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Abstract
Given a Markov decision process (MDP) M and a formula Φ, the strategy synthesis problem asks if
there exists a strategy σ s.t. the resulting Markov chain M [σ] satisfies Φ. This problem is known to
be undecidable for the probabilistic temporal logic PCTL. We study a class of formulae that can
be seen as a fragment of PCTL where a local, bounded horizon property is enforced all along an
execution. Moreover, we allow for linear expressions in the probabilistic inequalities. This logic is at
the frontier of decidability, depending on the type of strategies considered. In particular, strategy
synthesis is decidable when strategies are deterministic while the general problem is undecidable.
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1 Introduction

Given an MDP M and a probabilistic temporal logic formula Φ, the strategy synthesis
problem is to determine if there exists a strategy σ to resolve the nondeterminism in M

such that the resulting Markov chain (MC) M [σ] satisfies Φ, and if so, to construct one
such strategy. The probabilistic temporal logic that we study in this paper allows us to
express rich probabilistic global temporal constraints over a bounded horizon that must be
enforced along all computations. Let us illustrate our logic with a few examples. The formula
A G(P(F5 Good) ≥ 0.95) expresses that it must always be the case, under the strategy σ,
that along all computations, the probability to reach a good state within 5 steps is at least
0.95. This is a quantitative bounded horizon Büchi property. In addition, our logic allows for
comparing the probability of different events: A GP(F5 Good) ≥ 2 × P(F10 Bad)) expresses
that under the strategy σ, along all computations, it is always the case that the probability to
reach a good state within 5 steps is at least twice the probability of reaching a bad state within
10 steps. The ability to compare probabilities of different events, while not present in classical
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115:2 Strategy Synthesis for Global Window PCTL

logics like PCTL, is necessary to express properties like probabilistic noninterference [13].
This feature has been introduced and studied in probabilistic hyperlogics, e.g. [2], where
the ability to compare probabilities plays a central role in describing applications. While
hyperlogics are very expressive and highly undecidable, we study here the ability to compare
probabilities in a weaker logical setting in order to understand more finely the decidability
border that probabilistic comparisons, and more generally linear expressions, induce.

While the model-checking problem for PCTL and MDPs is decidable [6], the synthesis
problem is in general undecidable [15].1 Synthesis for PCTL [15], HyperPCTL [2], and as well
as for our logic (as shown in Theorem 37) is undecidable. To recover decidability, we explore
two options. First, we consider subclasses of strategies: memoryless deterministic strategies
(MD), memoryless randomized strategies (MR), and history-dependant deterministic strategies
(HD) are important classes to be considered. Second, we identify syntactically defined
sublogics with better decidability properties. For instance, while for PCTL objectives the
synthesis problem for HD strategies is highly undecidable (Σ1

1-complete) [15], it has been
shown that the problem is decidable for the cases of MD and MR strategies [15]. The synthesis
problem for the qualitative fragment of PCTL, where probabilistic operator can only be
compared to constant 0 and 1, is decidable for HD strategies. An important contribution
of this paper is to show that the synthesis problem for our sublogics is decidable for HD
strategies. To the best of our knowledge, this is the first decidability result for a class of
unbounded memory strategies (here HD) and quantitative probabilistic temporal properties.

Main technical contributions. We introduce the logic L-PCTL and two sublogics. L-PCTL
extends PCTL with linear constraints over probability subformulae. We first study the
window L-PCTL fragment that only allows bounded until or bounded weak until operators
in the path formulae. The results for this fragment are presented in Table 1(a) where
columns distinguish between memoryless (M) and history-dependent strategies (H), and
rows between deterministic (D) and randomized strategies (R). Second, we study the global
window L-PCTL extension of this logic in which window formulae appear in the scope of an
A G operator that imposes the window formula to hold on every state of every computation.
The results for this fragment are presented in Table 1(b). Third, we adapt results from the
literature to the full logic as summarized in Table 1(c). An L-PCTL formula is flat if it does
not have nested probabilistic operators, while it is non-strict if it does not contain strict
comparison operators (> or <) for comparing probability expressions.

Our two main technical contributions are focused on the synthesis problem for the global
window L-PCTL logic. First, we introduce a fixpoint characterization of the set of strategies
that enforces an L-PCTL window property globally. This characterization is effective for
HD strategies, leads to a 2EXPTIME algorithm, and we provide an EXPTIME lower bound.
Furthermore, the fixpoint characterization allows us to prove that the synthesis problem
is in coRE for the class of history-dependent randomized (HR) strategies for the flat and
non-strict fragment of global window L-PCTL. Second, we prove that the synthesis problem
for HR strategies is undecidable with an original technique that reduces the halting problem
of 2-counter Minsky machines (2CM) to our synthesis problem. We believe that the fixpoint
characterization and the 2CM encoding are of independent interest.

1 The difference between the two problems is essentially as follows: in the model-checking problem, each
probabilistic operator in the formula is associated with one strategy (or scheduler) while in the synthesis
problem, a unique strategy is fixed and used for all the probabilistic operators.
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Table 1 A summary of our results for the synthesis problem on MDPs for L-PCTL formulae.

(a) synthesis for window L-PCTL.

M H

D NP-complete
[5]

PSPACE-complete
Prop. 27

R
PSPACE

Sqrt-Sum-hard
Prop. 29, [15]

EXPSPACE
PSPACE-hard

Thm. 17

(b) synthesis for global window L-PCTL.

