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Experimental implementation of a finite-time
controller for the axisymmetric vibration modes of a
tom-tom drum

Marc Wijnand™*, Brigitte d’Andréa-Novel*, ©Thomas Hélie?, and ©®David Roze?

S3AM team, STMS Lab (IRCAM — 2CNRS - !Sorbonne Université), Paris, France
* marc.wijnand@ircam.fr

This paper is concerned with the experimental implementation of a previously derived finite-time
observer-regulator controlling the current of a loudspeaker mounted in a tom-tom drum, based on
the measurement of its cavity pressure. The control goal is to modify frequency and damping of the
axisymmetric vibration modes of the tom-tom membrane, by modifying the cavity volume.

The first contribution constitutes the identification of the physical parameters of the tom-tom drum,
such as membrane tension (from the frequencies of its observed Chladni figures) and viscous damping
coeflicient.

Secondly, the testbench for the controller evaluation is developed. It is shown how a reproducible excitation
with a drumstick can be achieved. Then, the control law is implemented on a microcontroller (Coala). A
chattering phenomenon is observed, caused by the numerical stiffness of the finite-time control law, that
can be removed by applying a regularization based on a local softening linear interpolation close to the
origin.

Finally, it is shown that the controller is able to modify frequencies of the axisymmetric vibration modes of
the tom-tom membrane. However, because of the disparity between model and measurements, it is difficult
to quantify the controller performance in achieving a prescribed frequency shift. It is proposed to refine
the model, in particular by taking into account the sound propagation inside the cavity.

This work is an extension of [Wijnand 2021, Chapter 10; Wijnand et al. 2023].

Keywords musical acoustics, active control of musical instruments, finite-time control, membranophones, experimen-
tal validation

1 Introduction

1.1 Active control of musical instruments

Active control [Elliott et al. 1993; Fuller et al. 1996] of musical instruments consists in adding
a control loop to an existing acoustic musical instrument that is being played by a musician
[Besnainou 1999; Besnainou 2006; Berdahl et al. 2007]. In terms of the actuator type, two classes
of active vibration control are distinguished. In the case of acoustical active control, the control
acts on a fluid medium. An example is the use of a loudspeaker to create destructive interference
in order to cancel sound. In the case of structural active control, the control acts on a solid. One
can for example attach an actuator to the soundboard of a violin.

In most cases of active control of musical instruments, the goal is not to reduce vibrations as
much as possible, but to change frequencies or damping coefficients of the instrument’s vibration,
enabling the musician to enlarge his sound palette while keeping the ergonomics of the original
instrument. One can mention for instance applications to the (violin/guitar) string [Berdahl et al.
2006; Benacchio et al. 2015; Wijnand et al. 2022], (xylophone) beam [Boutin et al. 2015], (clarinet)
tube [Meurisse et al. 2015a], (Chinese gong) metal plate [Jossic et al. 2017].

Furthermore, active control of musical instruments can be invoked for the study of their
dynamical behaviour [Benacchio et al. 2016], or for the removal of unwanted phenomena such as
the so-called wolf note of the cello [Neubauer et al. 2018], or the bad playability of certain notes
on the trombone when using a straight mute [Meurisse et al. 2015b].
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1.2 Membranophones

There exist a great variety of percussion instruments that are membranophones, whose sound is
essentially produced by a membrane, some examples of which are shown in Fig. 1. They can be
categorized [Von Hornbostel et al. 1914] according to the excitation mechanism by the musician,
and by the form of the cavity containing a volume of air, if present. Because of the coupling
between membrane and air in a cavity, the harmonicity of the axisymmetric vibration modes of
the membrane is improved [Christian et al. 1984], and the acoustical efficiency of the instrument
increased [Chaigne et al. 2016].

——
LTl

(a) Tom-tom (b) Bass drum (c) Snare drum (d) Conga (e) Timpano/ (f) Tabla
kettledrum

Figure 1: Examples of membranophones coupling a membrane to a cavity (after [Michels 1988; Berg et al.
2005]).

1.2.1 The tom-tom drum

The tom-tom drum is a directly struck membranophone. It consists of a cylindrical body with a
top (batter head) and bottom (resonant head) membrane and is a standard part of a drum kit
(containing two rack toms and the bigger floor tom or low tom). The sound of the tom-tom drum
is referred to as "indeterminately pitched" or "having a less clear pitch" [Solomon 2016], putting
it in an ambiguous position between pitched instruments (such as the timpano, Fig. 1(e)) and
unpitched instruments (such as the bass drum, Fig. 1(b)).

1.2.2 Vibration of the circular membrane

Some elements of the vibration of the circular membrane are indicated here. More details on
inharmonicity, air charge [Fletcher et al. 2012, Chapter 18] and damping are given in [Wijnand
2021, §9.2].

Circular membrane attached at its rim The transverse vibration of the circular membrane
in a vacuum attached at its rim is described by the wave equation [Kinsler et al. 1999, §4.2; Graff
2012], whose spatial eigenfunctions are

{‘If(r, 0) = J,(Apmr) cos nd

R . (1)
¥(r,0) = J,(Anmr) sinno,

with J,,(+) Bessel functions of the first kind of order n and wave numbers A, are obtained as the
solution of J,,(A,ma) = 0, a being the radius of the circular membrane. The first eigenmodes
are drawn in Fig. 2. One observes that modes with n = 0 are axisymmetric (w.r.t. the axis
perpendicular through the membrane at rest, at its middle), and modes with (integer) n > 0 are
not axisymmetric.

