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Permanence of the torsion-freeness property
for divisible discrete quantum subgroups

Rubén Martos∗

Abstract. We prove that torsion-freeness in the sense of Meyer-Nest is preserved under divisible discrete
quantum subgroups. As a consequence, we obtain some stability results of the torsion-freeness property for
relevant constructions of quantum groups (quantum (semi-)direct products, compact bicrossed products
and quantum free products). We improve some stability results concerning the Baum-Connes conjecture
appearing already in a previous work of the author. For instance, we show that the (resp. strong) Baum-
Connes conjecture is preserved by discrete quantum subgroups (without any torsion-freeness or divisibility
assumption).

Keywords. Baum-Connes conjecture, Compact/Discrete quantum groups, C˚-tensor categories, divis-
ible discrete quantum subgroups, module C˚-categories, torsion, triangulated categories.
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1. Introduction

Amajor problem when studying the quantum counterpart of the Baum-Connes conjecture for a discrete quantum
group pG is the torsion structure of pG. Indeed, if G is a discrete group, its torsion phenomena is completely
described in terms of the finite subgroups of G and encoded in the localizing subcategory of KKG of compactly
induced G-C˚-algebras, denoted by ℒG, according to the Meyer-Nest reformulation [25]. The notion of torsion
for a genuine discrete quantum group, pG, has been introduced firstly by R. Meyer and R. Nest [26], [24] in terms
of ergodic actions of G. It has been re-interpreted later by Y. Arano and K. De Commer in terms of fusion rings
and module C˚-categories [3]. In order to apply the Meyer-Nest strategy in the quantum setting, one needs a
complementary pair of localizing subcategories, pℒ

pG,NpGq, where ℒ
pG must encode the torsion phenomena of pG.

A candidate has been apparent for specific examples [26, Section 1] and [37, Section 5] (see also [22, Section
4.1.2] for a description for general discrete quantum groups), but it has been an open question whether the
corresponding pair is complementary in KKpG, which prevented from having a definition of a quantum assembly
map whenever pG is not torsion-free. Recently, Y. Arano and A. Skalski [4] have observed that the candidates
for ℒ

pG and N
pG form indeed a complementary pair of subcategories in KKpG, which allows to define a quantum

assembly map for every discrete quantum group pG (torsion-free or not). Moreover, following a different approach
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by studying the projective representation theory of a compact quantum group, the same conclusion is reached
for permutation torsion-free discrete quantum groups by the author in collaboration with K. De Commer and
R. Nest [7].

In this article, we study some properties in relation with the torsion phenomenon as well as the Baum-Connes
property for discrete quantum subgroups.

On the one hand, we answer in the affirmative the question: is torsion-freeness preserved by divisible discrete
quantum subgroups? Let G and H be two compact quantum groups such that pH ă pG. It is well-known that
torsion-freeness in the sense of Meyer-Nest is not preserved by discrete quantum subgroups in general. The
approach of Arano-De Commer [3] allows to introduce a stronger notion of torsion-freeness, which also is not
preserved by discrete quantum subgroups. However, they show that it is preserved when pH is divisible in
pG. Therefore it is reasonable to ask for the same stability for torsion-freeness in the sense of Meyer-Nest.
The notion of divisible discrete quantum subgroup was introduced in [35]. Roughly speaking, this property
corresponds to the existence of a section of the canonical quotient map, so every inclusion of classical discrete
groups is divisible. It turns out that this class of discrete quantum subgroups have a well-behaved representation
theory, which can be taken advantage to study the torsion phenomenon. More precisely, given a torsion action
of H, pB, βq, we can consider a torsion action of G, pIndGHpBq, rβq, by simply composing with the natural
inclusion CpHq Ă CpGq given by pH ă pG. A result of K. De Commer and M. Yamashita [8] states a one-to-one
correspondence (up to equivariant Morita equivalence) between ergodic actions of G and connected ℛℯppGq-
module C˚-categories. Thus the main task to answer the question above is to understand the relation between
the fusion rings associated to the module categories obtained from these torsion actions: Nβ Ø pB, βq and
ℳ

rβ Ø pIndGHpBq, rβq. In the framework of Arano-De Commer’s approach to torsion-freeness, it is natural to look
at the following construction. Given the ℛℯppHq-module C˚-category Nβ , we can consider inducing it to obtain
a ℛℯppGq-module C˚-category, IndℛℯppGq

ℛℯppHqpNβq. This involves the notion of balanced or relative tensor product
of module C˚-categories with respect to a C˚-tensor category. Such a construction is well-known in the algebraic
framework (see for instance [9], [33] or [11]) and foreseen by experts at the C˚-level (see for instance [10], [1] or
[29]), but a formal and general definition seemed to be elusive in the literature. J. Antoun and C. Voigt have
defined such a tensor product without any semi-simplicity or rigidity assumption on the C˚-categories involved.
First, we show that the divisibility property extends at the level of the representation categories (see Proposition
3.2.4), which allows to identify the fusion module of IndℛℯppGq

ℛℯppHqpNβq to the induced module from FuspNβq. This
allows in turn to answer the above question (see Theorem 3.2.7). Second, we show moreover that induction at
the level of torsion actions corresponds precisely to induction at the level of module C˚-categories. In other
words, we show that IndℛℯppGq

ℛℯppHqpNβq – ℳ
rβ (see Theorem 3.3.4) hence IndRpGq

RpHq

´

FuspNβq
¯

– Fus
´

ℳ
rβ

¯

. As an
application, we obtain stability properties of torsion-freeness with respect to relevant constructions of quantum
groups such as quantum (semi-)direct products, compact bicrossed products and quantum free products (see
Proposition 3.1 and Corollary 3.2).

On the other hand, it is well-known that the strong Baum-Connes property is preserved by divisible discrete
quantum subgroups whenever pG is torsion-free [35]. Now, thanks to the analysis carried out in the present
paper we can simply drop both the torsion-freeness and the divisibility assumptions (notice that this property
appeared already in [15] as a remark). In addition, thanks to the recent general formulation of the quantum
assembly map we can as well generalize this stability result for the Baum-Connes property (see Corollary 4.6).

Acknowledgements. The author would like to thank R. Vergnioux for reading the preliminary versions of
this paper. He is grateful to K. De Commer for his valuable comments and suggestions that allowed to improve
this paper. He also wants to thank M. Yamashita for interesting discussions around the construction of relative
tensor product of module C˚-categories. He is grateful to the anonymous referee for their valuable comments.

2. Preliminaries

2.1. Notations and conventions

We denote by BpHq (resp. KpHq) the space of all linear (resp. compact) operators of the Hilbert space H and
by LApHq (resp. KApHq) the space of all (resp. compact) adjointable operators of the Hilbert A-module H. We
use the notation LGpHq (resp. KGpHq) for the equivariant (resp. compact) adjointable operators of the Hilbert
A-module H with respect to a compact (quantum) group G. All our C˚-algebras (except for obvious exceptions
such as multiplier C˚-algebras and von Neumann algebras) are supposed to be separable and all our Hilbert
modules are supposed to be countably generated. Hilbert A-modules are considered to be right A-modules, so
that the corresponding inner products are considered to be conjugate-linear on the left and linear on the right.
We use systematically the leg and Sweedler notations. The symbol b stands for the minimal tensor product of
C˚-algebras and the exterior/interior tensor product of Hilbert modules depending on the context. The symbol
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b
max

stands for the maximal tensor product of C˚-algebras. If M and N are two R-modules for some ring R,
the symbol d

R
stands for their algebraic tensor product over R, and we write M d

R
N . If S,A are C˚-algebras,

we denote by MpAq the multiplier algebra of A. If H is a finite dimensional Hilbert space and tξ1, . . . , ξdimpHqu
is an orthonormal basis of H, the associated matrix units in BpHq are denoted by teijui,j“1,...,dimpHq. The
coordinate linear forms on BpHq are denoted by ωξi,ξj :“ ωi,j and defined by ωξi,ξj pT q :“ xξi, T pξjqy, for all
i, j “ 1, . . . , dimpHq and all T P BpHq.

If G “ pCpGq,∆q is a compact quantum group, the set of all unitary equivalence classes of irreducible
unitary finite dimensional representations of G is denoted by IrrpGq. The trivial representation of G is denoted
by ε. If x P IrrpGq is such a class, we write ux P BpHxq b CpGq for a representative of x and Hx for the
finite dimensional Hilbert space on which ux acts (we write dimpxq :“ nx for the dimension of Hx). The matrix
coefficients of ux with respect to an orthonormal basis tξx1 , . . . , ξxnxu of Hx are defined by uxij :“ pωijbidqpuxq for
all i, j “ 1, . . . , nx. The linear span of matrix coefficients of all finite dimensional representations of G is denoted
by PolpGq, which is a Hopf ˚-algebra with co-multipliction ∆ and co-unit and antipode denoted by εG and SG,
respectively. Given x, y P IrrpGq, the tensor product of x and y is denoted by xby. Given x P IrrpGq, we denote
by Qx :“ J˚x Jx the canonical invertible positive self-adjoint operator such that dimqpxq :“ TrpQxq “ TrpQ´1

x q,
where Jx : Hx ÝÑ Hx is the antilinear isomorphism associated to a non-trivial invariant vector in Hx bHx by
virtue of Morpε, xb xq ‰ 0 ‰Morpε, xb xq. Let tξx1 , . . . , ξxnxu be an orthonormal basis of Hx that diagonalizes
Qx and let tωx1 , . . . , ωxnxu be its dual basis inHx. If tξx1 , . . . , ξxnxu is an orthonormal basis ofHx and tωx1 , . . . , ωxnxu
denotes its dual basis in Hx , then we identify systematically Hx and Hx via the linear map ωxk ÞÑ 1?

λx
k

ξxk , for
all k “ 1, . . . , nx, where tλx1 , . . . , λxnxu are the eigenvalues of Qx.

The Haar state ofG is denoted by hG. The GNS construction corresponding to hG is denoted by pL2pGq, λ, ξGq.
We also write Λpxq “ λpxqξG for x P CpGq. We adopt the standard convention for the inner product on L2pGq,
which means that xΛpxq,Λpyqy :“ hGpx

˚yq for all x, y P CpGq. We suppress the notation λ in computations
so that we simply write xΛpyq “ Λpxyq for all x, y P CpGq. We will make the standing assumption that hG
is faithful, so we only work with the reduced form of a compact quantum group, hence CrpGq “ CpGq unless
the contrary is specified; where CrpGq denotes the C˚-algebra λpCpGqq Ă BpL2pGqq. The maximal form of G
is given by the C˚-envelopping algebra of PolpGq, denoted by CmpGq. For more details of these definitions and
constructions we refer to [40].

If H is another compact quantum group, we say that pH is a discrete quantum subgroup of pG if one (hence
all) of the following conditions hold: iq PolpHq is a Hopf ˚-subalgebra of PolpGq, iiq CrpHq

ι
Ă CrpGq such that

ι intertwines the co-multiplications, iiiq CmpHq
ι
Ă CmpGq such that ι intertwines the co-multiplications; ivq

ℛℯppHq is a full subcategory of ℛℯppGq containing the trivial representation and stable by direct sums, tensor
product and adjoint operations. See [6] for more details. In this case we write pH ă pG. Note that in this case
we have ε :“ εG “ εH. The trivial quantum subgroup of pG is denoted by E.

Quantum semi-direct products.

Let Γ be a discrete group, G a compact quantum group. Assume that Γ acts on G by quantum automorphisms,
α. We recall the description of the representation theory of F :“ Γ ˙

α
G given by S. Wang [39]. Firstly, we

have CpFq “ Γ ˙
α
CpGq so that π : CpGq ÝÑ Γ ˙

α
CpGq denotes the non-degenerate faithful ˚-homomorphism

and u : Γ ÝÑ UpΓ ˙
α
CpGqq the group homomorphism defining this crossed product. For every irreducible

representation y P IrrpFq, take a representative wy P BpHyq b CpFq. Then there exist (cf. [39]) unique
γ P Γ and x P IrrpGq such that if wγ P C b C˚r pΓq and wx P BpHxq b CpGq are respective representatives
of γ and x, then we have wy – vγ b vx P BpC b Hxq b CpFq, where vγ :“ pid b uqpwγq P C b CpFq and
vx :“ pidb πqpwxq P BpHxq b CpFq. Hence we label IrrpFq with couples y :“ pγ, xq where γ P Γ and x P IrrpGq
and we define the associated representative to be wy :“ wpγ,xq.

Since α is an action of Γ on G by quantum automorphisms, then for every γ P Γ, we have that pidbαγqpwxq
is an irreducible unitary finite dimensional representation of G on Hx whenever x P IrrpGq. Hence there exists
a unique class αγpxq P IrrpGq such that pid b αγqpw

xq – wαγpxq. Since dimpαγpxqq “ dimpxq we can assume
that wαγpxq P BpHxq b CpGq, for all γ P Γ (if this is not the case, we might change the representative of αγpxq
by an appropriate one in the orbit of x). Hence, there exists a unique, up to a multiplicative factor in S1,
unitary operator Vγ,x P UpHxq such that pid b αγqpw

xq “ pVγ,x b idqwαγpxqpV ˚γ,x b idq. Notice that it is clear
that αepxq “ x, for all x P IrrpGq and that αγpεq “ ε, for all γ P Γ. Therefore, we can choose the multiplicative
factor defining Vγ,x such that Ve,x “ idHx , for all x P IrrpGq and Vγ,ε “ 1C, for all γ P Γ. We keep this choice
for the sequel.

Let γ, γ1 P Γ and x, x1 P IrrpGq be irreducible representations of Γ and G, respectively. Consider the
corresponding irreducible representations of F, say y :“ pγ, xq, y1 :“ pγ1, x1q P IrrpFq. We know that wy “
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vγ b vx and wy
1

“ vγ
1

b vx
1 , where vγ :“ pid b uqpwγq, vγ

1 :“ pid b uqpwγ
1

q P C b CpFq and vx :“ pid b
πqpwxq, vx

1 :“ pid b πqpwx
1

q P BpHxq b CpFq. A straightforward computation yields the following formula
wyby

1

“ vγγ
1

b
`

pVγ1´1 b idqvαγ1´1 pxqpV ˚
γ1´1 b idq b v

x1
˘

.

Compact bicrossed products.