M H

D NP-complete
2EXPTIME

EXPTIME-hard
Prop. 28

R
PSPACE

Sqrt-Sum-hard
Prop. 30

coRE-completea

Σ1
1-hard

Thm. 24, 37
a if the formula is flat and non-strict

(c) synthesis for L-PCTL.

strategies: Memoryless History-dependent

Deterministic NP-complete
[5]

Σ1
1-complete

[15]

Randomized
EXPTIME

Sqrt-Sum-hard
[16], [15]

Σ1
1-hard
[15]

Finally, the satisfiability problem [7] for PCTL (and its variants) can be reduced to the
synthesis problem. The decidability of the satisfiability problem for PCTL is a long standing
open problem. Our decidability result for the synthesis problem for HD strategies and
global window PCTL formulae can be transferred to the following version of the satisfiability
problem: given a granularity g for the probabilities, and a global window PCTL formula
Φ, does there exist an MC with granularity g that satisfies Φ? (Theorem 31). This gives
a new positive decidability result for the satisfiability problem with an unbounded horizon
fragment of PCTL and unbounded MCs.

Related work. The model-checking problem for PCTL is decidable [6] and should not be
confused with the synthesis problem. In [15], the authors study the synthesis problem for
PCTL on MDPs and stochastic games. In [5] it is shown that both randomization and
memory in strategies are necessary even for flat window PCTL formulae. Further, [5] shows
that the synthesis of MD strategies for PCTL objectives is NP-complete, and [16] shows that
MR synthesis is in EXPTIME.2 For the qualitative fragment of PCTL, deciding the existence
of MR and HD strategies have been shown to be NP-complete and EXPTIME-complete,
respectively [15]. As previously mentioned, the synthesis problems for HD and HR strategies
in the general case of (quantitative) PCTL objectives are highly undecidable [15].

In [11], a probabilistic hyperlogic (PHL) has been introduced to study hyperproperties
of MDPs. PHL allows quantification over strategies, and includes PCTL∗ and temporal
logics for hyperproperties such as HyperCTL∗ [10]. Hence the model-checking problem in
PHL can ask for the existence of a strategy for hyperproperties, and has been shown to be

2 For the existence of MR strategies for PCTL objectives, in the introduction of [15], it is claimed that
the problem is in PSPACE, with a reference to [16]. However, in [16] only an EXPTIME upper bound
is proven, for the more general problem of stochastic games. The proof encodes the problem as a
polynomial-size formula in the first-order theory of the reals with a fixed alternation of quantifiers so
that deciding it is in EXPTIME. The claim seems to be that the complexity of their approach drops
to PSPACE when all states are controllable. There is no convincing argument there for that claim, in
particular their formula still contains universal quantifiers.

ICALP 2022
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undecidable [11]. Another related work is [1], where HyperPCTL [2] has been extended with
strategy quantifiers, and studies hyperproperties over MDPs. The model-checking problem
for this logic is also undecidable. In both of these undecidability proofs, the constructed
formula contains unbounded finally (F) properties that cannot be expressed in the global
window fragment of PCTL that we study here. In both [11] and [1], the model-checking
problem is decidable when restricted to MD strategies but is undecidable for HD strategies.

The PCTL satisfiability problem is open for decades. In [14], decidability of finite and
infinite satisfiability has been considered for several fragments of PCTL using unbounded
finally (F) and unbounded always (G) operators. In [9], satisfiability for bounded PCTL has
been considered where the number of steps or horizon used in the operators is restricted
by a bound. In [4], a problem related to the satisfiability problem called the feasibility
problem has been studied. Given a PCTL formula φ, and a family of Markov chains defined
using a set of parameters and with a fixed number of states, the feasibility problem is to
identify a valuation for the parameters such that the realized Markov chain satisfies φ. In
the satisfiability problem that we study here, the number of states is however not fixed a
priori and can be arbitrarily large.

2 Preliminaries

A probability distribution on a finite set S is a function d : S → [0, 1] such that
∑

s∈S d(s) = 1.
We denote the set of all probability distributions on set S by Dist(S).

▶ Definition 1. A Markov chain (MC) is a tuple M = ⟨S, sinit,P, AP, L⟩ where S is a
countable set of states, sinit ∈ S is an initial state, P : S → Dist(S) is a transition function,
AP is a non-empty finite set of atomic propositions, and L : S → 2AP is a labelling function.

If P maps a state s to a distribution d so that d(s′) > 0, we write s
d(s′)−−−→ s′ or simply s → s′,

and we denote P(s, s′) the probability d(s′). We say that the atomic proposition p holds on
a state s if p ∈ L(s).

A finite path ρ = s0s1 · · · si in an MC M is a sequence of consecutive states, so that for
all j ∈ [0, i − 1], sj → sj+1. We denote |ρ| = i the length of ρ, last(ρ) = si and first(ρ) = s0.
We also consider states to be paths of length 0. Similarly, an infinite path is an infinite
sequence ρ = s0s1 · · · so that for all j ∈ N, sj → sj+1. If ρ is a finite (resp. infinite) path
s0s1 · · · , we let ρ[i] denote si, ρ[:i] denote the finite prefix s0 · · · si, and ρ[i:] denote the finite
(resp. infinite) suffix sisi+1 · · · .

We denote the set of all finite paths in M by FPathsM . We introduce notations for the
subsets FPathsi

M (resp. FPaths≤i
M , FPaths<i

M ) of paths of length i (resp. of length at most or
less than i). Let FPathsM (s) denote the set of paths ρ in FPathsM such that first(ρ) = s.
More generally, FPathsM (ρ) denotes the set of paths which admit ρ as a prefix. Similarly, we
let PathsM be the set of infinite paths of M , and extend the previous notations for fixing an
initial state or a shared prefix. In particular, PathsM (ρ) is called the cylinder of ρ.