Coupling to cavity When a circular membrane attached at its rim is coupled to a volume of
air Vp, its axisymmetric modes will cause a net volume change, that is expressed as a pressure
term in the wave equation. As opposed to the case of the membrane without cavity (1), the
axisymmetric modes become [Morse 1995]

O(r,0) = [Jo(Amr) — Jo(Ama)], (2)

where the wave numbers A, satisfy the characteristic equation

ma'ypo

A2,a*Jo(Ama) = —BJo(Ama) with B = T
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Figure 2: A few eigenmodes ¥,,,,,(r, 6) for the circular membrane attached at its rim. The diagrams show
the nodal circles and lines: the locus that remains motionless for the given eigenmode nm, and that can be
visualized experimentally as a Chladni figure.

and where the dimensionless quantity B can be interpreted as the ratio of the restoring force
applied by the air in the cavity to the membrane tension [Kinsler et al. 1999].

Deviations of the linear model In practice, experimentally observed modes often deviate

from the linear model (1)-(2) due to several phenomena.

e Non-uniform density Some instruments, such as the Indian tabla [Sathej et al. 2009;
Maugeais 2014; Samejima et al. 2016] and mridanga and the Myanmar pat wain [Bader
2016], have a non-uniform surface mass density due to applied paste, that can be used for
tuning.

e Non-uniform tension Depending on the tuning mechanism (6 tension rods in the case
of a tom-tom drum), the tension can vary more or less along the circumference of the
membrane [Samejima et al. 2016]. This can cause a frequency difference between two spatial
eigenfunctions Wy, (r, 0) and ¥y, (r, ) that theoretically have the same eigenfrequency
(peak doubling or mode splitting). In [Worland 2010] for instance, frequency differences of
2 — 28 Hz were measured in a tom-tom drum.

Furthermore, variation in tension can modify the shape of the modes ([Anderson 1978],
observed using interferometry in [Worland 2010], Fig. 3).

T inhomogeneous

11 > _——g__) ’
T inhomogeneous ‘

21 } geneou

Figure 3: Two examples of deformations of modes due to inhomogeneous tension.

e Tension modulation (pitch glide) High excitation amplitudes lead to a tension increase,
leading to a pitch glide phenomenon with higher eigenfrequencies that descend to their
values corresponding to the linear regime [Rossing 1982a; Richardson 2010, §2.2.7; Torin
et al. 2014]. This phenomenon is easier to obtain when the membrane was tuned to a low
tension [Richardson 2010, §2.2.7].

For the case of a tom-tom drum with a diameter of 32 — 33 cm, an increase in frequency of
8 — 10% (more than a semitone) has been reported in [Bork 1983; Rose 1978]. In [Dahl
1997], one mentions a pitch glide of even 20 Hz (almost 4 semitones) for the fundamental
when hitting hard on a tom-tom drum, and it is argued that for the perception of this
instrument, this phenomenon could partially be masked by the presence of high-frequency
components. In [Cahoon 1970; Fletcher et al. 1978], the case of a bass drum is considered,
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where frequency changes of 6 — 10% are reported when hitting hard (ca. 3.5Hz or a
semitone, for the case of a typical transverse displacement of 6 mm).

1.3 Active control of membranophones

Active control has been applied to following percussion instruments with a membrane-cavity
coupling. In [Rollow IV 2003], PID and stabilizing feedforward modal controllers for a drumhead
were developed, using four accelerometers on the drumhead as sensors and four loudspeakers
acting on the cavity as actuators. Experimentally, a suppression of one membrane mode was
obtained, yet no frequency shift. A bass drum [Lupone et al. 2005] was controlled by a negative
feedback, using a piezoceramic sensor attached to the rim to measure the membrane deflection
and a single loudspeaker as actuator. A conga [Van Walstijn et al. 2005] was endowed with
a contact microphone attached to the membrane as sensor and a single loudspeaker used as
actuator enables to modify the instrument’s frequency response. Feedback of a piezoelectric
sensor placed on the batter head of a tom-tom drum [Gregorio et al. 2018] was applied on the
resonant head by an electromagnetic actuator. A pickup dynamic microphone was placed inside
an electromagnetic actuator placed on the batter head of a bass drum in [Rector et al. 2014].
Recently, a snare drum [Williams et al. 2020] was controlled using an optical sensor on the batter
head, and multiple actuators: two electrodynamic tactile transducers on the resonant head, and
an additional loudspeaker on a frame mounted inside the cavity.

The contribution of this paper focuses on the use of ODE finite-time control methods [Bhat
et al. 2000], offering advantages regarding time constraints (faster convergence than an asymptotic
control law) and robustness, but being necessarily non Lipschitz continuous at the origin [Haimo
1986; Moulay et al. 2006] (which can cause numerical problems). Furthermore, in the described
setup, neither the sensor nor the actuator are in the domain of the controlled membrane.

