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Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum
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Introduction 1.Active control of musical instruments

Active control [START_REF] Elliott | Active noise control[END_REF][START_REF] Fuller | Active control of vibration[END_REF]] of musical instruments consists in adding a control loop to an existing acoustic musical instrument that is being played by a musician [START_REF] Besnainou | Transforming the voice of musical instruments by active control of the sound radiation[END_REF][START_REF] Besnainou | Comment changer la voix des instruments de musique[END_REF][START_REF] Berdahl | Inducing unusual dynamics in acoustic musical instruments[END_REF]]. In terms of the actuator type, two classes of active vibration control are distinguished. In the case of acoustical active control, the control acts on a fluid medium. An example is the use of a loudspeaker to create destructive interference in order to cancel sound. In the case of structural active control, the control acts on a solid. One can for example attach an actuator to the soundboard of a violin.

In most cases of active control of musical instruments, the goal is not to reduce vibrations as much as possible, but to change frequencies or damping coefficients of the instrument's vibration, enabling the musician to enlarge his sound palette while keeping the ergonomics of the original instrument. One can mention for instance applications to the (violin/guitar) string [START_REF] Berdahl | Active damping of a vibrating string[END_REF][START_REF] Benacchio | Mode tuning of a simplified string instrument using time-dimensionless state-derivative control[END_REF][START_REF] Wijnand | Finite-time tracking control of a nonlinear string to reference dynamics[END_REF]], (xylophone) beam [START_REF] Boutin | Modifying the resonances of a xylophone bar using active control[END_REF]], (clarinet) tube [Meurisse et al. 2015a], (Chinese gong) metal plate [START_REF] Jossic | Modal active control of Chinese gongs[END_REF].

Furthermore, active control of musical instruments can be invoked for the study of their dynamical behaviour [START_REF] Benacchio | Active control and sound synthesis-two different ways to investigate the influence of the modal parameters of a guitar on its sound[END_REF], or for the removal of unwanted phenomena such as the so-called wolf note of the cello [START_REF] Neubauer | An active-system approach for eliminating the wolf note on a cello[END_REF], or the bad playability of certain notes on the trombone when using a straight mute [Meurisse et al. 2015b]. Figure 1: Examples of membranophones coupling a membrane to a cavity (after [START_REF] Michels | Guide illustré de la musique -Volume I[END_REF]Berg et al. 2005]).

The tom-tom drum

The tom-tom drum is a directly struck membranophone. It consists of a cylindrical body with a top (batter head) and bottom (resonant head) membrane and is a standard part of a drum kit (containing two rack toms and the bigger floor tom or low tom). The sound of the tom-tom drum is referred to as "indeterminately pitched" or "having a less clear pitch" [START_REF] Solomon | How to write for Percussion: a comprehensive guide to percussion composition[END_REF]], putting it in an ambiguous position between pitched instruments (such as the timpano, Fig. 1(e)) and unpitched instruments (such as the bass drum, Fig. 1(b)).

Vibration of the circular membrane

Some elements of the vibration of the circular membrane are indicated here. More details on inharmonicity, air charge [Fletcher et al. 2012, Chapter 18] and damping are given in [Wijnand 2021, §9.2].

Circular membrane attached at its rim The transverse vibration of the circular membrane in a vacuum attached at its rim is described by the wave equation [Kinsler et al. 1999, §4.2;[START_REF] Graff | Wave motion in elastic solids[END_REF], whose spatial eigenfunctions are

Ψ(𝑟, 𝜃 ) = 𝐽 𝑛 (𝜆 𝑛𝑚 𝑟 ) cos 𝑛𝜃 Ψ(𝑟, 𝜃 ) = 𝐽 𝑛 (𝜆 𝑛𝑚 𝑟 ) sin 𝑛𝜃, (1) 
with 𝐽 𝑛 (•) Bessel functions of the first kind of order 𝑛 and wave numbers 𝜆 𝑛𝑚 are obtained as the solution of 𝐽 𝑛 (𝜆 𝑛𝑚 𝑎) = 0, 𝑎 being the radius of the circular membrane. The first eigenmodes are drawn in Fig. 2. One observes that modes with 𝑛 = 0 are axisymmetric (w.r.t. the axis perpendicular through the membrane at rest, at its middle), and modes with (integer) 𝑛 > 0 are not axisymmetric.

Coupling to cavity When a circular membrane attached at its rim is coupled to a volume of air 𝑉 0 , its axisymmetric modes will cause a net volume change, that is expressed as a pressure term in the wave equation. As opposed to the case of the membrane without cavity (1), the axisymmetric modes become [START_REF] Morse | Finite time stability and stabilization of a class of continuous systems[END_REF]]

Φ(𝑟, 𝜃 ) = [𝐽 0 (𝜆 𝑚 𝑟 ) -𝐽 0 (𝜆 𝑚 𝑎)] , (2) 
where the wave numbers 𝜆 𝑚 satisfy the characteristic equation

𝜆 2 𝑚 𝑎 2 𝐽 0 (𝜆 𝑚 𝑎) = -𝐵𝐽 2 (𝜆 𝑚 𝑎) with 𝐵 ≜ 𝜋𝑎 4 𝛾𝑝 0 𝑇𝑉 0 , (3) 
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S3AM team, STMS Lab (IRCAM -2 CN * marc.wijnand@ircam.fr 22 Figure 2: A few eigenmodes Ψ 𝑛𝑚 (𝑟, 𝜃 ) for the circular membrane attached at its rim. The diagrams show the nodal circles and lines: the locus that remains motionless for the given eigenmode 𝑛𝑚, and that can be visualized experimentally as a Chladni figure .   and where the dimensionless quantity 𝐵 can be interpreted as the ratio of the restoring force applied by the air in the cavity to the membrane tension [START_REF] Kinsler | Fundamentals of acoustics[END_REF].

Deviations of the linear model In practice, experimentally observed modes often deviate from the linear model ( 1)-( 2) due to several phenomena.