Let pΓ, Gq be a matched pair of a discrete group Γ and a compact group G. Following [14], [13], this means
that we have a left action Γ α

ñ G of Γ on the compact space G and a (continuous) right action Γ β
ð G of G on

the discrete space Γ satisfying:

αrpghq “ αrpgqαβgprqphqand αrpeq “ e, @r, s P Γ
βgprsq “ βαspgqprqβgpsq and βgpeq “ e, @g, h P G;

(2.1)

where e denotes either the identity element in Γ or in G. Of course, we have αe “ idG and βe “ idΓ. Observe
that the above relations imply that #res “ 1, where res P Γ{G is the corresponding class in the orbit space. We
denote by F :“ Γα ’β G the associated bicrossed product. Let us recall the description of the representation
theory of F given in [13]. For every class γ ¨G ” rγs P Γ{G in the orbit space, we define the clopen subsets of G,
Gr,s :“ tg P G : βgprq “ su, for every r, s P γ ¨G. Consider as well its characteristic function, say 1Ar,s “: 1r,s,
for all r, s P γ ¨G. We can show that vγ :“

´

1r,s
¯

r,sPγ¨G
P M|γ¨G|pCq b CpGq is a magic unitary and a unitary

representation of G. Given γ P Γ, we denote by Gγ :“ tg P G : βgpγq “ γu the stabilizer of γ for the action
Γ β

ð G. Note that Gγ is a clopen subgroup of G with index |γ ¨ G|. We view CpGγq “ vγγCpGq Ă CpGq as a
non-unital C*-subalgebra. Let us denote by ν the Haar probability measure on G and note that νpGγq “ 1

|γ¨G|

so that the Haar probability measure νγ on Gγ is given by νγpAq “ |γ ¨ G| νpAq for all Borel subset A of Gγ .
Let us note that, by the bicrossed product relations, αγ defines a group isomorphism (and an homeomorphism)
from Gγ to Gγ´1 , for all γ P Γ. Given γ P Γ we fix a section, still denoted γ, γ : γ ¨ G Ñ G of the canonical
surjection G ÝÑ γ ¨G : g ÞÑ βgpγq. This means that γ : γ ¨G ÝÑ G is an injective map such that γ ¨ γprq “ r
for all r P γ ¨G. We chose the section γ such that γpγq “ e, for all γ P Γ. For γ P Γ and r, s P γ ¨G, we denote
by ψγr,s the ν-preserving homeomorphism of G defined by ψγr,spgq “ γprqgγpsq´1. It follows from our choices
that ψγγ,γ “ id, for all γ P Γ. Moreover, for all g P G, we have g P Gr,s ô ψγr,spgq P Gγ .

Let u : Gγ ÝÑ UpHq be a unitary representation of Gγ and view u as a continuous function G ÝÑ BpHq
which is zero outside Gγ i.e. a partial isometry in BpHq b CpGq such that uu˚ “ u˚u “ idH b 1γγ . In the
sequel we view CpGq Ă CpFq so that u ˝ ψγr,s :“ pg ÞÑ upψγr,spgqqq P BpHq b CpGq Ă BpHq b CpFq. We define:

γpuq :“
ÿ

r,sPγ¨G

ers b p1b ur1rsqu ˝ ψγr,s P Bpl2pγ ¨Gqq b BpHq b CpFq,

where ers P Bpl2pγ ¨ Gqq, r, s P γ ¨ G, are the matrix units associated to the canonical basis of l2pγ ¨ Gq. It is
known from [13] that , for any γ P Γ and any unitary representation u of Gγ , γpuq is a unitary representation
of F. It is easy to see that its character is given by χpγpuqq “

ř

rPγ¨G

ur1rrχpuq ˝ ψγr,r. Using the formula for the

character we find easily that, for any γ, µ P Γ and any unitary representation u and v of Gγ and Gµ, respectively
one has:

dimGpγpuq, µpvqq “ δγ¨G,µ¨GdimGγ pu, v ˝ ψ
µ
γ,γq. (2.2)

Note that the formula above makes sense since, for any µ P γ ¨G, ψµγ,γ is an isomorphism (and homeomorphism)
from Gγ to Gµ so that v˝ψµγ,γ is a unitary representation of Gγ . In particular, it implies that any representation
of the form γpuq is irreducible if and only if u is irreducible. It is also easy to deduce from the character formula
that γpuq » γ´1pu˝αγ´1q. Moreover, one can show that any irreducible unitary representation of F is equivalent
to some γpuq.

Finally, the fusion rules are described as follows. Let γ, µ P Γ and u : Gγ ÝÑ UpHuq, v : Gµ ÝÑ UpHvq

be unitary representations of Gγ and Gµ, respectively. For any r P pγ ¨ Gqpµ ¨ Gq, we define, the r-twisted
tensor product of u and v, denoted ub

r
v (see [13] for the precise formula) as a unitary representation of Gr on

Kr bHu bHv, where Kr :“ Spanptes b et : s P γ ¨G and t P µ ¨G such that st “ ruq Ă l2pγ ¨Gq b l2pµ ¨Gq. It
is shown in [13] that the formula above defines a unitary representation of Gr and the following fusion formula
holds, for all γ1, γ2, γ2 P Γ and all u, v, w unitary representations of Gγ1 , Gγ2 and Gγ3 respectively:

dimGpγ1puq, γ2pvqbγ3pwqq “

#
ř

rPγ1¨GXpγ2¨Gqpγ3¨Gq

1
|r¨G|dimGr pu ˝ ψ

γ1
r,r, v b

r
wq if γ1 ¨GX pγ2 ¨Gqpγ3 ¨Gq ‰ H,

0 otherwise.
(2.3)

Note that the formula above makes perfect sense since the map ψγ1
r,r defines a group isomorphism and an

homeomorphism from Gr to Gγ1 for all r P γ1 ¨G so that u ˝ ψγ1
r,r is a unitary representation of Gr.
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Some further useful remarks for our purpose should be made. Since the inclusion CpGq Ă CpFq intertwines
the co-multiplications, we may and will view ℛℯppGq Ă ℛℯppFq. Moreover, we have a map Γ ÝÑ ReppGq,
γ ÞÑ γpεγq, where εγ denotes the trivial representation of Gγ . Note that γpεγq is an irreducible representation
of F on l2pγ ¨Gq, for all γ P Γ. From Equation p2.2q, we see that γpεγq » µpεµq if and only if γ ¨G “ µ ¨G. Note
that γpεγq » γ´1pεγq and, from the bicrossed product relations, γ´1 ¨G “ pγ ¨Gq´1.

Quantum direct products.

Let G and H be two compact quantum groups. We recall the description of the representation theory of
F :“ G ˆ H given by S. Wang [39]: for every irreducible representation y P IrrpFq, take a representative
wy P BpHyq b CpFq. Then there exist unique irreducible representations x P IrrpGq and z P IrrpHq such
that if wx P BpHxq b CpGq and wz P BpHzq b CpHq are respective representatives of x and z, then we have
wy –

“

wx
‰

13

“

wz
‰

24 P BpHx bHzq b CpFq, where
“

wx
‰

13 and
“

wz
‰

24 are the corresponding legs of wx and wz,
respectively inside BpHxq b BpHzq b CpGq b CpHq. In this case we write wy :“ wpx,zq.

Moreover, let x, x1 P IrrpGq and z, z1 P IrrpHq be irreducible representations of G and H, respectively.
Consider the corresponding irreducible representations of F, say y :“ px, zq, y1 :“ px1, z1q P IrrpFq. We know that
wy “

“

wx
‰

13

“

wz
‰

24 and wy1 “
“

wx
1‰

13

“

wz
1‰

24, where the legs are considered inside BpHxqbBpHzqbCpGqbCpHq
and BpHx1q b BpHz1q b CpGq b CpHq, respectively. A straightforward computation yields that the flip map
Hz bHx1 ÝÑ Hx1 bHz yields the following obvious identification wyby1 “

“

wx b wx
1‰

13

“

wz b wz
1‰

24.

Quantum free products.

LetG andH be two compact quantum groups. We recall the description of the representation theory of F :“ G˚H
given by S. Wang [38]: for every irreducible representation y P IrrpFq, take a representative wy P BpHyqbCpFq.
Then there exist a natural number n P N and irreducible representations ζ1, . . . , ζn either in IrrpGq or in IrrpHq
such that if wζi P BpHiq b CpG or Hq are respective representatives of ζi, for all i “ 1, . . . , n, then we have
wy – wζ1 b wζ2 b . . .b wζn P BpH1 b . . . Hnq b CpFq with the ζi alternating between IrrpGq and IrrpHq.

In addition, the fusion rules are described in the following way.

a) If y, y1 P IrrpFq “ IrrpGq ˚ IrrpHq are words such that y ends in IrrpGq and y1 starts in IrrpHq (or vice-versa),
then y b y1 “ yy1 is an irreducible representation of F.

b) If y “ ζx, y1 “ x1ζ 1 P IrrpFq “ IrrpGq ˚ IrrpHq are words such that x, x1 P IrrpGq (or in IrrpHq), then
yby1 “

À

tĂxbx1
ζtζ 1‘δx,x1pζbζ

1q, where the sum runs over all non-trivial irreducible representations t P IrrpGq

(or in IrrpHq) contained in xb x1 with multiplicity.

2.2. C˚-categories

Let us gather together some basic material about C˚-categories used for our purposes. We refer to [17], [28] or
[12] for further precisions about C˚-tensor categories, module C˚-categories and examples. The data defining a
C˚-tensor category is denoted by pC, ˚,b,1, α, l, rq, where pC, ˚q is a C˚-category, 1 is the unit object, α is the
associativity constraint, l is the left unit constraint and r is the right unit constraint. Then, the data defining a
left (resp. right) C-module C˚-category is denoted by pℳ, ‚, µ, eq, where ℳ is a C˚-category, ‚ denotes the left
(resp. right) action of C on ℳ, µ is the associativity constraint with respect to ‚ and e is the unit constraint with
respect to ‚. A linear functor between two C˚-categories that preserves the ˚-operation is called C˚-functor.
A module functor is a C˚-functor F between two module C˚-categories that preserves the module action, i.e.
equipped with unitary natural isomorphisms φU,X : F pU ‚Xq – U ‚ F pXq for all U P ObjpCq and X P Objpℳq
satisfying coherence diagrams with respect to e and µ.
2.2.1 Note. If pC, ˚,b,1, α, l, rq is a C˚-tensor category, we assume the following properties.

i) The unit object 1 is simple (or irreducible), i.e. EndCp1q “ C.

ii) It is well-known that every C˚-tensor category is unitarily monoidally equivalent to a strict C˚-tensor
category (result due to Mac Lane and we refer to [17, Theorem XI.5.3] for a proof). Hence, from now on
we assume that C is strict meaning that the natural equivalences α, l and r are identities.

iii) C has orthogonal finite direct sums. More precisely, given objects U1, . . . , Un P ObjpCq, there exists an
object S P ObjpCq and isometries ui P HomCpUi, Sq for each i “ 1, . . . , n such that

n
ř

i“1
uiu

˚
i “ idS and

uiu
˚
j “ δij , for all i, j “ 1, . . . , n.
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iv) C has subobjects or retracts. More precisely, for any object U P ObjpCq and for any projection p P EndCpUq,
there exists an object V P ObjpCq and an isometry u P HomCpV,Uq such that p “ uu˚. In particular, C
has a zero object. Namely, the object defined by the zero projection.
Observe that different terminologies are used in the category theory literature for this property. For instance,
we also say that C is subobject/idempotent/Cauchy/Karoubi complete.

2.2.2 Remark. Assume that C is rigid, i.e. every object of C has a conjugate object. This is the case for the
C˚-categories used for our purpose. In this case, one can show that assumptions (iii) and (iv) in Note 2.2.1 are
equivalent to say that all homomorphism spaces are finite-dimensional and that every object in C is isomorphic
to a finite direct sum of simple objects (cf. [28] for more details). In other words, C is semi-simple. We
mainly work with semi-simple C˚-categories, so we assume from now on that C is semi-simple unless otherwise
stated. A module C˚-category is called semi-simple if the underlying C˚-category is semi-simple. The (module)
C˚-categories used for our purpose are semi-simple.

The following are relevant examples of C˚-tensor categories for our purpose.

2.2.3 Examples. 1. The cateogory of all Hilbert spaces and bounded linear maps is a C˚-tensor category
for the ordinary tensor product of Hilbert spaces, C being the unit object. It is denoted by ℋilb. The
corresponding rigid subcategory consists of all finite dimensional Hilberts spaces, denoted by ℋilbf .

2. If G is a compact quantum group, the category of all its finite dimensional unitary representations and
intertwiners is a C˚-tensor category for the usual tensor product of representations of G, ε being the unit
object. It is denoted by ℛℯppGq and it is rigid [28]. The category ℛℯppGq satisfies all assumptions
considered in Note 2.2.1; in particular, it is semi-simple (cf. Remark 2.2.2).
2.2.4 Note. Given a subset S Ă IrrpGq, we denote by C :“ xSy the smallest full subcategory of ℛℯppGq
containing S. If, in addition, C contains the trivial representation and it is closed under taking tensor
product and contragredient representations, by Tannaka-Krein-Woronowicz duality, there is an associated
C˚-subalgebra CpHq such that restricting the coproduct to CpHq endows it with the structure of compact
quantum group H. Moreover, ℛℯppHq naturally identifies with C and we say that pH is the quantum
subgroup of pG generated by S.

3. Let C, D be C˚-categories. Denote by ℱunpC,Dq the category whose objects are the C˚-functors between
C and D and whose homomorphisms are the natural transformations between C˚-functors, which are uni-
formly bounded. Then ℱunpC,Dq is a C˚-category in the following way. The involution ˚ : ℱunpC,Dq ÝÑ
ℱunpC,Dq given by the identity on objects and pη˚qU :“ pηU q˚, for all
η P HomℱunpC,DqpF, F

1q with F, F 1 P Obj
´

ℱunpC,Dq
¯

and all U P ObjpCq. For every objects F, F 1 P

Obj
´

ℱunpC,Dq
¯

, the homomorphism space HomℱunpC,DqpF, F
1q is equipped with the following norm ||η|| :“

supt||ηU || | U P ObjpCqu, for all η P HomℱunpC,DqpF, F
1q and all U P ObjpCq.

