
HAL Id: hal-04442470
https://hal.science/hal-04442470v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formally-Sharp DAgger for MCTS: Lower-Latency
Monte Carlo Tree Search using Data Aggregation with

Formal Methods
Debraj Chakraborty, Damien Busatto-Gaston, Jean-François Raskin,

Guillermo A. Pérez

To cite this version:
Debraj Chakraborty, Damien Busatto-Gaston, Jean-François Raskin, Guillermo A. Pérez. Formally-
Sharp DAgger for MCTS: Lower-Latency Monte Carlo Tree Search using Data Aggregation with
Formal Methods. 22nd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS-2023), May 2023, London, United Kingdom. pp.1354-1362. �hal-04442470�

https://hal.science/hal-04442470v1
https://hal.archives-ouvertes.fr

Formally-Sharp DAgger for MCTS: Lower-Latency Monte Carlo
Tree Search using Data Aggregation with Formal Methods

Debraj Chakraborty
Université Libre de Bruxelles

Brussels, Belgium
debraj.chakraborty@ulb.be

Damien Busatto-Gaston
Univ. Paris Est Créteil, LACL, F-94010

Creteil, France
damien.busatto-gaston@u-pec.fr

Jean-François Raskin
Université Libre de Bruxelles

Brussels, Belgium
jean-francois.raskin@ulb.be

Guillermo A. Pérez
University of Antwerp
Antwerp, Belgium

guillermo.perez@uantwerpen.be

ABSTRACT
We study how to efficiently combine formal methods, Monte Carlo
Tree Search (MCTS), and deep learning in order to produce high-
quality receding horizon policies in large Markov Decision pro-
cesses (MDPs). In particular, we use model-checking techniques to
guide the MCTS algorithm in order to generate offline samples of
high-quality decisions on a representative set of states of the MDP.
Those samples can then be used to train a neural network that
imitates the policy used to generate them. This neural network can
either be used as a guide on a lower-latency MCTS online search, or
alternatively be used as a full-fledged policy when minimal latency
is required. We use statistical model checking to detect when ad-
ditional samples are needed and to focus those additional samples
on configurations where the learnt neural network policy differs
from the (computationally-expensive) offline policy. We illustrate
the use of our method on MDPs that model the Frozen Lake and
Pac-Man environments — two popular benchmarks to evaluate
reinforcement-learning algorithms.

KEYWORDS
Markov decision processes; Neural networks; Monte Carlo tree
search; Model checking; Formal methods

ACM Reference Format:
Debraj Chakraborty, Damien Busatto-Gaston, Jean-François Raskin, andGuillermo
A. Pérez. 2023. Formally-Sharp DAgger for MCTS: Lower-Latency Monte
Carlo Tree Search using Data Aggregation with Formal Methods. In Proc.
of the 22nd International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2023), London, United Kingdom, May 29 – June 2, 2023,
IFAAMAS, 9 pages.

1 INTRODUCTION
Markov decision processes (MDPs) are frameworks to model se-
quential decision making. They are discrete-time stochastic models
where an agent chooses actions based on the current state. The
agent then receives a reward and the state of the MDP is updated
based on a probabilistic transition function. Exact algorithms, or
formal methods, for MDPs have been studied since the 1950s and

Proc. of the 22nd International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS 2023), A. Ricci, W. Yeoh, N. Agmon, B. An (eds.), May 29 – June 2, 2023,
London, United Kingdom. © 2023 International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

efficient (and symbolic) versions of these algorithms have been im-
plemented in probabilistic model-checking tools such as PRISM [23]
and Storm [16]. The latter, as well as other tools, are regularly
compared with respect to a large body of benchmarks from the
Quantitative Verification Benchmark Set [7].

While tools like PRISM and Storm can handle very large sys-
tems, some applications arising from real-world systems and video
games like Pac-Man are still out of reach. In contrast, novel (deep)
reinforcement learning (RL) techniques or online heuristic search
techniques, like Monte Carlo Tree Search (MCTS) [6], are able to
produce policies for larger MDPs [3], albeit at the cost of either
high sample complexity (i.e. they require much data to be trained),
or high latency (i.e. they require much time before choosing a next
action), and weaker performance guarantees.

In this work, we aim at combining exact methods, such as model
checking, and MCTS to improve the quality of policies synthesized
in large MDPs. Concretely, we make use of the MCTS algorithm
with symbolic advice (coming from formal methods), as proposed
in [8], to increase reliability of MCTS. Further, to improve the
latency of MCTS augmented with advice, we propose to replace
advice coming from exact algorithmswith a neural network, trained
on data from the exact advice, that we call neural advice. Finally, we
also experiment with training a surrogate neural-network policy
to imitate MCTS (with advice) altogether. Once more, to realize
this efficiently, with respect to sample complexity, we leverage
exact methods to obtain “perfect data” and we generate additional
samples on demand when the performance of the learnt neural
network does not match the quality of the policy computed offline.
This step uses statistical model checking [13] instead of classical
metrics from machine learning.

Contribution. We consider ourmain contributions to be (1) an expert
imitation framework to train a neural network in order to replace
exact advice by lower-latency neural advice, or to imitate the expert
policy that can be computed offline, and (2) this imitation frame-
work relies on a data generation algorithm which leverages formal
methods to obtain “perfect data” for our samples and to generate
additional samples, as long as statistical model checking indicates
that it is required to improve the quality of the imitation.

Imitating experts. Imitation can take different forms depending
on the expert policy (or advice). In general, we define a ranking of
actions for every state such that the maximally ranked elements

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1354

https://orcid.org/0000-0003-0978-4457
https://orcid.org/0000-0002-7266-0927
https://orcid.org/0000-0002-3673-1097
https://orcid.org/0000-0002-1200-4952

are those played by the policy. Intuitively, the ranking tells us how
good every action is from the current state. We propose to train a
neural network to learn such a ranking function as an offline step.
This neural network can then be used as a full-fledged policy or as
a neural advice to efficiently guide MCTS. The neural advice aims
for an expected reward comparable with the expert advice, for a
fraction of its online latency.

Data generation and aggregation. Recall that we propose to train
a neural network to imitate an expert advice. The expert advice is
usually implemented as an exact algorithm. In this case, given a
set of inputs for the neural network, the original expert advice can
be used to obtain (offline) a “perfect” set of corresponding outputs
to train on. In contrast, when training a neural network to imitate
the full MCTS-with-advice algorithm, the data can be noisy for
one of two reasons: we are sampling from a randomized policy,
and the expert policy we are imitating may not always match the
optimal policy of theMDP. In both cases, a remaining challenge is to
generate a representative set of inputs for the network to be trained
on. We propose to enrich the set of data using formal methods to
compare the behaviour of the trained neural network with that
of the expert policy in what resembles a Counterexample-Guided
Abstraction-Refinement loop [12]. Our experiments show that this
data aggregation loop can speed up learning significantly.

Evaluating a neural network. In order to stop the data aggrega-
tion loop, we do not only rely on classical machine learning criteria
to evaluate the quality of the generated policies, but also monitor
the practical performance of the neural networks. Indeed, our set-
ting requires taking decisions sequentially for many steps, so that
small errors could accumulate over time. Thus, classical metrics
such as computing a loss function on a testing dataset may not be
representative of the expected reward a neural network will obtain
when used as an advice or a full policy, e.g. a policy may make
mistakes at crucial moments despite being almost always correct in
its decisions. Instead, we use statistical model-checking to compute
an approximation of the expected reward of our policies.

Related work. Our implementation of the MCTS algorithm with
symbolic advice closely follows the approach described in [8]. How-
ever, while they relied on qualitative advice based on quantified
Boolean formulae (QBF) and SAT solvers, we use more quantita-
tive notions instead, based on probabilistic model checking and
neural networks. Our approach also resembles the shielding frame-
work [1, 21] used to add safety properties to RL algorithms. One
difference is that our technique does not require one to construct
the entire MDP, making our work scalable to larger MDPs.