1.4 Article structure

In Section 2, the previously obtained model and controller are restated. The physical constants
that they contain are identified in Section 3. Then, a testbench is constructed (Section 4) and the
obtained results are evaluated (Section 5).

2 Theoretical results

This section review the model and controller that were obtained in [Wijnand et al. 2019; Wijnand
et al. 2020].

2.1 Model

The coupled PDE-ODE physical model for the tom-tom drum consisting of the top membrane
coupled to the cavity and loudspeaker as depicted in Figure 4 is presented in Section 2.1.1.
In Section 2.1.2, an ODE state-space reformulation is obtained after projection on the spatial
eigenmodes of the membrane coupled to the cavity.

membrane Um

Ym (7, 1)

cavity

V(1)
p(t)

loudspeaker

/////
//////////////////////////
2222222222722 27222227272

Figure 4: Geometry of the system.
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2.1.1  Physical model
Following coupled PDE-ODE model for the system shown in Fig. 4 was obtained:

& 9
TAym(l", t) +pC(t) = O-mﬁym(r, t) +,u§ym(r, t)
pc(t) = _Yj‘;_z [_/S ym(r, t) dS(r) — Slfl(t) (4)

mifi(t) + aifi(t) + kiti(t) = Sipe(t) + Bli(t).

This model describes the evolutions of the transverse displacement of the tom-tom membrane
ym (7, t), the acoustic pressure in the cavity p.(¢) and the transverse position of the loudspeaker
membrane £(t).

The surface of the membrane S is defined between r = 0 and r = a. The membrane is
clamped at its rim: y, (a, t) = 0. In polar coordinates, A = 8‘9—:2 + %a%. The physical constants of
the membrane are its tension T, equivalent areal density oy, = ¢ + 0.85ap,;; (with o the real areal
density, a the membrane’s radius and p,;; the volumetric density of air, [Kinsler et al. 1999]), and
viscosity coefficient p. The physical constants of the cavity are the heat capacity ratio of air y and
its pressure po and volume Vj at rest, that relate the acoustic values (p,, V¢) to the total values

(p.V):

pe(t) = p(t) = po
Ve(t) = V(1) = V.

The physical constants of the loudspeaker are its surface Sj, the Lorentz force factor Bl (with the
length of the loudspeaker coil ! inside the magnetic field B), and equivalent mass mj, damper c;
and spring kj.

2.1.2 Projection and state-space reformulation
The model (4) is spatially discretized by a modal projection and truncation:

N
Ym(r ) = ) on(r)za(d),
n=1

where z,(t) are the temporal evolutions corresponding to the respective N axisymmetric
eigenfunctions of the circular membrane clamped at its rim and coupled to a cavity,

(pn(r) =Wy [Jo(Anr) = Jo(Ana)],

equal to Eq. (2) multiplied by arbitrary weights w,, and with wave numbers A,, as solutions of the
condition (3).

2.2 Control design
A controller for the loudspeaker current is designed, to let its membrane position (and thus the
pressure inside the cavity) track in finite time [Bernuau et al. 2015] a reference that realizes a pole
placement on the tom-tom membrane, based on the measurement of the cavity pressure only
(schematized in Fig. 5). Thus, a modal control of frequencies and/or damping coeficients of the
tom-tom membrane is possible.

The obtained finite-time control law reads

i(t) = Bil [Sip (1) + ki (2) + c1™ (1) — ks (6™ (1) = £ (1)) — ka (£™(2) — & (1))

(24

ki 670 - (O ~ ke |20 -5 )

with control parameters ki, k; > 0, a € ]0, 1[ (to be tuned in simulation [Wijnand et al. 2020]),
ks > ki, kg > ¢, and [x]% 2 sgn(x)|x|’.
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controller

Figure 5: Structure of the controller (observer-regulator): a control law for the loudspeaker current ij(¢) is
calculated, based on a measurement of the cavity pressure pT(¢) and on an estimation of the temporal
evolutions z;(t) of the first N membrane modes, that are not measured.

The following signals are defined. The real pressure p7*(t) is measured by a sensor. The
reference pressure is

N
pi() 2 = [kiazi(t) + kipzi(1)] (6)
i=1

where coeflicients k; ; and k;; are chosen to obtain a pole placement that enables to modify
modal frequencies and/or damping coeflicients of the tom-tom membrane [Wijnand et al. 2020].
The temporal evolutions z;(t) of the first N membrane modes are estimated by a finite-time
observer obtained in [Wijnand et al. 2020, Lemma 2] (after [Perruquetti et al. 2008]). Lastly, the
real (resp. reference) loudspeaker position £ () (resp. £ (¢)) are expressed as function of the real
(resp. reference) pressure p2(t) (resp. p:(t)), and z;(t) using relation [Wijnand et al. 2020, Eq.
13]; and similarly for their time derivatives.

3 Identification

In Section 4, a testbench for the controlled tom-tom drum® will be built. In order for the
microcontroller to be able to calculate the control law (5), the physical parameters listed in Table
1 need to be estimated. The identification methods used for the cavity (Section 3.1), loudspeaker
(Section 3.2) and membrane (Section 3.3) are specified below. The references of the used devices
are given in Appendix A.

