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Abstract 

The human microbiome and its metabolic output play an important role in shaping human health and 

disease. The host-microbe crosstalk is often characterised using metabolomics and metagenomics, yet 

a large proportion of microbial metabolites and the molecular functions of gut microbes remain 

unknown. This review summarises the strategies for annotation and discovery of the novel metabolites 

from the human gut microbiome, either using metabolomics alone or in combination with 

metagenomics, and presents data analysis methods for combining these two types of data to obtain 

biological insights. Applications of the gut microbiome research in biomarker screening, precision 

medicine, microbiome medicine, and drug discovery are also discussed, along with the perspectives, 

challenges and limitations of this research field. 
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List with abbreviations 

BGCs: biosynthetic gene clusters 

BiG-SCAPE: biosynthetic gene similarity clustering and prospecting engine 

BiG-SLiCE: biosynthetic genes super-linear clustering engine 

BLAST: basic local alignment search tool 

CA: covariate adjusted 

CAG: co-abundant gene group 

ChEBI: Chemical Entities of Biological Interest  

CORASON: core analysis of syntenic orthologs to prioritise natural product gene clusters 

DDA: data-dependent acquisition 

FMT: faecal microbiome transplantation 

GCF: gene cluster family 

GMM: Gut Metabolic Module 

GNPS: global natural product social molecular networking 

HMDB: human metabolome database 

InChI: IUPAC international chemical identifier 

KEGG: kyoto encyclopaedia of genes and genomes 

LC: liquid chromatography 

MAG: metagenome-assembled genome 

MASST: Mass Spectrometry Search Tool 

MiMeDB: human microbial metabolome database 

MMWAS: metabolome- and metagenome-wide association study 

MS: mass spectrometry 

MS/MS: tandem mass spectrometry 

MSI: metabolomics standards initiative 

NMDS: non-metric multidimensional scaling 

NRPS: nonribosomal peptide synthetase 

O-PLS: orthogonal partial least squares regression 

O-PLS-DA: orthogonal partial least squares discriminant analysis 

PCA: principal component analysis 

PCoA: principal coordinates analysis 

PKS: polyketide synthase 

PLS: partial least squares regression 

PLS-DA: partial least squares discriminant analysis 

PoDP: paired omics data platform 

QC: quality control 

QMP: quantitative microbiome profiling 

RiPPs: ribosomally and post-translationally modified peptide 

SMILES: Simplified Molecular Input Line Entry System 

SNAP-MS: structural similarity network annotation platform for mass spectrometry 

SRM: selected reaction monitoring 

TMA: trimethylamine 

TMAO: trimethylamine N-oxide 

UHGG: unified human gastrointestinal genome atlas 

WGCNA: weighted correlation network analysis 
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1 Introduction 

The human gut microbiome is a vast collection of viruses, bacteria, archaea and eukaryotes, where the 

outcomes of their metabolic processes shape their host's health through its metabolic output (e.g., 

production of microbial compounds [1], bioaccumulation and biotransformation of drugs [2]). The vast 

majority of the dominant human gut microbiota belong to a few phyla [3]. Still, low-abundant microbes 

should not be overlooked since they can still play major functions on the microbial community [4]. At 

the genus level, only a minority of microbes is shared across individuals. This inter-individuality is 

influenced by environmental factors, geographical location, diet, health status, life style, among others 

[5]. Inter-individual variations are also a consequence of the functional redundancy between the 

taxonomically distinct microorganisms able to colonise the human gut [6]. 

In gut microbiome studies, the two preferred high-throughput analytical approaches are metagenomics 

and metabolomics. These two approaches measure the set of microorganisms and metabolites present 

in the biological samples, respectively. In terms of metagenomics, gut microbiome has largely been 

characterised using next-generation sequencing methods such as shotgun sequencing [7]. Shotgun 

sequencing collects information about broad genome regions allowing a high accurate microbial 

identification at species level therefore yielding detailed information about the microbial community 

[8]. For metabolomics, both mass spectrometry (MS) and nuclear magnetic resonance spectroscopy 

(NMR) are used, the latter being more reproducible whilst the former being widely used due to higher 

sensitivity [9]. 

Similarly to that of humans, microbial metabolomes are intrinsically entangled to their genomes. This 

is evidenced by the countless studies that have investigated genome differences at the metabolome level 

in all kinds of organisms (i.e., gene knock-out studies [10,11], quantitative trait loci studies [12,13], 

genome wide association studies [14,15]). Both -omes are also marked by ‘dark’ zones: the ‘dark 

metabolome’ and the ‘biosynthetic dark matter’. The ‘dark metabolome’ refers to the portion of the 

metabolome that has not been identified using metabolomics to-date, considered to be between 90 to 

98% in LC-MS based metabolomics [16,17], and additional metabolites that are below the limit of 

detection for the current methods. The ‘biosynthetic dark matter’ [18], on the other hand, refers to the 

genetic material that encodes for enzymes and other proteins involved in the biosynthesis of natural 

products not yet identified. By studying the biosynthetic dark matter, we can gain insights into the 

potential functions and structures of the ‘dark’ molecules in the metabolome, and vice-versa. 

In the gut, microbially-derived metabolites form part of the host metabolome. In this context, microbial 

signatures have been characterised by the inspection of the host’s biological fluids, being faecal [19] 

and plasma/serum [20] samples the most studied biological materials. The faecal metabolome and 

metagenome can reflect the metabolic interplay among the host, diet and gut microbiota while the 

circulating metabolome can inform how commensal microbiota impact other organs distant from the 

gut. In this line, a recent screening of 8,583 patients based on the metagenomic sequencing of their 

faecal matter and the corresponding mass spectrometry-based metabolite profiling of the plasma 

samples revealed that the microbiome explains up to 46% of the variance of circulating metabolites 

[21]. Another independent study showed that the circulating (or serum) levels of 182 metabolites were 

explained by the microbiome composition, ranging their R2 between 0.05 and 0.56 (P < 0.05, 10% FDR 

correction) [22]. Collectively, these studies highlight the need to further study the gut microbiome to 

better comprehend the human body in the context of health. The release of the Unified Human 

Gastrointestinal Genome atlas [23], which encompasses 289,232 microbial genomes and can be used 

for genotyping the human gut microbiome, is set to significantly facilitate investigations that connect 

the microbial genotypes and the hosts’ phenotypes. 
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Most of the current knowledge about the chemical diversity of metabolites has been obtained by 

sequential fractionation and chemical characterization of extracts from microorganisms and plants 

found in nature. Natural product and drug discovery research have historically contributed to the 

development of metagenomics [24,25] and metabolomics [26], leading to the elucidation, definition and 

eventually manipulation of biosynthetic pathways so as to facilitate the production and simultaneous 

detection of target metabolites [27] investigated nowadays in gut microbiome metabolomics studies 

[28].  

Central metabolism, also known as primary metabolism, is required for survival and contributes to the 

synthesis of intermediate compounds that act as precursors for specialised metabolism. Specialised 

metabolic pathways have evolved from primary metabolism and play a key role in growth, 

development, and the interaction with their environment. In microorganisms, specialised metabolites, 

also known as secondary metabolites [29] are commonly, but not exclusively, synthesised by polyketide 

synthases (PKSs), nonribosomal peptide synthetases (NRPSs) [30] and ribosomally and post-

translationally modified peptides (RiPPs) [31] which are encoded by highly conserved biosynthetic 

gene clusters (BGCs). Genome mining, which involves using computational and predictive informatic 

tools, forms the basis for the search of these genes, and this search can be expanded to whole genera, 

strain collection and microbiomes [32]. 

Some of the breakthroughs contributed by the metagenomics era for microbiome research include the 

revelation of how biogeography and individuality shapes human skin microbiome [33], the gut 

microbial contribution to the response to cancer therapy [34] and the novel set of uncultured microbial 

species present in the human gut [35]. Until recently, the specialised metabolism of the gut microbiome 

has not been much investigated. In 2014, Donia and colleagues reported that typically the human gut 

microbiome contains on average 599 BGCs [36]. In 2017, another study led to the discovery of peptide 

aldehydes produced under conditions of host colonisation and capable of inhibiting human proteases 

[37], highlighting the clinical relevance of characterising the specialised metabolites produced by the 

gut microbiota. These results evidence the potential of investigating the specialised metabolites in gut 

microbiome metabolomics studies to enhance our understanding of the metabolic capabilities of the gut 

microbiome, its interactions with the host, and its implications for health and disease. 