In particular, if C “ D “: ℳ, then we write ℰndpℳq :“ ℱunpℳ,ℳq. In this case, it is a C˚-tensor
category with tensor product b given by the composition of functors, the identity functor being the unit
object. The corresponding rigid subcategory consists of adjointable functors whose unit and co-unit maps
are uniformly bounded.

The following are relevant examples of module C˚-categories, which are used in Section 3.

2.2.5 Examples. 1. If C is a C˚-tensor category, then it is a C-bimodule C˚category with left and right
actions given simply by its own tensor product ‚

l
:“ b “: ‚

r
.

2. Let C and D be C˚-tensor categories. If J : C ÝÑ D is a C˚-tensor functor, then D is a right C-module
C˚-category with the following action P ‚U :“ P bJpUq, for all objects U P C and P P D and analogously
defined on homomorphisms. In particular, let G and H be compact quantum groups.

a) If H ď G with canonical surjection ρ : CmpGq � CmpHq, then we have a restriction functor between
C˚-tensor categories, J : ℛℯppGq ÝÑ ℛℯppHq. In this way, ℛℯppHq is a right ℛℯppGq-module
C˚-category.

b) If pH ď pG, then we have a fully faithful functor between C˚-tensor categories, J : ℛℯppHq ÝÑ ℛℯppGq
given by the natural inclusion of ℛℯppHq inside ℛℯppGq as a full subcategory. In this way, ℛℯppGq
is a right ℛℯppHq-module C˚-category.

3. Let C is a C˚-tensor category. If ℳ and N are a left C-module C˚categories, then we denote by ℱunCpℳ,Nq
the category whose objects are the C-module functors between ℳ and N and whose homomorphisms are
the C-module natural transformations, which are uniformly bounded. Then
ℱunCpℳ,Nq is a left C-module C˚-category in the following way. The involution ˚ : ℱunCpℳ,Nq ÝÑ
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ℱunCpℳ,Nq given by the identity on objects and pη˚qX :“ pηXq˚, for all η P HomℱunCpℳ,NqpF, F
1q with

F, F 1 P Obj
´

ℱunCpℳ,Nq
¯

and all X P Objpℳq. For every objects F, F 1 P Obj
´

ℱunCpℳ,Nq
¯

, the
homomorphism space HomℱunCpℳ,NqpF, F

1q is equipped with the following norm ||η|| :“ supt||ηX || | X P

Objpℳqu, for all η P HomℱunCpℳ,NqpF, F
1q and all X P Objpℳq. The left action of C on ℱunCpℳ,Nq is

given by U ‚ F pXq :“ U ‚ F pXq, for all F P ObjpℱunCpℳ,Nqq, all U P ObjpCq and all X P Objpℳq;
and analogously defined on homomorphisms. Both the associativity constraint and the unit constraint with
respect to ‚ are inherited from those on N.
In particular, we write ℳ˚ :“ ℱunCpℳ,Cq and it is called the dual category of ℳ.

2.3. Fusion rings and (strong) torsion-freeness

2.3.1 Definition. Let G “ pCpGq,∆q be a compact quantum group. A right G-C˚-algebra is a C˚-algebra A
together with an injective non-degenerate ˚-homomorphism δ : A ÝÑMpAbCpGqq such that: iq pδbidCpGqq˝δ “
pidA b∆q ˝ δ and iiq rδpAqp1bCpGqqs “ AbCpGq. Such homomorphism is called a right action of G on A or
a right co-action of CpGq on A.

In particular, if A is finite dimensional and δ is ergodic, meaning that Aδ :“ ta P A | δpaq “ a b 1CpGqu “
C1A, then we say that pA, δq is a torsion action of G. The set of all equivariant Morita equivalence classes of
torsion actions of G is denoted by TorppGq.

2.3.2 Note. Firstly, similar definitions can be made for left actions of G. In the present paper we will consider
all actions to be right ones unless the contrary is explicitly indicated, so we will refer to them simply as action
of G. Similar considerations are made for the following definitions. Secondly, since we are mainly interested in
studying torsion actions, we implicitly assume that our C˚-algebras are unital unless the contrary is explicitly
indicated.

2.3.3 Remark. Given a G-C˚-algebra pA, δq, there always exists a non-degenerate δ-invariant conditional
expectation Eδ : A ÝÑ Aδ given by a ÞÑ pidb hGqδpaq for all a P A. Eδ is a state whenever δ is ergodic. Recall
that we only work with the reduced form of G, so Eδ is automatically faithful.

2.3.4 Definition. Let G “ pCpGq,∆q be a compact quantum group and A a unital ˚-algebra. A right co-action
of PolpGq on A is an algebra homomorphism δ : A ÝÑ AdPolpGq such that: iq pδb idPolpGqq˝δ “ pidAb∆q˝δ
and iiq pidA b εGq ˝ δ “ idA.

2.3.5 Definition. Let G “ pCpGq,∆q be a compact quantum group. An algebraic right G-˚-algebra is a unital
˚-algebra A together with a right co-action of PolpGq on A, δ : A ÝÑ A d PolpGq, such that Aδ is a unital
C˚-algebra, and the canonical δ-invariant conditional expectation Eδ : A ÝÑ Aδ is completely positive. Such
co-action is called a (right) algebraic action of G on A.

2.3.6 Theorem ([8, Proposition 4.5]). Let G “ pCpGq,∆q be a compact quantum group.

i) If pA, δq is a unital right G-C˚-algebra, then A :“ spantpidA b hGq
`

δpaqp1A b xq
˘

| a P A, x P PolpGqu is a
dense unital ˚-subalgebra of A on which δ restricts to an algebraic action of G. This association defines a
functor from the category of G-C˚-algebras to the one of algebraic G-˚-algebras. We denote it by Alg.

ii) If pA, δq is an algebraic right G-˚-algebra, then there exists a unique C˚-completion of A, say A, to which
δ extends as a right action of G. Moreover, Aδ “ Aδ. This association defines a functor from the category
of algebraic G-˚-algebras and the one of G-C˚-algebras. We denote it by Comp.

In addition, the composition Comp ˝Alg is naturally equivalent to the identity functor. The composition
Alg ˝Comp is naturally equivalent to the identity whenever we restrict to actions with finite dimensional fixed
points algebras.

2.3.7 Examples. 1. The trivial action pC, trv.q is of course a torsion action of any compact quantum group
G. The co-multiplication of any compact quantum group G defines an action of G on its defining C˚-
algebra. This action is called the regular action of G.

2. If pH ă pG is a discrete quantum subgroup of pG, we have by definition an inclusion of C˚-algebras CpHq ι
Ă

CpGq intertwining the corresponding co-multiplications. Therefore, if pB, βq is a H-C˚-algebra, we can
obviously extend β (by composing with ι) into an action of G on B, which is denoted by rβ. We denote by
IndGHpBq the same C˚-algebra B but equipped with the composition rβ :“ pidB b ιq ˝ β as an action of G.
Observe that if pB, βq is a torsion action of H, then pIndGHpBq, rβq is a torsion action of G. In particular,
if pH is finite, then pCpHq,∆Hq defines a non-trivial torsion action of G.
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3. If pH ă pG is a discrete quantum subgroup of pG, we have by definition an inclusion of C˚-algebras
CpHq ι

Ă CpGq intertwining the corresponding co-multiplications. Given a G-C˚-algebra pA, δq we de-
note by ResGHpAq the C˚-algebra obtained as A1 :“ spantpidA b hGq

`

δpaqp1A b yq
˘

| a P A, y P PolpHqu.
As in Theorem 2.3.6, δ “restricts” to an action of H on ResGHpAq, which we denote by δ1. We will show
in Proposition 3.1.5 that if pA, δq is a torsion action of G, then pResGHpAq, δ1q splits as a direct sum of
actions of H which are H-Morita equivalent to torsion actions of H.

4. If u P BpHuq b CpGq is a unitary representation of G on a finite dimensional Hilbert space Hu, then it
defines an action of G on BpHuq given by Adu : BpHuq ÝÑ BpHuq b CpGq, T ÞÝÑ AdupT q :“ upT b
1CpGqqu˚. It is clear that BpHqAdu “ Endpuq. Hence, the pair pBpHuq, Aduq is a torsion action of G if
and only if u is irreducible.

2.3.8 Definition. Let G be a compact quantum group. We say that pG is torsion-free if any torsion action of
G is G-equivariantly Morita equivalent to the trivial G-C˚-algebra C.

The notion of equivariant Hilbert module with respect to a compact quantum group is central for our
purpose.

2.3.9 Definition. Let G be a compact quantum group and pA, δq a G-C˚-algebra. A right G-equivariant
Hilbert A-module is a right A-module E together with an injective linear map δE : E ÝÑ E b CpGq such
that: iq δEpξ ¨ aq “ δEpξq ˝ δpaq for all ξ P E and a P A; iiq δ

`

xξ, ηy
˘

“ xδEpξq, δEpηqy for all ξ, η P E; iiiq
pδE b idq ˝ δE “ pidb∆q ˝ δE; ivq rδEpEqpAb CpGqqs “ E b CpGq. Such map is called a right action of G on
E or a right co-action of CpGq on E.

2.3.10 Example. If u P BpHuq b CpGq is a unitary representation of G on a finite dimensional Hilbert space
Hu, then it defines an action of G on Hu given by δupξq :“ upξ b idq, for all ξ P Hu.

2.3.11 Definition. Let G be a compact quantum group and pA, δq a G-C˚-algebra. Let pE, δEq be a G-
equivariant Hilbert A-module. We say that E is irreducible if the space of equivariant adjointable operators
of E, LGpEq :“ tT P LApEq | δEpT pξqq “ pT b 1qδEpξq, for all ξ P Eu, is one-dimensional.

2.3.12 Remark. If pE, δEq is a G-equivariant Hilbert A-module as above, then KApEq is a G-C˚-algebra with
action δKApEq defined by δKApEqpθξ,ηq “ δEpξqδEpηq

˚ P KApEq b CpGq, for all ξ, η P E where θξ,η denotes the
corresponding rank one operator in E. By abuse of notation, we still denote by δKApEq the extension of this
homomorphism to LApEq “MpKApEqq ÑMpKApEqbCpGqq. The latter is however not in general an action of
G on LApEq. Recall further that giving an action δE is equivalent to giving a unitary operator VE P LAbCpGq

`

Eb
δ

pAbCpGqq, EbCpGq
˘

such that δEpξq “ VE ˝Tξ for all ξ P E where Tξ P LAbCpGqpAbCpGq, Eb
δ
pAbCpGqqq

is such that Tξpxq “ ξ b
δ
x, for all x P Ab CpGq. One calls VE the admissible operator for pE, δEq. Moreover,

we have δKApEq “ AdVE . We refer to [5] for more details. Note that LGpEq “ LApEqAdVE . So, if pE, δEq is
irreducible, then LApEq “ KApEq together with AdVE defines an ergodic action of G.

Y. Arano and K. De Commer [3] have re-interpreted the notion of torsion-freeness for discrete quantum
groups in terms of fusion rings giving a stronger version of torsion-freeness. Let us recall briefly elementary
notions about fusion rings theory (we refer to [3] or [12] for further details and properties).

Let pI,1q be an involutive pointed set, i.e. a set I equipped with an involution I Ñ I, i ÞÑ i, such that
1 “ 1. Let J be any set. Denote by ZI the free Z-module with basis I, that is, every element in ZI is a unique
finite Z-linear combination of elements of I. The addition operation in ZI is denoted by ‘. One extends the
involution on I to a Z-linear involution on ZI . A ring structure b on ZI is given by constants N i

α,i1 P NY t0u
for all α, i, i1 P I, called fusion rules, such that α b i1 “

ř

iPI

N i
α,i1 ¨ i, where all but finitely many terms vanish.

This rule extends obviously to any element of ZI and it can be regarded as an action of ZI on itself; we call it
regular action of ZI . We write i Ă αb i1 whenever N i

α,i1 ‰ 0. Denote by ZJ the free Z-module with basis J . The
addition operation in ZJ is still denoted by ‘. A (left) ZI-module structure on ZJ , still denoted by b, is given
by constants N j

α,j1 P N Y t0u for all α P I, j, j1 P J such that α b j1 “
ř

jPJ

N j
α,j1 ¨ j, where all but finitely many

terms vanish. This rule extends obviously to any element of ZI and ZJ and it can be regarded as an action of
ZI on Zj ; we say that ZJ is a ZI -module. We write j Ă αb j1 whenever N j

α,j1 ‰ 0.

2.3.13 Definition. Let pI,1q be an involutive pointed set and J any set. Let R :“ pZI ,‘,bq be the free
Z-module with basis I endowed with a ring structure and let M :“ pZJ ,‘,bq be the free Z-module with basis J
endowed with a ZI-module structure.

- We say that R is a I-based ring if αb α1 “ α1 b α, for all α, α1 P I and 1 Ă αb α1 if and only if α “ α1,
for all α, α1 P I.
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- We say that R is a fusion ring if it is a I-based ring equipped with a dimension function, that is, a unital
ring homomorphism d : ZI ÝÑ R such that dpαq ą 0, for all α P I and dpαq “ dpαq, for all α P I.

- We say that M is a J-based module if j Ă αb j1 ô j1 Ă αb j, for all α P I, j, j1 P J .

- A J-based module M is said to be co-finite if for all j, j1 P J , the set tα P I | j Ă αb j1u is finite.

- A J-based module M is said to be connected if for all j, j1 P J , there exists α P I such that j Ă αb j1.

- A J-based module is said to be a torsion module if it is co-finite and connected.

- We say thatM is a fusion R-module if it is J-based and it is equipped with a compatible dimension function,
that is, a linear map dJ : ZJ ÝÑ R such that dJpjq ą 0, for all j P J and dJpα b j1q “ dIpαqdJpj

1q, for
all α P I and all j1 P J .

2.3.14 Note. An isomorphism of based modules is assumed to take basis elements to basis elements.

2.3.15 Remark. We keep the terminology and notations from the previous definition. We refer to [3] for
further details about the following observations, which will be useful for later computations. If R is a fusion
ring with dimension function d and M is a J-based R-module, then we can define an R-valued Z-bilinear form
on M by xj, j1y :“

ř

iPI

N j1

i,j
¨ i, for all j, j1 P J . Notice that xα b j, j1y “ α b xj, j1y and xj, j1y “ xj1, jy, for any

α P I, j, j1 P J . Then for any j0 P J , the map dJ : M ÝÑ R defined by dJpjq :“ dpxj, j0yq, for all j P J is a
compatible dimension function on M . In particular, for M “ R one has xα, α1y “ αb α1, for any α, α1 P I.