3.1 Cavity

3.1.1  Volume at rest
The volume Vj of the cavity at rest is estimated from the geometry.

3.2 Loudspeaker
A subwoofer loudspeaker® with nominal exterior diameter of 320 mm is mounted, whose linear
parameters are identified experimentally.

3.2.1 Equivalent surface S
The equivalent surface S; of the membrane is estimated from the geometry.

3.2.2 Thiele & Small parameters (my, ¢, k;, B, R, L)

Linear Thiele & Small model Figure 6 shows a schematic representation of an electrodynamic
loudspeaker. It is an electro-magneto-mechano-acoustical converter. A modulated electrical
tension is applied to its terminals, causing a current to flow in the electrical circuit containing a
coil mounted on a moving equipment. This coil is embedded in the magnetic field of a permanent

! Model: tom 1309T, Pearl drums, Japan, https://pearldrum.com
2 Model: AXX 1212, Raveland, US. A datasheet can be found in [Wijnand 2021, Section D.4].
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Table 1: List of physical parameters to be estimated.

membrane a  radius m
o mass density %
T  tension %
u  viscosity coefficient %

cavity Vo  volume at rest m®

loudspeaker | m; equivalent mass kg
c  equivalent damping k—sg
ky  equivalent stiffness g
Bl Lorentz force factor T-m= %
R electrical resistance ~ Q
L electrical inductance H
S1  equivalent surface m?

magnet, so a Laplace/Lorentz force is created on the moving equipment, causing the membrane
to move and creating a sound wave.

_~ membrane

permanent magnet

' coil
Figure 6: Structure of an electrodynamic loudspeaker.

The linear Thiele & Small model [Thiele 1971a; Thiele 1971b; Small 1972; Small 1973] for the
electrodynamic loudspeaker is used, that neglects the spatial modes of the membrane movement,
replacing the membrane by a plane piston (here of vertical position x;(t)). The model consists of
the force balance on the membrane3,

mx|(t) + ey (t) + kx (t) = Bliy(t), (7)

completed by the sum of electrical tensions in the equivalent electrical circuit,

U](t) = Ril(t) +L%i1(t) +Blfq(t), (8)

where v)(2) is the electrical tension applied to the loudspeaker terminals, and R and L respectively
the resistance and inductance of the electrical circuit.

There exist several methods for the identification of the Thiele & Small model. For the linear
model, as shown above, one has methods in the time [Knudsen et al. 1989] or frequency domain
[Klippel et al. 2001]. For the case of nonlinear parameters, we refer the reader to [Brunet 2014;
Bouvier 2018; Lebrun 2019]. Moreover, the loudspeaker characteristics can vary as function of
temperature [Krump 1997], which is why (online) [Pedersen et al. 2007] identification methods
have been developed, capable of tracking the evolution of the characteristics, for use in advanced
loudspeaker control algorithms.

w

This equation does not include the influence of a cavity, since the identification is performed without the top

membrane.
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Frequential identification method for the linear Thiele & Small parameters In the
current work, an offline standard linear method using the frequency domain is used. A testbench
from [Lebrun 2019] is used (Fig. 7), where the loudspeaker is driven with a sine sweep voltage
signal v)(t) = Acos(21 fot f(7) dr), where the frequency f () increases exponentially between
0.1Hz and 2000 Hz in 10 s, and voltage v)(t), current ij(t) and transverse displacement x;(¢) are
measured (Fig. 8).

ul(t)
fon | ij(t)
card x(t)

laser
sensor

l x(t)

sound \/W

card

current
sensor

amplifier

(a) Setup (b) Laser sensor mounted above the
center of the loudspeaker membrane,
the top membrane of the tom-tom drum
being temporarily removed

Figure 7: Testbench for loudspeaker identification.

0.3 0.4
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0.2 4
0.1+
0.0 4
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0.3 4
0.4
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0.1+
=004

v [V]

) [mm)]

0.1+
0.2+

0.3 4

ax ‘ s ' i
(@) v1(t) (b) i1(¥) (c) xi(t)

Figure 8: Measurements for the loudspeaker identification.

The physical parameters of the linear Thiele & Small model are obtained by curve fitting the
theoretical transfer functions of the linear model (7)-(8),

i r(s) = X(s) BI
X0 = I(s)  mst+cs+k’
V(s) B%l%s
H = = Ls+R,
vii(s) I(s) ms’+os+k TLsE
X(s Bl
Hxv(s) = o) _

V(s) B22s+ (Ls+R)(ms?+cs+k)’
with Laplace transforms

vi(t) & V(s),

i(t) & I(s),

x1(t) < X(s),

where the Laplace variable s is chosen on the Fourier axis (s = jow = j2zf € jR), to the
experimentally obtained transfer functions (Fig 9).
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Figure 9: Transfer functions calculated from measurements.

The estimation procedure from [Lebrun 2019] is followed: the mechanical resonance frequency
fo is obtained from the maximum of |Hy;(s)| (Fig. 9(a)), an initial estimation for the parameters
is obtained by curve fitting* Hx/;(s) then Hy ;(s), used as initial values for a final joint curve
fitting of both transfer functions. The resulting estimated transfer function Hy /7 (s) is shown in

Fig. 10.

