− k < 0 this means that the intersection is empty.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:75

precision. Since in this example each location ` of G leads to a unique state (`, r) of R(G), we
will refer to states of R(G) by their associated location label. As explained in Example 3.8,
R(G) contains one SCC made of two simple cycles, p1 = `1 → `2 → `1 is a positive cycle and
p2 = `1 → `3 → `4 → `1 is a 0-cycle.

Therefore, R(G) only contains non-negative SCCs and is almost-divergent. Since all
states are in the attractor of Min towards Lt, all cycles are non-negative and the final weight
function is bounded (on all reachable regions), there are no configurations in R(G) with
value +∞ or −∞.

We let the kernel K be the sub-game of R(G) defined by p2, and we construct a semi-
unfolding T (G) of R(G) of equivalent value. We should unfold the game until every stopped
branch contains a state seen at least 3|R(G)|wmax + 2wt

max + 2 = 3× 3× 4 + 2× 1 + 2 = 40
times. We will unfold with bound 4 instead of 40 for readability (it is enough on this example).
Thus the infinite branch (`1`2)ω is stopped when `1 is reached for the fourth time, as depicted
in Figure 18.

`′1

`′3`′4

`′t`′2

`0`2

K′`1

`0

K`1

`2

K′`1

`′2

K′′`1

`′′2

`′′′1

`′′t

`′t

`t

fwt(x1, x2) = +∞

fwt(x1, x2) = x1

fwt(x1, x2) = x1

fwt(x1, x2) = x1

Figure 18: The kernel K (with input state `1), and a semi-unfolding T (G) such that
ValG(`0, (0, 0)) = ValT (G)(`0, (0, 0)). We denote by `i, `′i and `′′i the locations
in K, K′ and K′′.

Let us now compute an approximation of ValT (G). Let us first remove the states of value
+∞: `′′′1 and `′′2. Then, we start at the bottom and compute an (ε/3)-approximation of the
value of `′′1 in the game defined by K′′`1 and its output edge to `′′t . Following Section 8.2, we
should use N > 3(4 + 1)/ε and compute values in the 1/N -corners game CN (K′′`1) in order
to obtain an (ε/3)-approximation of the value function. For ε = 15 we will use N = 1 (in
this case the computation happens to be exact and would also hold with a small ε). We
construct this corner game, and obtain the finite (untimed) weighted game in Figure 19.

20:76 D. Busatto-Gaston, B. Monmege, and P.-A. Reynier Vol. 19:1

x1

x2

c′1

x1

x2

c1

x1

x2

c′3

x1

x2

c3

x1

x2

c4

x1

x2

c′4

x1

x2

c′t, fwt = 1

x1

x2

ct, fwt = 0

2

0

−2

1

1

−2

−2 0 0

Figure 19: The finite weighted game obtained from C1(K′′`1), where ci and c′i are the corners
of `′′i in T (G).

We can compute the values in this game to obtain Val(c′1) = 1 and Val(c1) = 3. We then
define a value for every configuration in state `′′1 by linear interpolation, obtaining:

(x1, x2) 7→ 3− 2x2 .

This happens to be exactly (x1, x2) 7→ ValT (G)(`
′′
1, (x1, x2)) in this case, but would only be an

ε/3-approximation of it in general. Now, we can compute an ε/3-approximation of ValT (G)(`
′
2)

with one step of value iteration, obtaining

(x1, x2) 7→ inf
0<d<2−x1

(−1)× d+ 1 + 3− 2(0 + d) = 3x1 − 2 .

The next step is computing an ε/3-approximation of the value of `′1 in the game defined
by K′`1 and its output edges to `′t and `′2, of respective final weight functions (x1, x2) 7→ x1

and (x1, x2) 7→ 3x1 − 2. This will give us a 2ε/3-approximation of ValT (G)(`
′
1).

Following Section 8.2 once again, we should use N > 3(5 + 3)/ε and compute values in
the 1/N -corners game CN (K′`1). For ε = 15 this gives N = 2 (which will once again keep the
computation exact). We can construct a finite (untimed) weighted game as in Figure 19,
and obtain a value for each 1/2-corner of state `′1:
• On the 1/2-region (x1 = 0, 0 < x2 < 1/2), corner (0, 0) has value 2 and corner (0, 1/2) has
value 2.
• On the 1/2-region (x1 = 0, x2 = 1/2), corner (0, 1/2) has value 2.
• On the 1/2-region (x1 = 0, 1/2 < x2 < 1), corner (0, 1/2) has value 2 and corner (0, 1) has
value 1.