• Non-uniform density Some instruments, such as the Indian tabla [START_REF] Sathej | The eigenspectra of Indian musical drums[END_REF][START_REF] Maugeais | How to apply a plaster on a drum to make it harmonic[END_REF][START_REF] Samejima | Vibration analysis of a musical drum head under nonuniform density and tension using a spectral method[END_REF]] and mridanga and the Myanmar pat wain [START_REF] Bader | Finite-Difference model of mode shape changes of the Myanmar pat wain drum circle using tuning paste[END_REF]], have a non-uniform surface mass density due to applied paste, that can be used for tuning.

• Non-uniform tension Depending on the tuning mechanism (6 tension rods in the case of a tom-tom drum), the tension can vary more or less along the circumference of the membrane [START_REF] Samejima | Vibration analysis of a musical drum head under nonuniform density and tension using a spectral method[END_REF]. This can cause a frequency difference between two spatial eigenfunctions Ψ 𝑛𝑚 (𝑟, 𝜃 ) and Ψ𝑛𝑚 (𝑟, 𝜃 ) that theoretically have the same eigenfrequency (peak doubling or mode splitting). In [START_REF] Worland | Normal modes of a circular drumhead under non-uniform tension[END_REF]] for instance, frequency differences of 2 -28 Hz were measured in a tom-tom drum. Furthermore, variation in tension can modify the shape of the modes ( [START_REF] Anderson | The acoustics of timpani: an analysis of vibrating circular membranes[END_REF]], observed using interferometry in [START_REF] Worland | Normal modes of a circular drumhead under non-uniform tension[END_REF]], Fig. 3).
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Experimental implementation of a finite-time controller for the axisymmetric vibration modes o tom-tom drum • Tension modulation (pitch glide) High excitation amplitudes lead to a tension increase, leading to a pitch glide phenomenon with higher eigenfrequencies that descend to their values corresponding to the linear regime [Rossing 1982a;Richardson 2010, §2.2.7;[START_REF] Newton | Nonlinear effects in drum membranes[END_REF]]. This phenomenon is easier to obtain when the membrane was tuned to a low tension [Richardson 2010, §2.2.7].

For the case of a tom-tom drum with a diameter of 32 -33 cm, an increase in frequency of 8 -10% (more than a semitone) has been reported in [START_REF] Bork | Entwicklung von akustischen Optimierungsverfahren für Stabspiele und Membraninstrumente[END_REF][START_REF] Rose | A New Drumhead Design: An Analysis of the Nonlinear Behavior of a Compound Membrane[END_REF]. In [START_REF] Dahl | Spectral changes in the tom-tom related to striking force[END_REF]], one mentions a pitch glide of even 20 Hz (almost 4 semitones) for the fundamental when hitting hard on a tom-tom drum, and it is argued that for the perception of this instrument, this phenomenon could partially be masked by the presence of high-frequency components. In [START_REF] Cahoon | Frequency-Time Analysis of the Bass Drum Sound[END_REF][START_REF] Fletcher | Some experiments with the bass drum[END_REF], the case of a bass drum is considered,

where frequency changes of 6 -10% are reported when hitting hard (ca. 3.5 Hz or a semitone, for the case of a typical transverse displacement of 6 mm).

Active control of membranophones

Active control has been applied to following percussion instruments with a membrane-cavity coupling. In [START_REF] Rollow | Active Control of Spectral Detail Radiated by an air-loaded impacted membrane[END_REF], PID and stabilizing feedforward modal controllers for a drumhead were developed, using four accelerometers on the drumhead as sensors and four loudspeakers acting on the cavity as actuators. Experimentally, a suppression of one membrane mode was obtained, yet no frequency shift. A bass drum [START_REF] Lupone | Gran cassa and the adaptive instrument feed-drum[END_REF]] was controlled by a negative feedback, using a piezoceramic sensor attached to the rim to measure the membrane deflection and a single loudspeaker as actuator. A conga [START_REF] Van Walstijn | The prosthetic conga: Towards an actively controlled hybrid musical instrument[END_REF]] was endowed with a contact microphone attached to the membrane as sensor and a single loudspeaker used as actuator enables to modify the instrument's frequency response. Feedback of a piezoelectric sensor placed on the batter head of a tom-tom drum [START_REF] Gregorio | Augmentation of acoustic drums using electromagnetic actuation and wireless control[END_REF]] was applied on the resonant head by an electromagnetic actuator. A pickup dynamic microphone was placed inside an electromagnetic actuator placed on the batter head of a bass drum in [START_REF] Rector | EMdrum: An Electromagnetically Actuated Drum[END_REF].

Recently, a snare drum [START_REF] Williams | Design and evaluation of a digitally active drum[END_REF]] was controlled using an optical sensor on the batter head, and multiple actuators: two electrodynamic tactile transducers on the resonant head, and an additional loudspeaker on a frame mounted inside the cavity. The contribution of this paper focuses on the use of ODE finite-time control methods [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF], offering advantages regarding time constraints (faster convergence than an asymptotic control law) and robustness, but being necessarily non Lipschitz continuous at the origin [START_REF] Haimo | Finite time controllers[END_REF]Moulay et al. 2006] (which can cause numerical problems). Furthermore, in the described setup, neither the sensor nor the actuator are in the domain of the controlled membrane.

Article structure

In Section 2, the previously obtained model and controller are restated. The physical constants that they contain are identified in Section 3. Then, a testbench is constructed (Section 4) and the obtained results are evaluated (Section 5).

Theoretical results

This section review the model and controller that were obtained in [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum[END_REF][START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF].

Model

The coupled PDE-ODE physical model for the tom-tom drum consisting of the top membrane coupled to the cavity and loudspeaker as depicted in Figure 4 is presented in Section 2.1.1. In Section 2.1.2, an ODE state-space reformulation is obtained after projection on the spatial eigenmodes of the membrane coupled to the cavity.
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                 𝑇 𝚫𝑦 m (𝑟, 𝑡) + 𝑝 c (𝑡) = 𝜎 m 𝜕 2 𝜕𝑡 2 𝑦 m (𝑟, 𝑡) + 𝜇 𝜕 𝜕𝑡 𝑦 m (𝑟, 𝑡) 𝑝 c (𝑡) = -𝛾 𝑝 0 𝑉 0 ∫ S 𝑦 m (𝑟, 𝑡) dS(𝑟 ) -𝑆 l ℓ l (𝑡) 𝑚 l ℓ l (𝑡) + 𝑐 l ℓ l (𝑡) + 𝑘 l ℓ l (𝑡) = 𝑆 l 𝑝 c (𝑡) + 𝐵𝑙𝑖 l (𝑡).
(4)

This model describes the evolutions of the transverse displacement of the tom-tom membrane 𝑦 m (𝑟, 𝑡), the acoustic pressure in the cavity 𝑝 c (𝑡) and the transverse position of the loudspeaker membrane ℓ l (𝑡).