Using deep learning to replace expert (but expensive) policies
by learnt policies is known to be advantageous when the expert
policy is unable to meet real-time (latency) constraints (see, e.g. [20,
Section 5.2] and [18]). In order to obtain a satisfactory dataset to
train on, we propose a sharp variant of the DAgger algorithm, a
dataset aggregation technique introduced in [26, 27]. A notable dif-
ference is that we propose to use model checkers instead of human
experts in order to get better-quality data. We also identify so-called
counterexample configurations in order to guide the aggregation
loop to the most interesting states. This is reminiscent of counter-
example guided abstraction refinement (CEGAR) approaches for

hybrid systems such as [14] that identify states violating a property
then focus the deep learning procedures on such states.

Finally, we rely on statistical model checking [30] to efficiently
evaluate particular policies for the system. This consists in running
simulated executions of the MDP and computing statistics with
confidence guarantees. However, such techniques are not known to
find (or approximate) the optimal policies for our reward structures,
as that would require using MCTS-like simulation techniques.

2 PRELIMINARIES
A probability distribution on a countable set 𝑆 is a function 𝑑 : 𝑆 →
[0, 1] such that

∑
𝑠∈𝑆 𝑑 (𝑠) = 1. We denote the set of all probability

distributions on set 𝑆 by D(𝑆). The support of a distribution 𝑑 ∈
D(𝑆) is Supp(𝑑) = {𝑠 ∈ 𝑆 | 𝑑 (𝑠) > 0}.

2.1 Markov chain
Definition 2.1 (Markov chain). A (discrete-time) Markov chain

(MC) is a tuple 𝑀 = (𝑆, 𝑃,𝐴𝑃, 𝐿), where 𝑆 is a countable set of
states, 𝑃 is a mapping from 𝑆 to D(𝑆), 𝐴𝑃 is a finite set of atomic
proposition and 𝐿 is the labelling function from 𝑆 to 2𝐴𝑃 .

For states 𝑠, 𝑠 ′ ∈ 𝑆 , 𝑃 (𝑠) (𝑠 ′) denotes the probability of moving
from state 𝑠 to state 𝑠 ′ in a single transition and we denote this
probability 𝑃 (𝑠) (𝑠 ′) as 𝑃 (𝑠, 𝑠 ′). We say that the atomic proposition
𝑎 holds in a state 𝑠 if 𝑎 ∈ 𝐿(𝑠). For a Markov chain𝑀 , a finite path
𝑝 = 𝑠0𝑠1 . . . 𝑠𝑖 of length 𝑖 ≥ 0 is a sequence of 𝑖 + 1 consecutive
states such that for all 𝑡 ∈ [0, 𝑖 − 1], 𝑠𝑡+1 ∈ Supp(𝑃 (𝑠𝑡)). Similarly,
An infinite path is an infinite sequence 𝑝 = 𝑠0𝑠1𝑠2 . . . of states
such that for all 𝑡 ∈ N, 𝑠𝑡+1 ∈ Supp(𝑃 (𝑠𝑡)). For a finite or infinite
path 𝑝 = 𝑠0𝑠1 . . ., we denote its (𝑖 + 1)𝑡ℎ state by 𝑝 [𝑖] = 𝑠𝑖 . Let
𝑝 = 𝑠0𝑠1 . . . 𝑠𝑖 and 𝑝 ′ = 𝑠 ′0𝑠

′
1 . . . 𝑠

′
𝑗
be two paths such that 𝑠𝑖 = 𝑠 ′0.

Then, 𝑝 · 𝑝 ′ denotes 𝑠0𝑠1 . . . 𝑠𝑖𝑠 ′1 . . . 𝑠
′
𝑗
. For an MC 𝑀 , the set of all

finite paths of length 𝑖 (resp. infinite paths) is denoted by Paths𝑖
𝑀

(resp. Paths𝜔
𝑀
). We denote the set of all finite paths in𝑀 by Paths𝑀

and the set of finite paths of length at most 𝐻 by Paths≤𝐻
𝑀

. For
𝑝 ∈ Paths𝑀 , let Paths𝜔

𝑀
(𝑝) denote the set of paths 𝑝 ′ in Paths𝜔

𝑀
such that there exists 𝑝 ′′ ∈ Paths𝜔

𝑀
with 𝑝 ′ = 𝑝 · 𝑝 ′′. Paths𝜔

𝑀
(𝑝) is

called the cylinder set of 𝑝 .
The𝜎-algebra associatedwith theMC𝑀 is the smallest𝜎-algebra

that contains the cylinder sets Paths𝜔
𝑀
(𝑝) for all 𝑝 ∈ Paths𝑀 . For

a state 𝑠 in 𝑆 , a measure is defined for the cylinder sets as

P𝑀,𝑠 (Paths𝜔𝑀 (𝑠0𝑠1 . . . 𝑠𝑖)) =
{∏𝑖−1

𝑡=0 𝑃 (𝑠𝑡) (𝑠𝑡+1) if 𝑠0 = 𝑠

0 otherwise.

We also have P𝑀,𝑠 (Paths𝜔𝑀 (𝑠)) = 1 and P𝑀,𝑠 (Paths𝜔𝑀 (𝑠 ′)) = 0
for 𝑠 ′ ≠ 𝑠 . Using Carathéodory’s extension theorem [2, section
1.3.10], this can be extended to a unique probability measure P𝑀,𝑠

on the aforementioned 𝜎-algebra. In particular, if C ⊆ Paths𝑀 is
a set of finite paths forming pairwise disjoint cylinder sets, then
P𝑀,𝑠 (∪𝑝∈CPaths𝜔𝑀 (𝑝)) =

∑
𝑝∈C P𝑀,𝑠 (Paths𝜔𝑀 (𝑝)). Moreover, if

Π ∈ Paths𝜔
𝑀

is the complement of a measurable set Π′, then
P𝑀,𝑠 (Π) = 1 − P𝑀,𝑠 (Π′).

2.2 Probabilistic computation tree logic
Probabilistic computation tree logic or PCTL is a branching temporal
logic which formulates conditions on a Markov chain. PCTL state

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1355

Figure 1: A 10 × 10 layout for Frozen-Lake

formulae over a set of atomic propositions𝐴𝑃 are defined according
the following grammar:

𝛷 := 𝑡𝑟𝑢𝑒 | 𝑎 | 𝛷1 ∧𝛷2 | ¬𝛷 | P𝐽 (𝜑)

where 𝑎 ∈ 𝐴𝑃 ,𝛷1 and𝛷2 are state formulae, 𝜑 is a path formula and
𝐽 ⊆ [0, 1] is an interval with rational bounds. PCTL path formulae
are defined according the following grammar:

𝜑 := ⃝𝛷 | 𝛷1U𝛷2 | 𝛷1U≤𝑛𝛷2

where𝛷1 and𝛷2 are state formulae and 𝑛 ∈ N.
The satisfaction relation |= between an infinite path 𝑝 = 𝑠0𝑠1 . . .

and a PCTL path formula is defined as follows:
• 𝑝 |= ⃝𝛷 if 𝑝 [1] |= 𝛷 .
• 𝑝 |= 𝛷1U𝛷2 if ∃𝑖 ∈ N s.t. 𝑠𝑖 |= 𝛷2 and ∀𝑗 < 𝑖 , 𝑝 [𝑗] |= 𝛷1.
• 𝑝 |= 𝛷1U≤𝑛𝛷2 if ∃𝑖 ≤ 𝑛 s.t. 𝑠𝑖 |= 𝛷2 and ∀𝑗 < 𝑖 , 𝑝 [𝑗] |= 𝛷1.