80

—— measurements
\ - - - curve fit

I

60

[V (s)/1(s)|

0 20 40 60 80 100

Figure 10: Obtained curve fit: the case of Hy /;(s).

3.3 Membrane
A membrane with nominal diameter of 13" (33.0 cm) and 10-mil (0.254 mm) thickness5 is mounted
on the circular edge of the tom.

3.3.1 Radius a
The effective radius a is estimated from the geometry.

3.3.2 Mass density o
In the past, membranes were made of skins of animals such as goat [Bertsch 2001] and calf
[Harms 2008] for the case of timpani. Nowadays, most membranes are produced in the polyester
Mylar®, that has more homogeneous characteristics, is less sensible to changes in humidity and
temperature, and has a greater resistance in traction [Bertsch 2001; Chaigne et al. 2016]. Its
surface mass density is about 0.1 kg/m? [Chaigne et al. 2016].

The surface mass density of the used tom-tom membrane is obtained by weighing. A very
similar value of 0.262 kg/m? was found in the same fashion for a timpani membrane in [Rhaouti

et al. 1999].

4 Curve fitting was done for the interval [0, 500] Hz by a nonlinear numerical method using least squares (Trust Region
Reflective [Branch et al. 1999]). Note that in [Lebrun 2019], a minimization algorithm is applied to a cost function,
weighting the frequencies logarithmically.

5 Unknown model by Remo Inc., US, https://www.remo.com
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3.3.3 Tension T

The tension, which the tom-tom membrane is subjected to, depends on the position of the 6
tuning rods. In the literature, one mentions for instance values between 1000 and 2800 N/m for
the case of a tom-tom drum [Samejima et al. 2016] and between 3100 and 3770 N/m for the
timpani [Rhaouti et al. 1999]. Furthermore, the spatial nonuniformity of the membrane tension
causes mode splitting of the non axisymmetric modes (as mentioned in Section 1.2.2).

Membrane tuning The following tuning method (schematized in Fig. 11 and similar to
[Richardson et al. 2010]°), is used. A tuning rod is adjusted, the external sound p.(t) after a strike
by an impact hammer at r ~ ¢ is recorded (Fig. 12), and the free oscillation (recorded when a zero
impact hammer force is measured) is analyzed by FFT7 (Fig. 13). Several peaks around 100 Hz
(mode 11, see Chladni figures in Fig. 15) are observed. By repeating the procedure, it is tried
to let the split versions® of this mode coincide (clearing the drumhead, [Chaigne et al. 2016,
Chapter 14]-[Richardson et al. 2010]). In this fashion, a (low) membrane tension is obtained, that

is supposed to be as uniform as possible.

pe(t) acquisition pe(t)

® card ——{ computer
F(t

conditioner conditioner

[FFT (pe(£))]
—
6 tuning rods microphone  impact hammer M
@4 = 7
tuning impact frequency analysis
(1) () ®3)
T if needed ‘

Figure 11: Membrane tuning method.

Estimation methods There exist several methods to estimate the tension T supposed to
be uniform for a given tuning, but it is not an easy task. An acoustical method based on the
frequency content of the produced sound [Chaigne 2000; Chaigne et al. 2016] will be applied here.
A less precise method based on the static deflection of the membrane onto which a mass has been
placed [Chaigne 2000; Chaigne et al. 2016] has been applied to a snare drum in [Rossing et al.
1992] and to the described tom-tom drum in [Wijnand 2021, Chapter 10]. A third, even less
precise method is based on the moments of the tuning rods [Anderson 1978].

Acoustical estimation method with visualization of Chladni figures In [Chaigne 2000],
an estimation method for the membrane tension is described, where the theoretical frequencies
of the circular membrane of unknown tension (without cavity and with air charge) are fitted to
experimentally observed frequencies in a recorded sound of the struck membrane. In order to
apply this method, one needs to clearly identify the frequencies of the first vibration modes of
the membrane, which is not a trivial task: as mentioned in Section 1.2.2, the experimentally
observed spectra (cf. Fig. 13) can deviate considerably from the linear model (1)-(2). Therefore,

For more details about different tuning methods, see [Richardson 2010, Chapter 3].

7 There exist high resolution methods, allowing for a better resolution than FFT. One can mention frequential methods
using interpolation and curve fitting (for example [Sullivan 1997] applied to timpani), temporal methods based on
invariance properties of subspaces (such as ESPRIT [Roy et al. 1986; Badeau 2005], that are used in this paper to
estimate the viscosity coefficient y) or the Snail [Hélie et al. 2017], that is based on phase demodulation to improve the
frequency accuracy.

8 (cf. mode splitting due to non-uniform tension in Section 1.2.2)

10
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Figure 12: Membrane tuning method: examples of obtained measurements.
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the axisymmetric response). Note the loudspeaker
response around 42 Hz

Figure 13: Membrane tuning method: examples of obtained spectra.

we propose to realize Chladni figures of the membrane, in order to distinguish the different
vibrational modes®. Chladni figures [Chladni 1787] are formed when a structure is set to vibrate
at a frequency corresponding to a given eigenmode, and a powder accumulates on stationary
zones (circles and lines in the case of the homogeneous circular membrane, cf. Fig. 2). Chladni
figures have been obtained for the timpani [Rossing 1982b; Fleischer 2005], tabla [Raman 1934],
drumhead [Worland 2011], and the tom-tom drum (upper membrane of a double-membrane
tom-tom in [Richardson 2010, Appendix B]). In the current setup, salt was used and the membrane
was either excited by the mounted loudspeaker or an additional shaker (see Fig. 14)*°.