The surface of the membrane S is defined between 𝑟 = 0 and 𝑟 = 𝑎. The membrane is clamped at its rim: 𝑦 m (𝑎, 𝑡) = 0. In polar coordinates, 𝚫 = 𝜕 2 𝜕𝑟 2 + 1 𝑟 𝜕 𝜕𝑟 . The physical constants of the membrane are its tension 𝑇 , equivalent areal density 𝜎 m = 𝜎 + 0.85𝑎𝜌 air (with 𝜎 the real areal density, 𝑎 the membrane's radius and 𝜌 air the volumetric density of air, [START_REF] Kinsler | Fundamentals of acoustics[END_REF]), and viscosity coefficient 𝜇. The physical constants of the cavity are the heat capacity ratio of air 𝛾 and its pressure 𝑝 0 and volume 𝑉 0 at rest, that relate the acoustic values (𝑝 c , 𝑉 c ) to the total values (𝑝, 𝑉 ):

𝑝 c (𝑡) = 𝑝 (𝑡) -𝑝 0 𝑉 c (𝑡) = 𝑉 (𝑡) -𝑉 0 .
The physical constants of the loudspeaker are its surface 𝑆 l , the Lorentz force factor 𝐵𝑙 (with the length of the loudspeaker coil 𝑙 inside the magnetic field 𝐵), and equivalent mass 𝑚 l , damper 𝑐 l and spring 𝑘 l .

Projection and state-space reformulation

The model ( 4) is spatially discretized by a modal projection and truncation:

𝑦 m (𝑟, 𝑡) ≈ 𝑁 ∑︁ 𝑛=1 𝜑 𝑛 (𝑟 )𝑧 𝑛 (𝑡),
where 𝑧 𝑛 (𝑡) are the temporal evolutions corresponding to the respective 𝑁 axisymmetric eigenfunctions of the circular membrane clamped at its rim and coupled to a cavity,

𝜑 𝑛 (𝑟 ) = 𝑤 𝑛 [𝐽 0 (𝜆 𝑛 𝑟 ) -𝐽 0 (𝜆 𝑛 𝑎)] ,
equal to Eq. (2) multiplied by arbitrary weights 𝑤 𝑛 and with wave numbers 𝜆 𝑛 as solutions of the condition (3).

Control design

A controller for the loudspeaker current is designed, to let its membrane position (and thus the pressure inside the cavity) track in finite time [START_REF] Bernuau | Robust finite-time output feedback stabilisation of the double integrator[END_REF]] a reference that realizes a pole placement on the tom-tom membrane, based on the measurement of the cavity pressure only (schematized in Fig. 5). Thus, a modal control of frequencies and/or damping coefficients of the tom-tom membrane is possible.

The obtained finite-time control law reads

𝑖 l (𝑡) = 1 𝐵𝑙 𝑆 l 𝑝 m c (𝑡) + 𝑘 l ℓ m l (𝑡) + 𝑐 l ℓ m l (𝑡) -𝑘 3 ℓ m l (𝑡) -ℓ * l (𝑡) -𝑘 4 ℓ m l (𝑡) -ℓ * l (𝑡) -𝑘 1 ℓ m l (𝑡) -ℓ * l (𝑡) 𝛼 2-𝛼 -𝑘 2 ℓ m l (𝑡) -ℓ * l (𝑡) 𝛼 , (5) 
with control parameters 𝑘 1 , 𝑘 2 > 0, 𝛼 ∈ ]0, 1[ (to be tuned in simulation [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF]), 

𝑘 3 > 𝑘 l , 𝑘 4 > 𝑐 l ,
𝑝 * c (𝑡) ≜ - 𝑁 ∑︁ 𝑖=1 𝑘 𝑖,𝑎 𝑧 𝑖 (𝑡) + 𝑘 𝑖,𝑏 𝑧 𝑖 (𝑡) , (6) 
where coefficients 𝑘 𝑖,𝑎 and 𝑘 𝑖,𝑏 are chosen to obtain a pole placement that enables to modify modal frequencies and/or damping coefficients of the tom-tom membrane [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF]].

The temporal evolutions 𝑧 𝑖 (𝑡) of the first 𝑁 membrane modes are estimated by a finite-time observer obtained in [Wijnand et al. 2020, Lemma 2] (after [START_REF] Perruquetti | Finite-time observers: application to secure communication[END_REF]). Lastly, the real (resp. reference) loudspeaker position ℓ m l (𝑡) (resp. ℓ * l (𝑡)) are expressed as function of the real (resp. reference) pressure 𝑝 m c (𝑡) (resp. 𝑝 * c (𝑡)), and 𝑧 𝑖 (𝑡) using relation [Wijnand et al. 2020, Eq. 13]; and similarly for their time derivatives.

Identification

In Section 4, a testbench for the controlled tom-tom drum1 will be built. In order for the microcontroller to be able to calculate the control law (5), the physical parameters listed in Table 1 need to be estimated. The identification methods used for the cavity (Section 3.1), loudspeaker (Section 3.2) and membrane (Section 3.3) are specified below. The references of the used devices are given in Appendix A.

Cavity

Volume at rest 𝑉 0

The volume 𝑉 0 of the cavity at rest is estimated from the geometry.

Loudspeaker

A subwoofer loudspeaker2 with nominal exterior diameter of 320 mm is mounted, whose linear parameters are identified experimentally.

Equivalent surface 𝑆 l

The equivalent surface 𝑆 l of the membrane is estimated from the geometry.