We define the probability of a path formula 𝜑 holding at 𝑠 ∈ 𝑆 by

P𝑀 (𝑠 |= 𝜑) = P𝑀,𝑠 ({𝑝 ∈ Paths𝜔
𝑀
(𝑠) | 𝑝 |= 𝜑})

The satisfaction relation |= between a state 𝑠 ∈ 𝑆 and a PCTL
state formula is defined inductively: 𝑠 |= 𝑡𝑟𝑢𝑒 , 𝑠 |= 𝑎 if 𝑎 ∈ 𝐿(𝑠), and

• 𝑠 |= 𝛷1 ∧𝛷2 if 𝑠 |= 𝛷1 and 𝑠 |= 𝛷2.
• 𝑠 |= ¬𝛷 if 𝑠 ̸ |= 𝛷 .
• 𝑠 |= P𝐽 (𝜑) if P𝑀 (𝑠 |= 𝜑) ∈ 𝐽 .

Using the Boolean connectives ∧ and ¬, we can define other
Boolean connectives such as ∨, →, ↔. The U operator (and its
bounded version) also allows us to define other useful operators
such as ^ that expresses reachablility or □ that expresses safety:

^𝛷 = 𝑡𝑟𝑢𝑒 U𝛷 and □𝛷 = ¬^¬𝛷
^≤𝑛𝛷 = 𝑡𝑟𝑢𝑒 U≤𝑛𝛷 and □≤𝑛𝛷 = ¬^≤𝑛¬𝛷

2.3 Markov decision process
Definition 2.2 (Markov decision process). A Markov decision pro-

cess (MDP) is a tuple𝑀 = (𝑆,𝐴, 𝑃, 𝑅, 𝑅𝑇 , 𝐴𝑃, 𝐿), where 𝑆 and 𝐴 are
finite sets of states and actions, respectively, 𝐴 is a finite set of
actions, 𝑃 is a mapping from 𝑆 ×𝐴 to D(𝑆), 𝑅 is a mapping from
𝑆 ×𝐴 to R, 𝑅𝑇 is a mapping from 𝑆 to R, 𝐴𝑃 is a finite set of atomic
proposition and 𝐿 is the labelling function from 𝑆 to 2𝐴𝑃 .

𝑃 (𝑠, 𝑎) (𝑠 ′) denotes the probability that action 𝑎 in state 𝑠 leads
to state 𝑠 ′ and we denote this probability 𝑃 (𝑠, 𝑎) (𝑠 ′) as 𝑃 (𝑠, 𝑎, 𝑠 ′).
𝑅(𝑠, 𝑎) defines the reward obtained for taking action 𝑎 from state 𝑠
and 𝑅𝑇 assigns a terminal reward to each state in 𝑆 .

Figure 2: A 21 × 9 layout for Pac-Man

Example 2.3 (Frozen Lake). We can represent the game Frozen
Lake [15] as an MDP. In this game, a robot moves in a slippery grid.
It has to reach the target while avoiding holes in the grid. Each state
in the MDP represents the current position of the robot in the grid.
The states representing the target and the holes can be assumed to
be sink states, i.e., the robot cannot move to any other positions
from this state. Part of the grid contains walls and the robot cannot
move into it. The frozen surface of the lake being slippery, when
the robot tries to move by picking a cardinal direction, the next
state is determined randomly over the four neighbouring positions
of the robot, according to the following distribution weights: the
intended direction gets a weight of 10, and other directions that
are not a wall and not the reverse direction of the intended one get
a weight of 1, the distribution is then normalized so that weights
sum up to 1. There are no rewards, and the terminal reward is 1
when the robot reaches the target and 0 otherwise.

Example 2.4 (Pac-Man). We can represent the multiagent game
Pac-Man as a Markov decision process. In this game Pac-Man has
to eat food pills in an enclosed grid as fast as possible while avoiding
the ghosts. The agents (Pac-Man and the ghosts) can travel in the
four cardinal directions unless they are blocked by the walls in the
grid. Moreover, the ghosts cannot reverse their direction of travel,
and are moving uniformly at random among the directions that are
left. In the MDP, the states encode a position for each agent1 and
for the food pills in the grid, while the actions encode individual
Pac-Man moves, and while the next state is chosen according to
the probabilistic models of the ghosts. The reward decreases by 1
at each step, and increases by 10 whenever Pac-Man eats a food
pill. A win (when the Pac-Man eats all the food pills in the grid)
increases the reward by 500. Similarly, a loss (when the Pac-Man
makes contact with a ghost), decreases the reward by 500.

The definitions and notations used for paths in Markov chain can
be extended to the case of MDPs. In an MDP, a path is a sequence of
states and actions. For aMarkov decision process𝑀 , a (probabilistic)
policy is a function 𝜎 : Paths𝑀 → D(𝐴) that maps a path 𝑝 to a
probability distribution in D(𝐴). A policy 𝜎 is deterministic if the
support of the probability distributions 𝜎 (𝑝) has size 1. A policy 𝜎
is memoryless if 𝜎 (𝑝) depends only on last(𝑝), i.e. if 𝜎 satisfies that
for all 𝑝, 𝑝 ′ ∈ Paths𝑀 , last(𝑝) = last(𝑝 ′) ⇒ 𝜎 (𝑝) = 𝜎 (𝑝 ′).

AnMDP𝑀 and a policy𝜎 define anMC𝑀𝜎 . Intuitively, this is ob-
tained by unfolding𝑀 , using the policy 𝜎 and the probabilities in𝑀

1The last action played by ghosts should be stored as well, as they are not able to
reverse their direction.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1356

to define the transition probabilities and ignoring the rewards. For-
mally 𝑀𝜎 = (Paths𝑀 , 𝑃𝜎 , 𝐴𝑃, 𝐿𝜎) where for all paths 𝑝 ∈ Paths𝑀 ,
𝑃𝜎 (𝑝) (𝑝 · 𝑎𝑠) = 𝜎 (𝑝) (𝑎) · 𝑃 (last(𝑝), 𝑎) (𝑠) and 𝐿𝜎 (𝑝) = 𝐿(last(𝑝)).
Thus a finite path 𝑝 in Paths𝑀 (𝜎) uniquelymatches a finite path 𝑝 ′
in𝑀𝜎 when last(𝑝 ′) = 𝑝 . This way when a policy 𝜎 and a state 𝑠 is
fixed, the probability measure P𝑀𝜎 ,𝑠 defined in𝑀𝜎 is also extended
for paths in Paths𝑀 (𝜎). For ease of notation, we write P𝑀𝜎 ,𝑠 as P

𝜎
𝑠 .

We write the expected value of a random variable 𝑋 with respect
to the probability distribution P𝜎𝑠 as E𝜎𝑠 (𝑋).

Our goal is to maximize the expected rewards obtained by a
policy. Classically, this can mean maximizing the sum of rewards
up to a finite horizon, or maximizing infinite-horizon metrics such
as average reward or discounted sum. In our experiments on Frozen
Lake and Pac-Man, we optimize for the total reward objective after
fixing a horizon at which the game ends in a draw.

Definition 2.5 (Total reward). The total reward of horizon ℎ for a
path 𝑝 = 𝑠0𝑎0 . . . in𝑀 is defined as Rewardℎ

𝑀
(𝑝) = ∑ℎ−1

𝑖=0 𝑅(𝑠𝑖 , 𝑎𝑖) +
𝑅𝑇 (𝑠ℎ). The expected total reward of a policy 𝜎 in an MDP𝑀 , start-
ing from state 𝑠 and for a finite horizon ℎ ∈ N, is defined as

Valℎ𝑀 (𝑠, 𝜎) = E𝜎𝑠
[
Rewardℎ𝑀

]
.

The optimal expected total reward of horizon ℎ, starting from 𝑠 ,
over all policies 𝜎 in the MDP𝑀 is Valℎ

𝑀
(𝑠) = sup𝜎 Valℎ

𝑀
(𝑠, 𝜎).