The obtained low-frequency Chladni figures are shown in Fig. 15, and some figures at higher
frequencies are shown in Appendix B. Is is noted that the obtained Chladni figures differ more
from the symmetrical theoretical figures than is the case in [Richardson 2010, Appendix B],
probably because of a less uniform tuning (cf. Section 1.2.2).

As proposed in [Chaigne 2000], by fitting the theoretical frequencies of the non-axisymmetric

Alternative methods are for instance the use of a microphone to scan the surface and the display of Lissajous figures
obtained by this measurement as function of the membrane excitation [Anderson 1978], or interferometry [Worland
2010].

19We note that in [Rossing et al. 1992], sand bags were put against a snare drum in order to damp vibration modes of the

walls.

11



Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a
tom-tom drum

function (\/\/\)

gener- amplifier
ator

function m

gener- amplifier
ator

(a) Excitation by loudspeaker (b) Excitation by shaker

Figure 14: Membrane tension identification: visualisation of Chladni figures.

eigenmodes (that depend on the tension) to the observed frequency ranges for the Chladni
figures, the tension can be estimated (Fig. 16).

3.3.4 Viscosity coefficient y
In our model, the viscosity coefficient 1 [1/s] corresponds to the exponential decay of the signal
Ym (7, t) in time, that does not depend on frequency. There are several ways to identify this
coefficient. In the case of the xylophone bar in [Chaigne et al. 1997] for instance, one excites the
structure, stops the excitation, and studies the decaying time of the sound''.

In this paper, the high resolution (HR) ESPRIT (Estimation of Signal Parameters via Rotational
Invariance Techniques, [Roy et al. 1986; Badeau 2005]) method is used. The signal to be analyzed
y(t) is modeled as a mix of Exponentially Damped Sinusoids (EDS):

2

1

y(t) = age qt cos(2mfyt + ¢@q). (9)

q=1

For a given even number N of poles, the ESPRIT method estimates the parameters (aq, Sq> for (pq),
by separating the signal y(t) in desired and perturbing contributions, and by using rotational
invariance properties in the corresponding subspaces (cf. [Badeau 2005; Le Carrou et al. 2009]).
One can set the number of poles N manually, but there also exist methods to estimate the optimal
number of poles to represent the given signal y(t) by an EDS model [Badeau 2005, Sec. IV.3-1V.4],
such as the ESTER method (ESTimation ERror, [Badeau et al. 2006]).

In order to obtain a physically meaningful estimation for the coefficient y using the ESPRIT
method'?, the signal y(t) (measured external pressure p.(t)) has to cover only the unforced linear
regime of vibration. This part of the signal to be analyzed is selected by removing the part where
the measured excitation force is not zero and by removing the nonlinear dynamic part with a
pitch glide, as illustrated in Figures 17-18.

The ESPRIT method is applied to the linear regime of the 5 recordings. The number of poles
is increased manually till N = 8, which allows for a good fit using 4 low-order modes (example
Fig. 19). The mean of the obtained estimations for § corresponding to mode 02 (around 200 Hz) is
taken as estimate for the viscosity coefficient .

'''The matrix pencil method [Laroche 1993] was used, that is related to the high resolution method that is used below.
12 In the following, an implementation of the algorithms ESPRIT and ESTER of the toolbox DESAM (Décomposition en
Eléments Sonores et Applications Musicales, [Lagrange et al. 2010]) is used.
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mode theoretical form Chladni figures

21

02

201Hz 210Hz 219Hz

Figure 15: Obtained low-frequency Chladni figures with corresponding excitation frequencies (*:
degenerated form due to non-uniform tension, cf. Fig. 3). During the experiment, the excitation frequency
and amplitude were modified until a given mode was obtained. Then, this initial excitation frequency was
increased and decreased in order to obtain the frequency ranges at which the same mode is still excited.
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Figure 16: Fit of the frequencies of the model (indicated in gray as function of the unknown tension T) to
the frequency ranges of the Chladni figures for modes nm = 11, 21, 02 (yellow zones) as observed in Fig. 15.
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Figure 17: Schematic representation of oscillation regimes in the sound p.(¢) of a strike on the tom-tom
membrane with a force F(t). The unforced regime of vibration starts when the excitation force F(t)
becomes zero. It consists of a nonlinear dynamic part with a pitch glide in the frequency f(¢), followed by
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Figure 18: Selection of the linear regime in 5 recordings of the struck membrane p.(t).
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the ESPRIT method: example.
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3.4 Conclusion
Table 2 lists the obtained values of the physical parameters3.

Table 2: List of identified physical parameters.

membrane a radius 0.162 m
o mass density 0.267 %
T  tension 420 g
4 viscosity coefficient  1.4707 %
cavity Vo  volume at rest 0.0195 m?
loudspeaker | m; equivalent mass 0.157 kg
¢ equivalent damping 4.87 k?g
ki equivalent stiffness 7.80 ]%
Bl  Lorentz force factor 174 T-m
R electrical resistance 552 Q
L electrical inductance 437 mH
Si  equivalent surface 0.0515 m?