The integration of metabolomics and metagenomics data is often challenging due to the biological 

complexity of the gut microbiome, the heterogeneity of these data, and the lack of standard pipelines 

dedicated to this integration. Regarding the latter, common strategies to integrate the metagenomics and 

the metabolomics data range from classical bivariate statistics (e.g., calculation of correlations) to more 

sophisticated machine learning and pathway analysis methods. An overview of these methods will be 

given in section 4.2. 

Recent advances in metabolomics and metagenomics data analyses for gut microbiome research greatly 

facilitated the development and refinement of modern medicine as well as natural products and drug 

development efforts (Figure 1). Given that each individual harbours a unique ‘microbial fingerprint’, 

gut microbiome holds significant potential for precision medicine. Precision or personalised medicine 

aims to account for the inter-individuality across patients (e.g., due to environment and lifestyle) while 

focusing on providing the best treatment possible, improving treatment efficacy and reducing toxicity 

[38]. Additionally, interventions targeting the gut microbiome, such as the use of prebiotics, probiotics 

and faecal microbiome transplantation (FMT) can be used for treating or preventing diseases as part of 

the microbiome medicine [39]. 
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Integration of metagenomics and metabolomics is increasingly being applied for the identification and 

characterization of metabolites and microbiota co-variations and their implications in the host health 

[40–42]. The development of high-throughput methods and more powerful bioinformatic tools for 

integrative microbiome research can be potentially translated into clinical practice and better inform 

health and disease management (e.g. by designing more personalised treatments that account for the 

microbiome). 

 

Figure 1. Metagenome – metabolome crosstalk for human gut microbiome study and their clinical 

applications. Both data can be mined to discover new metabolites, drugs, drug targets and biological 

mechanisms. A profiling strategy can also be applied to seek microbial biomarkers of certain health 

conditions or treatment efficacy, and to identify how gut microbes modify disease prognosis and use 

this knowledge to define personalised treatments based on precision medicine or microbiome therapies 

to counteract the effects of these microbes.   

 

Here we present a comprehensive review of the current practices in gut microbiome research and 

identify methodological and knowledge gaps, by: 1) outlining the strategies to identify and annotate the 

gut microbial metabolites by either using metabolomics alone or in conjunction with metagenomics, 2) 

describing methods that enable the simultaneous analysis of metabolomics and metagenomics data to 

gain a better understanding of their biological implications, 3) highlighting the relevance of integrative 

gut microbiome research in health and disease, precision medicine, drug development and other clinical 

applications, and 4) identifying the perspectives, challenges, and limitations of this research field. 

 

2 Study and identification of microbial metabolites in health and disease  

Microbiota-derived metabolites studies have been focused on a few chemical classes (secondary bile 

acids, short-chain fatty acids, branched-chain amino acids, trimethylamines and aromatic amino acid 

derivatives due to their pathophysiological relevance in metabolic disorders [1]. Currently, the trend is 

to profile a larger number of metabolites (typically between 500 and 1500) by LC-MS. If then a 

metabolite is found to be associated with a pathology, different methodologies are applied to determine 

whether the metabolite is of microbial origin or not. While it is possible to establish the nature of some 

of these metabolites by a simple database search (since databases such as the Kyoto Encyclopedia of 
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Genes and Genomes (KEGG)[43] and Chemical Entities of Biological Interest (ChEBI)[44] compile 

this information), for some other metabolites this information is not available. In these cases, an 

experimental demonstration is needed. 

In the following sections, the typical steps for establishing the microbial origin of metabolites in gut 

microbiome studies are described: the experimental analysis of the biological samples, the annotation 

of the measured metabolite signals, the use of molecular networking to improve the number of 

metabolite annotations, and the experimental validation of the metabolite-microbiome association. 

2.1 Metabolomics experimental strategies 

To achieve the aforementioned comprehensive characterizations, a combination of many empirical and 

data analysis strategies is applied (e.g., use different sample preparation methods, instrumental settings 

(i.e. liquid chromatography (LC)-MS and gas chromatography-MS), and/or chromatographic columns 

with different properties; combine targeted and untargeted methods [21,45–47]). Still, these methods 

are biased towards the major metabolite classes (e.g., organic acids, lipids) while other classes of 

metabolites (in particular, the specialised microbial metabolites) are poorly characterised. Thus, further 

development is needed to achieve much larger metabolic coverages. For example, knowing that many 

microbial enzymes convert diverse L-amino acids to D-configurations, more development is needed for 

comprehensive methods capable of distinguishing both enantiomers [48]. 

In metabolomics, tandem mass spectrometry (MS/MS) is widely used to generate spectral data that 

provide structural information about the detected compounds. In terms of mass spectra acquisition, 

comprehensive characterization can be reached either by using iterative data-dependent acquisition 

(DDA) strategies on selected samples [49], or by measuring the mass transitions employing selected 

reaction monitoring (SRM) methods for hundreds of metabolites (e.g., 1,036 metabolites in González-

Domínguez et al. (2020) [50]). These two approaches are considered to be untargeted and targeted 

methods. 

Targeted and untargeted methods can also be combined in various approaches, often referred by the 

umbrella terms of semi-targeted or pseudo-targeted methods. For example, when the metabolomics 

analysis consists of measuring mass transitions in SRM mode derived from a previous DDA analysis 

on selected biological samples [51]. This approach offers the advantage of having the same sensitivity 

as targeted methods but does not require the chemical standards for defining the mass transitions. Same 

terminology has also been used for untargeted methods applied in combination with a metabolite 

annotation strategy (based on chemical standards [52] or on an in-house spectral library [53]). Most 

recently, the Simultaneous Quantification and Discovery (SQUAD) approach has also been proposed. 

SQUAD allows, within a single LC-MS injection, to confidently annotate metabolites (using chemical 

standards) and to quantify them (using calibration curves, as in targeted metabolomics) and, at the same 

time, to identify additional metabolites from the experimental MS/MS spectra obtained from QC 

samples [54]. 

 

2.2 Metabolite annotation 

In untargeted metabolomics, metabolite annotation is a critical step since flawed annotations can 

compromise the reliability of the results [55]. According to the Metabolomics Standards Initiative (MSI, 

a community-driven effort aimed at developing and promoting standards and best practices for 

metabolomics research [56]), different confidence levels of metabolite identification are proposed [57]. 

Levels of confidence. Unequivocal identification (Level 1) is only reached if the compound and the 

pure reference standard present two identical orthogonal characteristics (e.g., retention time in LC-MS 
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methods, collision cross section in ion mobility MS methods, accurate mass and MS/MS spectra), and 

both have been analysed in the same laboratory. To achieve this, several companies provide pure 

chemical compound libraries focused on the microbiome (i.e., the Fecal Metabolite Library from 

MetaSci, the Microbiome Metabolite Library of Standards from IROA Technologies) to facilitate the 

building of in-house reference libraries. Putative annotations (Level 2) are based on the data from public 

databases or on the physicochemical properties when reference standards are lacking. Despite their 

usefulness, these chemical libraries are incomplete as the number of detected metabolites is smaller 

than that found for the largest comprehensive studies [58]. 

Regarding MS/MS, a key advantage is that fragmentation of molecules using MS is highly consistent 

when repeated MS/MS acquisitions are performed under same or similar experimental conditions 

including the instrument technology, type of mass analyser, ionization method, collision method, and 

other parameters to be considered. This facilitates the annotation and identification of metabolites based 

on their fragmentation mass spectra using compound databases and pure standards, respectively. 

Harmonisation of metabolite identifiers. In gut microbiome cohort studies, just like any other 

epidemiological study, biological findings are typically replicated in an independent cohort. Besides the 

complexity of the logistics for organising a replication study, comparing the metabolomics data from 

the two cohorts analysed in two different laboratories is not straightforward since metabolite annotations 

between studies need to be harmonised first. To facilitate the metabolite name harmonisation process, 

it is recommended to provide curated identifiers such as database identifiers (HMDB) or structural 

identifiers (e.g., the IUPAC International Chemical Identifier (InChI) [59], SMILES) in addition to the 

trivial names as these are often non-standardized (i.e. one molecule can have several trivial names). The 

InChIKey is a condensed alphabetic code for the InChI identifier string and are stereochemistry-specific 

(e.g., ROHFNLRQFUQHCH-YFKPBYRVSA-N and ROHFNLRQFUQHCH-RXMQYKEDSA-N for 

L- and D-leucine). However, it is also important to consider that some the spatial chemical structure 

can be neglected in some chemical identifiers such as the SMILES or when only the first layer of the 

InChIKey is used. Although the stereochemical characterization is not a common practice in 

metabolomics, it is necessary to use identifiers containing this information which is relevant for the 

biological activity of metabolites in the microbiome research [60].  