Observe that if we equip R with the Z-linear functional τ (sometimes denotes by τR to specify the ring on
which one considers this functional) such that τpαq “ δα,1 for all α P I, then one can check that R is a I-based
ring if and only if αb α1 “ α1 b α, τpα b α1q “ δα,α1 and τpα b β b γq P N, for all α, α1, β, γ P I. In this
case, the structural constants of R are recovered as N i

α,i1 “ τpα b i1 b iq, for all α, i, i1 P I. Moreover, for a
J-based R-module M one has τpxj, j1yq “ δj,j1 , for all j, j1 P J and the structural constants of M are recovered
as N j

α,j1 “ τpαb xj1, jyq, for all α P I, j, j1 P J . In particular, N j1

1R,j “ δj,j1 .
More generally, one can check that M is a J-based R-module if and only if there exists a R-valued Z-bilinear

form on M , say x¨, ¨y, such that xαb j, j1y “ αb xj, j1y, xj, j1y “ xj1, jy, τpxj, j1yq “ δj,j1 and τpαb xj, j1yq P N,
for all α P I and all j, j1 P J .

2.3.16 Definition. Let R be a I-based ring and M a J-based R-module. The stabiliser of an element j P J is
defined by Stabpjq :“ tα P I | j Ă αb ju.

2.3.17 Examples. 1. The trivial fusion ring is the fusion ring ZI with I “ t1u.

2. Any fusion ring R is a fusion R-module with its regular action. It is automatically co-finite and connected
by definition. The R-valued bilinear form on R as introduced in Remark 2.3.15 is given by xα, α1y “ αbα1,
for all α, α1 P I. In this way, we say that R is equipped with the standard fusion module structure.
A fusion R-module is said to be standard if it is isomorphic to R with its standard fusion module structure.

3. Let R :“ pZI ,‘,b, dq be a fusion ring. If L Ă I is subset such that pL,1q is an involutive pointed set such
that N i

α,i1 “ 0, for all α, i1 P L and all i P IzL, then we obtain by restriction of b and d a fusion ring
S :“ pZL,‘,b|, d|q. It is called fusion subring of R and we write S Ă R.
For instance, given any basis element α P I we can consider the fusion ring generated by α, which is the
smallest fusion subring of R containing α.

4. Let R1 :“ pZI1 ,‘,b, d1q and R2 :“ pZI2 ,‘,b, d2q be two fusion rings. We define the tensor product of
R1 and R2, denoted by R1bR2, as the free Z-module ZI1 dZ

ZI2 . It is a fusion ring with basis I1d
Z
I2, unit

11 d 12, multiplication such that pi1 d i2q b pi
1
1 d i12q “ pi1 b i11q d pi2 b i12q, for all i1, i11 P I1, i2, i12 P I2;

involution xd y “ xd y, for all x P ZI1 and all y P ZI2 ; and dimension function dpi1d i2q “ d1pi1qd2pi2q,
for all i1 P I1 and all i2 P I2.

5. Let pG be a discrete quantum group. Define pI, 1q :“ pIrrpGq, εq as the pointed set with involution given
by the adjoint representation. We define the fusion ring of pG as the IrrpGq-based ring ZIrrpGq with fusion
rules and dimension function given by Nz

x,y :“ dim
´

Morpz, xbyq
¯

and dpxq :“ dimpHxq , for all x, y, z P
IrrpGq. In other words, the ring structure is given simply by the tensor product of representations and so
by the corresponding fusion rules. This ring is denoted by RpGq and we refer to it as the representation
ring of G. If pH ă pG, then ℛℯppHq is a full subcategory of ℛℯppGq, so that RpHq is a fusion subring of
RpGq.
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6. Let R be a fusion ring and let S Ă R be a fusion subring of R. By restriction, it is clear that R can be
viewed as a fusion S-module. If N is a fusion S-module, the tensor product M :“ R d

S
N is a R-module

relevant for our purpose. We denote it by IndRS pNq and we call it induced R-module from N . Notice that
it is not clear a priori whether it is a based module in the sense of the Definition 2.3.13.

2.3.18 Definition. A fusion ring R is called torsion-free if any non-trivial torsion R-module is standard. In
particular, given a compact quantum group G, we say that pG is strong torsion-free if RpGq is torsion-free.

2.3.19 Definition. Let R be a fusion ring and let S Ă R be a fusion subring. We say that S is divisible in R
if R –

À

Ω
S as (right) based S-modules. In particular, given two compact quantum groups G and H such that

pH ă pG, we say that pH is divisible in pG if RpHq is divisible in RpGq.

2.3.20 Remark. Observe that given a basis element i P I, it is decomposed as a sum of elements in
À

Ω
L

through the identification R –
À

Ω
S; but since the latter is an isomorphism of based modules, the element i P I

corresponds to a basis element in only one component of this direct sum, say li P L at position ti P Ω. Let us
denote by 1t P I Ă R the copy of 1S at position t P Ω. Then one can write i – 1ti b li. In the decomposition
R –

À

Ω
S we choose an index t0 P Ω such that the copy of S at position t0 is precisely the component S Ă R. In

particular, 1 “ 1R “ 1S “ 1t0 .

2.3.21 Remark. In the particular case of compact quantum groups, we can give an alternative definition of
divisibility. Namely, we define the following equivalence relation on IrrpGq: x, y P IrrpGq, x „ y ô there
exists an irreducible representation z P IrrpHq such that y b x Ą z. We say that pH is divisible in pG if for
each α P„ zIrrpGq there exists a representation lα P α such that s b lα is irreducible for all s P IrrpHq and
sb lα – s1 b lα implies s – s1, for all s, s1 P IrrpHq. This is equivalent to say that for each α P IrrpGq{ „ there
exists a representation rα P α such that rα b s is irreducible for all s P IrrpHq and rα b s – rα b s1 implies
s – s1, for all s, s1 P IrrpHq. This is again equivalent to say that there exists a pH-equivariant ˚-isomorphism
c0ppGq – c0ppHq b c0ppHzpGq (see [35] for a proof).

The approach of Y. Arano and K. De Commer meets the notion of torsion-freeness in the sense of R. Meyer
and R. Nest when we work in the context of module C˚-categories. Let us recall the main definitions and results
that make possible this connection. We refer to [20], [3] and [29] for more precisions and details. Let C be a rigid
C˚-tensor category and ℳ a C-module C˚-category. We associate to C a fusion ring, denoted by FuspCq, with
basis given by irreducible objects of C, fusion rules analogous to the fusion rules of a discrete quantum group
and dimension function defined in [20] (called intrinsic dimension). We associate to ℳ a based FuspCq-module,
denoted by Fuspℳq, with basis given by irreducible objects in ℳ.

2.3.22 Definition. Let C be a rigid C˚-tensor category and ℳ a C-module C˚-category. We say that ℳ is
co-finite (resp. connected, resp. torsion) if Fuspℳq is co-finite (resp. connected, resp. torsion) as Irrpℳq-based
FuspCq-module.

2.3.23 Remark. More precisely, the previous definitions give the following. Recall that we always assume
that our C˚-categories are semi-simple. ℳ is co-finite if and only if for all non-zero objects X,Y P Objpℳq,
the set tU P ObjpCq | HomℳpU ‚ Y,Xq ‰ 0u is finite. ℳ is connected if and only if for all non-zero objects
X,Y P Objpℳq, there exists an object U P ObjpCq such that HomℳpU ‚ Y,Xq ‰ 0.

2.3.24 Theorem-Definition ([3, Lemma 3.10 & Lemma 3.11]). Let C be a rigid C˚-tensor category. We say
that C is torsion-free if one (hence all) of the following equivalent condition holds:

i) For every torsion C-module C˚-category ℳ, Fuspℳq – FuspCq as based modules.

ii) Every non-trivial torsion C-module C˚-category is equivalent to C as C-module C˚-categories.

In particular, a discrete quantum group pG is torsion-free if and only if for every torsion ℛℯppGq-module
C˚-category ℳ, Fuspℳq – RpGq as based modules.

2.3.25 Remark. Observe that the fusion ring associated to the C˚-tensor category ℛℯppGq is simply the
representation ring of G, RpGq. Hence, the above characterization of torsion-freeness of pG is weaker than the
strong torsion-freeness of pG since here we work with a more restricted class of RpGq-modules. Namely, those
arising from ℛℯppGq-module C˚-categories.

Finally, K. De Commer and M. Yamashita [8, Theorem 6.4] have obtained a one-to-one correspondence
between ergodic actions of G and connected ℛℯppGq-module C˚-categories. Taking into account Theorem-
Definition 2.3.24, this allows in practice to replace torsion actions of a compact quantum group by torsion
RpGq-modules. This correspondence is central for our purpose, so let us describe it more precisely.
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If pA, δq is a G-C˚-algebra, then the category ℳδ of all G-equivariant Hilbert A-modules is a left ℛℯppGq-
module C˚-category with left action of ℛℯppGq given by u ‚ E :“ Hu b E, for all u P ObjpℛℯppGqq and all
pE, δEq P Objpℳδq where δu‚E : u ‚E ÝÑ u ‚EbCpGq is such that δu‚Epξb ηq “ u13pξb δEpηqq, for all ξ P Hu

and all η P E. Moreover, ℳδ is semi-simple and connected whenever δ is ergodic.

2.3.26 Remark. In this case, it is also known (cf. [8]) that every irreducible G-equivariant Hilbert A-module
arises as a G-equivariant Hilbert submodule of Hx bA for some irreducible representation x of G.

Conversely, if ℳ is a connected ℛℯppGq-module C˚-category, for every object X P Objpℳq the vector space
BXX :“

À

xPIrrpGq
Homℳpu

x ‚X,Xq bHx is a unital ˚-algebra with an algebraic action of G denoted by δX,ℳ and

given by δX,ℳ “
À

xPIrrpGq
pidb δuxq (cf. Example 2.3.10 and see [8, Section 5] for more details). If BXX denotes its

C˚-completion, then pBXX , δX,ℳq is a G-C˚-algebra (recall Theorem 2.3.6). Moreover, δX,ℳ is ergodic whenever
X is irreducible in ℳ.

These associations give rise to a one-to-one correspondence between ergodic actions of G (up to equivariant
Morita equivalence) and connected ℛℯppGq-module C˚-categories (up to equivalence of ℛℯppGq-module C˚-
categories). More precisely, if pA, δq is an ergodic G-C˚-algebra, then it can be viewed as an irreducible object
in ℳδ and one has [8, Proposition 6.2] pBAA , δA,ℳδ

q „
G
pA, δq. Conversely, if ℳ is a connected ℛℯppGq-module

C˚-category and X P Irrpℳq, then one has [8, Proposition 6.3] ℳδX,ℳ – ℳ. In particular, ℳδ is a torsion
ℛℯppGq-module C˚-category if and only if δ is a torsion action of G. In this correspondence we have that
ℳδ – ℛℯppGq if and only if pA, δq „

G
pC, trv.q.

3. Torsion-freeness for divisible discrete quantum subgroups

In this section we are going to prove that torsion-freeness is preserved by divisible discrete quantum subgroups.
It is important to observe that torsion-freeness in the sense of Meyer-Nest is not preserved, in general, by

discrete quantum subgroups. For instance, consider {SOqp3q ă {SUqp2q. While {SUqp2q is torsion-free by [36],
{SOqp3q is not torsion-free by [32]. In relation with the results obtained in [15], we can consider an other more
elaborated example. Let G be a compact quantum group such that pG is torsion-free. Then the dual of the free
product G ˚ SUqp2q is torsion-free (because {SUqp2q is torsion-free for all q P p´1, 1qzt0u as it is shown in [36]
and torsion-freeness is preserved by free product as it is shown in [3]). Consider the Lemeux-Tarrago’s discrete
quantum subgroup pHq ă {G ˚ SUqp2q which is such that Hq is monoidally equivalent to the free wreath product
G o˚ S`N (see [19] for more details). It is explained in [15] that the dual of G o˚ S`N is never torsion-free. Hence
pHq neither (because torsion-freeness is preserved under monoidally equivalence as it is shown in [36] or [31]).

Observe that strong torsion-freeness (cf. Definition 2.3.18) is not preserved, in general, by discrete quantum
subgroups as it is pointed out in [3]. However, it is whenever the fusion subring RpHq is divisible in the fusion
ring RpGq [3]. Thus, it is reasonable to expect that torsion-freeness (cf. Definition 2.3.8) is preserved under
divisible discrete quantum subgroups. Inspired by the study carried out in [15], our strategy consists in applying
techniques from [3] for proving the following stability result: given a compact quantum group G, pG is torsion-free
if and only if every divisible discrete quantum subgroup pH ă pG is torsion-free.

3.1. Preparatory observations

3.1.1 Lemma. Let R :“ pZI ,‘,bq be a I-based ring and S :“ pZL,‘,bq be a L-based ring. Let N :“ pZJ ,‘,bq
be a based S-module with basis J . Assume that S is a based subring of R. If S is divisible in R, say R –

À

Ω
S

as (right) based S-modules, then the induced R-module IndRS pNq is a based R-module with basis:

rJ :“ t1t d j | t P Ω, j P Ju,

where 1t P R denotes the copy of 1S at position t P Ω. Moreover, IndRS pNq is a torsion R-module whenever N
is a torsion S-module.