One can show that there is a deterministic policy that achieves
this supremum [25, Theorem 4.4.1.b]. Such optimal policies may not
be memoryless, as one can change their behaviour as the horizon ℎ
approaches for example. As the choice of ℎ is arbitrary, we would
like to find policies that achieve a good expected total reward inde-
pendently of ℎ (i.e. for every ℎ that is big enough). We will focus
our search on (randomized) memoryless policies as a result.2

3 EXPERT POLICIES
We describe different policies computed using a combination of
formal methods, heuristic search algorithms and machine learning
that all aim for the optimal expected total reward.

3.1 Formal methods
Model checking. Exact methods can be used to compute a policy

that reaches the optimal expected total reward, e.g. with dynamic
programming (value iteration) [25, Section 4.5]. They have been
efficiently implemented in probabilistic model-checkers such as
Storm [16], that offer support for a large range of specifications.
More specifically, given a model (Markov chain or MDP), a reward
structure and a specification such as a PCTL formula as defined
in Section 2.2, Storm can determine whether the input model con-
forms to the specification and compute expected rewards for a
range of finite or infinite horizon metrics such as total or average
reward. For MDPs, probabilistic model-checkers can also output an
optimal policy associated with the optimal expected reward that
they compute. Such tools have been designed with performance
in mind and can typically handle models of size up to 108 states.
Exact methods are thus applicable for smaller MDPs such as the
MDP obtained for Frozen Lake in Example 2.3, but not for larger
2Note that in some situations, randomization can help a memoryless policy emulate
the behaviour of a non-memoryless policy [11].

models such as Pac-Man (the MDP represented in Figure 2 already
has approximately 1016 states). For larger MDPs, formal methods
offer alternative techniques e.g. based on sampling.

Symbolic MDP. The MDP can be described symbolically in the
PRISM [23] language, a guarded command language where one only
needs to specify abstract rules that the transitions must satisfy.

Statistical model checking. Computations can make use of sta-
tistical model-checking techniques to find good approximations
of the expected reward of a policy. By relying on running simula-
tions and computing statistics, it offers confidence guarantees on
the quality of the approximated expected reward. We also use the
Storm model-checker in this context, as it is capable of producing
simulated paths efficiently for an MDP in PRISM format.

Scalability. In both cases, one can scale to larger models by focus-
ing on smaller horizons or sub-objectives for which the MDP can
be abstracted further. The idea is that for simple parts of the specifi-
cation, the relevant aspects of the model may define a much smaller
MDP. For example, if we focus on a safety objective in Pac-Man
(not being eaten is a necessity in order to get a good reward), we can
ignore the status of the food pellets, i.e.which food has already been
eaten, reducing the state-space from a size of 1016 to 107. Overall,
whenever exact methods become too expensive we will rely on
heuristic approaches based on a combination of fixed-horizon and
sampling-based state-space exploration techniques.

3.2 Monte Carlo tree search
We consider online procedures where the controller, upon visiting
a new state 𝑠 , computes what action 𝑎 it thinks is best, and plays it.
Then, the state evolves stochastically to a new state 𝑠 ′ according to
the distribution 𝑃 (𝑠, 𝑎). This is known as decision-time planning [28,
Chapter 8.8]. Specifically, we rely on the receding horizon control
approach, where the controller fixes a small horizon 𝐻 and finds
an action that optimizes the expected total reward of horizon 𝐻 .
This approach is meant to select decisions with good short-term
consequences, while a well-chosen terminal reward function can
be used to predict long-term behaviors from there.

Given an initial state 𝑠 , Monte Carlo tree search or MCTS algo-
rithm [6] is a popular policy that incrementally constructs a search
tree rooted at 𝑠 describing paths of the MDP. This process goes
on until a specified budget (of number of iterations or time) is ex-
hausted. An iteration constructs a path by following a decision
policy to select a sequence of nodes in the search tree. When a
node that is not part of the current search tree is reached, the tree
is expanded with this new node, whose expected reward is ap-
proximated by simulation. This value is then used to update the
knowledge of all selected nodes in backpropagation. Thus, we get a
value estimation approxValue(𝑠, 𝑎) for all actions 𝑎 from the state 𝑠 .
Then the controller takes the action maximizing approxValue(𝑠, 𝑎).

3.3 Monte Carlo tree search with advice
MCTS can be augmented with symbolic advice [8] which prune a
part of the search tree according to formal specifications meant to
differentiate the “good” and “bad” parts of the tree.

A qualitative approach considers a logical formula that the “good”
paths need to satisfy. For example, consider the set of states labelled

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1357

with 𝑙𝑜𝑠𝑠 where Pac-Man gets eaten by a ghost. Since reaching such
a state is heavily penalized, a simple advice would be to avoid such
states. Given a horizon 𝐻 and a state 𝑠 ∈ 𝑆 , the search would be
restricted in order to satisfy the path formula 𝜑𝐻 = □≤𝐻 (¬𝑙𝑜𝑠𝑠)
that encodes that safety constraint.

A more quantitative approach would compute for each action 𝑎

and over all policies the best probability 𝜂𝐻 (𝑠, 𝑎) to satisfy𝜑𝐻 when
the action 𝑎 is taken from 𝑠: 𝜂𝐻 (𝑠, 𝑎) = sup𝜎 :𝜎 (𝑠)=𝑎 P𝜎𝑠 (𝑠 |= 𝜑𝐻).
Then, the advice restricts Pac-Man to almost-optimal actions, i.e. de-
cisions𝑎where𝜂𝐻 (𝑠, 𝑎) ≥ 𝑡×max𝑎′ 𝜂𝐻 (𝑠, 𝑎′), where 𝑡 is a threshold
in [0, 1]. Probabilistic model-checkers such as Storm can accept
logical specifications in PCTL and compute the probability of path
formulæ 𝜑 . This approach is similar to probabilistic shielding [21]
where bad actions are pre-calculated and used to safely explore the
search space during reinforcement learning. A notable difference
is that building such a shield requires one to construct the entire
state-space of the MDP, whereas our approach performs its com-
putations on-the-fly based on the current position alone. Note that
these computations are frequently performed on smaller models,
for example in Pac-Man we only need to consider a safety-relevant
variant of the MDP where food pellets are ignored and that is re-
stricted to states at distance at most 𝐻 from the current state. The
practical interest of such advice for MCTS is detailed in [8].

4 IMITATING EXPERT POLICIES
In order to reach on-the-fly computing times low enough for real-
time control, we train policies, encoded as neural networks, to imi-
tate an expert policy. This can take different forms depending on
the expert policy 𝜎 . In general, we define a function 𝑓𝜎 : 𝑆 ×𝐴 → R
encoding the policy 𝜎 so that from state 𝑠 , the decision made by
𝜎 is equivalent to choosing an action from argmax𝑎∈𝐴 (𝑓𝜎 (𝑠, 𝑎))
uniformly at random. Intuitively, 𝑓𝜎 is a scoring function that rates
how good every action is from the current state. To learn a memo-
ryless policy 𝜎 , this function can output the expected total reward
under 𝜎 , or a heuristic score approximating it as returned by MCTS
for example. This framework can also be used to learn quantitative
advice, e.g. by using 𝜂𝐻 (𝑠, 𝑎) as a scoring function. In this case, the
advice is seen as a (non-deterministic) expert policy to be imitated.
This way, we suggest that a symbolic advice can also be imitated by
a neural network that can then be used as a neural advice in MCTS.

The plan is to teach a neural network the function 𝑓𝜎 as an
offline step, and use it to speed up the computations of decision-
time planning. Depending on the set of actions, we can either train
a neural network that takes a state-action pair (𝑠, 𝑎) and outputs
a single value 𝑓𝜎 (𝑠, 𝑎) or a neural network that takes a state 𝑠 and
outputs a vector in R |𝐴 | with values for each available actions.