Metabolite ontologies. Interpreting the metabolomics data can be overwhelming due to the large 

number of metabolites included in these studies. To address this, metabolites can be arranged in smaller 

sets and explored separately. Metabolites can be grouped according to the biological pathways they 

belong (as defined in BioCyc [61] or KEGG [43] databases) or to the chemical ontology, the latter 

inferred directly from the MS/MS data (Qemistree [62], CANOPUS [63]) or from their structural 

identifiers (ClassyFire [64]). ClassyFire chemical ontologies present a hierarchical classification 

(Kingdom, SuperClass, Class, and SubClass) format that resembles that of taxonomic data such as for 

metagenomics. 

Public databases. General public databases contain MS/MS spectra of metabolites from different 

origins (e.g., MassBank [65], METLIN [66], HMDB [67]) and can be consulted for metabolite 

annotation. However, public databases for microbial metabolite annotation, such as the Human 

Microbial Metabolome Database (MiMeDB) [68] and the Natural Products Atlas [69], are scarcer. 

MiMeDB contains information from the taxonomy of 1,904 microbes of the human microbiome as well 

as the metabolites they produce. The Natural Products Atlas, as opposed to MiMeDB, is oriented to the 

specialised metabolites produced by fungi and bacteria. Additional databases of microbial metabolites, 

either public or not, can be consulted in the review of van Santen et al. [70]. 

Open spectral libraries are not only used for consulting metabolite annotation, but they are also a source 

of machine learning data for training and method validation of novels methods for compound 
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identification in metabolomics. Some computational advances worth mentioning are MS2LDA [71], 

MESSAR [72], Spec2Vec [73], MS2DeepScore [74] and CFM-ID [75] which represent the next 

generation of metabolomics analyses, however these will need to be validated in follow-up studies as 

the spectral databases keep growing in richness and diversity with high-quality data [17,76]. 

Open-source software. MS-DIAL [77], MZmine [78] and the MetaboAnnotation R-package [79] 

allow the processing of MS data including metabolite annotation. Other free tools have been reviewed 

by Misra, B [80]. Compound Discoverer (Thermo ScientificTM) and MassHunter Workstation (Agilent© 

Technologies) have been developed as alternative commercial software solutions. In addition, the 

MASST interface can be used to search MS/MS data on public repositories (such as MassIVE [81], 

MetabolomicsWorkbench [82] and MetaboLights [83]), similarly to the Basic Local Alignment Search 

Tool (BLAST) method for investigating genes and protein sequences [84]. 

Metabolomics reports. One decade after the MSI guidelines were initially proposed, some updates 

have been made to better fit the needs that have been emerging across the community including the 

“MEtabolomics standaRds Initiative in Toxicology” (MERIT) that provides the most relevant practical 

guidelines for metabolomics specifically in regulatory toxicology [85]. To comply with the minimum 

standards of reporting scientific research and promote reuse of the metabolomics data, the spectral data 

must be deposited in open repositories. Recently, discussions around the good practices and 

recommendations regarding the compound identification in untargeted metabolomics have also 

emerged from multiple recognised researchers from different academic institutions working on this 

subject [17,76,86]. Some of these recommendations include the introduction of spectral entropy as a 

measure of the MS/MS spectra quality (low quality equals high entropy) [87] or reporting the ranking 

of annotations instead of keeping the top MS/MS match [76]. 

In addition to these specific recommendations for reporting metabolomics data, when working with data 

from human cohorts, it must be verified that the data is anonymized before submitting the data so that 

no one can identify individual patients. 

2.3 Molecular networking 

Expanding on these approaches, a different strategy called “molecular networking” was introduced 

based on the concept of spectral matching and similarity of fragmentation patterns. This approach 

consists of using the spectral data to build molecular networks where each feature (m/z - retention time 

pairs) is represented by nodes connected by spectral similarity (MS/MS information) through edges. 

Structurally related molecules can exhibit similar fragmentation; therefore, nodes of annotated 

metabolites can extend the annotation to those unknown features, guiding the chemical annotations of 

the adjacent nodes at both the structure and substructure level. Although molecular networks can be 

manually constructed, the Global Natural Product Social Molecular Networking (GNPS) [88] provides 

a dedicated online environment for this purpose. GNPS molecular networks can be interrogated with 

the Structural similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS) tool to 

identify candidate metabolite classes of microbial origin from the Natural Products Atlas [89]. 

Similarly, the MS2LDA tool from the GNPS environment can be used to identify molecular 

substructures from MS/MS spectra [90]. Alternatively, if the expected reference spectra of the 

compounds are unavailable, these can be generated with software tools for in silico fragmentation such 

as SIRIUS [91] and MetFrag [92], among others. Another important development within the GNPS 

environment is the ion identity molecular networking (IIMN) which addresses the bottleneck of 

unconnected ion adducts given that one compound can generate multiple ion species and each precursor 

can exhibit a different fragmentation behaviour [93]. This information can be further integrated with 

other bioinformatic tools to validate the network connectivity shown in the molecular networking.  
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2.4 Experimental evidence of the microbial origin of a metabolite 

After the annotation of relevant features and potential biomarkers, several strategies can be 

implemented in order to identity their microbial origin and bioactivity. The simplest approach consists 

of in vitro culturing of microorganisms isolated from the faeces and detecting the sought metabolites in 

the corresponding microbial extracts [94] (Figure 2A). Otherwise, faecal microbiome transplantation 

(FMT) can be carried out on mice to investigate whether the metabolomic signature is actually 

determined by the microbial species in the transplanted faeces [94,95] (Figure 2B). Last, in vivo 

experiments with germ-free or antibiotic-treated can be used to assess microbial transformations. In 

Hoyles et al. (2018) [96], deuterated TMAO was administered to antibiotic-treated mice to 

unambiguously prove that deuterated TMAO is retro-converted into deuterated trimethylamine (TMA) 

by the gut microbiota (Figure 2C). 

 

Figure 2. Experimental validation of gut microbial metabolites bioactivity involved in disease. 

Metabolomics profiling of biological material such as blood samples by liquid chromatography coupled 

to mass spectrometry (LC-MS) leads to the detection and quantification of microbiome metabolites 

linked to disease (biomarkers) with a specific MS spectrum. a) Isolation of microorganisms from stool 

samples for in vitro validation of their production using LC-MS analysis, b) Faecal microbiome 

transplantation (FMT) to germ-free mice in order to validate bioconversions by the human gut 

microbiota, c) Deuterated trimethylamine N-oxide (TMAO) reduced to trimethylamine (TMA) by mice 

gut microbiota described in Hoyles et al., 2018 as in vivo validation of TMAO retroconversion [96]. 

 

Regarding the in vitro culturing of isolates, current large-scale metagenomic studies from 

geographically and phenotypically diverse humans provides evidence about the low representation of 

microbial diversity by cultured isolates [97,98]. This is in part due to the complexity of cultivating some 

microbial strains outside their biome. General or specific culture media used for the growth of these 

microbial isolates may not contain the necessary nutrients or molecules needed for their development 
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or the production of metabolites that could be exclusively induced under naturally occurring complex 

community interactions [99,100] such as in the human gut environment. This represents a limitation of 

the current cultured-based techniques. 

3 Metagenomes and genome mining 

Metagenomics has facilitated the exploration of several environments, enabling researchers to 

comprehend the microbial associations and interactions taking place within the microbial community, 

shifting our view from single organisms to microbial communities [101]. Progress in sequencing 

technologies has facilitated the generation of vast amounts of genome data. The parallel development 

of genome mining tools has enabled extending the study of genomes to the investigation of the human 

microbiota in health and disease [102]. As a result, substantial variations in human gut microbiome 

have been revealed according to different anatomical sites [103], geographical locations and lifestyles 

[104], and health status [28]. 

Metagenomic studies require multiple fundamental steps including sample collection, isolation of DNA, 

library preparation for sequencing followed by taxonomic and functional data analysis [105]. Then, 

gene data can be combined into larger biological entities, such as co-abundant genes (CAGs) and 

metagenome assembled genomes (MAGs). 

CAGs are sets of genes that occur at a similar abundance across multiple samples, likely to represent a 

group of genes found on the same chromosome or DNA section (operon, plasmid, core genome). CAGs 

are meaningful reflections of the composition of the microbiome and have been used for studying gut 

microbial changes in association with colorectal cancer and inflammatory bowel disease [106], chronic 

obstructive pulmonary disease [107] and depression [108], among others. 