From these results, we define a piecewise affine function by interpolating the values of corners
on each 1/2-region, and obtain

(x1, x2) 7→

{
2 if x2 6 1/2

3− 2x2 otherwise

as depicted in Figure 20.

Vol. 19:1 OPTIMAL CONTROLLER SYNTHESIS FOR TIMED SYSTEMS 20:77

1/2 x2

Val`′1(0, x2)

0 1

0

1

2

Figure 20: The value function (x1, x2) 7→ ValT (G)(`
′
1, (x1, x2)), projected on x1 = 0. Black dots

represent the values obtained for 1/2-corners using the corner-point abstraction.

This gives us a 2ε/3-approximation of (x1, x2) 7→ ValT (G)(`
′
1, (x1, x2)) (in fact exactly

ValT (G)(`
′
1)). Now, we can compute a 2ε/3-approximation of ValT (G)(`2) on region (1 < x1 <

2, x2 = 0) with one step of value iteration, obtaining :

(x1, x2)→ inf
0<d<2−x1

{
3− d if d 6 1/2

4− 3d otherwise
=

{
3x1 − 2 if x1 6 3/2

x1 + 1 otherwise

Then, we need to compute an ε/3-approximation of the value of `1 in the game defined
by K`1 and its output edges to `t and `2, of respective final weight functions (x1, x2) 7→ x1

and (x1, x2) 7→ 3x1 − 2 if x1 6 3/2; x1 + 1 otherwise. This will give us an ε-approximation of
ValT (G)(`1).

Following Section 8.2 one last time, we should use N > 3(5 + 3)/ε and compute values
in the 1/N -corner game CN (K`1). This time, let us use N = 3 to showcase an example where
the computed value is not exact. We can construct a finite (untimed) weighted game as in
Figure 19, and obtain a value for each 1/3-corner of state `′1. From these results, we define a
piecewise affine function by interpolation, as depicted in Figure 21.

1/3 2/3 x2

Val`1(0, x2)

0 1

0

1

2

Figure 21: The value function (x1, x2) 7→ ValT (G)(`1, (x1, x2)), projected on x1 = 0, is depicted
in red. Black dots represent the values obtained for 1/3-corners using the corner-
points abstraction, and the derived approximation of the value function is depicted
in blue

Finally, from this ε-approximation of ValT (G)(`1), we can compute an ε-approximation
of ValT (G)(`0) using one step of value iteration, and conclude. On our example this ensures

ValT (G)(`0, (0, 0)) = sup
0<d<1

ValT (G)(`1, (0, d)) ∈ [2− ε, 2 + ε] .

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Preliminaries
	2.1. Modelling real-time constraints
	2.2. Regions
	2.3. Piecewise affine functions
	2.4. Weighted timed games
	2.5. Related work
	2.6. Region abstraction
	2.7. Corner-point abstraction
	2.8. Value iteration algorithm

	3. Divergent and almost-divergent WTGs
	3.1. Hardness of value problems

	4. Deciding divergence and almost-divergence
	4.1. Cycles in an almost-divergent WTG
	4.2. SCC-based characterisations
	4.3. Deciding membership

	5. Deciding infinite values
	5.1. Infinite final values
	5.2. Kernel of an almost-divergent WTG
	5.3. Values -infinity coming from negative cycles

	6. Semi-unfolding of WTGs
	7. Computing values for acyclic WTGs
	7.1. About complexity bounds
	7.2. Operations over value functions
	7.3. Tubes and diagonals
	7.4. Exponential vs doubly-exponential
	7.5. Bounding partial derivatives

	8. Computing values
	8.1. Divergent WTGs
	8.2. Approximation of kernels
	8.3. Approximation of almost-divergent WTGs

	9. Symbolic algorithms
	9.1. Symbolic approximation algorithm
	9.2. Discussion

	10. Strategy synthesis
	11. Weighted timed games with no clocks
	11.1. Solving weighted games
	11.2. Divergent and almost-divergent weighted games

	12. Conclusion
	References
	Appendix A. Proof of Lemma 2.6
	Appendix B. Example of an execution of the approximation schema