We address the following challenges: encoding a state 𝑠 and its
corresponding values (𝑓𝜎 (𝑠, 𝑎))𝑎∈𝐴 so that it is easily processable
by the neural network, generating data for 𝑓𝜎 representative of
the state-space, choosing an architecture for the neural network,
comparing the learnt policy and the expert policy 𝜎 .

4.1 Training a neural network
We divide our datasets in 5 : 2 : 3 ratios to create distinct datasets for
training, validation and testing of the neural networks. We propose
the use of convolutional neural networks which would take a state

in the MDP as a tensor with each channel of the tensor represent-
ing different features extracted from the state. In Pac-Man, each
tensor representing a state has 7 channels to denote respectively
the distribution of walls, food pills, position of Pac-Man, and for
each direction, positions of the ghosts who are moving towards that
direction. For example the channel representing the distribution of
walls would be a matrix𝑤𝑖 𝑗 of the size of the grid where𝑤𝑖 𝑗 = 1 if
there is a wall at the co-ordinate (𝑖, 𝑗), and otherwise𝑤𝑖 𝑗 = 0.

We considered different approaches for normalization, either by
globally scaling the values between 0 and 1 so that min𝑠,𝑎 𝑓 (𝑠, 𝑎)
becomes 0 and max𝑠,𝑎 𝑓 (𝑠, 𝑎) becomes 1 after normalization, or
scaling locally so that for all state 𝑠 , min𝑎 𝑓 (𝑠, 𝑎) becomes 0 and
max𝑎 𝑓 (𝑠, 𝑎) becomes 1. We argue that this local normalization is
sufficient to learn the policy as it captures the ordering of the ac-
tions. Experimentally, local normalization performed better than
global normalization. We also experimented with non-linear trans-
formations [5, 29] but they did not improve learning performances
in our settings. Our neural networks contain a 2D convolution layer
with 3×3 filters, a flattening layer, a few dense layers with the ReLU
activation function and a final dense layer with the sigmoid activa-
tion function. Training is performed using ADAM optimizer [22]
with mean squared error as loss function. To choose the optimal hy-
perparameters, e.g. the exact number of layers and their size or the
number of filters, we use hyperparameter tuning [4] in each setting.
In particular, we relied on the Python library KerasTuner [24].

4.2 Formally sharp DAgger
Let us detail how to construct a set of data of the shape (𝑥,𝑦), where
𝑥 ∈ 𝑆 is the input of the neural network and 𝑦 ∈ R |𝐴 | is its output
encoding (𝑓𝜎 (𝑥, 𝑎))𝑎∈𝐴 . We argue for the use of formal methods in
order to answer: how to get a representative set of input values 𝑥 ,
and how to get good 𝑦 values for this set of input.

Perfect data. Note that an expert policy generated by an exact
method is ensured an expected payoff higher than any expert pol-
icy generated from a heuristic approach. In a sense, if one sees a
heuristic approach as an approximation of the optimal policy, the
data obtained from heuristic policies can be seen as a noisy version
of data that would otherwise be “perfect”, i.e. pairs (𝑥,𝑦) where 𝑦
is a vector encoding the decisions of a policy 𝜎 that is optimal.

Representative set of inputs. In order to generate a dataset to train
on, a classical method is to pick states and actions uniformly at ran-
dom within the state-space and to evaluate 𝑓𝜎 on these inputs. For
example, one can consider Frozen Lake states obtained by placing
the walls, the holes, the target and the robot at random empty posi-
tions. However, a neural network trained from such a dataset may
perform poorly for states that play a key role in the expected payoff
of a policy (i.e. states that represent crucial decisions), as such states
may not be likely to be selected at random within the state-space.
The DAgger (Dataset Aggregation) algorithm, in contrast, offers a
dataset generation method based on running simulations in order
to get a more realistic view of the states frequently encountered in
real plays. While this approach can be part of the answer, it may
not provide sufficiently many datapoints on the crucial decisions
mentioned before, that may be few and far-between.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1358

Algorithm 1: Sharp Dataset Aggregation (Sharp DAgger)

Input: A function 𝑓𝜎 : 𝑆 → R |𝐴 | encoding an expert policy
𝜎 , 𝑠0 ∈ 𝑆 , a metric 𝑑 , 𝜖 ∈ R, a horizon ℎ ∈ N.

Output: A policy 𝜎𝑖 that imitates the policy 𝜎
1 DATASET = initial dataset;
2 NN0 = neural network trained using DATASET;
3 𝜎0 = policy extracted from NN0;
4 for 0 ≤ 𝑖 ≤ 𝑖𝑡𝑒𝑟𝑠 do
5 Paths𝑖 = paths sim’d following 𝜎𝑖 from 𝑠0 for ℎ steps;
6 for state 𝑠 in paths 𝑝 ∈ Paths𝑖 do
7 if 𝑑 (NN𝑖 (𝑠), 𝑓 (𝑠)) ≥ 𝜖 then
8 Add (𝑠, 𝑓 (𝑠)) to DATASET;
9 NN𝑖 = neural network trained using DATASET;

10 𝜎𝑖 = policy extracted from NN𝑖 ;
11 return 𝜎𝑖 ;

We propose an algorithm named sharp DAgger that would detect
these states, refine the training set and retrain the network. This is
done by simulating the policy using the learnt neural network on
the MDP and finding counter-examples where the neural network
is performing poorly by comparing the value given by the network
and the value 𝑓𝜎 (𝑠) associated with the exact method.

In Algorithm 1, we present a method to train the neural network
by an iterative process that generates new data for the training
set. In the first iteration, we train a neural network NN0 from an
initial training dataset DATASET and in later iterations, we add
more interesting data-points in that set. Initially, one could either
randomly generate a small amount of data or simulate the MDP by
following a uniform policy. In iteration 𝑖 , starting from an initial
state 𝑠0 in the MDP, we simulate a fixed number of paths until a
given horizon 𝐻 . We extract from these paths the states for which
the current neural network NN𝑖 trained from DATASET fails to
predict the correct values. We add them to our dataset, then train
the next iteration of the neural network. The decision on when to
stop the sharp DAgger loop is taken based on evaluations of the
quality of the neural network NN𝑖 at each iteration 𝑖 .

4.3 Evaluating a learnt policy
In order to evaluate the trained neural network, a traditional ap-
proach for machine learning can report on a loss function for a
test dataset. Alternatively, one can measure the accuracy of the
network by reporting how many times the resulting learnt policy
has differed from the expert policy as a classifier. But this may not
be sufficient to evaluate how the learnt policy is performing on the
MDP. In Frozen Lake, consider a learned policy that returns the
same action as the expert policy for all states in the MDP, except for
one state where the learnt policy gives a bad action that leads to a
hole. Even though the learnt policy has an almost perfect accuracy,
it would perform badly compared to the expert policy in real plays,
and could lead to much worse rewards on expectation.

As such, we argue for the use of statistical model checking to
evaluate the expected reward of a (neural) policy. In particular, we
can use the approximate probabilistic model checking method [17]
where we simulate a set of paths following the expert policy on the

10 20 30 40 50 60 70 80 90 100
0.6

0.7

0.8

0.9

1

Number of simulations

A
ve
ra
ge

re
w
a
rd

Estimated reward
Expected reward

Figure 3: Statistical model checking for Frozen Lake

one hand and the neural policy on the other, then compare their
average rewards on these paths.