3.2.2

Thiele & Small parameters (𝑚 l , 𝑐 l , 𝑘 l , 𝐵𝑙, 𝑅, 𝐿) Linear Thiele & Small model Figure 6 shows a schematic representation of an electrodynamic loudspeaker. It is an electro-magneto-mechano-acoustical converter. A modulated electrical tension is applied to its terminals, causing a current to flow in the electrical circuit containing a coil mounted on a moving equipment. This coil is embedded in the magnetic field of a permanent 

𝑘 l equivalent stiffness N m 𝐵𝑙 Lorentz force factor T • m = N A 𝑅 electrical resistance Ω 𝐿 electrical inductance H 𝑆 l equivalent surface m 2
magnet, so a Laplace/Lorentz force is created on the moving equipment, causing the membrane to move and creating a sound wave.

Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum The linear Thiele & Small model [Thiele 1971a;[START_REF] Thiele | Loudspeakers in vented boxes: Part 2[END_REF][START_REF] Small | Closed-box loudspeaker systems-part 1: Analysis[END_REF][START_REF] Small | Closed-box loudspeaker systems-part 2: Synthesis[END_REF] for the electrodynamic loudspeaker is used, that neglects the spatial modes of the membrane movement, replacing the membrane by a plane piston (here of vertical position 𝑥 l (𝑡)). The model consists of the force balance on the membrane3 ,

𝑚 l 𝑥 l (𝑡) + 𝑐 l 𝑥 l (𝑡) + 𝑘 l 𝑥 l (𝑡) = 𝐵𝑙𝑖 l (𝑡), (7) 
completed by the sum of electrical tensions in the equivalent electrical circuit,

𝑣 l (𝑡) = 𝑅𝑖 l (𝑡) + 𝐿 d d𝑡 𝑖 l (𝑡) + 𝐵𝑙 𝑥 l (𝑡), (8) 
where 𝑣 l (𝑡) is the electrical tension applied to the loudspeaker terminals, and 𝑅 and 𝐿 respectively the resistance and inductance of the electrical circuit.

There exist several methods for the identification of the Thiele & Small model. For the linear model, as shown above, one has methods in the time [START_REF] Knudsen | Determination of loudspeaker driver parameters using a system identification technique[END_REF]] or frequency domain [START_REF] Klippel | Fast and accurate measurement of linear transducer parameters[END_REF]. For the case of nonlinear parameters, we refer the reader to [START_REF] Brunet | Nonlinear system modeling and identification of loudspeakers[END_REF][START_REF] Bouvier | Identification de systèmes non linéaires représentés en séries de Volterra: applications aux systèmes sonores[END_REF][START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF]. Moreover, the loudspeaker characteristics can vary as function of temperature [START_REF] Krump | Zur Temperaturabhängigkeit von Lautsprecherparametern[END_REF]], which is why (online) [START_REF] Pedersen | Online identification of linear loudspeakers parameters[END_REF]] identification methods have been developed, capable of tracking the evolution of the characteristics, for use in advanced loudspeaker control algorithms. Frequential identification method for the linear Thiele & Small parameters In the current work, an offline standard linear method using the frequency domain is used. A testbench from [START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF]] is used (Fig. 7), where the loudspeaker is driven with a sine sweep voltage signal 𝑣 l (𝑡) = 𝐴 cos(2𝜋 ∫ 𝑡 0 𝑓 (𝜏) d𝜏), where the frequency 𝑓 (𝑡) increases exponentially between 0.1 Hz and 2000 Hz in 10 s, and voltage 𝑣 l (𝑡), current 𝑖 l (𝑡) and transverse displacement 𝑥 l (𝑡) are measured (Fig. 8).

Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum The physical parameters of the linear Thiele & Small model are obtained by curve fitting the theoretical transfer functions of the linear model ( 7)-( 8),

𝐻 𝑋 /𝐼 (𝑠) = 𝑋 (𝑠) 𝐼 (𝑠) = 𝐵𝑙 𝑚 l 𝑠 2 + 𝑐 l 𝑠 + 𝑘 l , 𝐻 𝑉 /𝐼 (𝑠) = 𝑉 (𝑠) 𝐼 (𝑠) = 𝐵 2 𝑙 2 𝑠 𝑚 l 𝑠 2 + 𝑐 l 𝑠 + 𝑘 l + 𝐿𝑠 + 𝑅, 𝐻 𝑋 /𝑉 (𝑠) = 𝑋 (𝑠) 𝑉 (𝑠) = 𝐵𝑙 𝐵 2 𝑙 2 𝑠 + (𝐿𝑠 + 𝑅) (𝑚 l 𝑠 2 + 𝑐 l 𝑠 + 𝑘 l ) ,
with Laplace transforms

         𝑣 l (𝑡) ↔ 𝑉 (𝑠), 𝑖 l (𝑡) ↔ 𝐼 (𝑠), 𝑥 l (𝑡) ↔ 𝑋 (𝑠),
where the Laplace variable 𝑠 is chosen on the Fourier axis (𝑠 = 𝑗𝜔 = 𝑗2𝜋 𝑓 ∈ 𝑗R), to the experimentally obtained transfer functions (Fig 9). The estimation procedure from [START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF]] is followed: the mechanical resonance frequency 𝑓 0 is obtained from the maximum of |𝐻 𝑉 /𝐼 (𝑠)| (Fig. 9(a)), an initial estimation for the parameters is obtained by curve fitting4 𝐻 𝑋 /𝐼 (𝑠) then 𝐻 𝑉 /𝐼 (𝑠), used as initial values for a final joint curve fitting of both transfer functions. The resulting estimated transfer function 𝐻 𝑉 /𝐼 (𝑠) is shown in Fig. 10.
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Membrane

A membrane with nominal diameter of 13" (33.0 cm) and 10-mil (0.254 mm) thickness 5 is mounted on the circular edge of the tom.

Radius 𝑎

The effective radius 𝑎 is estimated from the geometry.