Proof. Since S is a divisible based subring of R, we have R –
À

Ω
S as (right) based S-modules. Through this

isomorphism we write 1t P I Ă R for the copy of 1S at position t P Ω in this decomposition. For more clarity in
the exposition, we put t :“ 1t. The isomorphism R –

À

Ω
S as (right) based S-modules yields straightforwardly

that rJ :“ tt d j | t P Ω, j P Ju is a Z-basis for IndRS pNq “ R d
S
N . Moreover, R d

S
N is rJ-based R-module
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because R is a based I-module and N is J-based module. To see this, we are going to use Remark 2.3.15.
Given rj,rj1 P rJ , say rj :“ t d j and rj1 :“ t1 d j1 with t, t1 P Ω and j, j1 P J , we define a Z-bilinear form
x¨, ¨y : IndRS pNq ˆ IndRS pNq Ñ R such that xrj,rj1y :“ tb xj, j1y b t1. Then we check the following for all t, t1 P Ω,
j, j1 P J and α P I:

1. xαbrj,rj1y “ αb xrj,rj1y. Indeed, by definition of the R-module structure of IndRS pNq “ Rd
S
N , the fusion

decompositions and using the isomorphism R –
À

Ω
S one has:

xαb rj,rj1y “ xαb td j, t1 d j1y “ xpαb tq d j, t1 d j1y “
ÿ

iPI

N i
α,t ¨ xid j, t

1 d j1y

–
ÿ

iPI

N i
α,t ¨ xti d pli b jq, t

1 d j1y “
ÿ

iPI,kPJ

N i
α,tN

k
li,j ¨ xti d k, t

1 d j1y

“
ÿ

iPI,kPJ

N i
α,tN

k
li,j ¨ ti b xk, j

1y b t1 “
ÿ

iPI

N i
α,t ¨ ti b xli b j, j

1y b t1

“
ÿ

iPI

N i
α,t ¨ ti b li b xj, j

1y b t1 –
ÿ

iPI

N i
α,t ¨ ib xj, j

1y b t1

“ αb tb xj, j1y b t1 “ αb xrj,rj1y.

2. xrj,rj1y “ xrj1,rjy. This is clear.

3. τR
`

xrj,rj1y
˘

“ δ
rj,rj1 “ δt,t1δj,j1 . By definition one has xrj,rj1y “ tb xj, j1y b t1, where t, t1 P R and xj, j1y P S.

The fusion decomposition of xj, j1y as an element in S is given by
ř

lPL

N j1

l,j
¨ l (cf. Remark 2.3.15). Next,

recall that t (resp. t1) denotes the copy of 1S at position t P Ω (resp. t1 P Ω) in the decomposition R –
À

Ω
S

as (right) based S-modules. In particular, one has t – tb 1S (resp. t1 – t1 b 1S) as explained in Remark
2.3.20. Hence:

tb xj, j1y – tb 1S b xj, j
1y “

ÿ

lPL

N j1

l,j
¨ tb l.

At this point, notice that we are considering S as a subring of R, hence 1S “ 1R and the element t b l
with l P L is by assumption a basis element of R. Then one can write the following (cf. Remark 2.3.15):

τR
`

xrj,rj1y
˘

“ τR

´

ÿ

lPL

N j1

l,j
¨ ptb lqb pt1b1Sq

¯

“
ÿ

lPL

N j1

l,j
τR

`

ptb lqb pt1 b 1Sq
˘

“
ÿ

lPL

N j1

l,j
δtbl,t1b1S “ δt,t1δj,j1 ,

which yields the claim.

4. τ
`

αb xrj,rj1y
˘

P N. This is clear.

According to Remark 2.3.15 one has Nrj

α,rj1
“ τ

`

α b xrj,rj1y
˘

and xrj,rj1y “
ř

iPI

N
rj1

i,rj
¨ i, for all rj,rj1 P rJ and all

α P I. In particular, we deduce from the relation xrj1,rjy “ xrj,rj1y that, given and α P I, rj Ă αbrj1 if and only if
rj1 Ă αb rj.

Let us show that R d
S
N is torsion as soon as N is torsion. We will follow a direct argment without using

the bilinear form on Rd
S
N above.

We start by showing that R d
S
N is co-finite. Given rj,rj1 P rJ , we have to show that the set A :“ tα P

I | rj Ă α b rj1u is finite. Put rj :“ t d j and rj1 :“ t1 d j1 with t, t1 P Ω and j, j1 P J . Take α P A, that is,
td j Ă αb pt1d j1q “ pαb t1q d j1 (where the last equality follows from the R-module structure of Rd

S
N). Let

us consider the fusion decomposition of αb t1, say αb t1 “
ř

i1PI

N i1

α,t1 ¨ i
1. Given i1 P I, consider the corresponding

basis element in L through the identification R –
À

Ω
S, say li1 P L. Hence pαb t1qd j1 “

ř

i1PI
k1PJ

N i1

α,t1N
k1

li1 ,j
1 ¨ ti1 d k

1.

Saying that α is such that t d j Ă pα b t1q d j1 means that there exists i1 P I such that ti1 “ t (which allows
to write i1 – t b li1 , cf. Remark 2.3.20) and N i1

α,t1N
j
lt
i1
,j1 ‰ 0, i.e. N i1

α,t1 ‰ 0 and N j
li1 ,j

1 ‰ 0. Put differently
in order to simplify notations, the fact that α P A implies that there exists some l P L such that j Ă l b j1

and t b l Ă α b t1. Since N is co-finite by assumption, there can exist only a finite set L0 of elements l with
j Ă l b j1. Next, co-finiteness of R (as a left based module over itself) shows that there can exist only finitely
many α with tb l Ă αb t1, for some l P L0. In conclusion, A is finite.

12



Finally, we show that R d
S
N is connected. Given rj,rj1 P rJ , we have to show that there exists α P I such

that rj Ă α b rj1. Put rj :“ t d j and rj1 :“ t1 d j1 with t, t1 P Ω and j, j1 P J . Since N is connected, there exists
γ P L such that j Ă γ b j1. Then we also have that td j Ă td pγ b j1q “ ptb γq d j1. Next, consider the fusion
decomposition of tb γ in R, say

ř

iPIpt,γq

N i
t,γ ¨ i, where Ipt, γq is the subset of I formed by those basis elements i

such that N i
t,γ ‰ 0. Given t1, connectedness of R yields that for each i P Ipt, γq appearing in this decomposition,

there exists αi P Ipt, γq such that i Ă αi b t
1. Put α :“ ‘

iPIpt,γq
αi. By construction, one has that tb γ Ă αb t1,

hence td j Ă pαb t1q d j1 “ αb pt1 d j1q, which yields connectedness of Rd
S
N as claimed. �

3.1.2 Remark. Note that the previous proof shows that, under the divisibility assumption, Rd
S
N is connected

(resp. co-finite) as soon as N is connected (resp. co-finite).

3.1.3 Lemma. Let R :“ pZI ,‘,bq be a I-based ring and S :“ pZL,‘,bq be a L-based ring. Let M :“
pZJ ,‘,bq be a based R-module with basis J . Assume that S is a based subring of R. If M is a R-module,
then ResRS pMq decomposes as a direct sum of connected S-modules. Moreover, if M is co-finite, then ResRS pMq
decomposes as a direct sum of torsion S-modules.

Proof. Let M be a R-module and denote by N :“ ResRS pMq the module M equipped with the restriction action
from R to S, so that N is a S-module. We are going to show that N decomposes as a direct sum of connected
S-modules. Let J denote the basis of M (which is also the basis for N). Next, take any j1 P J and put
N1 :“ xβ b j1 | β P Ly the based S-submodule generated by all j Ă β b j1 with β P L. Then it is clear that N1
is connected. If N1 “ N , then we obtain already the decomposition claimed above. Otherwise, take j2 P JzN1
and put N2 :“ xβ b j2 | β P Ly, which is connected again. If N “ N1 ‘N2, then we obtain already the claim.
Otherwise, we continue this process so that we obtain the decomposition N “

À

Ni, where tNiu is a collection
of connected S-modules and the claim is proven.

If moreover M is co-finite, then N is obviously co-finite since tβ P L | j1 Ă β b ju Ă tα P I | j1 Ă α b ju,
for all j, j1 P J . In the same way, the S-submodules Ni constructed before are still co-finite. Finally, it
is straightforward to check that co-finiteness is preserved under direct summands. In other words, if M is
co-finite, then N decomposes as a direct sum of connected and co-finite (i.e. torsion) S-modules. �

A direct consequence of Lemma 3.1.1 and Lemma 3.1.3 is the following:

3.1.4 Corollary. Let G and H be two compact quantum groups such that pH ă pG. If N is a torsion RpHq-
module, then the induced module, IndRpGq

RpHqpNq, is a torsion RpGq-module whenever pH is divisible in pG. If M is
a torsion RpGq-module, then ResRpGq

RpHqpMq decomposes as a direct sum of torsion RpHq-modules.

3.1.5 Proposition. Let G and H be two compact quantum groups such that pH ă pG. If pB, βq is a torsion
action of H, then the induced action, pIndGHpBq, rβq, is a torsion action of G. If pA, δq is a torsion action of G,
then pResGHpAq, δ1q decomposes as a direct sum of actions of H which are H-Morita equivalent to torsion actions
of H.

Proof. The first part of the statement has been explained in Examples 2.3.7. Next, let pA, δq be a torsion action
of G and consider the corresponding ℛeppGq-module C˚-category ℳδ by [8]. Denote by Nδ the C˚-category
ℳδ equipped with the restriction action from ℛeppGq to ℛeppHq, so that Nδ is a ℛeppHq-module C˚-category.
For any irreducible object X P ObjpNδq, denote by NXH the module C˚-subcategory of Nδ generated by X
and the action of ℛeppHq (by restriction), which is a ℛeppHq-module C˚-category. By Lemma 3.1.3, there
exists a collection of irreducible objects tXiu Ă ObjpNδq such that Nδ “

À

NXiH , where each NXiH is a torsion
ℛeppHq-module C˚-category. In other words, we obtain a collection of torsion actions tpAi, δiqu of H such that
pResGHpAq, δ1q –

À

pAi, δiq as we wanted to show. �

3.1.6 Lemma. Let R :“ pZI ,‘,bq be a I-based ring and S :“ pZL,‘,bq be a L-based ring. Let N :“ pZJ ,‘,bq
be a based S-module with basis J . Assume that S is a based subring of R. If S is divisible in R and we consider
IndRS pNq “ Rd

S
N as a based R-module with basis rJ as in Lemma 3.1.1, then Stabp1t0 d jq Ă L, for all j P J .

Proof. Recall that we write 1t P I Ă R for the copy of 1S at position t P Ω in the decomposition R –
À

Ω
S

as (right) based S-modules given by the divisibility assumption. For more clarity in the exposition, we put
t :“ 1t. Recall from Remark 2.3.20 that we put t0 “ 1 “ 1S “ 1R. Next, given j P J consider the basis element
t0 d j P rJ . By definition we have:

Stabpt0 d jq “ tα P I | t0 d j Ă αb pt0 d jqu.

13



Notice that given α P I, the R-module structure of Rd
S
N allows to write αbpt0d jq “ pαb t0qd j “ αd j.

Now, we express α d j P R d
S
N in terms of the basis rJ . Namely, using the divisibility assumption, one can

write α – tα b lα, for some tα P I and lα P L (cf. Remark 2.3.20). Hence:

αd j – tα d plα b jq “
ÿ

kPJ

Nk
lα,j ¨ tα d k.

Accordingly, α P Stabpt0djq if and only if t0dj Ă
ř

kPJ

Nk
lα,j
¨ tαdk, which is equivalent to say that N j

lα,j
‰ 0

and tα “ t0. The latter implies that α – t0 b lα “ lα P L, which finishes the proof. �

3.1.7 Remark. We keep the previous notations. Notice that from the proof of the previous lemma we can
conclude that Stabpt0 d jq “ Stabpjq, for all j P J .

3.2. Induction for module C˚-categories

First of all, in the purely algebraic setting, the notion of relative tensor product of module categories over
tensor categories goes back to constructions by P. Deligne [9] and D. Tambara [33] (see as well [27], [11], [21],
[18] for further related developments). The corresponding construction for module C˚-categories is certainly
known to experts or, at least, foreseen by experts (see for instance [29, Section 4.1], [10] or [1]), but a formal
and general definition seemed to be elusive in the literature. The construction of balanced tensor products of
module categories over C˚-categories (without any semisimplicity or rigidity assumption) has been established
in a recent work of J. Antoun and C. Voigt [2] as a byproduct of a more general category related considerations.

First, let us introduce some terminology.

3.2.1 Definition. Let C be a C˚-tensor category. Let pℳ, ‚, µ, eq be a right C-module C˚-category, pN, ‚, µ1, e1q
a left C-module C˚-category and A a C˚-category (resp. C-linear category). A C˚-bifunctor (resp. C-linear
bifunctor) F : ℳˆN ÝÑ A is called C-balanced if it is equipped with a natural equivalence b : F ˝ p‚ ˆ idNq ÝÑ
F ˝ pidℳ ˆ ‚q such that

i) the diagram:

F pX ‚ pU b V q, Y q

bX,UbV,Y

vv

F ˝ pµX,U,V ˆ idY q

((
F pX, pU b V q ‚ Y q

F ˝ pidX ˆ µ
1
U,V,Y q ""

F ppX ‚ Uq ‚ V, Y q

bX‚U,V,Y
||

F pX,U ‚ pV ‚ Y qq F pX ‚ U, V ‚ Y q
bX,U,V ‚Y
oo

is commutative for all objects U, V P ObjpCq, X P Objpℳq and Y P ObjpNq.

ii) the diagram:

F pX ‚ 1, Y q

F ˝ peX ˆ idY q &&

bX,1,Y // F pX,1 ‚ Y q

F ˝ pidX ˆ e
1
Y qxx

F pX,Y q

is commutative for all objects X P Objpℳq and Y P ObjpNq.

The collection of all C-balanced functors from ℳ ˆ N to A together with natural transformations between
them forms a C˚-category (resp. involutive category) denoted by ℬilCpℳ,N;Aq.