MAGs represent microbial genomes. For the construction of MAGs, sequencing reads are assembled 

into scaffolds which are later grouped into candidate MAGs to be used for further analyses [109]. The 

common computational tools used in metagenomics can be classified into upstream analyses, using 

tools for sequence quality control (QC), metagenome assembly, QC assembly and metagenome binning 

and focusing on the construction of MAGs. They can also be classified into downstream analyses 

designed to annotate MAGs including gene prediction, gene annotation, functional and taxonomic 

analysis, MAG taxonomic classification and MAG abundance profiling [109]. 

In the following paragraphs, we will discuss the discovery and annotation of BGCs found in microbial 

genomes that encode the biosynthesis of specialised compounds and the tools that help the automation 

of this research from a functional point of view. This is also referred to as genome mining (section 3.1). 

BGCs annotation is important to increase the biological knowledge that can be extracted from gut 

microbiome studies employing metagenomics data. In these studies, several metagenomes from 

multiple samples are profiled to identify associations between the differences in the abundances of the 

microbial species or the molecular functions and the changes in the host phenotypes across samples. 

The strategies used to identify these associations are presented in section 3.2. 

 

3.1 Genome mining of microbial specialised metabolites 

The concept of genome mining emerged with the understanding of the biosynthetic capabilities and 

genetic basis of microbial metabolite production and from the interest in the microbial genetic potential 
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to produce metabolites predicted by genetics but not detected by analytical methods [32]. Genome 

mining typically relies on assembled and annotated genome sequences as its primary raw material. 

Consequently, it is crucial to understand that the accuracy and thoroughness of the assembly and 

annotation process can significantly impact the results of any genome-based study [110]. 

Software for automated genome mining. As previously mentioned, BGCs are defined as two or more 

genes from a particular genome that are physically clustered and encode a biosynthetic pathway for the 

production of specialised metabolites [111]. Computational identification of thousands of BGCs in 

microbial genome sequences is possible thanks to the development of automated bioinformatic 

software. One of the first tools developed in the early 2000s for automated cluster mining was the 

Decipher® pipeline and database [112]. Their strategy consisted of first, scanning microbial genomes 

coding for known chemically-diverse metabolites to build a database of gene clusters and then, to purify 

and confirm the metabolite structure through a genomics-guided discovery platform. Since then, 

different open source software and pipelines have emerged: 

• BAGEL [113] 

• CLUster SEquence ANalyzer (CLUSEAN) [114] 

• NP.searcher [115] 

• Secondary Metabolite Unknown Regions Finder (SMURF) [116] 

• PRediction Informatics for Secondary Metabolomes (PRISM) [117] 

• antibiotics & secondary metabolite analysis shell (antiSMASH) [118] 

AntiSMASH was introduced and refined over the last 10 years, being currently the most widely used 

and the gold standard tool for mining bacterial, fungal (fungiSMASH) and plant (plantiSMASH) 

genomes for specialised metabolite BGCs [101], including automated identification of primary 

metabolic gene clusters from the gut microbiota (gutSMASH) [119]. Briefly, different types of sequence 

files (including FASTA files) or GenBank accession numbers can be provided to the web server 

(https://antismash.secondarymetabolites.org) or to the desktop downloadable version. From this 

information, genes encoding proteins are searched and a library of models specific for each type of 

BGCs is constructed with high accuracy (71 BGCs types for antiSMASH version 6) [101] along with 

the prediction of the chemical structures of metabolites produced by the BGCs. The outputs can be 

visualised as interactive and user-friendly maps, images and hyperlinks.  

Despite the development of similar tools, antiSMASH provides a comprehensive analysis by integrating 

multiple algorithms and databases for studying microbial genomes and secondary metabolite 

biosynthesis covering a wide range of metabolites. This is supported by the accurate prediction by 

combining methods such as Hidden Markov Models  (HMMs) considered as “the Lego of 

computational sequence analysis” [120] with other bioinformatic techniques. Besides this, the extensive 

database of antiSMASH is regularly updated, facilitating the annotation and prediction of specific 

compounds and therefore providing insights about their potential biological activities. As developed for 

the GNPS, antiSMASH has also provided community support mainly in the field of natural product 

discovery but also applied in microbiome research and microbial-related disciplines. It is also worth 

mentioning that antiSMASH is constantly updated and enriched by the multiple complementary 

emerging tools used to improve the genome mining techniques that researchers may simultaneously 

employ. These constant improvements position this tool as one of the most widely used. 

Expansion of genome mining. The advances achieved regarding the creation of the ‘Minimum 

information about a Biosynthetic Gene cluster’ (MIBiG) allowed the standardised data annotation and 

https://antismash.secondarymetabolites.org/
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storage of experimentally validated BGCs of known functions [121] but also the cross-links that are 

provided between the Natural Products Atlas [69], GNPS [88] and PubChem [122]. Latest updates 

include the addition of structural identifiers in SMILES format directly from cross-linked databases, 

avoiding conflicts caused by SMILES formatting. Moreover, more compounds were linked with their 

bioactivities for bioactivity predictions from structure and finally, the molecular targets of more 

compounds were annotated [123].  

As the analysis of genomes is expanding to large-scale pan-genomic mining such as those of the 

microbiomes, the ‘Biosynthetic Gene Similarity Clustering And Prospecting Engine’ (BiG-SCAPE) has 

been developed to facilitate the exploration of BGCs similarity networks at multiple hierarchical levels 

[124]. The ‘core analysis of syntenic orthologs to prioritise natural product gene clusters’ (CORASON) 

software tool, where syntenic refers to the genes present on the same chromosome of a given species, 

helps the elucidation of the evolutionary relationships between BGC phylogenies and gene cluster 

families (GCFs, groups of BGCs coding for chemically similar metabolites) [124]. The streamlined 

computational workflow using BiG-SCAPE and CORASON allows the integration of gene cluster 

identification and empirical biosynthetic data comparison including antiSMASH and MIBiG [124]. 

Despite recent advances in the previously mentioned software tools, pairwise BGCs comparisons used 

to build similarity networks and perform clustering analysis leads to a quadratic time complexity and 

therefore, to an impractical time of analysis. Thus, the recently developed Biosynthetic Genes Super-

Linear Clustering Engine (BiG-SLiCE) enables the use of clustering algorithm to run in a near-linear 

time complexity, facilitating the analysis of large BGCs datasets in a shorter time and in a truly global 

GCFs on all available microbial genomes [125].  

3.2 Functional mapping of metagenomic gene abundances 

Metagenomic datasets from gut microbiomes studies contain millions of genes. While the major 

sequencing consortia efforts  between 2010 and 2016 reported that human gut microbiome is comprised 

of 10 million non-redundant genes [126–128], the latest efforts have put this number to be close to 22 

million [129]. In addition to their massive sizes, metagenomics datasets also present an intrinsically 

large data dimensionality (e.g., genes are annotated at the same time at the taxonomic and functional 

levels, genes from different species can encode orthologous proteins). In order to cope with this high 

dimensionality, the taxonomic (or ecological) and functional variations of the microbiome are often 

evaluated separately. 

Gene abundances in shotgun metagenomics data are affected by multiple external sources of sample 

variability (e.g., differences in sequence depth, systematic variability introduced during the DNA 

extraction, sample-specific differences) [130]. Hence, metagenomics datasets are routinely transformed 

in order to account for this variability and be able to pinpoint the intrinsic differences between study 

samples. Examples of such transformation methods include total count, cumulative sum scaling and 

rarefying, among many others [130]. 

Regarding these transformations, two considerations must be made. First, it is advised to use samples 

with a similar total cell count as transforming metagenomics data from samples with very different cell 

counts can lead to misleading interpretations. For example, after transformation, low abundance species 

may appear to be absent in samples with low cell count. Second, metagenomics variables describe 

relative proportions rather than absolute abundances due to the aforementioned external sources of 

variability. In the aim of recovering the absolute gene abundances, the strategy named Quantitative 

Microbiome Profiling (QMP) was introduced in 2017 [131]. In this strategy, the relative proportions 
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are converted to absolute counts by multiplying each sample’s proportions with their corresponding 

microbial cell number, usually determined via flow cytometry. 

Ecological changes in the microbiome can be determined by studying the differences across samples of 

either the CAGs, the MAGs or the gene markers for taxonomic classification (e.g., 16S gene, ITS). 

Analogously, genes can be grouped by their encoding molecular function to subsequently compare the 

abundances of these groups to determine the functional role that drives the changes in the studied 

microbiome. Many criteria exist for gene grouping and the most common are based on the system 

classifications defined by the KEGG [43] and the MetaCyc [132] pathways. KEGG provides two 

systems, KEGG PATHWAYS and KEGG MODULES, that group KOs (identifiers relative to 

functional orthologs defined from experimentally characterised genes and proteins) by the function 

units of the enzymes they encode or by the chemical reactions these enzymes catalyse, respectively. 