Mass density 𝜎

In the past, membranes were made of skins of animals such as goat [START_REF] Bertsch | Vibration patterns and sound analysis of the Viennese Timpani[END_REF]] and calf [START_REF] Harms | The World of Historical Timpani[END_REF]] for the case of timpani. Nowadays, most membranes are produced in the polyester Mylar ® , that has more homogeneous characteristics, is less sensible to changes in humidity and temperature, and has a greater resistance in traction [START_REF] Bertsch | Vibration patterns and sound analysis of the Viennese Timpani[END_REF][START_REF] Chaigne | Acoustics of musical instruments[END_REF]]. Its surface mass density is about 0.1 kg/m 2 [START_REF] Chaigne | Acoustics of musical instruments[END_REF].

The surface mass density of the used tom-tom membrane is obtained by weighing. A very similar value of 0.262 kg/m 2 was found in the same fashion for a timpani membrane in [START_REF] Rhaouti | Time-domain modeling and numerical simulation of a kettledrum[END_REF].

Tension 𝑇

The tension, which the tom-tom membrane is subjected to, depends on the position of the 6 tuning rods. In the literature, one mentions for instance values between 1000 and 2800 N/m for the case of a tom-tom drum [START_REF] Samejima | Vibration analysis of a musical drum head under nonuniform density and tension using a spectral method[END_REF]] and between 3100 and 3770 N/m for the timpani [START_REF] Rhaouti | Time-domain modeling and numerical simulation of a kettledrum[END_REF]. Furthermore, the spatial nonuniformity of the membrane tension causes mode splitting of the non axisymmetric modes (as mentioned in Section 1.2.2).

Membrane tuning

The following tuning method (schematized in Fig. 11 and similar to [Richardson et al. 2010] 6 ), is used. A tuning rod is adjusted, the external sound 𝑝 e (𝑡) after a strike by an impact hammer at 𝑟 ≈ 𝑎 2 is recorded (Fig. 12), and the free oscillation (recorded when a zero impact hammer force is measured) is analyzed by FFT 7 (Fig. 13). Several peaks around 100 Hz (mode 11, see Chladni figures in Fig. 15) are observed. By repeating the procedure, it is tried to let the split versions 8 of this mode coincide (clearing the drumhead, [Chaigne et al. 2016, Chapter 14]- [START_REF] Richardson | Clearing the drumhead by acoustic analysis method[END_REF]). In this fashion, a (low) membrane tension is obtained, that is supposed to be as uniform as possible.

Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum Estimation methods There exist several methods to estimate the tension 𝑇 supposed to be uniform for a given tuning, but it is not an easy task. An acoustical method based on the frequency content of the produced sound [START_REF] Chaigne | Détermination expérimentale de la tension d'une peau de timbale[END_REF][START_REF] Chaigne | Acoustics of musical instruments[END_REF]] will be applied here.

A less precise method based on the static deflection of the membrane onto which a mass has been placed [START_REF] Chaigne | Détermination expérimentale de la tension d'une peau de timbale[END_REF][START_REF] Chaigne | Acoustics of musical instruments[END_REF]] has been applied to a snare drum in [START_REF] Rossing | Acoustics of snare drums[END_REF]] and to the described tom-tom drum in [Wijnand 2021, Chapter 10]. A third, even less precise method is based on the moments of the tuning rods [START_REF] Anderson | The acoustics of timpani: an analysis of vibrating circular membranes[END_REF]].

Acoustical estimation method with visualization of Chladni figures

In [START_REF] Chaigne | Détermination expérimentale de la tension d'une peau de timbale[END_REF]], an estimation method for the membrane tension is described, where the theoretical frequencies of the circular membrane of unknown tension (without cavity and with air charge) are fitted to experimentally observed frequencies in a recorded sound of the struck membrane. In order to apply this method, one needs to clearly identify the frequencies of the first vibration modes of the membrane, which is not a trivial task: as mentioned in Section 1.2.2, the experimentally observed spectra (cf. Fig. 13) can deviate considerably from the linear model ( 1)-(2). Therefore,

For more details about different tuning methods, see [Richardson 2010, Chapter 3].

There exist high resolution methods, allowing for a better resolution than FFT. One can mention frequential methods using interpolation and curve fitting (for example [START_REF] Sullivan | Accurate frequency tracking of timpani spectral lines[END_REF]] applied to timpani), temporal methods based on invariance properties of subspaces (such as ESPRIT [START_REF] Roy | ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise[END_REF][START_REF] Badeau | Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées[END_REF] we propose to realize Chladni figures of the membrane, in order to distinguish the different vibrational modes9 . Chladni figures [START_REF] Chladni | Entdeckungen über die Theorie des Klanges[END_REF]] are formed when a structure is set to vibrate at a frequency corresponding to a given eigenmode, and a powder accumulates on stationary zones (circles and lines in the case of the homogeneous circular membrane, cf. Fig. 2). Chladni figures have been obtained for the timpani [START_REF] Rossing | The physics of kettledrums[END_REF][START_REF] Fleischer | Beiträge zur Vibro-und Psychoakustik: Vibroakustische Untersuchungen an Paukenfellen[END_REF], tabla [Raman 1934], drumhead [START_REF] Worland | Chladni patterns on drumheads: a "physics of music" experiment[END_REF]], and the tom-tom drum (upper membrane of a double-membrane tom-tom in [Richardson 2010, Appendix B]). In the current setup, salt was used and the membrane was either excited by the mounted loudspeaker or an additional shaker (see Fig. 14) 10 .

The obtained low-frequency Chladni figures are shown in Fig. 15, and some figures at higher frequencies are shown in Appendix B. Is is noted that the obtained Chladni figures differ more from the symmetrical theoretical figures than is the case in [Richardson 2010, Appendix B], probably because of a less uniform tuning (cf. Section 1.2.2).

As proposed in [START_REF] Chaigne | Détermination expérimentale de la tension d'une peau de timbale[END_REF]], by fitting the theoretical frequencies of the non-axisymmetric eigenmodes (that depend on the tension) to the observed frequency ranges for the Chladni figures, the tension can be estimated (Fig. 16).