4 Testbench

After having identified the physical parameters of the model, the components for the testbench
are selected and a reproducible excitation mechanism is built.

4.1 Components
The total setup is shown in Fig. 20. The references of the used devices are given in Appendix A.
« Sensor: the microphone used to measure the pressure inside the cavity p.(t) is introduced
through a vent hole* of the drum.
« Actuator: the control law for the current (5) is converted for the voltage-controlled
loudspeaker by neglecting its inductance, that is,

di(t)
dt

vi(t) = Rij(t) + L + BI4(t) ~ Rij(t) + Bl4(t),
as the electric dynamics is faster than the mechanical dynamics in the low-frequency
regime. In this fashion, a SISO (single-input-single-output) control loop is obtained.

+ Controller: the observer-regulator'®> for N = 2 modes is discretized by Euler’s explicit
method and implemented on a Coala microcontroller, suited for SISO control with a latency
lower than 100 us [Piéchaud 2014]"°.

4.2 Reproducible excitation mechanism

A reproducible excitation mechanism is built by mounting a drumstick in a hinge (Fig. 21(a)),
adapting a mallet holder initially developed for the xiaoluo gong in [Jossic 2017, Fig. 2.15].
Releasing the drumstick that is initially held against a stop and catching it after one impact,
enables to obtain a repeatable force in magnitude and impact point, as shown in Fig. 21.

13 Furthermore, the used values for the air are py = 101325 Pa, poiy = 1.2kg/m>, y = 1.4.

4 The vent holes ensure that the pressure inside the cavity at rest equals the atmospheric pressure. In the case of the
kettledrum, it has been shown that the presence of a vent hole has little to no influence on the acoustics of the
instrument [Rossing 1982b; Chaigne et al. 2016, Chapter 14].

15 The used observer parameters are (6 = 0.86, hy = 6, hy = 17.5, h = 30, hy = 33.0625, h5 = 22.125, hg = 8.125), and
control parameters (o = 0.9, k1 = 1587, kg = 14.56, k3 = 2k}, kg4 = 2¢p).

16 This microcontroller contains a BeagleBone with Linux and real-time extensions in Xenomai. It can be programmed
using Max MSP or (here) C++ code. A sampling period of 100 ps was used, more than a factor 10 [Elliott 2000] bigger
than the frequencies of interest, especially the 02 mode around 200 Hz.

16



Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a
tom-tom drum

pe(t)
P (t)
computer acquisition | Pc conditioner
card v (t)
A
€ conditioner
pe(t)
computer nstructions Coala amplifier
measure-
ments
Legend
control loop
data
acquisition

communication
with the Coala

acquisition

conditioner
of the microphones

microphone inside

Figure 20: Testbench with a microphone as sensor, Coala as microcontroller and loudspeaker as actuator.
The second microphone above the tom-tom drum is used to measure the external pressure p.(t).
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(b) Efficiency evaluated by comparing time and frequency evolutions for 5 manual impacts vs. 5
impacts with the excitation mechanism: the temporal measurements coincide almost perfectly in the
latter case.

Figure 21: Reproducible excitation mechanism.
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5 Evaluation

Two properties of the testbench are assessed: an evaluation of the numerical stiffness of the
finite-time observer-regulator (Subsection 5.1), and an evaluation of the ability to modify the
frequency of the first two axisymmetric membrane modes (Subsection 5.2).

5.1 Numerical stiffness

When testing the control loop, a high-frequency noise is noticed (Fig. 22), even when the pressure
inside the cavity is very small. This chattering phenomenon is caused by the inherent stiffness
[Bhat et al. 2000] of the nonlinear expression | x1¢ in the used finite-time control law (5) and
finite-time observer at x = 0. A local softening linear interpolation'7 of these expressions around
0 suffices to remove this phenomenon (Fig. 22).

¢ . :
[x] —— - - unregularized expression
y ——  regularized expression
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(b) Effect on the internal variables of the Coala: pressure measurement in green, state of the observer in blue (N = 2

modes and loudspeaker), calculated current/tension control law in red. They exhibit a chattering phenomenon (the

case of Z1(t) being shown well after an impact), that is removed by the regularization of the expression [x]%. (Tildes
indicate nondimensionalized versions of the respective signals, cf. [Wijnand et al. 2019; Wijnand et al. 2020].)

Figure 22: Evaluation of the numerical method.

7 The nonlinear expression | x| ¢ was replaced by a local softening linear interpolation between the boundary values for
the (nondimensionalized [Wijnand et al. 2019; Wijnand et al. 2020]) arguments x at x = o, with ¢ = 107> (resp.
1073) for the observer (resp. controller).
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5.2 Frequency shift

The testbench is placed in Ircam’s anechoic chamber'®. Different sets of pole placement parameters
(k1,4 ko,q) are selected (see Table 3) and for each, the resulting sound is measured thrice (Figs.
23-24). The power spectral density (PSD) shows that the controller enables to obtain frequency
shifts, as compared to the uncontrolled case.