If ρ = s0 . . . si is a finite path and ρ′ = sisi+1 . . . is a finite or infinite path so that
first(ρ′) = last(ρ), let ρ · ρ′ = s0 . . . sisi+1 . . . denote their concatenation.

▶ Definition 2. Let s be a state of an MC M . The MC M naturally defines a probability
measure µs

M on (PathsM (s), Ωs
M ), where Ωs

M is the σ-algebra of cylinders, i.e. the sets
PathsM (ρ) with ρ ∈ FPathsM (s), their complements and countable unions.

The measure of a cylinder PathsM (ρ) is the product of the probabilities of each transition in
the finite path ρ, and by Carathéodory’s extension theorem we get a measure µs

M over Ωs
M .

As s is always obvious from context (first state of the paths being considered), we omit it
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Figure 1 An MC and two MDPs, with states si and actions {a, b}. In MCs, transitions are
labelled by their probability, and the probability is 1 if unspecified. In MDPs, transitions are labelled
by their action and probability. If the action is unspecified (black transitions), then every action
allows this transition. The initial state is s0. In our examples, the set of atomic propositions is the
set of states, so that the proposition si holds on state si only.

from the measure notation, in favour of µM . We note that FPathsM (s) is a set of finite words
over a countable alphabet, and as such is countable. In particular, if C ⊆ FPathsM (s) is a set
of prefixes forming disjoint cylinders,3 then µM (

⋃
ρ∈C PathsM (ρ)) =

∑
ρ∈C µM (PathsM (ρ)).

Moreover, if Π ⊆ PathsM (s) is the complement of a measurable set Π′, µM (Π) = 1 − µM (Π′).

▶ Definition 3. A Markov decision process (MDP) is a tuple M = ⟨S, A, sinit,P, AP, L⟩,
where S is a finite set of states, A is a finite set of actions, sinit ∈ S is an initial state,
P : S × A → Dist(S) is a transition function4, AP is a non-empty finite set of atomic
propositions, and L : S → 2AP is a labelling function.

If P maps a state s and an action a to a distribution d so that d(s′) > 0, we write s
a,d(s′)−−−−→ s′

or simply s
a−→ s′, and we denote P(s, a, s′) the probability d(s′). We extend from MCs to

MDPs the definitions and notations of finite and infinite paths, now labelled by actions and
denoted ρ = s0

a0−→ s1
a1−→ · · · . Moreover, for a finite path ρ, we denote by ρ · as (resp. sa · ρ)

the concatenation of ρ with last(ρ) a−→ s (resp. of s
a−→ first(ρ) with ρ).

We say that M is stored in size |M| if the number of states |S|, the number of actions
|A| and the number of transitions s

a−→ s′ in M are bounded by |M|. Then, |FPaths≤i
M|, the

number of paths of horizon at most i, is in |M|O(i). Moreover, the probabilities in P are
assumed to be rational numbers stored as pairs of integers a

b in binary, so that a, b ≤ 2|M|.
A (probabilistic) strategy is a function σ : FPathsM → Dist(A) that maps finite paths ρ

to distributions on actions. A strategy σ is deterministic if the support of the distribution
σ(ρ) has size 1 for every ρ, it is memoryless if σ(ρ) depends only on the last state of ρ, i.e. if
σ satisfies that for all ρ, ρ′ ∈ FPathsM, last(ρ) = last(ρ′) implies σ(ρ) = σ(ρ′). We denote by
σ(ρ, a) the probability of the action a in the distribution σ(ρ).

An MDP M = ⟨S, A, sinit,P, AP, L⟩ equipped with a strategy σ defines an MC, denoted
M[σ], obtained intuitively by unfolding M and using σ to define the transition probabilities.
Formally M[σ] = ⟨FPathsM, sinit,Pσ, AP, L′⟩, with finite paths of M as states, transitions
defined for all ρ ∈ FPathsM, a ∈ A and s ∈ S by Pσ(ρ, ρ · as) = σ(ρ, a)P(last(ρ), a, s′), and

3 PathsM (ρ) and PathsM (ρ′) share a path if and only if either ρ is a prefix of ρ′ or ρ′ is a prefix of ρ.
4 This formalism implies that every action is available from every state. This is w.l.o.g., as one can model

illegal actions by sending them to a special state.

ICALP 2022
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atomic propositions assigned by L′(ρ) = L(last(ρ)). In particular, note that since S is finite
FPathsM is infinite but countable. We say that a finite path ρ in M matches a finite path ρ′

in M[σ] if last(ρ′) = ρ, so that they follow the same sequence of states and actions. We say
that a path ρ ∈ FPathsM has probability m in M[σ] if ρ matches ρ′ ∈ FPathsM[σ] and m is
the measure of PathsM[σ](ρ′). It corresponds to the likelihood of having ρ as a prefix when
following σ and starting from first(ρ).

We may omit M or M from all previous notations when they are clear from the context.
MC notations may use σ as shorthand for M[σ], e.g. µσ is the probability measure induced
by M[σ], and FPathsσ refers to finite paths of non-zero probability under σ.