Aiming at the gut microbiome, a new KEGG-based classification has been recently made available that 

groups KOs into Gut Metabolic Modules (GMMs) [133]. Each GMM, manually curated, represents one 

cellular enzymatic process present in the gut, such as the anaerobic catabolism of carbohydrates, amino 

acids and lipids, cross-feeding interactions, the production of fermentation end products, archaeal 

methanogenesis and enzymatic processes related in mucus degradation [133]. 

Due to the high-dimensionality of the metagenomics data, a common practice in gut microbiome studies 

is also to use these data for determining descriptors that can be more easily visualised and interpreted 

than the raw metagenomics data. These descriptors can be numeric (such as the classical ecological 

descriptors) or categorical (such as by defining enterotypes). Both approaches are presented in the 

following paragraphs. Alternatively, the metagenomics data can also be examined with multivariate 

statistical tools capable of reducing the large number of variables into just a few components that are a 

linear combination of the former, increasing the dataset interpretability and enabling their visualisation 

with relatively simple plots. The most frequent multivariate statistical methods used in metagenomics 

studies will be presented in section 4.2. 

Ecological descriptors. Alpha- and beta-diversity indices are calculated to study intra- and inter-

individual differences in the microbiome structure, respectively. Examples of alpha-diversity metrics 

are the number of gene-based units, Chao1, Simpson’s and Shannon’s indices. Shannon index measures 

uncertainty regarding the species identity while Simpson measures a probability of finding different 

species [134]. Chao1 index is the most popular asymptotic richness estimator but it is strongly 

influenced by the rarest and least-known species. Shannon and Simpson indices are more robust and 

less influenced by underrepresented species. Conversely, these two are affected by the most dominant 

species and, as consequence, do not reflect proportional changes when a non-dominant community is 

lost. Examples of beta-diversity metrics are the Bray–Curtis dissimilarity, Jaccard and (unweighted and 

weighted) UniFrac [135]. The Jaccard index is a measure of similarity between two communities based 

on the presence or absence of species, coded in a binary scale. In contrast, the Bray-Curtis dissimilarity 

index uses species abundance information, making it suitable for comparing similar communities with 

different abundances. Considering that the shared gut microbiome across individuals is small [5], classic 

binary distances are less recommended than the species abundance for investigating the gut microbiome 

inter-individual variability. UniFrac is a dissimilarity metric based on the evolutionary relatedness of 

species. Regarding all these beta-diversity metrics, it must be noted that gut microbiome varies along 

the gastrointestinal tract or even in stool samples from the same patient due to different factors such as 

acidity or transit time [136]. Therefore, all these sources of variations need to be considered prior to 

sampling in order to calculate reliable beta-diversity values. 
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Enterotypes of the gut microbiome. The inter-individual variation of the gut microbiome can be 

sometimes explained by discrete classifications of distinct microbiome compositions or enterotypes 

[137], which can be determined using a Dirichlet multinomial mixtures modelling framework [138]. 

This discretized information can be applied to stratify the cohort dataset into subgroups [139] or to add 

it as an independent variable in multivariable logistic regression models [140]. Besides being 

representative of a particular microbiome composition, enterotypes can also be linked to specific health 

conditions. For instance, Bact2 enterotype (marked by a high level of Bacteroides) is associated with 

severe obesity and inflammation [131,139]. 

4 Metabolome and metagenome integration 

Metabolomics data can be combined with (meta)genomics data for mainly two reasons: (1) To increase 

the existing knowledge of microbial molecular functions by improving gene annotations and 

characterising BGC - metabolite pairs; (2) To understand the role of the microbes from a metabolomics 

perspective (Figure 3). 

 
Figure 3. Metabolome and metagenome integration strategies. 

 

4.1 (meta)genome-metabolome mining 

This approach consists of computing the associations between all of the predicted BGCs and known 

microbial metabolites, which are computed and ranked. Later, the associations are prioritised for the 

hypothetical BGCs-MS2 pairs with the largest associations for subsequent validation [124,141]. These 

associations can be feature-based, correlation-based, or a combination of both [142]. Feature-based 

methods rely on homologies of already characterised pathways and therefore biased towards the most 

annotated BGCs classes (mainly for NRPs, PKs, and RiPPs); other more unusual BGC classes have also 

been mined [143]. The feature-based methods predict the hypothetical metabolite products from the 

BGCs and their theoretical mass spectra. Then, experimental mass spectra obtained from the same 

microbe are matched against the theoretical spectra, and a molecular network of the significant 

identifications is built [110]. Examples of feature-based tools are SANDPUMA [144] and NRPminer 

for NRPs [145], GNP for PKs [146], and MetaMiner for RiPPs [147]. In order to identify BGCs of 

novel classes, machine learning-based approaches and deep learning strategies have been developed 

[148]. With the correlation-based methods, BGCs from different strains are clustered according to their 

similarity into GCFs, assuming that similar BGCs will produce identical or structurally similar 
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metabolites [149]. Previous examples of correlation-based methods are BiG-SCAPE [124] and BiG-

SLICE [125]. 

Already characterised links between BGCs and metabolites pairs can be consulted in the MIBiG 

repository [123]. Up to present, MIBiG contains around 2,700 pairs [123] although it is believed that 

most BGCs in nature are not yet related to any MIBiG reference gene cluster [110]. Knowing that less 

than 10% of the MS2 spectra are annotated in untargeted MS analyses [16,17], further advances in the 

development of methods for annotation of MS/MS data will concomitantly ease the path for annotating 

the BGCs from which the resulting metabolite product is not yet known. 

It is worth mentioning here that the levels of the metabolites from the human circulating metabolome 

depend to some extent on the microbiota composition [22], reflecting that gut microbiome 

metabolomics studies should not be only focused on the microbially produced metabolites, but include 

as many metabolites as possible in order to capture as well the host metabolites modulated by microbial 

action [150]. Among the most known metabolite classes produced and transformed by the gut 

microbiota with reported effects on human physiology include organic acids, short chain fatty acids, 

branched-chain fatty acids, lipids, branched-chain and aromatic amino acids, vitamins, bile acids and 

neurotransmitters. However, at least 90% of the microbiome-derived metabolome is not characterised 

and many of these unknowns are highly likely to represent the missing link between the human-

microbiome interactions [151].  

In this regard, the Paired Omics Data Platform (PoDP) is a community-curated platform that links 

metabolomic and genomic or metagenomic datasets, together with the experimental details on culture, 

extraction, and instrumentation settings [152]. The main objective of this platform is to facilitate the 

accessibility of meticulously curated paired data sets, deposited in various public repositories, in the 

aim of aiding identification of natural product biosynthetic origins and metabolite structures [152]. As 

of March 2023, the PoPD dataset contained 76 projects comprising 4,932 unique metabolome samples 

and 1,306 metagenomes (among them, 481 metagenomes from human gut microbiomes), and provided 

empirical evidence for 115 BGCs and MS/MS spectra [152]. With a similar purpose as PoPD, 

microbeMASST [153], a domain-specific Mass Spectrometry Search Tool (MASST)[84], allows users 

to query MS/MS spectra against a reference database of MS/MS data acquired from bacterial and fungal 

monocultures and aims to identify the microorganisms responsible of the mass spectral signature. 

 

4.2 Metabolome-metagenome integrative analysis 

The analysis of metagenomics data for integrative purposes is challenging since data from all genes and 

metabolites are used, as opposed to the (meta)genome-metabolome mining approach where analyses 

are focused on BGCs and on a few metabolites. The approaches used for integrating these two types of 

data can be classified in either data-driven or knowledge-based approaches [154]. Data-driven 

approaches use statistical and machine learning algorithms to identify patterns and relationships 

between the data, while knowledge-based approaches are founded on external information that provides 

the link between the two sets of -omics data (e.g., biological databases, scientific literature) [154].  

Data-driven integration approaches reveal data relationships by statistical and machine learning means. 

Most of these approaches can be grouped into statistical analysis, exploratory analysis, clustering 

analysis, regression analysis, discriminant analysis, multi-block analysis. The most used knowledge-

based methods consist of pathway visualization, over-representation, and enrichment analysis and 

metabolic modelling. 
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In order to integrate metabolomics and metagenomics data in the context of human microbiota studies, 

epidemiological data analysis recommendations relative to the use of human cohort samples must be 

put into practice. In cross-sectional cohort studies, differences between samples can be driven by the 

patient interindividual differences (e.g., demographics, medication) also known as covariates. In this 

aim, three strategies are normally implemented to cope with these covariates either via: 1) stratification, 

or splitting the data into groups according to the covariates and to study each group separately [40]; 2) 

matching, or pairing samples across groups according to the covariates and excluding the unpaired 

samples from further analyses [41]; or 3) adjusting the omics variables for covariates using generalised 

linear model methods [155]. 