Viscosity coefficient 𝜇

In our model, the viscosity coefficient 𝜇 [1/s] corresponds to the exponential decay of the signal 𝑦 m (𝑟, 𝑡) in time, that does not depend on frequency. There are several ways to identify this coefficient. In the case of the xylophone bar in [START_REF] Chaigne | Numerical simulations of xylophones. I. Time-domain modeling of the vibrating bars[END_REF]] for instance, one excites the structure, stops the excitation, and studies the decaying time of the sound11 . In this paper, the high resolution (HR) ESPRIT (Estimation of Signal Parameters via Rotational Invariance Techniques, [START_REF] Roy | ESPRIT-A subspace rotation approach to estimation of parameters of cisoids in noise[END_REF][START_REF] Badeau | Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées[END_REF]) method is used. The signal to be analyzed 𝑦 (𝑡) is modeled as a mix of Exponentially Damped Sinusoids (EDS):

𝑦 (𝑡) = 𝑁 2 ∑︁ 𝑞=1 𝑎 𝑞 𝑒 𝛿 𝑞 𝑡 cos(2𝜋 𝑓 𝑞 𝑡 + 𝜑 𝑞 ). ( 9 
)
For a given even number 𝑁 of poles, the ESPRIT method estimates the parameters 𝑎 𝑞 , 𝛿 𝑞 , 𝑓 𝑞 , 𝜑 𝑞 , by separating the signal 𝑦 (𝑡) in desired and perturbing contributions, and by using rotational invariance properties in the corresponding subspaces (cf. [START_REF] Badeau | Méthodes à haute résolution pour l'estimation et le suivi de sinusoïdes modulées[END_REF][START_REF] Carrou | Sympathetic string modes in the concert harp[END_REF]). One can set the number of poles 𝑁 manually, but there also exist methods to estimate the optimal number of poles to represent the given signal 𝑦 (𝑡) by an EDS model [Badeau 2005, Sec. IV.3-IV.4], such as the ESTER method (ESTimation ERror, [START_REF] Badeau | A new perturbation analysis for signal enumeration in rotational invariance techniques[END_REF]).

In order to obtain a physically meaningful estimation for the coefficient 𝜇 using the ESPRIT method12 , the signal 𝑦 (𝑡) (measured external pressure 𝑝 e (𝑡)) has to cover only the unforced linear regime of vibration. This part of the signal to be analyzed is selected by removing the part where the measured excitation force is not zero and by removing the nonlinear dynamic part with a pitch glide, as illustrated in Figures 1718.

The ESPRIT method is applied to the linear regime of the 5 recordings. The number of poles is increased manually till 𝑁 = 8, which allows for a good fit using 4 low-order modes (example Fig. 19). The mean of the obtained estimations for 𝛿 corresponding to mode 02 (around 200 Hz) is taken as estimate for the viscosity coefficient 𝜇. degenerated form due to non-uniform tension, cf. Fig. 3). During the experiment, the excitation frequency and amplitude were modified until a given mode was obtained. Then, this initial excitation frequency was increased and decreased in order to obtain the frequency ranges at which the same mode is still excited.
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Conclusion

Testbench

After having identified the physical parameters of the model, the components for the testbench are selected and a reproducible excitation mechanism is built.

Components

The total setup is shown in Fig. 20. The references of the used devices are given in Appendix A.

• Sensor: the microphone used to measure the pressure inside the cavity 𝑝 c (𝑡) is introduced through a vent hole 14 of the drum. • Actuator: the control law for the current (5) is converted for the voltage-controlled loudspeaker by neglecting its inductance, that is,

𝑣 l (𝑡) = 𝑅𝑖 l (𝑡) + 𝐿 d𝑖 l (𝑡) d𝑡 + 𝐵𝑙 ℓ l (𝑡) ≈ 𝑅𝑖 l (𝑡) + 𝐵𝑙 ℓ l (𝑡),
as the electric dynamics is faster than the mechanical dynamics in the low-frequency regime. In this fashion, a SISO (single-input-single-output) control loop is obtained. • Controller: the observer-regulator 15 for 𝑁 = 2 modes is discretized by Euler's explicit method and implemented on a Coala microcontroller, suited for SISO control with a latency lower than 100 µs [Piéchaud 2014] 16 .

Reproducible excitation mechanism

A reproducible excitation mechanism is built by mounting a drumstick in a hinge (Fig. 21(a)), adapting a mallet holder initially developed for the xiaoluo gong in [Jossic 2017, Fig. 2.15].

Releasing the drumstick that is initially held against a stop and catching it after one impact, enables to obtain a repeatable force in magnitude and impact point, as shown in Fig. 21.

Furthermore, the used values for the air are 𝑝 0 = 101 325 Pa, 𝜌 air = 1.2 kg/m 3 , 𝛾 = 1.4. The vent holes ensure that the pressure inside the cavity at rest equals the atmospheric pressure. In the case of the kettledrum, it has been shown that the presence of a vent hole has little to no influence on the acoustics of the instrument [START_REF] Rossing | The physics of kettledrums[END_REF]Chaigne et al. 2016, Chapter 14].

The used observer parameters are (𝜃 = 0.86, ℎ 1 = 6, ℎ 2 = 17.5, ℎ 3 = 30, ℎ 4 = 33.0625, ℎ 5 = 22.125, ℎ 6 = 8.125), and control parameters (𝛼 = 0.9, 𝑘 1 = 1587, 𝑘 2 = 14.56, 𝑘 3 = 2𝑘 l , 𝑘 4 = 2𝑐 l ). This microcontroller contains a BeagleBone with Linux and real-time extensions in Xenomai. It can be programmed using Max MSP or (here) C++ code. A sampling period of 100 µs was used, more than a factor 10 [START_REF] Elliott | Signal processing for active control[END_REF]] bigger than the frequencies of interest, especially the 02 mode around 200 Hz. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum Two properties of the testbench are assessed: an evaluation of the numerical stiffness of the finite-time observer-regulator (Subsection 5.1), and an evaluation of the ability to modify the frequency of the first two axisymmetric membrane modes (Subsection 5.2).