3.2.2 Remark. On the one hand, for the sake of the presentation we omit the definition of natural transfor-
mation between C-balanced functors. On the other hand, it is important to notice that the notion of C-balanced
functor appearing in the algebraic context [33] must be adapted to the C˚-level. Namely, if the C˚-categories
involved are countably additive, we will have to deal with semi-categories, that is, categories who do not neces-
sarily contain identity homomorphisms. This entails the definition of a multiplier C˚-category together with a
notion of non-degenerate C˚-functor by imitating the standard C˚-algebraic case. This has been done in [2].
For our purpose we do not need such general considerations in view of assumptions of Note 2.2.1 and Remark
2.2.2, so that the previous definition is useful enough (compare with [2, Definition 5.8]).
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Let C be a countably additive C˚-tensor category, ℳ a right C-module C˚-category and N a left C-module
C˚-category. Then there exists a countably additive C˚-category ℳ b

C
N together with a C-balanced functor

QC : ℳˆN ÝÑℳb
C
N such that composition with QC induces an equivalence of C˚-categories ℱunpℳb

C
N,Aq –

ℬilCpℳ,N;Aq, for all C˚-category A (see [2, Theorem 5.10] for a proof). The category ℳ b
C
N is called relative

tensor product of ℳ and N with respect to C. In this way, if D is another countable additive C˚-tensor category
such that there exists a C˚-tensor functor J : D ÝÑ C (so that C can be considered as a right D-module
C˚-category, recall Examples 2.2.5) and N is a left D-module C˚-category, we define the induced C-module C˚-
category of N to be the following C-bimodule C˚-category IndCDpNq :“ Cb

D
N. On the one hand, the C-bimodule

structure on IndCDpNq is simply given by the one of C itself. On the other hand, observe that thanks to [2,
Lemma 5.11], we have IndDDpNq – N as left D-module C˚-categories.

In particular, let G and H be compact quantum groups such that pH ă pG. As already pointed out in Examples
2.2.5(2), we have a fully faithful functor between C˚-tensor categories, J : ℛℯppHq ÝÑ ℛℯppGq, given by the
natural inclusion of ℛℯppHq inside ℛℯppGq as a full subcategory. In this way, ℛℯppGq can be viewed as a right
ℛℯppHq-module C˚-category. So, given a left ℛℯppHq-module C˚-category N we put:

IndℛℯppGq
ℛℯppHqpNq :“ ℛℯppGq b

ℛℯppHq
N.

3.2.3 Remark. Let C and D be two countable additive C˚-categories. One defines their minimal and maximal
tensor product, denoted by C b

min
D and C b

max
D, respectively as the subobject completion of the corresponding

algebraic minimal and maximal tensor products, respectively. It is shown in [2, Proposition 3.4] that C b
min

D

and C b
max

D are again countably additive. These definitions make use of the notion of multiplier C˚-category.
But, as we have already mentioned in Remark 3.2.2, assumptions of Note 2.2.1 and Remark 2.2.2 allow us to
disregard such general considerations. More precisely, if C and D are semi-simple C˚-categories, then there is no
completions involved in the definition of their minimal or maximal tensor products, so that C b

min
D – C b

max
D.

Moreover, one shows [2, Proposition 3.10] that this tensor product coincides with the Deligne tensor product,
which we denote simply by b. The proof of [2, Proposition 3.10] shows that C b D is again semi-simple with
a complete set of irreducible objects given by tXi b YjuiPI,jPJ , where tXiuiPI and tYjujPJ are complete sets of
irreducible objects in C and D, respectively.

Next, given a torsion action pB, βq of H, consider the corresponding torsion ℛeppHq-module C˚-category Nβ
as explained at the end of Section 2.3. We want to show that the induced category IndℛℯppGq

ℛℯppHqpNβq is torsion as
soon as pH is divisible in pG. It follows from the following proposition, which shows that the divisibility property
extends to the level of the representation categories.

3.2.4 Proposition. Let G and H be two compact quantum groups such that pH ă pG. If pH is divisible in pG,
then ℛℯppGq –

À

Ω
ℛℯppHq as ℛℯppHq-module C˚-categories.

Proof. Since pH is divisible in pG by assumption, then we have RpGq –
À

Ω
RpHq as based RpHq-modules. For each

t P Ω, we denote by 1t P RpGq the copy of 1RpHq “ ε at position t P Ω in the decomposition RpGq –
À

Ω
RpHq.

Next, given t P Ω denote by ℛℯppGqt the ℛℯppHq-module subcategory of ℛℯppGq generated by 1t. It is clear
that FuspℛℯppGqtq “ RpHq as based RpHq-modules, which implies that ℛℯppGqt – ℛℯppHq as ℛℯppHq-module
C˚-categories by virtue of [3, Lemma 3.10]. Since this is true for all t P Ω, we deduce that ℛℯppGq can be
viewed as a direct sum of ℛℯppHq-module C˚-categories as in the statement. �

3.2.5 Corollary. Let G and H be two compact quantum groups such that pH ă pG. If pH is divisible in pG, then
we have:

IndRpGq
RpHqpFuspNβqq – Fus

´

IndℛℯppGq
ℛℯppHqpNβq

¯

,

as based RpGq-modules, for all torsion action pB, βq of H. Therefore, IndℛℯppGq
ℛℯppHqpNβq is a torsion ℛℯppGq-module

C˚-category (hence semi-simple), for all torsion action pB, βq of H.

Proof. On the one hand, by virtue of Lemma 3.1.1, the induced RpGq-module IndRpGq
RpHqpFuspNβqq “ RpGq d

RpHq

FuspNβq is a (left) based RpGq-module with basis rJ :“ t1tdj | t P Ω, pY, δY q P Ju, where 1t P IrrpGq denotes the
copy of 1RpHq at position t P Ω and J :“ IrrpNβq. Moreover, IndRpGq

RpHqpFuspNβqq is a torsion RpGq-module because
FuspNβq is a torsion RpHq-module. On the other hand, by virtue of the isomorphism ℛℯppGq –

À

Ω
ℛℯppHq as
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ℛℯppHq-module C˚-categories from Proposition 3.2.4, the set rJ provides a complete set of irreducible objects
in IndℛℯppGq

ℛℯppHqpNβq “ ℛℯppGq b
ℛℯppHq

Nβ . It follows that IndRpGq
RpHqpFuspNβqq – Fus

´

IndℛℯppGq
ℛℯppHqpNβq

¯

as based RpGq-

modules, for all torsion action pB, βq of H �

3.2.6 Remark. Note that the previous corollary remains true for ergodic actions of H (not necessarily finite
dimensional).

3.2.7 Theorem. Let G and H be two compact quantum groups such that pH ă pG is divisible. If pG is torsion-free,
then pH is torsion-free.

Proof. Let pB, βq be a torsion action of H and consider the corresponding torsion ℛeppHq-module C˚-category
Nβ . Put ℳ :“ IndℛℯppGq

ℛℯppHqpNβq for the induced C˚-module category. By Corollary 3.2.5, ℳ is a torsion ℛℯppGq-
module C˚-category. Since pG is torsion-free by hypothesis, we have that ℳ – ℛℯppGq as ℛℯppGq-module
C˚-categories, which is equivalent to say that Fuspℳq – RpGq as based RpGq-modules (recall Theorem 2.3.24).

Corollary 3.2.5 gives as well that Fuspℳq – IndRpGq
RpHqpFuspNβqq “ RpGq d

RpHq
FuspNβq as based RpGq-modules.

Next, since pH is divisible in pG by assumption, then we have RpGq –
À

Ω
RpHq as based RpHq-modules. In this

situation, we can apply verbatim the proof of [3, Proposition 1.28] to show that FuspNβq – RpHq as RpHq-
modules, which yields Nβ – ℛℯppHq thanks to Theorem 2.3.24 again. Since this is true for all torsion action β
of H, this will imply that pH is torsion-free.

Namely, if J denotes the basis for the torsion RpHq-module FuspNβq, then the basis for IndRpGq
RpHq

´

FuspNβq
¯

taking into account the divisibility condition is given by rJ :“ tαbj | α P I0 and j P Ju, where I0 denotes the set
of elements in IrrpGq corresponding to the units of the components RpHq in the decomposition RpGq “ ‘RpHq
(cf. Lemma 3.1.1). By the above discussion we have IndRpGq

RpHq

´

FuspNβq
¯

– RpGq as based RpGq-modules. Hence,

take α0 b j0 P rJ corresponding to ε P IrrpGq. Then α b pα0 b j0q P rJ , for each α P IrrpGq because the
isomorphism IndRpGq

RpHq

´

FuspNβq
¯

– RpGq sends basis to basis. In particular, αbα0 P IrrpGq, for each α P IrrpGq
and so α0 b α0 “ ε. We may thus assume α0 “ ε and we find that FuspNβq – RpHq d

RpHq
FuspNβq – RpHq as

based RpHq-modules as we wanted to show. �

3.3. Relation between induced torsion actions and induced torsion module C˚-categories

In this section we show that the induction at the level of torsion actions corresponds precisely to induction at
the level of torsion modules C˚-categories under the divisibility assumption.

Let G and H be compact quantum groups such that pH ă pG. Given a torsion action pB, βq of H, consider
the induced torsion action of G, pIndGHpBq, rβq, where IndGHpBq is the same C˚-algebra B equipped with the
composition rβ :“ pidB b ιq ˝ β as action of G, where CpHq ι

Ă CpGq is the canonical embedding defining pH ă pG.
On the one hand, we can consider the torsion ℛeppHq-module C˚-category Nβ associated to β and the

corresponding torsion RpHq-module, FuspNβq. On the other hand, we can consider the torsion ℛeppGq-module
C˚-category ℳ

rβ associated to rβ and the corresponding torsion RpGq-module, Fuspℳ
rβq. We want to show

that IndℛℯppGq
ℛℯppHqpNβq – ℳ

rβ as soon as pH is divisible in pG. Note that if pB, βq is the trivial action of H, then
Nβ – ℛℯppHq, ℳ

rβ – ℛℯppGq and the property is obviously satisfied. We assume then that pB, βq is a
non-trivial torsion action of H.

In order to fix our notations, recall that FuspNβq is by definitoin the free Z-module with basis J :“ IrrpNβq,
where IrrpNβq is formed by H-equivariant Hilbert B-submodules of HybB with y P IrrpHq (cf. Remark 2.3.26).
Similarly, Fuspℳ

rβq is by definition the free Z-module with basis J 1 :“ Irrpℳ
rβq, where Irrpℳ

rβq is formed by
G-equivariant Hilbert IndGHpBq-submodules of Hx b IndGHpBq with x P IrrpGq.

3.3.1 Lemma. We keep the previous notations. Nβ is a full ℛℯppHq-module C˚-subcategory of ℳ
rβ.

Proof. By definition, ℳ
rβ is the ℛeppGq-module C˚-category whose objects are the G-equivariant Hilbert

IndGHpBq-modules.
On the one hand, note that given a H-equivariant Hilbert B-module pE, δEq, the modules of the form

pIndGHpEq, rδEq where IndGHpEq :“ E equipped with the composition rδE :“ pidE b ιq ˝ δE as action of G are in
ℳ

rβ . Indeed, given an H-equivariant Hilbert B-module pE, δEq, let VE P LBbCpHq
`

E b
β
pB b CpHqq, B b CpHq

˘
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be the admissible operator associated to the action δE of H on E (cf. Remark 2.3.12). Denote by rVE P

LBbιpCpHqq
`

Eb
rβ

pBb ιpCpHqqq, Bb ιpCpHqq
˘

the admissible unitary associated to the action rδE of G on E. We

have an obvious commutative diagram:

E b
β
pB b CpHqq

idE b
β
pidB b ιq

��

VE // B b CpHq

idB b ι

��
E b

rβ

pB b ιpCpHqqq
rVE

// B b ιpCpHqq

which allows to write the following:

rδEpξqpιpxqq “ rVEpξ b
rβ

ιpxqq “ rVE ˝ pidE b
β
pidB b ιqqpξ b

β
xq “ pidB b ιq ˝ VEpξ b

β
xq “ pidB b ιq ˝ δEpξqpxq,

for all ξ P E and x P B b CpHq. It is thus straightforward to check that pIndGHpHq, rδHq P Objpℳrβq.

On the other hand, observe that if pY, δY q P J , then the G-equivariant Hilbert IndGHpBq-module pIndGHpY q, rδY q
is again irreducible in ℳ

rβ . Namely, we have LG
`

IndGHpY q
˘

Ă LH
`

Y
˘

“ C ¨1 because for every T P LG
`

IndGHpY q
˘

and every ξ P Y we write:

pidY b ιqδY pT pξqq “ rδY pT pξqq “ pT b idqrδY pξq “ pT b idqpidY b ιqδY pξq “ pidY b ιqpT b idqδY pξq,

which implies that δY pT pξqq “ pT b idqδY pξq for all ξ P Y , that is, T P LH
`

Y
˘

. In other words, J Ă J 1.
Since both Nβ and ℳ

rβ are semi-simple because they are constructed from ergodic actions of G, the previous
discussion yields a fully faithful functor between Nβ and ℳ

rβ , so that we view Nβ as a (full) ℛeppHq-module
C˚-subcategory of ℳ

rβ . �

3.3.2 Lemma. We keep the previous notations. Nβ is a full ℛℯppHq-module C˚-subcategory of IndℛℯppGq
ℛℯppHqpNβq.

Proof. The association pE, δEq ÞÑ ε b pE, δEq from Nβ to ℛℯppGq b Nβ defines a C˚-functor which induces
a fully faithful ℛℯppHq-module functor between Nβ and ℛℯppGq b

ℛℯppHq
Nβ , so that Nβ is viewed as a (full)

ℛeppHq-module C˚-subcategory of IndℛℯppGq
ℛℯppHqpNβq “ ℛℯppGq b

ℛℯppHq
Nβ . �

If pH is divisible in pG, then RpGq –
À

Ω
RpHq as (right) based RpHq-modules and Lemma 3.1.1 assures that

IndRpGq
RpHq

´

FuspNβq
¯

“ RpGq d
RpHq

FuspNβq is a based RpGq-module with basis rJ :“ t1tdpY, δY q | t P Ω, pY, δY q P Ju.

Here, 1t P RpGq denotes the copy of 1RpHq “ ε at position t P Ω in the decomposition RpGq –
À

Ω
RpHq. Recall

from Remark 2.3.20 that ε “ 1t0 . So J can be embedded into rJ by sending pY, δY q to εd pY, δY q.