Before using any data analysis method, datasets need to be preprocessed to improve the interpretability 

of the models obtained with these methods. Due to the distinct nature of both data, the preferred 

preprocessing strategies for each data type are also different. Metabolomics data are typically first 

transformed (log-, glog-, or power-transformed) and then scaled (e.g., auto-scaling, pareto scaling) 

[156]. Additional steps of metabolomics data cleaning can be added on the metabolomics preprocessing 

(e.g. imputation of missing data, removal of variables present in the blanks and those with a large 

variability in the quality controls) [157]. Metagenomics data are preprocessed with more adapted 

methods to address their skewness and sparse nature (e.g., trimmed mean of M-values and relative log 

expression) [130]. Nevertheless, in human cohort studies, both datasets are often transformed with the 

rank-based inverse normal transform method [42,158] which converts the distribution of each 

continuous variable to appear more normally distributed. 

Statistical analysis. The simplest data-driven integration strategy consists of performing bivariate 

statistics, i.e., correlating one -omic variable of each set (metabolomics and metagenomics) at a time. 

When associations between all possible pairs of metabolomics and metagenomics variables are 

evaluated systematically at once in a brute-force manner, this is referred to as Metabolome- and 

Metagenome-Wide Association Study (MMWAS) [159]. In all these analyses, p-values need to be 

corrected by multiple comparison testing. 

Exploratory analysis. At a multivariate exploratory level, metabolomics data is typically inspected 

using Principal Component Analysis (PCA) whereas metagenomics data are mainly investigated with 

Principal Coordinates Analysis (PCoA) and Non-metric MultiDimensional Scaling (NMDS) [160]. 

While PCA sample-sample distances are based on Euclidean distances, both PCoA and NMDS use a 

similarity matrix as additional input for ordering the samples in low-dimensional space. For 

metagenomics analyses, the similarity matrix usually contains the ecological information of the Bray-

Curtis dissimilarity distances, which represent the compositional differences between two different 

samples [160]. With both analyses performed separately, these can be combined with a Procrustes 

analysis to find a low-dimensional consensus between the metagenomics and metabolomics data and 

assess the sample differences across them [161]. 

Clustering. Clustering approaches (such as k-means and partitioning around medoids (PAM)) can be 

used to investigate sample similarity. In Battaglioli et al. (2018) [162], a PAM analysis revealed that 

clinical samples could be clustered in two groups, one related to samples from healthy patients and the 

other related to patients with dysbiosis. Similarly, clustering can be applied to identify the omics 

features (e.g., metabolites and gene abundances) that follow similar trends across the studied sample 

set. Nevertheless, inspecting this clustering can be tedious due to the large number of variables involved. 

In this line, weighted correlation network analysis (WGCNA) is a powerful approach to find clusters of 

co-regulated omics variables and to extract a common sample variation profile from each cluster, 
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considerably reducing the number of omics variables to be inspected for phenotype associations [163]. 

In Zheng et al. (2021), 230,868 microbial genes and 559 metabolites were grouped into 18 and 8 

clusters, respectively [108]. Among them, 3 metagenomic and 4 metabolomic clusters were associated 

with depressive behaviours. Moreover, the functional analysis of the 3 relevant metagenomic clusters 

showed that genes were related to energy, neurotransmitter, nucleotide, and lipid metabolism pathways; 

whereas 4 metabolomic clusters were enriched in compounds from the peripheral and central fatty acyl, 

glycerophospholipid and sphingolipid metabolism [108]. 

A powerful strategy to represent how key microbial and metabolomics variables relate to each other is 

through the implementation of networks, where these variables are represented by nodes and the edges 

depict the degree of association between nodes in the network [159]. 

Regression analysis. At multivariate regression and classification levels, the preferred method is Partial 

Least Squares (PLS) regression, and the variants of it. In PLS, a descriptor matrix (X, e.g., the 

metabolomics data) is regressed against a property variable (Y, e.g., the abundances of one microbe) 

[164]. Unlike PCA, the obtained components in PLS (called ‘latent variables’) retain maximal 

covariance between X and Y. In this manner, by analysing the latent variables it is possible to determine 

the original variables in X associated with Y [164]. Orthogonal PLS (O-PLS) is a variant of the PLS 

method that removes the variation from X that is not related to Y, resulting in more interpretable latent 

variables, i.e., predictive and orthogonal scores [165]. Within the context of human samples, the 

covariate adjusted PLS (CA-PLS) method is used to correct for known confounders using PLS [166]. 

Discriminant analysis. Analogous to the PLS methods described above, discriminant analysis (DA) 

can be performed usingPLS-DA, O-PLS-DA and CA-PLS-DA. These methods use the same underlying 

algorithm asthe corresponding PLS regression methods, but the Y matrix contains discretized 

information (e.g., sample groups) instead. PLS-DA methods are used for sample class prediction and to 

determine the variables that maximise the separation among sample groups. For example, CA-PLS-DA 

was used to identify the metabolomic differences caused by the administration of bacterial β-

glucuronidases in mice [167]. In another example, O-PLS-DA was used to build a model with pre-

selected metabolomics and microbial features for predicting acute coronary syndrome [40].  

Other methods can be used for prediction, such as random forest that classifies samples on the basis of 

an ensemble classifier consisting of multiple decision trees using a randomly selected subset of training 

samples and variables [168]. In Segata et al. (2019), random forest was used to predict colorectal cancer 

samples from metagenomics data [169]. 

Multi-block analysis. The multivariate methods presented above can be regarded as single-block 

chemometric methods, where models are built from one descriptor matrix only (e.g., a single omics data 

(metabolomics or metagenomics), or a data matrix containing all of the different sets of omics data. As 

a consequence, single-block methods do not account for the intrinsic properties of each omics data (e.g., 

data distribution, number of variables) nor the differences in these properties among the omics data. To 

address this situation, several multi-blocks methods have been proposed. The multi-block method 

ComDim enables an exploratory analysis of the variance common to all of the omics data[170]. In Puig-

Castellví et al. (2021), ComDim was used to assess the batch effect across four different types of omics 

data [171]. Then, the consensus OPLS-DA method was developed for investigating multi-block data in 

a similar manner as the traditional single-block PLS methods [172]. Overall, the emergence of multi-

block methods for analysing multi-omics data is a growing subject, partially driven by the decreasing 
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costs associated with generating such data. It is anticipated that additional methods will be developed 

in the near future to further advance this field. 

Other data-driven methods have gained attention in the last few years. For example, the tools mmvec 

[173] and MelonnPan [174], which uses neural networks and elastic net regularised regressions, 

respectively, have been proposed to predict metabolic profiles associated with a given (meta)genomic 

data after training a model with paired metabolomics and (meta)genomics data. In another example, 

gradient-boosted decision trees were used to identify the determinants of human serum metabolome 

[22]. This study evaluated the microbial relative abundances as potential determinants of the 

metabolome, along with other variables such as diet, demography, genetics and lifestyle [22]. Gradient-

boosted decision trees have been also used to find the major determinant of fasting circulating TMAO 

in adults, being mainly driven by kidney function with microbiota composition and diet playing minor, 

albeit significant roles [175]. 

Pathway visualization. With pathway visualization tools, it is possible to visualize how genes and 

metabolites are related within a biological pathway. Examples of these tools can be found in KEGG 

[43], WikiPathways [176] and MetaCyc [132], among others. 

Over-representation and enrichment analysis. Over-representation analysis is based on the 

identification of the pathways where the number of significant biological variables is statistically larger 

(as compared to the other pathways). Set enrichment analysis is similar to over-representation analysis, 

but the statistical significance of each biological variable is considered in the analysis [177].  

It must be said that, while pathway visualization, over-representation and enrichment analyses based on 

molecular functions encoded in genetic and/or gene expression data in well-stablished, their utilization 

for metabolomics data is currently constrained. This limitation stems from the relatively low mapping 

of metabolites within these pathways. To illustrate the limited coverage of the metabolomics in these 

pathway analysis tools, as of July 2023, KEGG lists 19,119 compounds while HMDB 5.0 includes a 

significantly larger number of compounds, totalling 217,920. We anticipate that ongoing and 

forthcoming research in metabolomics will contribute to the enhancement of biological pathway maps, 

consequently leading to important improvements in these tools.  