Theorem 4.1. Suppose for MDP 𝑀 , there exists 𝑎 < 𝑏 such that
𝑎 ≤ Rewardℎ

𝑀
(𝑝) ≤ 𝑏 for all paths 𝑝 in 𝑀 . Let 𝛿 ∈ (0, 1] and 𝜖 ∈

(0, 𝑏 − 𝑎]. Then for a policy 𝜎 , suppose we sample 𝑛 ≥ (𝑏−𝑎)2
2𝜖2 ln(2

𝛿
)

paths 𝑝1, 𝑝2 . . . 𝑝𝑛 independently at random from a state 𝑠 in the
MDP𝑀 following the policy 𝜎 . Let 𝑟 = 1

𝑛

∑𝑛
𝑖=1 Reward

ℎ
𝑀
(𝑝𝑖). Then,

P𝜎𝑠 (|𝑟 − Valℎ𝑀 (𝑠, 𝜎) | ≥ 𝜖) ≤ 𝛿 .

Proof. We have 𝑛 independent identically distributed random
variablesRewardℎ

𝑀
(𝑝𝑖)with expected valueValℎ𝑀 (𝑠, 𝜎). Then,E𝜎𝑠 (𝑟) =

Valℎ
𝑀
(𝑠, 𝜎). The Chernoff-Hoeffding inequality [19] then yields

P𝜎𝑠 (|𝑟 − Valℎ
𝑀
(𝑠, 𝜎) | ≥ 𝜖) ≤ 2 exp

(
− 2𝑛𝜖2

(𝑏−𝑎)2
)
≤ 𝛿 . □

The above theorem gives a theoretical bound on the number of
simulations needed to get a probably approximately correct approxi-
mation of the real expected reward. In practice, we typically need
fewer simulations to achieve a good approximation. For example,
consider the Frozen Lake layout in Figure 1. Using exact methods
we calculated the optimal expected reward to be 0.827. In Figure 3,
for 𝑛 ∈ [1, 100], we independently simulated 𝑛 paths using the
optimal policy and plotted the estimated reward obtained from sta-
tistical model checking. We see that we get a good approximation
of the real expected reward with under 100 simulations.

5 EXPERIMENTAL RESULTS
We ran experiments on the two MDPs previously introduced in
Section 2.3. Frozen Lake is an MDP that can be fully handled by
model-checkers (using exact methods), and as such we use it to
report on the benefits of using perfect data to train the surrogate
policy. Whereas, the Pac-Man game provides more challenging
MDPs to handle. There, we report on the performance of MCTS
equipped with perfect or neural advice and on the performance
of a surrogate policy trained on data obtained from MCTS. The
sharp DAgger algorithm (Algorithm 1) proves to be instrumental
for learning efficiently in Pac-Man. The code is available at [9].

5.1 Frozen Lake
For the game described in Example 2.3, we randomly generated
layouts of size 10x10 where we place walls at each cell in the bor-
der of the grid and with probability 0.1 at each of the other cells.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1359

0 20 40 60 80 100

Storm

Policy learnt
from Storm

MCTS

Policy learnt
from MCTS

93%

81%

77%

69%

Percentage of wins

Win Draw Loss

Figure 4: Perfect vs MCTS-based policies for Frozen Lake.

Then we place holes in remaining cells with probability 0.1. Finally,
we randomly place a target and an initial position in two of the
remaining empty cells. If the game is neither won nor lost within
1000 steps, the game is considered a draw.

5.1.1 Expert policies. Consider the state in the MDP where the
robot is on the target position. We label this state with 𝑡𝑎𝑟𝑔𝑒𝑡 .
Using the model checker, we can compute the policies Opt(𝑠) =
argmax𝜎 P𝜎𝑠 (𝑠 |= ^𝑡𝑎𝑟𝑔𝑒𝑡) that maximize the probability to reach
the target 𝑡 starting from state 𝑠 . The practical policy that we are
interested in should not only maximize the probability to reach the
target but also minimize the expected number of steps needed to
reach the target (in order to reach it before the horizon𝐻 whenever
possible). For a path 𝜌 in MC 𝑀𝜎 , we define len(𝜌, 𝑡𝑎𝑟𝑔𝑒𝑡) = 𝑖 if
𝜌 [𝑖] is the target state and for all 𝑗 < 𝑖 , 𝜌 [𝑗] is not the target set.
Using formal methods techniques, we can calculate a policy in

argmin
𝜎 ∈Opt(𝑠)

E𝜎𝑠 (len(𝜌, 𝑡𝑎𝑟𝑔𝑒𝑡) | 𝜌 |= ^𝑡𝑎𝑟𝑔𝑒𝑡)) .

This policy can be shown to be optimal for total reward of any
large enough horizon 𝐻 . We compared it with the policy generated
from MCTS with horizon 𝐻 = 30. From state 𝑠 , a search tree is
constructed for 40 iterations. Thus, the search tree constructed by
theMCTS algorithm contains up to 40 nodes. In each iteration, when
a new node is added to the search tree, 10 samples are obtained by
using a uniform policy to estimate the value of the node.

5.1.2 Learnt policies. Our training dataset contained 760𝑘 data-
points whichwe used to imitate the expert policies. Hyperparameter
tuning resulted in neural networks containing a 2D convolution
layer with 6 filters, a flattening layer and 2 dense layers. We ran-
domly generated 1000 layouts and ran 100 games from each layout
for 1000 steps using both expert policies and the learnt policies.
The average outcomes are reported in Figure 4. Using Storm, we
calculate the optimal expected win rate to be 93% on average in
the generated layouts. This value denotes the probability to reach
the target eventually, using the optimal policy. In practice, our sta-
tistical model checking approach requires fixing a finite horizon.
Figure 4 confirms that horizon 1000 is sufficient as the expert pol-
icy from Storm still reaches a win rate of 93%. In comparison, our
policy learnt from Storm had a win rate of 81%. The expert policy
calculated using MCTS is suboptimal and showed a win rate of 77%

expert
policy

1 2 3 4 5 6 Policy learnt
from random data

0

20

40

60

80

100

70%

9%

26%

41%

56% 58% 57%

18%

P
er
ce
n
ta
g
e
o
f
sa
fe

g
a
m
es

Safe Not safe

Policies learnt from from sharp DAgger

Training dataset size : 32k 158k 176k 190k 200k 226k 226k

Figure 5: Sharp DAgger for Pac-Man neural advice

while the policy learnt from it has a win rate of 69%. This highlights
the benefits of using exact methods to get noise-free data.

5.2 Pac-Man
We performed our experiments on the game Pac-Man in a grid of
size 9 × 21 described in Figure 2. In our experiments, the ghosts
always choose an action uniformly at random from the legal actions
available. As explained in Example 2.4, we can view this as an MDP.
Moreover, if Pac-Man does not win (eats all food pills) or lose (makes
contact with a ghost) within 300 steps, we consider it a draw.

5.2.1 Expert policies. The state-space of the MDP is too large to
apply directly to find the optimal policy. As a consequence, we
decided to use Monte Carlo tree search with a receding horizon
of 𝐻 = 10. From state 𝑠 , a search tree is constructed with a maxi-
mum depth of 𝐻 for 40 iterations.3 We combined MCTS with the
notion of advice as used in [8] in order to play Pac-Man. In each
iteration of the MCTS algorithm, when a new node is added, 20
samples are obtained by using a uniform policy to estimate the
value of the node among the paths that are safe i.e. where Pac-Man
is not eaten by a ghost. This optimistic estimation matches the
notion of simulation advice of [8]. During the exploration of the
search tree, we also restrict ourselves to actions 𝑎 that maximize
the probability to stay safe for the next 8 steps, i.e., actions 𝑎 such
that 𝜂8 (𝑠, 𝑎) = max𝑎′∈𝐴 𝜂8 (𝑠, 𝑎′) as defined in Section 3.3. Since the
online computation of the 𝜂8 function is too expensive to be done
at every node of the search tree, we only restrict the root node of
the tree so as to ensure the safety of the immediate decisions

We compare four different variants ofMCTS in Figure 6: a version
without this expert (safety) advice, one where it is used at the root
node of the tree, one where a neural advice is trained to imitate the
safety advice and is used at the root node, and finally one where
the neural advice is used at every node in the tree. For reference,
[8] reports that human players win 44% of the time on this grid.