▶ Example 4. Consider the MC on the left of Figure 1, and the property asking to reach
the state s2 in at most two steps. Consider the set of paths of length at most two from s0 to
s2. Let Π = Paths(s0s2) ⊎ Paths(s0s1s2) ⊎ Paths(s0s3s2) be the infinite paths obtained from
their cylinders. Then, the probability of reaching s2 in two steps when starting from s0 is
µ(Π) = 1

4 + 1
16 + 1

4 = 9
16 . Note that the probability of reaching s2 in two steps when starting

from s1 is also 9
16 . Every other state reaches s2 with probability 1 in two steps. Consider

now the MDP in the middle of Figure 1, and the property asking that the state reached after
the first transition is s1. For every strategy σ, the probability that this property holds in
M[σ] is equal to σ(s0, a) 1

2 + σ(s0, b) 1
4 = σ(s0, a) 1

2 + (1 − σ(s0, a)) 1
4 = σ(s0, a) 1

4 + 1
4 .

Probabilistic CTL with Linear expressions. A formula of L-PCTL is generated by the
nonterminal Φ in the following grammar:

▶ Definition 5 (L-PCTL in normal form, syntax).

Φ := p | ¬p | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 |
n∑

i=1
ciP [φi] ≽ c0

φ := Xℓ Φ | Φ1 Uℓ Φ2 | Φ1 Wℓ Φ2 | Φ1 U∞ Φ2 | Φ1 W∞ Φ2

where p ranges over the atomic propositions in AP, ℓ ranges over N, and n ∈ N>0,
(c0, · · · , cn) ∈ Zn, ≽ ∈ {≥, >} define linear inequalities.

We call a formula generated by Φ a state formula, and a formula generated by φ a path
formula. The horizon label of a path formula is the label of its root operator, i.e. either
ℓ or ∞. Intuitively, the Next operator Xℓ Φ means that Φ holds in exactly ℓ steps, the
(unbounded) Until and Weak until operators U∞ and W∞ are defined as usual in CTL, and
their bounded version Φ1 Uℓ Φ2 and Φ1 Wℓ Φ2 impose a horizon on the reachability of Φ2.
We will use the standard notations X, U and W, defined by X1, U∞ and W∞, respectively.

▶ Definition 6 (L-PCTL in normal form, semantics). For a fixed MC M of states S, we
inductively define JΦKM as a set of states, and for each state s we define JφKs

M as a measurable
set of infinite paths starting from s:

JpKM = {s ∈ S | p ∈ L(s)} J¬pKM = {s ∈ S | p ̸∈ L(s)}
JΦ1 ∧ Φ2KM = JΦ1KM ∩ JΦ2KM JΦ1 ∨ Φ2KM = JΦ1KM ∪ JΦ2KMt

n∑
i=1

ciP [φi] ≽ c0

|

M

= {s ∈ S |
n∑

i=1
ci µM (JφiK

s
M ) ≽ c0}

r
Xℓ Φ

zs

M
= {ρ ∈ Paths(s) | ρ[ℓ] ∈ JΦKM }

r
Φ1 Uℓ Φ2

zs

M
= {ρ ∈ Paths(s) | ∃j ≤ ℓ, ρ[j] ∈ JΦ2KM ∧ ∀i < j, ρ[i] ∈ JΦ1KM }
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r
Φ1 Wℓ Φ2

zs

M
= {ρ ∈ Paths(s) | ∀j ≤ ℓ, (ρ[j] ∈ JΦ1KM ∨ ρ[j] ∈ JΦ2KM )

∨ ∃i < j, ρ[i] ∈ JΦ2KM }
JΦ1 U Φ2K

s
M = {ρ ∈ Paths(s) | ∃j ∈ N, ρ[j] ∈ JΦ2KM ∧ ∀i < j, ρ[i] ∈ JΦ1KM }

JΦ1 W Φ2K
s
M = {ρ ∈ Paths(s) | ∀j ∈ N, (ρ[j] ∈ JΦ1KM ∨ ρ[j] ∈ JΦ2KM )

∨ ∃i < j, ρ[i] ∈ JΦ2KM }

Then, we write s |=M Φ (resp. ρ |=M φ) if s ∈ JΦKM (resp. ρ ∈ JφKfirst(ρ)
M ), and say that s

satisfies Φ (resp. ρ satisfies φ). We denote by ≡ the semantic equivalence of state or path
formulae (that holds on all MCs). Finally, we write M |= Φ if sinit |=M Φ. Note that by
restricting the linear inequalities to n = 1 and ℓ = 1 in Xℓ, we recover the standard definition
of PCTL (see e.g. [6]).

We define usual notions as syntactic sugar, so that state formulae allow for ⊥ := p∧¬p and
⊤ := p ∨ ¬p (for any p ∈ AP). We allow rational constants c1 and all comparison symbols in
{≤, <, =, ̸=, >, ≥} in linear expressions, with

∑n
i=1 ciP [φi] ≼ c0 :=

∑n
i=1(−ci)P [φi] ≽ −c0

and =, ̸= defined as conjunctions or disjunctions. Moreover, path formulae allow for Fℓ Φ :=
⊤ Uℓ Φ and Gℓ Φ := Φ Wℓ ⊥. We allow the negation operation ¬ in state and path formulae,
and recover a formula in normal form using De Morgan’s laws, the negation of inequalities
(≥ becomes < and > becomes ≤), and the duality rule ¬(Φ1 Wℓ Φ2) ≡ (¬Φ1 ∧ ¬Φ2) Uℓ ¬Φ1.
Finally, boolean implication and equivalence are defined as usual. A notable property is
Φ1 Wℓ Φ2 ≡ (Φ1 Uℓ Φ2) ∨ Gℓ Φ1.