Numerical stiffness

When testing the control loop, a high-frequency noise is noticed (Fig. 22), even when the pressure inside the cavity is very small. This chattering phenomenon is caused by the inherent stiffness [START_REF] Bhat | Finite-time stability of continuous autonomous systems[END_REF]] of the nonlinear expression ⌊𝑥⌉ 𝜉 in the used finite-time control law (5) and finite-time observer at 𝑥 = 0. A local softening linear interpolation 17 of these expressions around 0 suffices to remove this phenomenon (Fig. 22).

Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum 17 The nonlinear expression ⌊𝑥⌉ 𝜉 was replaced by a local softening linear interpolation between the boundary values for the (nondimensionalized [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum[END_REF][START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF]) arguments 𝑥 at 𝑥 = ±𝜎, with 𝜎 = 10 -5 (resp. 10 -3 ) for the observer (resp. controller). no control control 6

Figure 27: Detail of the PSD for the uncontrolled case and a controlled case (control 6). One observes a disparity between the obtained frequency peaks and the frequencies 𝑓 01 and 𝑓 02 that were calculated using the model (cf. Table 3).

Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum

Conclusion and perspectives

The experimental implementation of a previously derived finite-time observer-regulator for a tom-tom drum augmented with a loudspeaker was discussed. Firstly, a chattering phenomenon was observed, caused by the stiffness of the used control law. This was removed by a local softening linear interpolation of the non Lipschitz continuous expressions.

Secondly, it was shown that the proposed control architecture enables to modify frequencies of the tom-tom membrane, while sensor and actuator are located outside the tom membrane domain. However, because of the disparity between model and measurements, it is difficult to quantify the controller performance in achieving a prescribed frequency shift.

In order to improve the performance of the proposed finite-time observer-regulator structure, the used model could be refined. The most important contribution would be to include the neglected time delays that exist between sensor, membrane and actuator (Fig. 28). Furthermore, the cavity and radiation dynamics could be included, and the tuning of the membrane studied more thoroughly. Finally, the robustness of the proposed finite-time controller against bad model parameter estimation could be improved by a passivity-based design (cf. [START_REF] Wijnand | Active control of the axisymmetric vibration modes of a tom-tom drum using a modal-based observer-regulator[END_REF]).
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Figure 3 :

 3 Figure 3: Two examples of deformations of modes due to inhomogeneous tension.

Figure 4 :

 4 Figure 4: Geometry of the system.

Figure 5 :

 5 Figure 5: Structure of the controller (observer-regulator): a control law for the loudspeaker current 𝑖 l (𝑡) is calculated, based on a measurement of the cavity pressure 𝑝 m c (𝑡) and on an estimation of the temporal evolutions 𝑧 𝑖 (𝑡) of the first 𝑁 membrane modes, that are not measured. The following signals are defined. The real pressure 𝑝 m c (𝑡) is measured by a sensor. The reference pressure is

MarcFigure 6 :

 6 Figure 6: Structure of an electrodynamic loudspeaker.
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Figure 7 :Figure 8 :

 78 Figure 7: Testbench for loudspeaker identification.

Figure 9 :

 9 Figure 9: Transfer functions calculated from measurements.

MarcFigure 10 :

 10 Figure 10: Obtained curve fit: the case of 𝐻 𝑉 /𝐼 (𝑠).

MarcFigure 11 :

 11 Figure 11: Membrane tuning method.
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Figure 12 :Figure 13 :

 1213 Figure 12: Membrane tuning method: examples of obtained measurements.

Figure 14 :

 14 Figure 14: Membrane tension identification: visualisation of Chladni figures.

Figure 15 :

 15 Figure15: Obtained low-frequency Chladni figures with corresponding excitation frequencies (*: degenerated form due to non-uniform tension, cf. Fig.3). During the experiment, the excitation frequency and amplitude were modified until a given mode was obtained. Then, this initial excitation frequency was increased and decreased in order to obtain the frequency ranges at which the same mode is still excited.

Figure 16 :Figure 17 :

 1617 Figure 16: Fit of the frequencies of the model (indicated in gray as function of the unknown tension 𝑇 ) to the frequency ranges of the Chladni figures for modes 𝑛𝑚 = 11, 21, 02 (yellow zones) as observed in Fig. 15.

Figure 18 :

 18 Figure 18: Selection of the linear regime in 5 recordings of the struck membrane 𝑝 e (𝑡).

Figure 19 :

 19 Figure 19: Approximation of the measured external pressure 𝑝 e (𝑡) by an EDS model with 4 pole pairs by the ESPRIT method: example.

Figure 20 :

 20 Figure 20: Testbench with a microphone as sensor, Coala as microcontroller and loudspeaker as actuator. The second microphone above the tom-tom drum is used to measure the external pressure 𝑝 e (𝑡).

  Efficiency evaluated by comparing time and frequency evolutions for 5 manual impacts vs. 5 impacts with the excitation mechanism: the temporal measurements coincide almost perfectly in the latter case.

Figure 21 :

 21 Figure 21: Reproducible excitation mechanism.

Figure 22 :

 22 Figure 22: Evaluation of the numerical method.
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 23242526 Figure23: Power spectral density ([START_REF] Welch | The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[END_REF]], calculated for signal durations of 1.6 s) for measurements of the pressure 𝑝 e (𝑡) obtained with different pole placement parameters (different colours). The uncontrolled case is indicated in dark blue.