Metabolic modelling. Bioinformatic tools that use the biological knowledge of the enzymes encoded 

in the gut microbiome as input have been developed to predict whether the variations in the metabolite 

profiles can be explained by the metabolic potential of the microbial communities as inferred from the 

KEGG KOs they encode. Examples of these tools are MIMOSA [178] and AMON [179]. Other 

bioinformatic tools predict the metabolite contributions of the microbes present in the gut by using 

metagenome-scale metabolic models. One of the most popular tools is COBRA, a system biology 

framework that employs curated (meta)genome-scale reconstructions of organisms to predict their 

metabolic fluxes after imposition of condition-specific constraints (for instance, calculated from 

experimental metabolomics data and/or from nutritional data) [180]. The COBRA framework can be 

used to explore the metabolic activity of human gut microbiome through the analysis of AGORA2 

(assembly of gut organisms through reconstruction and analysis, version 2), which contains the genome-

scale metabolic reconstructions of 7,302 human gut microorganisms. Specifically oriented for studying 

the gut microbiome, the COBRA-based framework MICOM (that uses AGORA reconstructions) was 

developed. MICOM has been used to predict the production of the short chain fatty acids by the gut in 

individuals with diabetes [181]. Another tool that uses genome-scale metabolic modelling is CASINO 

(Community And Systems-level INteractive Optimization) toolbox, which allowed for the quantitative 
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description of the altered amino acid levels in faeces and serum in response to diet intervention on 45 

overweight and obese individuals [182]. 

 

5 Applications in Health and Disease 

The symbiotic relationship between humans and their microbiomes have coevolved to perform 

numerous essential functions. Human microbial communities, especially the gut microbiome, have 

shown to be a key piece in host health, whose balance is influenced by different factors intrinsic and 

extrinsic to the host [28]. The emergence of new high-throughput technologies and the employment of 

meta-omics approaches are the foundation of modern microbiome research, making it possible to study 

human microbiomes on an epidemiological scale. During the last 20 years, omics-based research, 

including metagenomics, metatranscriptomics, metaproteomics and metabolomics, has revealed many 

disease-microbiome relationships [7]. Figure 4 summarises some of the most recent metabolites – 

disease associations mediated by the gut microbiome described in the literature (Table 1).  

 
Figure 4. Gut microbe-modulated metabolites involved in cardiometabolic diseases, gut 

inflammation and bowel disorders, autoimmune diseases, COVID-19, behaviour and brain disorders 

and cancer. Abbreviations: 4-EPS, 4-Ethylphenyl sulphate; 5-HT, 5-hydroxytryptamine; Asn, 

asparagine; BIP, 2,5-bis(3-indolyl methyl)pyrazine; GABA, gamma-aminobutyric acid; Hip, hippuric 

acid; His, histidine; IAA, indole-3-acetic acid; IxS, indoxyl sulphate; PABA, p-aminobenzoic acid; 

SCFAs, short chain fatty acids; IPA, indole-3-propionic acid; pCG, p-cresyl glucuronide; pCS, p-cresol 

sulphate; PreQ, 7-cyanodeazaguanine; TMA, trimethylamine; TMAO, trimethylamine-N-oxide; Trp, 

tryptophan; Val, valine. 

 

Table 1. Literature covering metabolites – disease associations. 

 Literature covering metabolites – disease associations 

Autoimmune diseases 

• Rheumatoid arthritis [183] 

• Type 1 diabetes [184]  

• Atopic eczema [185] 
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• Atopic asthma [186] 

Gut inflammation / bowel 

disorders • Irritable bowel syndrome [187] 

• Inflammatory bowel disease [188] 

Cardiometabolic diseases 

[40] • Cardiovascular disease [189] 

• Type 2 diabetes (T2D) [190] 

• Non-alcoholic fatty liver disease [191] 

• Chronic kidney disease [192] 

• Hypertension [193] 

Behaviour and brain 

Disorders [194] 
• Schizophrenia [195] 

• Attention-deficit hyperactivity disorder [196] 

• Depression [197] 

• Autism spectrum disorder [198]  

• Social anxiety disorder [199] 

• Parkinson’s disease [200] 

• Alzheimer’s disease [201] 

• Bipolar disorder [202]  

• Multiple sclerosis [203] 

Other 

• Cancer [204] 

• COVID-19 [205] 

 

Some metabolites are associated with multiple diseases. For example, hippuric acid is a glycine 

conjugate of benzoic acid produced in the mitochondria of the liver and kidneys linked to both gut 

inflammation bowel disorders [206] and cardiometabolic diseases [207]. This metabolite has been 

shown to have a positive association with microbial diversity but a negative association with blood 

pressure, non-alcoholic fatty liver disease and Crohn’s disease. High hippuric acid levels are a marker 

of metabolic health, mainly in people having a diet elevated in saturated fats [208]. Another example is 

indole-3-propionic acid (IPA), derived from tryptophan metabolism by the gut microbiota, which has 

shown protection towards inflammation, lipid peroxidation and production of free radicals [209] but 

also promotes nerve regeneration and repair [210] having potential therapeutic implication in brain 

disorders. Moreover, IPA production significantly decreases in diabetes [211] while its circulating 

levels are  negatively associated with advanced atherosclerosis [212]. 

 

5.1 Precision medicine 

Precision medicine seeks to identify the best treatment according to the patient’s genetic and clinical 

features using an individualised approach to improve treatment efficacy and toxicity [35]. Still in its 

infancy, developments in precision medicine are driven by the accessibility of high-throughput -omics 

technologies (e.g., genomics, proteomics, metabolomics) as well as by the development of 

computational tools capable of integrating the heterogeneous data, resulting in insightful interpretations 

that can be used for clinical diagnosis and for anticipating patients’ response to the available treatments. 
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Besides the patient’s genotype and phenotype, the investigation of the patient’s gut microbiome in 

precision medicine should not be neglected as gut metagenomes contain around 1,000 times more genes 

than their hosts and, in fact, up to 46% of the variance in the host’s circulating metabolites can be 

explained by the gut microbiome [21]. Each individual possesses a highly unique microbiome and many 

microbiome functions remain well conserved due to functional redundancy among microbial species 

[194]. Although this, the existence of individual variations found in some patients rely on the strain-

specific functions [195]. 

The research made on the microbiome has provided a link with diseases and illnesses. Some examples 

from metabolomics studies include atherosclerosis and TMAO [213]; cancer as a metabolic disorder 

and the discovery of metabolites associated with cancer [204]; some amino acids (branched-chain, 

aromatic and aminoadipic) as biomarkers for T2D [214]; and heart failure with both imidazole propionic 

acid [215] and phenylacetylglutamine [216]. The applications of omics technologies have lead, for 

example, to the discovery of the gene cluster responsible for the synthesis of TMA [217], whose 

abundance was correlated with the plasma levels of TMAO and the cardiovascular risk in humans [218]. 
 

5.2 Microbiome therapies 

The practice of preventing or treating diseases through the manipulation of the microbiome comprises 

the emerging therapeutic activities of the microbiome medicine. They can be broadly divided into those 

that use living viable organisms, known as probiotics; those that use non-living components to 

selectively stimulate the growth and/or activity of the indigenous gut bacteria, known as prebiotics; and 

those that use metabolic products of probiotic microorganisms with biologic activity in the host, known 

as postbiotics [219]. Several examples of gut microbiome therapies are discussed below. 

Living components. Nowadays, probiotics such as microorganisms from the Lactobacillus and 

Bifidobacterium genera are used as supplements in foods such as yoghurt, cheese, snacks and nutrition 

bars, breakfast cereals and infant formulas, among others [220]. The use of probiotics has been 

associated with several health benefits upon administration to humans, such as prevention of treatment 

of acute gastroenteritis, Clostridium difficile–associated diarrhoea, irritable bowel syndrome and other 

digestive complains, reduction of risk for neonatal late-onset sepsis, reduction in incidence and severity 

of respiratory infections, alleviation of depression, and reduction of cardiovascular risk factors 

associated with the cardiometabolic syndrome [220]. Supplementation with Akkermansia muciniphila 

reduced the levels of blood markers for liver dysfunction and inflammation in a pilot study comprising 

overweight/obese insulin-resistant volunteers [221]. Despite the wide range of applications and 

potential benefits for probiotics, several studies have pointed out that their effectiveness may be 

dependent on factors such as the genetic background and the gut microbiome composition and, as a 

consequence, probiotic administration should be carefully adapted according to the individual’s 

condition [220]. Recent advances in gene editing technology have fostered the development of 

engineered probiotics, and some have already entered the clinical trial stage [222]. Engineered 

probiotics can exert specific activities including binding to targets, responding to pathogens or 

producing molecules with a therapeutic purpose, exhibiting promising results for the treatment of 

tumours, inflammation and metabolic diseases [222]. Another strategy to develop next-generations 

probiotics is to adapt strictly anaerobic bacteria associated with healthy microbiomes to tolerate oxygen 

exposure [223]. 