We encode L-PCTL formulae as trees, whose internal nodes are labelled by state or path
operators and whose leaves are labelled by atomic propositions. Let ℓmax ≥ 1 denote an
upper bound on horizon labels ℓ of subformula of Φ where ℓ is finite. The constants ci in
linear expressions are encoded in binary, and the horizon labels ℓ are encoded in unary, so
that if the overall encoding of Φ is of size |Φ|, we shall have ℓmax ≤ |Φ|. We argue that this
choice is justified from a larger point of view that extends PCTL to PCTL∗ by allowing
boolean operations in path formulae, as the bounded horizon operators Xℓ, Uℓ, Wℓ can be
seen as syntactic sugar for a disjunction of nested X operators of size O(ℓ).

▶ Definition 7. An L-PCTL formula Φ (in normal form) is a window formula if the horizon
label ℓ of every path operator in Φ is finite, so that the unbounded U and W are not used. It
is a non-strict formula if ≽ is always ≥ in its linear inequalities. It is a flat formula if the
measure operator P is never nested, so that if Φ is seen as a tree, every branch has at most
one node labelled by a linear inequality

∑n
i=1 ciP [φi] ≽ c0.

▶ Definition 8. A global window formula is a formula of the shape A G Φ, with Φ a window
L-PCTL formula. It is satisfied by a state s of M if every infinite path in PathsM (s) satisfies
the path formula G Φ, or equivalently if every state reachable from s satisfies Φ.

▶ Lemma 9. The global window formula A G Φ is satisfied on a state s of M if and only if
s satisfies the L-PCTL formula P [G Φ] = 1.

Proof. If A G Φ holds on s, then µM (JG ΦKs
M ) = µM (PathsM (s)) = 1. If A G Φ is not

satisfied on s, then there exists a finite path ρ leading to a state that violates Φ, so that the
entire cylinder PathsM (ρ) satisfies the path formula F ¬Φ. It follows that µM (JG ΦKs

M ) =
1 − µM (JF ¬ΦKs

M ) ≤ 1 − µM (PathsM (ρ)) < 1. ◀

▶ Example 10. Consider the MC M to the left of Figure 1. Let Φ be the L-PCTL formula
P

[
F2 s2

]
≥ 9

16 . It is a window formula, that is flat and non-strict. As detailed in Example 4,
every state of M satisfies Φ. Therefore, M satisfies the global window formula A G Φ.
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Consider now the MDP M to the right of Figure 1. Let σ denote the memoryless strategy
that chooses, in s0 and s1, action a with probability 1

2 and action b with probability 1
2 . While

M[σ] is an infinite MC by definition, it is bisimilar to the MC on the left of Figure 1 and
must satisfy the same PCTL formulae, so that M[σ] |= A G Φ. In Section 3, we will show
that σ is the only strategy on M that satisfies A G Φ.

Model checking and synthesis problems. The model-checking problem of an L-PCTL
formula Φ and of a finite MC M is the decision problem asking if M |= Φ. The synthesis
problem of an L-PCTL formula Φ and of an MDP M asks if there exists a strategy σ so that
M[σ] |= Φ. We also consider the sub-problems that restrict the set of strategies to subsets
defined by constraints on the memory or on determinism. For example, the memoryless
(resp. deterministic) synthesis problem asks for a memoryless (resp. deterministic) strategy
satisfying the formula. They are indeed distinct problems:

▶ Example 11. Consider the MDP in the middle of Figure 1. Let Φ be the window formula
(P

[
F2 s1

]
= 5

8 ) ∧ (P [X s1] ≥ 1
2 ∨ P [X s1] ≤ 1

4 ). First, s0 |= P [X s1] ≥ 1
2 ⇔ σ(s0, a) = 1 and

s0 |= P [X s1] ≤ 1
4 ⇔ σ(s0, a) = 0, so that the first move must be deterministic. If the first

action is a, and the transition s0
a−→ s0 is chosen, then the next choice must be b to ensure

P
[
F2 s1

]
= 5

8 . Similarly, if the first action is b, the next choice on s0 must be a. Moreover,
s1 |= Φ under any strategy. Thus, the only strategies that satisfy A G Φ are the strategies
that alternate between a and b as long as we are in s0, while no memoryless strategy satisfies
A G Φ. On the other hand, in Example 10 randomisation is needed. An example that require
both randomisation and memory can be constructed by combining both examples.

▶ Proposition 12. The model-checking problem for L-PCTL formulae and finite MCs can
be solved in PTIME. This comes at no extra cost when compared to standard PCTL [6].

Proof. This problem is detailed in [6, Thm. 10.40] for a PCTL definition that only al-
lows expressions of the shape c1P [φ] ≽ c0 to quantify over path formulae. Extending to∑n

i=1 ciP [φi] ≽ c0 is straight-forward, as their algorithm computes the measure of P [φ], and
then checks if the comparison holds. The intuition is that the measure of bounded operators
Xℓ, Uℓ and Wℓ are obtained by O(ℓ) vector-matrix multiplications, while unbounded U and
W are seen as linear equation systems. Overall, the complexity is in |M |O(1)|Φ|ℓmax. ◀

3 Synthesis for global window PCTL

In this section, we detail complexity results on the synthesis problem for global window
L-PCTL formulae. We fix a Markov decision process M, a formula A G Φ where Φ is a
window L-PCTL formula, and ask if there exists a strategy σ so that M[σ] |= A G Φ. We
also address the sub-problems concerning deterministic or memoryless strategies.