Figure 28 :

 28 Figure 28: Propagation of sound waves inside the cavity, actuator (loudspeaker) and sensor (microphone) located outside the tom membrane domain.
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Table 1 :

 1 Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum List of physical parameters to be estimated.

	membrane cavity	𝑎 𝜎 𝑇 𝜇 𝑉 0 volume at rest radius mass density tension viscosity coefficient	m kg m 2 N m 1 s m 3
	loudspeaker 𝑚 l equivalent mass 𝑐 l equivalent damping	kg kg s
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  Wijnand et al. Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum

	0 20 40 60 80 -𝜋 |𝑉 (𝑠)/𝐼 (𝑠)| -𝜋 2 0 𝜋 2 𝜋 ∠(𝑉 (𝑠)/𝐼 (𝑠))	0 0	𝑓 0	100 𝑓 [Hz] 200 100 200 𝑓 [Hz]	300 300	0.0 0.2 0.4 0.6 0.8 1.0 |𝑋 (𝑠)/𝑉 (𝑠)| -2𝜋 -3𝜋 2 -𝜋 -𝜋 2 0 ∠(𝑋 (𝑠)/𝑉 (𝑠))	0 •10 -3 0	100 𝑓 [Hz] 200 100 200 𝑓 [Hz]	300 300	1.0 1.5 2.0 (𝑠)/𝐼 (𝑠)| 0.5 |𝑋 0.0 -𝜋 2 ∠(𝑋 -𝜋 0 𝜋 2 𝜋 (𝑠)/𝐼 (𝑠))	0 •10 -2 0	100 𝑓 [Hz] 200 100 200 𝑓 [Hz]	300 300
				(a) 𝐻 𝑉 /𝐼 (𝑠)				(b) 𝐻 𝑋 /𝑉 (𝑠)				(c) 𝐻 𝑋 /𝐼 (𝑠)	
	Experimental implementation of a finite-time controller for the axisymmetric vibration modes of a tom-tom drum Experimental implementation of a finite-time controller for the axisymmetric vibration modes tom-tom drum Experimental implementa controller for the axisymm tom-tom drum
										Marc Wijnand 1, * , Brigitte d'Andréa-Nove
				fr				fr		S3AM team, STMS Lab (IRCAM -2 CNRS -1 Sorbonne * marc.wijnand@ircam.fr

Marc Wijnand 1, * , Brigitte d'Andréa-Novel 1 , Thomas Hélie 2 , and David Roze 2 S3AM team, STMS Lab (IRCAM -2 CNRS -1 Sorbonne Université), Paris, France * marc.wijnand@ircam.

Marc Wijnand 1, * , Brigitte d'Andréa-Novel 1 , Thomas Hélie 2 , and David Ro S3AM team, STMS Lab (IRCAM -2 CNRS -1 Sorbonne Université), Paris, France * marc.wijnand@ircam.

  Table 2 lists the obtained values of the physical parameters 13 .

Table 2 :

 2 List of identified physical parameters.

	membrane cavity	𝑎 𝜎 𝑇 𝜇 𝑉 0 volume at rest radius mass density tension viscosity coefficient	0.162 m 0.267 kg m 2 420 N m 1.4707 1 s 0.0195 m 3
	loudspeaker 𝑚 l equivalent mass 𝑐 l equivalent damping 𝑘 l equivalent stiffness 𝐵𝑙 Lorentz force factor 𝑅 electrical resistance	0.157 kg 4.87 kg s 7.80 kN m 17.4 T • m 5.52 Ω
		𝐿	electrical inductance	4.37 mH
		𝑆 l	equivalent surface	0.0515 m 2
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  Regularization of the stiff expression ⌊𝑥⌉ 𝜉 present in control law and observer
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Model: tom 1309T, Pearl drums, Japan, https://pearldrum.com

Model: AXX 1212, Raveland, US. A datasheet can be found in[Wijnand 2021, Section D.4].

This equation does not include the influence of a cavity, since the identification is performed without the top membrane.

Curve fitting was done for the interval [0,

500] Hz by a nonlinear numerical method using least squares (Trust Region Reflective[START_REF] Branch | A subspace, interior, and conjugate gradient method for large-scale bound-constrained minimization problems[END_REF]). Note that in[START_REF] Lebrun | Modélisation multi-physique passive, identification, simulation, correction et asservissement de haut-parleur sur des comportements cibles[END_REF]], a minimization algorithm is applied to a cost function, weighting the frequencies logarithmically.5 Unknown model by Remo Inc., US, https://www.remo.com

Alternative methods are for instance the use of a microphone to scan the surface and the display of Lissajous figures obtained by this measurement as function of the membrane excitation[START_REF] Anderson | The acoustics of timpani: an analysis of vibrating circular membranes[END_REF]], or interferometry[START_REF] Worland | Normal modes of a circular drumhead under non-uniform tension[END_REF]].

We note that in[START_REF] Rossing | Acoustics of snare drums[END_REF]], sand bags were put against a snare drum in order to damp vibration modes of the walls.

The matrix pencil method[START_REF] Laroche | The use of the matrix pencil method for the spectrum analysis of musical signals[END_REF]] was used, that is related to the high resolution method that is used below.

In the following, an implementation of the algorithms ESPRIT and ESTER of the toolbox DESAM (Décomposition en Éléments Sonores et Applications Musicales, [Lagrange et al. 2010]) is used.

This anechoic chamber has the form of a rectangular cuboid of usable volume 5.7 × 4.3 × 4.2 m 3 , whose walls are covered with triangular absorbing prisms, and has a sound level of ca. 18.5 dB SPL (A)[START_REF] Carpentier | Measurement of a head-related transfer function database with high spatial resolution[END_REF]].

The predicted frequency shift is obtained by performing the pole placement using Ackermann's formula[Ackermann 1977, Eq. 13] on the state-space representation of the tom membrane subsystem with 2 modes[Wijnand 

2021, §C.3.1.1] that is controlled by the cavity pressure following Eq. (6).
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Frequency shift

The testbench is placed in Ircam's anechoic chamber 18 . Different sets of pole placement parameters (𝑘 1,𝑎 , 𝑘 2,𝑎 ) are selected (see Table 3) and for each, the resulting sound is measured thrice . The power spectral density (PSD) shows that the controller enables to obtain frequency shifts, as compared to the uncontrolled case. It is noted that the PSD does not contain the temporal evolution of the frequencies. This information can be seen in an HR-ogram, an example being given in Figs. 25-26.

Among the tested pole placement parameters (Table 3), only the control 6 can be interpreted as a frequency shift 19 . The PSD of this case is shown in Figure 27. However, due to the observed disparity between the measurements and the predicted frequencies that were calculated using the simplified model, it is difficult to evaluate the controller performance in achieving the control objective (a frequency shift in this case).

A Appendix: Experimental devices

The used devices are listed in Tables 45. Excerpts from the datasheets are shown in [Wijnand 2021, Appendix D.4].