By Corollary 3.2.5 we know that, if pH is divisible in pG, then IndℛℯppGq
ℛℯppHqpNβq is a torsion ℛℯppGq-module

C˚-category (hence semi-simple). As such it is attached, as explained at the end of Section 2.3, to a torsion
action of G, say pA, δq. In other words, we have IndℛℯppGq

ℛℯppHqpNβq – ℳδ. We want to show that ℳδ – ℳ
rβ as

ℛℯppGq-module C˚-categories as soon as pH is divisible in pG.
On the one hand, by Lemma 3.3.1 we view Nβ as a (full) ℛeppHq-module C˚-subcategory of ℳ

rβ . In
particular, we identify pB, βq P IrrpNβq to pIndGHpBq, rβq P Irrpℳ

rβq inside ℳ
rβ . Let us denote by B

rβ the object
pIndGHpBq, rβq as an (irreducible) object in the category ℳ

rβ . On the other hand, by Lemma 3.3.2 we view Nβ

as a (full) ℛℯppHq-module C˚-subcategory of IndℛℯppGq
ℛℯppHqpNβq. In particular, we identify pB, βq P IrrpNβq to

ε d pB, βq P rJ – Irr
´

IndℛℯppGq
ℛℯppHqpNβq

¯

inside ℛℯppGq b
ℛℯppHq

Nβ . Let us denote by BInd the object ε d pB, βq as

an (irreducible) object in the category IndℛℯppGq
ℛℯppHqpNβq –ℳδ.

3.3.3 Lemma. We keep the previous notations and those from the end of Section 2.3. pBBInd
BInd

, δBInd,ℳδ
q –

pB
B

rβ

B
rβ
, δB

rβ
,ℳ

rβ
q as soon as pH is divisible in pG.
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Proof. Assume that pH is divisible in pG. First of all, we claim that we have an isomorphism between the
homomorphism spaces:

Homℳδ
pux ‚BInd, BIndq – Homℳ

rβ
pux ‚B

rβ , Brβq, (3.1)

for all x P IrrpGq.
On the one hand, observe that, by construction, StabpBIndq in the induced category can only be formed

by irreducible H-representations. Indeed, this follows from Lemma 3.1.6 since BInd “ ε d pB, βq P rJ –

Irr
´

IndℛℯppGq
ℛℯppHqpNβq

¯

. On the other hand, StabpB
rβq in ℳ

rβ can only be formed by irreducible H-representations
too. The argument for this is similar to the one for Lemma 3.1.6. Namely, by definition we have:

StabpB
rβq “ tx P IrrpGq | Brβ Ă Hx bBrβu.

Notice that B
rβ – Hε b B as the irreducible object pB, βq inside ℳ

rβ . Given x P IrrpGq and using the
divisibility assumption, one can write x – tx b yx, for some tx P IrrpGq and yx P IrrpHq (cf. Remark 2.3.20).
Hence, Hx bBrβ – pHtx bHyxq bB – Htx b pHyx bBq. Next, we decompose the object Hyx bB P ObjpNβq as
a direct sum of irreducibles inside Nβ , say Hyx bB –

À

kPIpyx,Bq

Yk, where tpYk, δYkqukPIpyx,Bq Ă J “ IrrpNβq and

Ipyx, Bq denotes the index set for the irreducible objects in Nβ appearing in the decomposition of Hyx bB (in
particular, Yk ‰ 0, for all k P Ipyx, Bq). Hence, HtxbpHyxbBq –

À

kPIpyx,Bq

HtxbYk. Accordingly, x P StabpBrβq

if and only if HεbB Ă
À

kPIpyx,Bq

Htx bYk. Since HεbB is irreducible, it must be HεbB Ă Htx bYk0 , for some

k0 P Ipyx, Bq. By Frobenius reciprocity, this is equivalent to say that Yk0 Ă Htx bB. However, pYk0 , δYk0
q P J ,

which means that it arises as a submodule of Hy0 b B, for some y0 P IrrpHq. In other words, we have that
Yk0 Ă pHtx b Bq X pHy0 b Bq “ pHtx X Hy0q b B. Since both tx and y0 are irreducible representations, one
has Htx XHy0 “ 0 if tx ‰ y0. In this case, we would have Yk0 “ 0, which is not possible by our choice of k0.
Consequently, it must be tx “ y0 P IrrpHq. It follows that tx “ t0 “ ε (cf. Remark 2.3.20). This implies that
x – εb yx “ yx P IrrpHq, which yields the claim.1

Therefore, our claim comes down to show the isomorphism (3.1) above for all y P IrrpHq, which is straightfor-
ward. In other words, Homℳδ

pux ‚BInd, BIndq reduces to HomNβ pu
y ‚B,Bq inside ℳδ and Homℳ

rβ
pux ‚B

rβ , Brβq

reduces to HomNβ pu
y ‚ B,Bq inside ℳ

rβ . Consequently, the ˚-algebra BBInd
BInd

reduces to BBB inside ℳδ and the

˚-algebra B
B

rβ

B
rβ
reduces to BBB inside ℳ

rβ together with the corresponding G-actions, which yields the claim. �

In conclusion, we obtain the following:

3.3.4 Theorem. Let G and H be two compact quantum groups such that pH ă pG. If pH is divisible in pG, then
we have:

IndℛℯppGq
ℛℯppHqpNβq –ℳ

rβ ,

as ℛeppGq-module C˚-categories, for all torsion action pB, βq of H. In particular, IndRpGq
RpHq

´

FuspNβq
¯

–

Fus
`

ℳ
rβ

˘

as based RpGq-modules, for all torsion action pB, βq of H.

Proof. By virtue of Lemma 3.3.3, one has pBBInd
BInd

, δBInd,ℳδ
q – pB

B
rβ

B
rβ
, δB

rβ
,ℳ

rβ
q as soon as pH is divisible in pG,

for all torsion action pB, βq of H. According to the one-to-one correspondence between ergodic actions of G
and connected ℛℯppGq-module C˚-categories discussed at the end of Section 2.3, one deduces that pA, δq „

G

pBBInd
BInd

, δBInd,ℳδ
q – pB

B
rβ

B
rβ
, δB

rβ
,ℳ

rβ
q „

G
pIndGHpBq, rβq, which implies ℳδ – ℳ

rβ as we wanted to show. Finally, the

identification IndRpGq
RpHq

´

FuspNβq
¯

– Fus
`

ℳ
rβ

˘

follows from Corollary 3.2.5. �

3.3.5 Remark. Note that the previous discussion and so the previous proposition remains valid for ergodic
actions of H (not necessarily finite dimensional).

This theorem allows to recover Theorem 3.2.7 by adapting the same argument appearing there at the level
of torsion modules associated to torsion actions.

3.3.6 Corollary. Let G and H be two compact quantum groups such that pH ă pG is divisible. If pG is torsion-free,
then pH is torsion-free.

1Similarly as in Remark 3.1.7, this argument shows that StabpB
rβ
q “ StabpBq.
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In view of the examples discussed in the begining of this section, when the discrete quantum subgroup pH
is not divisible in pG, a non-trivial torsion action of H can be realized as the trivial torsion action of G even
when pG is torsion-free, which prevents pH to be torsion-free. The previous proposition implies that, under the
divisibility assumption, induction of torsion actions preserves non-trivial actions.

3.3.7 Corollary. Let G and H be two compact quantum groups such that pH ă pG is divisible. If pB, βq is a
non-trivial torsion action of H, then pIndGHpBq, rβq is a non-trivial torsion action of G.

Proof. Let pB, βq be a non-trivial torsion action of H. Assume that pIndGHpBq, rβq is the trivial torsion action of
G. This means, according to the discussion at the end of Section 2.3, that ℳ

rβ – ℛℯppGq. By Theorem 3.3.4

this implies that IndℛℯppGq
ℛℯppHqpNβq – ℛℯppGq hence IndRpGq

RpHq

´

FuspNβq
¯

– RpGq. At this point, the same argument
as the one of Theorem 3.2.7 would yield FuspNβq – RpHq hence Nβ – ℛℯppHq. This means, thanks again to the
discussion at the end of Section 2.3, that pB, βq would be equivariantly Morita equivalent to the trivial torsion
action of H, which contradicts the choice of β. Therefore, pIndGHpBq, rβq must be non-trivial. �

3.4. Some permanence properties of torsion-freeness

3.1 Proposition. The following properties hold.

i) Let Γ be a discrete group, G a compact quantum group. Assume that Γ acts on G by quantum automor-
phisms, α. Then both Γ and pG are divisible discrete quantum subgroups in {Γ˙

α
G.

ii) Let Γ be a discrete group, G a compact group. Assume that pΓ, Gq is a matched pair with actions Γ α
ñ G

and Γ β
ð G. Then pG is a divisible in {Γα ’β G ô β is trivial. In this case, Γ is also a divisible discrete

quantum subgroup in {Γα ’β G.

iii) Let G and H be two compact quantum groups. Then both pG and pH are divisible discrete quantum subgroups
in {GˆH.

iv) Let G and H be two compact quantum groups. Then both pG and pH are divisible discrete quantum subgroups
in {G ˚H.

Proof. i) The description of the representation theory of F :“ Γ˙
α
G recalled in Section 2.1 yields that pG and Γ

are divisible in pF. Namely, take an irreducible representation y :“ pγ, xq P IrrpFq with γ P Γ and x P IrrpGq.
Then γ “ pγ, εGq P rys in IrrpFq{IrrpGq because pγ´1, εGq b pγ, xq “ pe, xq “ x P IrrpGq. Likewise, we have
that x “ pe, xq P rys in ΓzIrrpFq because pγ, xq b pe, xq “ pγ, εGq “ γ P Γ. Consequently, pG is divisible in pF
because for all s P IrrpGq we have that pγ, εGqb s “ pγ, εGqb pe, sq “ pγ, sq P IrrpFq. Likewise, Γ is divisible
in pF because for all s P Γ we have that sb pe, xq “ ps, εGq b pe, xq “ ps, xq P IrrpFq.

ii) On the one hand, if Γ β
ð G is the trivial action, then we simply have Γα ’β G “ Γ˙

α
G; so that property

piq above yields that both Γ and pG are divisible discrete quantum subgroups in {Γ˙
α
G.

On the other hand, in order to show that divisibility of pG implies triviality of β, we are going to use the
description of the representation theory of F :“ Γα ’β G recalled in Section 2.1. Let y “ γpxq P IrrpFq
an irreducible representation of the bicrossed product with γ P Γ and x P IrrpGγq. If y1 “ γ1px1q P IrrpFq
is another irreducible representation of F with γ1 P Γ and x1 P IrrpGγ1q, then, by virtue of the fusion rules
of the bicrossed product (recall Equation (2.3)), y1 P rys in IrrpFq{IrrpGq if and only if y1 “ γpx1q for some
x1 P IrrpGγq (recall in addition that #res “ 1 in the orbit space Γ{G and that pγ ¨Gq´1 “ γ´1 ¨G).

Now, assume that pG is divisible in pF. This means that given rys “ rγpxqs P IrrpFq{IrrpGq we can find a
representative, say γpx1q P rys for some x1 P IrrpGq such that for all irreducible s P IrrpGq, γpx1q b s “
γpx1q b epsq is an irreducible representation of F. For this recall again the fusion rules for a bicrossed
product (Equation (2.3)): given µpzq P IrrpFq with µ P Γ and z P IrrpGµq, we have:

dimFpµpzq, γpx
1q b epsqq “

# ř

rPµ¨GXγ¨G

1
|r¨G|dimGr pz ˝ ψ

µ
r,r, x

1 b
r
sq if µ ¨GX γ ¨G ‰ H,

0 otherwise.

Then, in order to γpx1q b epsq to be irreducible, it is necessary that |µ ¨GX γ ¨G| “ 1, for all µ, γ P Γ. This
implies that all classes in the orbit space Γ{G are trivial, that is, β is the trivial action as we wanted to
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show. Observe moreover that in this case, a representative of y “ γpxq in IrrpFq{IrrpGq can be chosen as
γpεGq and the above fusion rules become:

dimFpµpzq, γpεGq b epsqq “

"

dimGpz ˝ ψ
µ
γ,γ , sq if µ “ γ,

0 otherwise,

where recall that ψγγ,γ “ id. In other words, γpεGq b epsq “ γpsq; recovering then the same computations
as done for a quantum semi-direct product in piq above.

iii) The description of the representation theory of F :“ GˆH recalled in Section 2.1 yields that pG and pH are
divisible in pF. Namely, take an irreducible representation y :“ px, zq P IrrpFq with x P IrrpGq and z P IrrpHq.
Then x “ px, εHq P rys in IrrpHqzIrrpFq because px, zq b px, εHq “ pεG, zq “ z P IrrpHq. Likewise, we have
that z “ pεG, zq P rys in IrrpGqzIrrpFq because px, zq b pεG, zq “ px, εHq “ x P IrrpGq. Consequently, pG is
divisible in pF because for all s P IrrpGq we have that sb pε, zq “ ps, εHq b pεG, zq “ ps, zq P IrrpFq. Likewise,
pH is divisible in pF because for all s P IrrpHq we have that px, εHq b s “ px, εHq b pεG, sq “ px, sq P IrrpFq.

iv) The description of the representation theory of F :“ G ˚H recalled in Section 2.1 yields that both pG and pH
are divisible in pF. Let us show that pG is divisible in pF (the proof for pH is analogous). Take any irreducible
representation of F, which is given by an alternating word in IrrpGq and IrrpHq, say y :“ xi1zi2 . . . xin´1zin .
By definition, a representative of y in IrrpGqzIrrpFq (resp. in IrrpFq{IrrpGq) is an irreducible representation
y1 P IrrpFq such that y b y1 (resp. y1 b y) contains an irreducible representation of G (inside F). The latter
is possible if and only if the tensor product y b y1 (resp. y1 b y) reduces to a single letter in IrrpGq.
Assume that y starts in IrrpGq, then it is enough to put y1 :“ zi2 . . . xin´1zin . The fusion rules of a quantum
free product yield that y b y1 “ xi1 P IrrpGq.
In this situation, given any s P IrrpGq we have to prove that sb y1 P IrrpFq. Since y starts in IrrpGq, then
y1 starts in IrrpHq, so that the fusion rules of a quantum free product yield that sb y1 “ sy1 P IrrpFq.
Assume that y starts in IrrpHq and ends in IrrpGq, then it is enough to put y1 :“ xi1zi2 . . . xin´1 . The fusion
rules of a quantum free product yield that y1 b y “ zin P IrrpGq. Since y ends in IrrpGq, then y1 ends in
IrrpHq and the fusion rules of a quantum free product yield that y1 b s “ y1s P IrrpFq, for every s P IrrpGq.
Assume that y starts and ends in IrrpHq, then we can not choose any representative y1 of y either in
IrrpGqzIrrpFq or in IrrpFq{IrrpGq such that either y b y1 or y1 b y reduces to a single letter in IrrpGq. In
other words, the class of rys is formed only by y itself (notice that y b y “ εH – εG in IrrpFq). In this case,
it is obvious that sb y1 “ sy1 P IrrpFq, for every s P IrrpGq.