5.2.2 Neural advice. To speed up the MCTS procedure we train a
neural network to imitate the safety advice. We used Algorithm 1 to
create a dataset. We use the 𝐿∞ metric with precision value 𝜖 = 0.2
to find new data-points during the aggregation. In other words, we

340 iterations was selected experimentally as a good compromise between achieving
high expected rewards and minimising computation time.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1360

0 20 40 60 80 100

MCTS

MCTS + Expert
advice at root

MCTS + Neural
advice at root

MCTS + Neural
advice at all nodes

55%

90%

71%

87%

Percentage of wins

Win Draw Loss

Figure 6: Different MCTS variants for Pac-Man.

add (𝑠, (𝜂𝐻 (𝑠, 𝑎))𝑎∈𝐴) to the dataset at the 𝑖𝑡ℎ iteration of sharp
DAgger if max𝑎∈𝐴 (|𝜂𝐻 (𝑠, 𝑎) − NN𝑖 (𝑠, 𝑎) |) > 0.2.

In each iteration, we simulate 4000 games for 300 steps to gener-
ate Paths𝑖 . We compare the safety status of the neural networks at
each iteration of sharp DAgger in Figure 5. After 5 iterations, we ob-
serve that Pac-Man stays safe (for 300 steps) in 58% of games when
using the learnt policy instead of staying safe in 70% of games with
the policy calculated from model checking. Hyperparameter tuning
stabilized on neural networks using a 2D convolution layer with
6 filters, a flattening layer and 4 dense layers. The entire training
dataset generated from sharp DAgger contains 226𝑘 data-points.
To check the effectiveness of our method of data aggregation, we
compare our learnt policy with a policy trained on 226𝑘 randomly
generated data-points. This learnt policy performs worse and stays
safe in only 18% of games. Dataset generation and training of the
neural networks was performed in 36 hours with a cluster of 250
CPU cores, for a total of 9000 hours of computing time (at 2.9 GHz).

5.2.3 Using the neural advice in MCTS. To accommodate for the
inherent noise in the output of the neural network NN, we fix
a threshold 𝑡 = 0.9 and consider the advice that allows almost-
optimal actions with respect to 𝑡 , i.e. the neural advice that restricts
to actions 𝑎 such that NN(𝑠, 𝑎) ≥ 0.9 ×max𝑎′∈𝐴 𝑁𝑁 (𝑠, 𝑎′).

We compare in Figure 6 the performance of MCTS variants using
expert or neural policies as advice. We ran each setup on 100 games.
The Python implementation of MCTS that we rely on was not
designed to optimize the performance in terms of computing time.
In our case, the MCTS algorithm without any selection advice uses
9 seconds to decide on an action. Using the (formal methods based)
expert advice at the root node of MCTS increases the time per
decision by 8 extra seconds. While the 9 seconds spent in MCTS
can be expected to be vastly lowered using code improvements,4 the
model checking done by Storm is already optimized. By replacing
the expert advice with a neural advice, we can avoid this fixed
cost of 8 seconds per decision, as the network can be consulted in
3 ms instead. While the neural advice is not as good as the expert
advice (it ensures safety in 71% of games instead of 90% when used
identically at the root node of the MCTS tree), we can afford to
use it on every node of the search tree to dynamically prune the
search. In this way, we can get an 87% win-rate that is the best of
both worlds: we approach the win-rate of the expert advice with
the computing time of the bare-bones version of MCTS. Since the

4MCTS and other simulation-based techniques are highly amenable to parallelism
[10].

expert
policy

1 2 3 4 5 6 Policy learnt
from random data

0

20

40

60

80

100

87%

1%

19%

56%
60%

64% 63%

15%

P
er
ce
n
ta
g
e
o
f
w
in
s

Win Draw Loss

Policies learnt from sharp DAgger

Training dataset size : 46k 110k 208k 329k 420k 515k 515k

Figure 7: Sharp DAgger for Pac-Man surrogate policies.

neural advice requires much less computational power per call
than the expert advice, using it would compensate the expensive
computational cost of its training in the long run. In our case, we
break even after 4 million calls (roughly 40k games of Pac-Man).

5.2.4 Learning a surrogate policy. We trained a surrogate neural
network to imitate the expert policy defined previously as MCTS
with a neural advice at every node, that reached an 87% win-rate
while keeping computing times as low as possible. To generate the
dataset, we use our sharp DAgger algorithm and simulate 4000
games with horizon 300 in each iteration. To evaluate how well our
policies are performing, we compare the average number of wins
obtained by following them in Figure 7. After 5 iterations, we reach
a policy with a win-rate of 64%, which is higher than the 55% of
the “standard” version of MCTS, while having almost no need for
online computing time as it is using a pre-trained neural network.
Hyperparameter tuning stabilized on neural networks using a 2D
convolution layer with 5 filters, a flattening layer, 5 dense layers.
Finally, the training dataset generated with sharp DAgger contains
515𝑘 data-points. In comparison, a policy learned from a randomly
generated dataset of size 515𝑘 is only able to win in 15% of games,
which confirms the importance of sharp DAgger in this setting.

6 CONCLUSION
In this work, we have proposed a framework to combine formal
methods with MCTS and deep learning to obtain a scalable way of
synthesising policies with both good performance and low latency.

From our experiments, we conclude that formal methods can
provide good policies and useful advice for MCTS, albeit at a high
computational cost. Training a neural network to play the role of the
advice allows one to obtain the best of both worlds: the performance
boost of the advice but without its computational cost. Particularly,
neural advice compensates for its expensive computational training
cost in the long run since it requires less computational power per
call than expert advice. Using a sharp dataset-aggregation procedure
is instrumental in reaching satisfactory rewards in practice because
of the reliance of deep-learning techniques on the accumulation
of huge amounts of data. Finally, while the best policy that we
obtained for Pac-Man is based on MCTS, its surrogate neural-
network policy is able to play relatively well while making near
instantaneous decisions.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1361

ACKNOWLEDGMENTS
Computational resources have been provided by the CÉCI, funded
by the F.R.S.-FNRS under Grant No. 2.5020.11 and by the Walloon
Region. This work was supported by the ARC “Non-Zero Sum
Game Graphs” project (Fédération Wallonie-Bruxelles), the EOS
“Verilearn” project (F.R.S.-FNRS & FWO), and the FWO “SAILor”
project (G030020N).

REFERENCES
[1] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. 2018. Safe Reinforcement Learning via Shielding. In
Proceedings of the 32nd AAAI Conference on Artificial Intelligence, (AAAI 2018).
AAAI Press, 2669–2678.

[2] Robert B. Ash and Catherine A. Doleans-Dade. 1999. Probability and Measure
Theory (2nd edition ed.). Harcourt Academic Press.

[3] Pranav Ashok, Tomás Brázdil, Jan Kretínský, and Ondrej Slámecka. 2018. Monte
Carlo Tree Search for Verifying Reachability in Markov Decision Processes.
In Proceedings of the 8th International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation (ISoLA 2018) (Lecture Notes in
Computer Science, Vol. 11245). Springer, 322–335. https://doi.org/10.1007/978-3-
030-03421-4_21

[4] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[5] George EP Box and David R Cox. 1964. An analysis of transformations. Journal
of the Royal Statistical Society: Series B (Methodological) 26, 2 (1964), 211–243.