Solving window formulae. We start by constructing a strategy σ so that M[σ] |= Φ. The
formula Φ can be seen syntactically as a tree with state or path operators on internal nodes
and atomic propositions on leaves. The window length of a branch of this tree is the sum of
the horizon labels ℓ of path operators in the branch. The window length of the formula Φ is an
integer L obtained as the maximum over every branch of Φ of their respective window lengths.
In particular, L ≤ |Φ|ℓmax. For example, if Φ = P

[
XP

[
X2 p1

]
≥ 1

2
]

≤ 1
2 ∨ P

[
F2 p3

]
> 0,

then ℓmax = 2 and L = max(1 + 2, 2) = 3.

▶ Definition 13. Let s be a state of M and Φ be a window L-PCTL formula of window
length L. A window strategy for s of horizon L is a mapping ∂ : FPaths<L

M (s) → Dist(A).
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A window strategy ∂ for state s can be seen as a partial strategy, only defined on paths
of length under L that start from s. Formally, ∂ defines a set of strategies σ : FPathsM →
Dist(A), where the first L steps from s are specified by ∂, and the subsequent steps are not.
This set of strategies is called the cylinder of the window strategy ∂. In particular, if two
strategies σ and σ′ are in the cylinder of the window strategy ∂, then the MCs M[σ] and
M[σ′] coincide for the first L steps from s, in the sense that every path ρ ∈ FPaths<L

M (s) has
the same probability m in M[σ] and in M[σ′]. In this case, we say that m is the probability
of ρ under ∂.

We may conflate a window strategy ∂ with an arbitrary strategy σ in its cylinder, so that
FPaths<L

∂ (s) is a set of paths in M[σ]. Then, we say that the window strategy ∂ for state s

satisfies Φ, noted s |=∂ Φ, if s |=σ Φ for all σ in the cylinder of ∂. Conversely, a strategy
σ : FPathsM → Dist(A) naturally defines a window strategy ∂ρ for every fixed prefix ρ, so
that for all ρ′ ∈ FPaths<L

M (last(ρ)), ∂ρ(ρ′) = σ(ρ · ρ′).

▶ Lemma 14. Let Φ be a window L-PCTL formula of window length L, σ be a strategy for
M, and let ∂s be the window strategy defined by σ on state s and horizon L (the fixed prefix
is s). Then, it holds that s |=σ Φ ⇔ s |=∂s

Φ.

Thus, the synthesis problem on window formulae reduces to finding a window strategy
∂ for sinit so that sinit |=∂ Φ. Let ∂ be a window strategy for state s and horizon L. Let
Xs denote a finite set of variables xρ,a, with ρ ∈ FPaths<L

M (s), and a ∈ A. The window
strategy ∂ can be seen as a point in the real number space RXs , where xρ,a encodes ∂(ρ, a).
Conversely, every point in RXs so that ∀x ∈ Xs, we have x ∈ [0, 1], and ∀ρ ∈ FPaths<L

M (s), we
have

∑
a∈A xρ,a = 1 represents a window strategy. Therefore, the points of RXs that encode

a window strategy can be described by a finite conjunction of linear inequalities x ≥ 0, x ≤ 1
and xρ,a1 + · · · + xρ,ak

= 1 over the variables Xs.
We want to similarly characterise the set of window strategies satisfying a given window

L-PCTL formula. As will become apparent later on, we will need polynomial inequalities.

▶ Definition 15. The first-order theory of the reals (FO-R) is the set of all well-formed
sentences of first-order logic that involve universal and existential quantifiers and logical
combinations of equalities and inequalities of real polynomials.5

We allow the use of strict comparison operators {<, ̸=, >} as the negation of their non-strict
versions. We also assume that the formula is written in prenex normal form (PNF), i.e. as a
sequence of alternating blocks of quantifiers followed by a quantifier-free formula. Finally, if
S = {x1, · · · , xk} is a finite set of variables, we use the notation ∃ S as shorthand for the
quantifier sequence ∃x1 · · · ∃xk.

This theory is decidable, and admits a doubly-exponential quantifier elimination proce-
dure [18]. Of particular interest is the existential fragment of FO-R, denoted ∃-R, where only
∃ is allowed. It is decidable in PSPACE [8].

We say that an FO-R formula of free variables X is non-strict if it is satisfied by a closed
set of points in RX . In particular, an FO-R formula that only uses non-strict comparison
symbols {≤, =, ≥} and that is negation-free6 is non-strict.

▶ Proposition 16. Let s be a state of M and Φ be a window L-PCTL formula. The set of
window strategies ∂ such that s |=∂ Φ can be represented in ∃-R as a PNF formula of free
variables Xs. This formula is of size |Φ||M|O(L), and can be computed in EXPTIME. If Φ is
flat and non-strict then the ∃-R formula is non-strict.

5 The primitives operations are multiplication and addition, the comparison symbols are {≤, =, ≥}.
6 A formula is negation-free if the Boolean negation operator ¬ is not used.
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Proof sketch. We encode the problem in the theory of the reals, by using free variables
xρ,a ∈ [0, 1] that have the value of ∂(ρ, a), existential variables yρ,Φ′ ∈ {0, 1} that are
true if the state subformula Φ′ is satisfied when one follows ∂ after a fixed history of ρ,
and existential variables zρ,φ ∈ [0, 1] having the probability that the path subformula φ is
satisfied when one follows ∂ after a fixed history of ρ. The z variables use “local consistency
equations” that equate the probability of a path formula on the current state as a linear
combination of its probability on the successor states. For the Xℓ Φ′ formula this translates
into zρ,Xℓ Φ′ =

∑
s

a−→s′ xρ,aP(s, a, s′)zρ·as′,Xℓ−1 Φ′ for example. The y variables can then be
defined, so that yρ,(

∑n

i=1
ciP[φi]≽c0) = 1 if and only if

∑n
i=1 cizρ,φi

≽ c0. Lastly we ask that
ys,Φ = 1. To maintain the non-strict property, some subtlety is needed in the way nested
probabilistic operators are dealt with. ◀

If we use a PSPACE decision procedure for ∃-R on the formula of Proposition 16, we get:

▶ Theorem 17. The synthesis problem for window L-PCTL formulae is in EXPSPACE.