FMT is a medical procedure to treat microbiome dysbiosis through the transference of human faecal 

matter from a healthy donor to the patient. However, it is not formally considered within the probiotics 
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category as it includes undefined populations of microbiota. Currently, FMT is clinically applied with 

some restrictions, as a treatment for recurrent Clostridium difficile infection. This results in the 

suppression of indigenous intestinal microbiota and loss of colonisation of C. difficile and in the 

restoration of bacterial diversity in the gut microbiota [224]. Besides, FMT has been researched for 

IBD, IBS, melanoma, Tourette syndrome and metabolic syndrome [225]. Still, FMT treatment efficacy 

is dependent on the composition of the donor’s gut microbiome and the route of delivery. It might also 

entail the transmission of communicable diseases and other attributes mediated by the microbiome [39].  

Non-living components. Some drugs are positively influenced by the gut microbiome as is the case of 

metformin, used as an antihyperglycemic for T2D. In this example, metformin was found to alter gut 

bacterial composition by the promotion of beneficial bacteria growth in the gut, influencing 

inflammatory pathways and improving glucose control. Moreover, studies in multiple model organisms 

have shown that metformin can combat disorders related to age, delaying stem cell ageing, modulating 

mitochondrial function, lowering telomere senescence, among other mechanisms of ageing [226]. 

Statins have also been shown to have a protective effect against Bacteroides 2 enterotype, validated in 

two independent cohorts [139]. 

Phage therapy represents an alternative to antibiotic treatment for their specificity in targeting bacteria 

and fewer side effects due to their lack of reaction to eukaryotic cells. Patients with inflammatory bowel 

disease exhibit abnormal gut viromes and an increase of bacteriophages. The administration of lytic 

bacteriophages to these patients could eliminate in a targeted way the bacteria that contribute to the 

disease pathogenesis [227]. In the case of patients with alcoholic liver disease, the increase of 

Enterococcus faecalis numbers is correlated with severe disease and mortality. This bacterium secretes 

an exotoxin named cytolysin, thus, phage therapy can target cytolytic E. faecalis strains. In the study of 

Duan et al., this treatment resulted in a precise method for editing gut microbiota in patients with 

alcoholic liver disease [228]. Phage therapies, however, faces major challenges, mainly when the 

observed in vitro activities are not replicated in vivo experiments due to dosage effects, mutagenesis of 

phages, host antibodies, or the emergence of bacterial strains resistant to phages.  

Last, postbiotic therapies consist in the administration of one or more microbial metabolites (e.g. 

exopolysaccharides, enzymes, short chain fatty acids, phenolic-derived metabolites, aromatic amino 

acids, vitamins, bacterial lysates, and cell-free supernatants containing secreted microbial metabolites). 

For instance, Lactobacillus casei supernatants showed anti-inflammatory and antioxidant effects on 

intestinal epithelial cells, macrophages, and neutrophils by reducing the secretion of TNF-α and 

increasing the secretion of IL-10 [229]. As another example, butyrate, a short chain fatty acid, increases 

the expression of immunosuppressive cytokines and downregulates several cytokines and 

proinflammatory receptors. In this line, rectal administration of butyrate reduced the inflammatory 

response in the large intestine of patients with ulcerative colitis [230]. 

 

5.3 Microbiome-Inspired Drug discovery  

The pairing of genomic and metabolomic workflows have also enhanced the microbial natural product 

discovery under different approaches including: the reduction of re-discovery rates through the 

dereplication with genomic data, the focus on hotspots (such as novel or poorly known BGCs) for the 

search and discovery of new compounds, the identification of the putative BGC responsible for the 

production of a compound of interest for drug development, and the matching mass spectral data with 

predicted structures by the BGCs and MS spectra pairing tools [231]. 
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6 Perspectives, challenges and limitations 

In gut microbiome research, metagenomics and metabolomics can be regarded as two interdependent 

analytical strategies, where advancements in one can contribute to the progress of the other. On the one 

hand, better insight of the microbial composition can be informative of the chemical diversity in the 

metabolomics samples, and therefore be used as an assessment to design experimental methods that 

optimally capture this chemical information. In this line, tools capable of predicting the chemical 

diversity from metagenomics data can potentially be used to guide the development of the future LC-

MS metabolomics methods.  

On the other hand, the combination of metabolomics with metagenomics can also improve microbial 

genome assembly, gene prediction and the identification of genes that are induced or repressed under 

specific conditions thanks to the detection of metabolites using metabolomics [7]. Thus, more powerful 

tools for gene prediction are required, as particular specialised metabolite classes such as the RiPPs and 

fungal or plant genomes presenting introns within their sequence remain a major challenge [110]. In 

addition to this, BGCs having no core enzymes or non-canonical enzymes with unique protein 

sequences and unknown metabolite category, represent the dark matter for microbial genome mining 

[232]. To sum up, further development in (meta)genome-metabolome mining is needed to increase the 

number of annotated microbial genes and metabolites in integrative studies and, therefore greater 

insights of the role of the gut microbes and their interplay with the human host are obtained. 

The gut microbiota is considered a crucial factor in the link between chemical exposure and disease 

development, such as obesity, diabetes, cancer, and their impact on immune and reproductive health. 

The interplay between the gut microbiota and these chemicals occur at many levels. First, chemicals 

can alter the composition and diversity of the gut microbiota, affecting metabolic pathways and 

potentially leading to an individually unique microbiome [233]. Second, the gut microbiota can 

transform the chemicals and bioaccumulate them, modifying the bioactivity of the compound within 

the human body [2]. We therefore envision that understanding how the gut microbiome mediate the 

activity of these chemicals will become an important piece in toxicology research. 

The study of human gut microbiota interactions is complex and expensive as it requires the use of 

clinical cohorts that include hundreds to thousands of individuals. Recently, the use of 'gut-on-a-chip' 

technology has been proposed to simulate the human gut microenvironment at the in vitro level [234]. 

For example, a device with two channels separated by a porous membrane was devised to model the 

host intestinal cavity in one channel and the blood vessel in the other [235]. In the future, the 

combination of such technologies with advanced metabolomics strategies (e.g., single-cell 

metabolomics [236], MS imaging [237]) and metagenomics could provide a unique opportunity for 

investigating the human-gut microbiome crosstalk ex vivo. This will allow the investigation of 

conditions that would be challenging to study in the corresponding in vivo scenario (e.g., time-course 

monitoring of the microbial response to a drug). Moreover, this technology could be used, for instance, 

to study how the gut microbiome regulates the susceptibility of the human body to environmental 

pollutants, which could be crucial in explaining the distribution and frequency of certain diseases in 

society. 

A challenge of the integrative analyses lies in the interpretation of the biological and clinical data, 

derived from the little information available about the role of each microbe in the gut. This knowledge 

is biased, towards pathogens and the most abundant microbes. However, these abundant 

microorganisms are not proxies for studying the functional complexity of the whole gut microbiome 
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since low-abundant microbes can also be the primary contributors of abundant proteins [137] with a 

specific function, to the extent of causing a disproportionate effect in the host [238]. A strategy to 

overcome this difficulty is the isolation, in vitro culture, and characterization of the gut microbes. 

However, this strategy is not feasible for all microbes as a large number are not culturable and, for those 

that can be cultured, their metabolism may differ from that presented in vivo. 

Another aspect that needs to be addressed in the future is the development of diagnostic tools based on 

the two -omics discussed above to complement existing clinical risk scores. The levels of certain gut 

microbial metabolites in the host can be potentially measured to identify the host’s health status, to 

monitor the patient’s response to treatments (e.g., chemotherapy, immunotherapy), or even to anticipate 

their response to the treatments. Although the impact of the gut microbiome in health and disease has 

been well supported by the literature provided in this review, the wider demographic applicability of 

these diagnostic tools must be assessed as the screened cohorts were not representative of the whole 

human population [104,239]. 

To foster advancement in this research field and ultimately, to promote the application of the strategies 

discussed herein for clinical use, the development of the experimental protocols to study the human gut 

microbiome must be made in a synchronised manner. All the research groups should be involved, 

analogously to the ‘European Biomonitoring for Europe initiative for the human monitoring of 

emerging contaminants’ to improve the comparability of the results across laboratories [240]. 

This review represents a snapshot focusing on the intersection of metabolomics and metagenomics, 

narrowing the current knowledge gaps in the context of gut microbiome research. As this is a rapidly 

evolving field, these advances pave the way for translation into accurate patient diagnosis and prognosis 

as well as personalised treatments.  
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