[6] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Transactions on Computational Intelligence and AI in Games
4, 1 (2012), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810

[7] Carlos E. Budde, Arnd Hartmanns, Michaela Klauck, Jan Kretínský, David Parker,
TimQuatmann, Andrea Turrini, and Zhen Zhang. 2020. OnCorrectness, Precision,
and Performance in Quantitative Verification - QComp 2020 Competition Report.
In Leveraging Applications of Formal Methods, Verification and Validation: Tools
and Trends - 9th International Symposium on Leveraging Applications of Formal
Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part IV
(Lecture Notes in Computer Science, Vol. 12479), Tiziana Margaria and Bernhard
Steffen (Eds.). Springer, 216–241. https://doi.org/10.1007/978-3-030-83723-5_15

[8] Damien Busatto-Gaston, Debraj Chakraborty, and Jean-François Raskin. 2020.
Monte Carlo Tree Search Guided by Symbolic Advice for MDPs. In 31st Inter-
national Conference on Concurrency Theory, CONCUR 2020, September 1-4, 2020,
Vienna, Austria (Virtual Conference) (LIPIcs, Vol. 171), Igor Konnov and Laura
Kovács (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 40:1–40:24.
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40

[9] Debraj Chakraborty, Damien Busatto-Gaston, Jean-François Raskin, and
Guillermo A. Pérez. 2023. Formally-Sharp DAgger for MCTS: Lower-Latency
Monte Carlo Tree Search using Data Aggregation with Formal Methods. https:
//doi.org/10.5281/zenodo.7655528

[10] Guillaume M. J. B. Chaslot, Mark H. M. Winands, and H. Jaap van den Herik.
2008. Parallel Monte-Carlo Tree Search. In Proceedings of the 6th International
Conference on Computers and Games (CG 2008) (Lecture Notes in Computer Science,
Vol. 5131), H. Jaap van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M.
Winands (Eds.). Springer, 60–71. https://doi.org/10.1007/978-3-540-87608-3_6

[11] Krishnendu Chatterjee, Luca De Alfaro, and Thomas A Henzinger. 2004. Trading
memory for randomness. In First International Conference on the Quantitative
Evaluation of Systems, 2004. QEST 2004. Proceedings. IEEE, 206–217.

[12] EdmundM. Clarke, OrnaGrumberg, Somesh Jha, Yuan Lu, andHelmut Veith. 2003.
Counterexample-guided abstraction refinement for symbolic model checking. J.
ACM 50, 5 (2003), 752–794. https://doi.org/10.1145/876638.876643

[13] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, and Roderick Bloem
(Eds.). 2018. Handbook of Model Checking. Springer. https://doi.org/10.1007/978-
3-319-10575-8

[14] Arthur Clavière, Souradeep Dutta, and Sriram Sankaranarayanan. 2019. Tra-
jectory Tracking Control for Robotic Vehicles Using Counterexample Guided
Training of Neural Networks. In Proceedings of the Twenty-Ninth International
Conference on Automated Planning and Scheduling, ICAPS 2018, Berkeley, CA, USA,
July 11-15, 2019, J. Benton, Nir Lipovetzky, Eva Onaindia, David E. Smith, and
Siddharth Srivastava (Eds.). AAAI Press, 680–688. https://ojs.aaai.org/index.php/
ICAPS/article/view/3555

[15] OpenAI Gym. [n.d.]. Frozen Lake. https://www.gymlibrary.dev/environments/
toy_text/frozen_lake/

[16] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and
Matthias Volk. 2022. The probabilistic model checker Storm. Int. J. Softw. Tools
Technol. Transf. 24, 4 (2022), 589–610. https://doi.org/10.1007/s10009-021-00633-z

[17] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyronnet.
2004. Approximate probabilistic model checking. In International Workshop on
Verification, Model Checking, and Abstract Interpretation. Springer, 73–84.

[18] Michael Hertneck, Johannes Köhler, Sebastian Trimpe, and Frank Allgöwer. 2018.
Learning an Approximate Model Predictive Controller With Guarantees. IEEE
Control. Syst. Lett. 2, 3 (2018), 543–548. https://doi.org/10.1109/LCSYS.2018.
2843682

[19] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random
Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30. https://doi.org/10.1080/
01621459.1963.10500830

[20] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee.
2019. Verisig: verifying safety properties of hybrid systems with neural network
controllers. In Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. 169–178.

[21] Nils Jansen, Bettina Könighofer, Sebastian Junges, Alex Serban, and Roderick
Bloem. 2020. Safe Reinforcement Learning Using Probabilistic Shields (Invited
Paper). In 31st International Conference on Concurrency Theory, CONCUR 2020,
Vol. 171. 3:1–3:16. https://doi.org/10.4230/LIPIcs.CONCUR.2020.3

[22] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun (Eds.). http://arxiv.org/abs/1412.6980

[23] M. Kwiatkowska, G. Norman, and D. Parker. 2011. PRISM 4.0: Verification of Prob-
abilistic Real-time Systems. In Proc. 23rd International Conference on Computer
Aided Verification (CAV’11) (LNCS, Vol. 6806), G. Gopalakrishnan and S. Qadeer
(Eds.). Springer, 585–591.

[24] Tom O’Malley, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca
Invernizzi, et al. 2019. KerasTuner. https://github.com/keras-team/keras-tuner.

[25] Martin L. Puterman. 1994. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley. https://doi.org/10.1002/9780470316887

[26] Stephane Ross and Drew Bagnell. 2010. Efficient Reductions for Imitation Learn-
ing. In Proceedings of the Thirteenth International Conference on Artificial Intelli-
gence and Statistics (Proceedings of Machine Learning Research, Vol. 9), Yee Whye
Teh and Mike Titterington (Eds.). PMLR, Chia Laguna Resort, Sardinia, Italy,
661–668. https://proceedings.mlr.press/v9/ross10a.html

[27] Stephane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A Reduction of Im-
itation Learning and Structured Prediction to No-Regret Online Learning. In
Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (Proceedings of Machine Learning Research, Vol. 15), Geoffrey Gordon,
David Dunson, and Miroslav Dudík (Eds.). PMLR, Fort Lauderdale, FL, USA,
627–635.

[28] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[29] In-Kwon Yeo and Richard A Johnson. 2000. A new family of power transforma-
tions to improve normality or symmetry. Biometrika 87, 4 (2000), 954–959.

[30] Håkan LS Younes and Reid G Simmons. 2002. Probabilistic verification of dis-
crete event systems using acceptance sampling. In International Conference on
Computer Aided Verification. Springer, 223–235.

Session 4B: Multi-Armed Bandits + Monte Carlo Tree Search

AAMAS 2023, May 29–June 2, 2023, London, United Kingdom

1362

https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1007/978-3-030-03421-4_21
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-030-83723-5_15
https://doi.org/10.4230/LIPIcs.CONCUR.2020.40
https://doi.org/10.5281/zenodo.7655528
https://doi.org/10.5281/zenodo.7655528
https://doi.org/10.1007/978-3-540-87608-3_6
https://doi.org/10.1145/876638.876643
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1007/978-3-319-10575-8
https://ojs.aaai.org/index.php/ICAPS/article/view/3555
https://ojs.aaai.org/index.php/ICAPS/article/view/3555
https://www.gymlibrary.dev/environments/toy_text/frozen_lake/
https://www.gymlibrary.dev/environments/toy_text/frozen_lake/
https://doi.org/10.1007/s10009-021-00633-z
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1109/LCSYS.2018.2843682
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.1080/01621459.1963.10500830
https://doi.org/10.4230/LIPIcs.CONCUR.2020.3
http://arxiv.org/abs/1412.6980
https://github.com/keras-team/keras-tuner
https://doi.org/10.1002/9780470316887
https://proceedings.mlr.press/v9/ross10a.html

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Markov chain
	2.2 Probabilistic computation tree logic
	2.3 Markov decision process

	3 Expert policies
	3.1 Formal methods
	3.2 Monte Carlo tree search
	3.3 Monte Carlo tree search with advice

	4 Imitating expert policies
	4.1 Training a neural network
	4.2 Formally sharp DAgger
	4.3 Evaluating a learnt policy

	5 Experimental results
	5.1 Frozen Lake
	5.2 Pac-Man

	6 Conclusion
	Acknowledgments
	References