▶ Example 18. Consider the MDP M to the right of Figure 1, and Φ = P
[
F2 s2

]
≥ 9

16 . Let
us describe the formula obtained by Proposition 16. s0 |=∂ Φ can be encoded schematically as
the formula ∃zs0,F2 s2∃zs0as1,F1 s2 , s.t. zs0,F2 s2 = xs0,a

2 zs0as1,F1 s2 + xs0,a

2 + xs0,b

2 ∧zs0as1,F1 s2 =
xs0as1,b

2 ∧zs0,F2 s2 ≥ 9
16 . For readability reasons, we simplified boolean expressions involving ⊤

or ⊥ when appropriate, and we omitted the variables that can be simplified out immediately,
as well as the constraints making sure that the variables x encode probabilities.

After quantifier elimination, and using xs0,a +xs0,b = 1, we get xs0,a xs0as1,b ≥ 1
4 . Observe

that, as mentioned in Example 10, a window strategy ∂ that sets xs0,a = xs0as1,b = 1
2 satisfies

Φ. Similarly, s1 |=∂ Φ can be encoded as xs1,a xs1as0,b ≥ 1
4 .

Fixed point characterisation of global window formulae. Let Φ be a window L-PCTL
formula of window length L. In this subsection, we describe a fixed point characterisation of
the synthesis problem for the global window formula A G Φ.

A window strategy portfolio Π of horizon L (in short, a portfolio Π) maps each state s to
a set Πs of window strategies for s of horizon L. A window strategy portfolio can be seen
as a set of points in RXs for every state s. Given two window strategy portfolios Π and Π′

of horizon L, we write Π ⊆ Π′ if for all s ∈ S, it holds that Πs ⊆ Π′
s. Then, the set of all

window strategy portfolios of horizon L is a complete lattice w.r.t. ⊆, where for a set S of
portfolios, the meet

d
S (resp. the join

⊔
S) maps s to

⋂
Π∈S Πs (resp.

⋃
Π∈S Πs).

Let s
a−→ s′ be a transition in M, and let ∂, ∂′ be window strategies for s and s′,

respectively, of horizon L. We say that ∂ and ∂′ are compatible w.r.t. s
a−→ s′ if they make the

same decisions on shared paths, i.e. for all ρ ∈ FPaths<L
M (s′) the probability of sa · ρ under ∂

equals the probability of ρ under ∂′ multiplied by ∂(s, a)P(s, a, s′). In particular, whenever
sa · ρ has non-zero probability under ∂ and |ρ| < L − 1, we have ∂(sa · ρ) = ∂′(ρ). Similarly,
we say that ∂ and a set Πs′ of window strategies for s′ are compatible w.r.t. s

a−→ s′ if either
∂(s, a) = 0 or there exists a window strategy ∂′ in Πs′ so that ∂ and ∂′ are compatible
w.r.t. s

a−→ s′.
Let f map portfolios to portfolios, so that f(Π) maps s ∈ S to the set f(Π)s of window

strategies ∂ ∈ Πs so that for each s
a−→ s′ in M, we have that ∂ and Πs′ are compatible

w.r.t. s
a−→ s′. Intuitively, f removes from Πs the window strategies ∂ that are not compatible

with any continuation after a transition s
a−→ s′ for some action a. Then, f is expressible in

the theory of the reals:
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▶ Lemma 19. Let Π be a portfolio, encoded as an ∃-R formula Rs, of free variables Xs,
for every state s. Assume that each Rs is a PNF formula of size F . Then, f(Π)s can also
be encoded as a PNF formula, of size in O(|M|F ) + |M|O(L). Moreover, if the formulae
associated with Π are non-strict, so are the formulae of f(Π).

Proof. Let s
a−→ s′ be a transition in M, and let ∂, ∂′ be window strategies for s and s′,

encoded as points in RXs and RXs′ , respectively. If ρ ∈ FPaths<L
M (s′), then let POLY(ρ)

denote the polynomial
∏

0≤i<|ρ| xρ[:i],ai
P(si, ai, si+1). Then, the strategies ∂ and ∂′ are

compatible w.r.t. s
a−→ s′ if for all ρ ∈ FPaths<L−1

M (s′) so that POLY(ρ) > 0, for all a′ ∈ A

we have xsa·ρ,a′ = xρ,a′ . Then, if Πs′ is encoded as the formula Rs′ , we get that ∂ and Πs′

are compatible w.r.t. s
a−→ s′ if there exists a valuation of Xs′ that encodes a window strategy

∂′ so that ∂ and ∂′ are compatible w.r.t. s
a−→ s′. This property corresponds to the formula

defined by

F(s, a, s′) := ∃Xs′ , Rs′
∧

∧
ρ∈FPaths<L−1

M (s′)

POLY(ρ) = 0 ∨
∧

a′∈A

xsa·ρ,a′ = xρ,a′

Therefore, if Πs is encoded as Rs then the formula Rs ∧
∧

s
a−→s′ xs,a = 0 ∨ F(s, a, s′)

encodes f(Π)s. Observe that it introduces non-strict comparisons, existential quantifiers, and
no negation operations, and is of size in F + |M|(F + |M|O(L)). ◀

▶ Example 20. Consider again the MDP M to the right of Figure 1. Let Π be the portfolio
where Πs0 is defined by xs0,a xs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ c with c ∈
[ 1

2 , 1
]

, Πs1 is defined
by xs1,a xs1as0,b ≥ 1

4 ∧ xs1as0,b ≤ c , and Π is ⊤ on every other state of M.7 Then, using
Lemma 19 yields that a formula equivalent to xs0,a xs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ 1 − 1
4c encodes

f(Π)s0 . Symmetrically, f(Π)s1 can be encoded as xs1,a xs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ 1 − 1

4c .