Table 3: List of used pole placement parameters: k; , and k; , are varied, k1, = k2 = 0. The corresponding
frequency shift for control 6 is indicated. The other sets of pole placement parameters cannot be interpreted
as a frequency shift by the used model (cf. Footnote 19).

case kiq koo | for [Hz] foz [Hz]

no control - - 142.93 201.16
control 0 0 0 142.93 201.16
control 1 0 0.2 N/A N/A
control 2 0 -0.12 N/A N/A
control 3 0.125 0 N/A N/A
control 4 —-0.25 0 N/A N/A
control 5 0.125 0.125 | N/A N/A
control6 | —0.2  —0.2 | 165.69 (+15.9%) | 206.30 (+2.6%)
control 7 0.05 —0.05 N/A N/A
control 8 —-0.075 0.075 | N/A N/A

It is noted that the PSD does not contain the temporal evolution of the frequencies. This
information can be seen in an HR-ogram, an example being given in Figs. 25-26.

Among the tested pole placement parameters (Table 3), only the control 6 can be interpreted
as a frequency shift'?. The PSD of this case is shown in Figure 27. However, due to the observed
disparity between the measurements and the predicted frequencies that were calculated using the
simplified model, it is difficult to evaluate the controller performance in achieving the control
objective (a frequency shift in this case).

18 This anechoic chamber has the form of a rectangular cuboid of usable volume 5.7 X 4.3 X 4.2 m3, whose walls are
covered with triangular absorbing prisms, and has a sound level of ca. 18.5 dB SPL (A) [Carpentier et al. 2014].

19 The predicted frequency shift is obtained by performing the pole placement using Ackermann’s formula [Ackermann
1977, Eq. 13] on the state-space representation of the tom membrane subsystem with 2 modes [Wijnand 2021, §C.3.1.1]
that is controlled by the cavity pressure following Eq. (6).

20



Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a
tom-tom drum

1.6
500

1.4

400

1.2

1.0

300

aba
L g

24

0.8

t[s]

[ (1]

200

0.6

0.4

100

0.2

30
0.0

=30

[ap] (*d)asd

Figure 23: Power spectral density ([Welch 1967], calculated for signal durations of 1.6 s) for measurements
of the pressure p. (t) obtained with different pole placement parameters (different colours). The uncontrolled
case is indicated in dark blue.
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Figure 25: Detail of the PSD for the uncontrolled case and two controlled cases (control 1 and control 3, cf.
Table 3).
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Figure 26: Details of the HR-ograms corresponding to Fig. 25.
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Figure 27: Detail of the PSD for the uncontrolled case and a controlled case (control 6). One observes

a

disparity between the obtained frequency peaks and the frequencies fy; and f;, that were calculated using

the model (cf. Table 3).
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6 Conclusion and perspectives

The experimental implementation of a previously derived finite-time observer-regulator for a
tom-tom drum augmented with a loudspeaker was discussed.

Firstly, a chattering phenomenon was observed, caused by the stiffness of the used control
law. This was removed by a local softening linear interpolation of the non Lipschitz continuous
expressions.

Secondly, it was shown that the proposed control architecture enables to modify frequencies
of the tom-tom membrane, while sensor and actuator are located outside the tom membrane
domain. However, because of the disparity between model and measurements, it is difficult to
quantify the controller performance in achieving a prescribed frequency shift.

In order to improve the performance of the proposed finite-time observer-regulator structure,
the used model could be refined. The most important contribution would be to include the
neglected time delays that exist between sensor, membrane and actuator (Fig. 28). Furthermore,
the cavity and radiation dynamics could be included, and the tuning of the membrane studied
more thoroughly. Finally, the robustness of the proposed finite-time controller against bad model
parameter estimation could be improved by a passivity-based design (cf. [Wijnand et al. 2018]).

S
IV

7 ™~

I —

Figure 28: Propagation of sound waves inside the cavity, actuator (loudspeaker) and sensor (microphone)
located outside the tom membrane domain.
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A Appendix: Experimental devices

The used devices are listed in Tables 4-5. Excerpts from the datasheets are shown in [Wijnand

2021, Appendix D.4].

Table 4: List of devices used for the identification.

loudspeaker identification

power amplifier
current sensor

laser sensor

Newtons4th Ltd LPAos
Newtons4th Ltd HFoo3
Keyence LK-Hos0

membrane tuning

microphone
microphone conditioner
impact hammer

impact hammer amplifier

Bruel & Kjeer 4190
Nexus 2690
Dytran 5800SL
MMF M32

membrane identification

function generator
shaker

shaker amplifier

TTi TG2000
Bruel & Kjeer 4810

ILP Electronics US1 Power slave

overall

acquisition card

National Instruments 9234

Table 5: List of devices used for the testbench.

microphone (in cavity)
microphone (above tom)
microphone conditioner
microcontroller
loudspeaker amplifier

acquisition card

Nexus 2690

Bruel & Kjeer 4939
Bruel & Kjeer 4191

Coala (v1) "Alto" [Piéchaud 2014]
Newtons4th Ltd LPAos

National Instruments 9234
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B Appendix: Chladni figures

Further obtained Chladni figures are shown in Fig. 29.

737Hz

742Hz 798 Hz

Figure 29: Some Chladni figures at higher frequencies than those shown in Fig. 15.
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