�

3.2 Corollary. The following stability properties for torsion-freeness hold.

i) Let Γ be a discrete group, G a compact quantum group. Assume that Γ acts on G by quantum automor-
phisms, α. Then {Γ˙

α
G is torsion-free ô Γ and pG are torsion-free.

ii) Let Γ be a discrete group, G a compact group. Assume that pΓ, Gq is a matched pair with actions Γ α
ñ G

and G β
ñ Γ. Then {Γα ’β G is torsion-free ñ Γ and pG are torsion-free.

iii) Let G and H be two compact quantum groups. Then {GˆH is torsion-free ô pG and pH are torsion-free.

iv) Let G and H be two compact quantum groups. Then {G ˚H is torsion-free ô pG and pH are torsion-free.

Proof. Implication ñ in piq is a consequence of Proposition 3.1 and Theorem 3.2.7. Implication ð is
contained in [23, Theorem 3.1.1]. Implication ñ in piiq is a consequence of [23, Proposition 4.2] (by which
we know that if {Γα ’β G is torsion-free, then β is trivial) and property piq above. Implication ñ in piiiq
is a consequence of Proposition 3.1 and Theorem 3.2.7. Implication ð is contained in [3, Theorem 3.17].
Implication ñ in pivq is a consequence of Proposition 3.1 and Theorem 3.2.7. Implication ð is contained in
[3, Theorem 3.16]. �

4. Baum-Connes property for discrete quantum subgroups

In this last section we make some observations about the permanence of the quantum Baum-Connes conjecture
by discrete quantum subgroups. We refer to [25] or [16] for a complete presentation of the categorical framework
for the formulation of the Baum-Connes conjecture according to the Meyer-Nest approach.

Let pG be a discrete quantum group and consider the corresponding equivariant Kasparov category, KKpG,
which is a triangulated category with canonical suspension functor denoted by Σ. The word homomorphism
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(resp., isomorphism) will mean homomorphism (resp., isomorphism) in the corresponding Kasparov category;
it will be a true homomorphism (resp., isomorphism) between C˚-algebras or any Kasparov triple between C˚-
algebras (resp., any KK-equivalence between C˚-algebras). If S is a collection of objects in KKpG, we denote
by xSy the localising subcategory of KKpG generated by S, i.e. the smallest subcategory of KKpG containing S.
Consider the following localising subcategories of KKpG:

ℒ
pG :“ xtG˙

r
T b C | C P Obj.pKKq, T P TorppGquy,

N
pG :“ ℒ%

pG
“ tA P ObjpKK

pGq | KK
pGpL,Aq “ 0, @ L P Objpℒ

pGqu.

4.1 Remark. We put pℒ
pG :“ xtT b C | C P Obj.pKKq, T P TorppGquy, so that we have G ˙ pℒ

pG “ ℒ
pG by

definition.

A recent result by Y. Arano and A. Skalski [4] shows that these two subcategories form indeed a com-
plementary pair of localizing subcategories in KKpG. The author together with K. De Commer and R. Nest
[7] have obtained the same conclusion for permutation torsion-free discrete quantum groups through different
considerations by studying the projective representation theory of a compact quantum group. Consequently, it
is possible now to formulate a general Baum-Connes conjecture for arbitrary discrete quantum groups (without
torsion-freeness assumption), being pℒ

pG,NpGq above the complementary pair that allows to define a quantum
assembly map for pG. More precisely, we denote by pL,Nq the canonical triangulated functors associated to this
complementary pair. Next, consider the homological functor F : KKpG ÝÑ AbZ{2, pA, δq ÞÝÑ K˚ppG ˙

δ,r
Aq, where

AbZ{2 denotes the abelian category of Z{2-graded groups of Ab. The quantum assembly map for pG is given by
the natural transformation ηpG : LF ÝÑ F .

4.2 Definition. Let pG be a discrete quantum group. We say that pG satisfies the quantum Baum-Connes property
(with coefficients) if the natural transformation ηpG : LF ÝÑ F is a natural equivalence. We say that pG satisfies
the ℒ

pG-strong Baum-Connes property if KKpG “ ℒ
pG.

Let us analyse the permanence of the (resp. strong) Baum-Connes property by discrete quantum subgroups.
To begin with, let pH ă pG be a discrete quantum subgroup of pG. We have two relevant functors: restriction,
which is obvious, and induction, which has been studied by S. Vaes [34] in the framework of quantum groups:
RespG

pH : KKpG ÝÑ KKpH, IndpG
pH : KKpH ÝÑ KKpG. It is well-known that restriction and induction are triangulated

functors by virtue of the universal property of the Kasparov category (see [30] for more details). Denote by
pL1, N 1q the canonical triangulated functors associated to the complementary pair pℒ

pH,NpHq and by F 1 the
homological functor defining the quantum Baum-Connes assembly map for pH.

It is shown in [23, Lemma 2.4.3] that the restriction (resp. induction) functor transforms the assembly map
for pG (resp. for pH) into the assembly map for pH (resp. for pG) whenever pG is torsion-free and pH is torsion-free and
divisible. As a consequence, it is shown in [23, Proposition 2.4.4] by using the quantum Green’s Imprimitivity
theorem [34, Theorem 7.3] that pG satisfies the quantum Baum-Connes property if and only if every divisible
torsion-free discrete quantum subgroup pH ă pG satisfies the quantum Baum-Connes property. Observe that
thanks to Theorem 3.2.7 it is enough to assume that pG is torsion-free and pH is divisible in pG, which simplifies
the assumptions for [23, Lemma 2.4.3] and [23, Proposition 2.4.4].

One wishes to remove the divisibility assumptions in these results too. Thus, consider both pG and pH not to
be necessarily torsion-free and pH not to be necessarily divisible in pG. Consider the localizing subcategories:

ℒ
pG :“ xtG˙

r
T b C | C P Obj.pKKq, T P TorppGquy,

ℒ
pH :“ xtH˙

r
S bD | D P Obj.pKKq, S P TorppHquy,

which are complemented by the corresponding right orthogonals:

N
pG :“ ℒ%

pG
“ tA P ObjpKK

pGq | KK
pGpL,Aq “ 0, @ L P Objpℒ

pGqu,

N
pH :“ ℒ%

pH
“ tB P ObjpKK

pHq | KK
pHpL1, Bq “ 0, @ L1 P Objpℒ

pHqu.

4.3 Lemma. Let pG be a discrete quantum group and pH ă pG a discrete quantum subgroup (both pG and pH are not
necessarily torsion-free and pH is not necessarily divisible in pG): iq RespG

pHpNpGq Ă N
pH if and only if IndpG

pHpℒpHq Ă ℒ
pG;

iiq IndpG
pHpNpHq Ă N

pG if and only if RespG
pHpℒpGq Ă ℒ

pH.
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Proof. This is a consequence of the orthogonality condition of the complementary pairs. Indeed, recall that the
functors RespG

pH and IndpG
pH are adjoint meaning that KK pGpA, IndpG

pHpBqq – KK
pHpRespG

pHpAq, Bq and
KK

pGpIndpG
pHpBq, Aq – KK

pHpB,RespG
pHpAqq, for all A P ObjpKKpGq and all B P ObjpKKpHq (we refer to [30] or [35]

for a proof). These relations yield the following: iq given N P N
pG, Res

pG
pHpNq P NpH ô 0 “ KK

pHpL1,RespG
pHpNqq –

KK
pGpIndpG

pHpL
1q, Nq @L1 P ℒ

pH ô IndpG
pHpℒpHq Ă ℒ

pG; and iiq givenN
1 P N

pH, Ind
pG
pHpN

1q P N
pG ô 0 “ KK

pGpL, IndpG
pHpN

1qq –

KK
pHpRespG

pHpLq, N
1q @L P ℒ

pG ô RespG
pHpℒpGq Ă ℒ

pH. �

4.4 Proposition. Let pG be a discrete quantum group and pH ă pG a discrete quantum subgroup (both pG and pH
are not necessarily torsion-free and pH is not necessarily divisible in pG). The inclusions IndpG

pHpℒpHq Ă ℒ
pG and

RespG
pHpℒpGq Ă ℒ

pH hold.

Proof. On the one hand, as showed in Proposition 3.1.5, the restriction to H of any torsion action of G decom-
poses as a direct sum of torsion actions of H. Moreover, the restriction functor is triangulated and compatible
with countable direct sums. The inclusion RespG

pHpℒpGq Ă ℒ
pH follows. On the other hand, in order to show the

inclusion IndpG
pHpℒpHq Ă ℒ

pG we are going to show that the following diagram is commutative:

KKH

H˙
r
¨

��

IndGHp¨q // KKG

G˙
r
¨

��
KKpH

IndpG
pHp¨q

// KKpG

(4.1)

Then given a torsion action of H, pB, βq P TorppHq, pIndGHpBq, rβq is a torsion action of G (it might be the trivial
one; recall the discussion of Section 3). Hence, by definition we have G ˙

r
IndGHpB, βq P ℒ

pG. Also by definition

we have that H˙
r
B P ℒ

pH. If Diagram (4.1) commutes, then we will have IndpG
pH

´

H˙
r
B
¯

– G˙
r
IndGHpB, βq P ℒpG

(where the isomorphism is in the Kasparov category KKpG), which would yield then the desired inclusion. To
prove commutativity of Diagram (4.1) observe that KKH H˙¨

– KKpH and KKG G˙¨
– KKpG by virtue of Baaj-

Skandalis duality. Therefore, it is enough to show that pG˙
r
IndpG

pH

´

H˙
r
B
¯

– pG˙
r

´

G˙
r
IndGHpB, βq

¯

as objects

in KKG. In other words, by applying the quantum version of Green’s imprimitivity theorem (see [34] for more
details), we have to show that pH ˙

r

´

H ˙
r
B
¯

– pG ˙
r

´

G ˙
r
IndGHpB, βq

¯

ô B – IndGHpB, βq as objects in KKG,
which is true. �

The first direct consequence from these claims is a generalisation of [23, Lemma 2.4.3]:

4.5 Corollary. Let G, H be two compact quantum groups such that pH ă pG. The following properties hold.

i) RespG
pHpℒpGq Ă ℒ

pH and RespG
pHpNpGq Ă N

pH. Hence, we have the following natural isomorphisms RespG
pH ˝ L –

L1 ˝ RespG
pH and RespG

pH ˝N – N 1 ˝ RespG
pH.

ii) IndpG
pHpℒpHq Ă ℒ

pG and IndpG
pHpNpHq Ă N

pG. Hence, we have the following natural isomorphisms IndpG
pH ˝ L

1 –

L ˝ IndpG
pH and IndpG

pH ˝N
1 – N ˝ IndpG

pH.

Consequently, RespG
pH transforms the assembly map for pG into the assembly map for pH and IndpG

pH transforms
the assembly map for pH into the assembly map for pG.

Accordingly, we generalise [23, Proposition 2.4.4]:

4.6 Proposition. Let G, H be two compact quantum groups such that pH ă pG.

i) pG satisfies the quantum Baum-Connes property if and only if every discrete quantum subgroup pH ă pG
satisfies the quantum Baum-Connes property.

ii) If pG satisfies the ℒ
pG-strong Baum-Connes property, then pH satisfies the ℒ

pH-strong Baum-Connes property.
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Proof. The proof of the statement in piq is done verbatim the proof appearing in [23, Proposition 2.4.4] by
applying now Corollary 4.5. For the statement in piiq, we observe that we always have RespG

pHpℒpGq Ă ℒ
pH as

showed in Proposition 4.4. Assume that pG satisfies the ℒ
pG-strong Baum-Connes property, which means that

ℒ
pG “ KKpG. Given pB, βq P ObjpKKpHq, we have thus IndpG

pHpBq P KKpG “ ℒ
pG. Hence, RespG

pH

´

IndpG
pHpBq

¯

P ℒ
pH.

To conclude recall that B is a retract of RespG
pH

´

IndpG
pHpBq

¯

and that localization subcategories are closed under

retracts, which implies that B P ℒ
pH. So pH satisfies the ℒ

pH-strong Baum-Connes property. �

4.7 Remark. It is well-known that the strong Baum-Connes property is preserved by divisible discrete quan-
tum subgroups whenever pG is torsion-free (see [35, Lemma 6.7] for a proof). The above corollary generalizes
this property for any discrete quantum subgroup (not necessarily divisible and without any torsion-freeness as-
sumption), which has been possible thanks to the more abstract approach in terms of fusion rings and module
C˚-categories from Section 3.1. Moreover, it is important to mention that property piiq of the previous propo-
sition appears already in [15, Remark 3.20]. The argument appearing there has been expanded in the present
paper with Corollary 3.1.4 and Proposition 3.1.5. However, property piq of the previous proposition concerning
the usual Baum-Connes property is new and legitimate to consider now thanks to [4], [7].

Moreover, Proposition 4.6 allows to improve some stability results for the quantum Baum-Connes property
with respect to some relevant constructions, which already appear in [23], by removing torsion-freeness and
divisibility assumptions.

4.8 Corollary. The following stability properties for the quantum (resp. strong) Baum-Connes property hold.

i) Let Γ be a discrete group, G a compact quantum group. Assume that Γ acts on G by quantum automor-
phisms, α. Then Γ and pG satisfy the (resp. strong) Baum-Connes property whenever {Γ˙

α
G satisfies the

(resp. strong) Baum-Connes property.

ii) Let Γ be a discrete group, G a compact group. Assume that pΓ, Gq is a matched pair with actions Γ α
ñ G

and G β
ñ Γ. Then pG satisfies the (resp. strong) Baum-Connes property whenever {Γα ’β G satisfies the

(resp. strong) Baum-Connes property.

iii) Let G and H be two compact quantum groups. Then pG and pH satisfy the (resp. strong) Baum-Connes
property whenever {GˆH satisfies the (resp. strong) Baum-Connes property.

iv) Let G and H be two compact quantum groups. Then pG and pH satisfy the (resp. strong) Baum-Connes
property whenever {G ˚H satisfies the (resp. strong) Baum-Connes property.
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