▶ Lemma 21 (Knaster-Tarski, Kleene). The operator f is Scott-continuous (upwards and
downwards), and is thus monotone. Let Q be a set of window strategy portfolios of horizon L
that forms a complete lattice w.r.t. ⊆. Then, the set of fixed points of f in Q forms a complete
lattice w.r.t. ⊆. Moreover, f has a greatest fixed point in Q equal to

d
{fn(

⊔
Q) | n ∈ N}.

Let Φ be a window L-PCTL formula of window length L. Let QΦ = {Π | ∀s ∈ S, ∀∂ ∈
Πs, s |=∂ Φ} be the set of portfolios containing window strategies of horizon L that ensure Φ.
It is closed by

d
and

⊔
, and therefore forms a complete lattice. The greatest element

⊔
QΦ

is the full portfolio mapping every s to all window strategies ∂ so that s |=∂ Φ. We denote
ΠΦ the greatest fixed point of f in QΦ, that must exist by Lemma 21.

▶ Proposition 22. Let s0 be a state, and let Φ be a window L-PCTL formula. Then, ΠΦ
s0

̸= ∅
if and only if there exists a strategy σ so that s0 |=σ A G Φ.

Proof sketch. On the one hand, we show that if σ is a strategy so that s0 |=σ A G Φ, and if
Πs0,σ is the set of window strategies obtained for state s and horizon L from fixed prefixes of
non-zero probability in σ, then Πs0,σ is a fixed point of f in QΦ so that Πs0,σ

s0
̸= ∅. On the

other hand, we show that from every fixed point Π of f in QΦ that is non-empty on a state
s0, we can inductively construct a strategy σ so that s0 |=σ A G Φ, that intuitively consists
in picking successive window strategies from Π that are compatible with each other. ◀

7 We omitted the constraints that ensure that all variables encode probabilities.
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Therefore, computing ΠΦ solves the synthesis problem for global window L-PCTL formulae.
By Lemma 21, we have that ΠΦ is the limit of the non-increasing sequence (fi(

⊔
QΦ))i∈N,

with
⊔

QΦ being the full portfolio that can be obtained as an ∃-R formula by Proposition 16,
so that fi(

⊔
QΦ) is computable by Lemma 19 as an ∃-R formula of size in |Φ||M|O(L+i).

▶ Example 23. Let M be the MDP to the right of Figure 1, and Φ = P
[
F2 s2

]
≥ 9

16 . As
detailed in Example 18, the set of strategies (

⊔
QΦ)s0 is described by xs0,axs0as1,b ≥ 1

4 , the set
of strategies (

⊔
QΦ)s1 is described by xs1,axs1as0,b ≥ 1

4 , and the set
⊔

QΦ is described by ⊤ on
all other states.8 By Example 20, fi(

⊔
QΦ)s0 is described by xs0,axs0as1,b ≥ 1

4 ∧ xs0as1,b ≤ ci,
where the constant ci is defined by c0 = 1 and ci+1 = 1 − 1

4ci
. Similarly, fi(

⊔
QΦ)s1 is

described by xs1,axs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ ci, and fi(

⊔
QΦ) is ⊤ on all other states. The

sequence (ci)i∈N is a decreasing sequence that converges towards 1
2 (but never reaches it).

The limit of this sequence is the greatest fixpoint ΠΦ
s0

, described by xs0,axs0as1,b ≥
1
4 ∧ xs0as1,b ≤ 1

2 on s0, xs1,axs1as0,b ≥ 1
4 ∧ xs1as0,b ≤ 1

2 on s1, ⊤ everywhere else. If we follow
the proof of Proposition 22, we can recover the only choice on s0 and s1 that ensures A G Φ:
play a and b with probability 1

2 .

We note that this fixed point computation is not an algorithm: as we have seen in
Example 23 the fixed point may not be reachable in finitely many steps. In this case, we do
not know if the limit will be empty or not. Nonetheless, this characterisation yields multiple
corollary results, that we detail in the remainder of this section.

Flat, non-strict formulae. If Φ is flat and non-strict then fi(
⊔

QΦ) maps every state to a
compact set.9 The limit of an infinite decreasing sequence of non-empty compact sets in RXs

is non-empty. Therefore, if the limit of a decreasing sequence of compact sets is the empty
set, it must be reached after finitely many steps. Thus, if ΠΦ

s = ∅, then there exists i ∈ N so
that fi(

⊔
QΦ)s = ∅.

▶ Theorem 24. The synthesis problem for flat, non-strict global window L-PCTL formulae
is in coRE.

As we will detail in Section 4, the synthesis problem for flat, non-strict global window
formulae is undecidable (coRE-hard), and therefore coRE-complete.

▶ Remark 25. From the proof of Proposition 16, it follows that if Φ is non-flat, that is, it
contains nested probabilistic operators, then the set of window strategies ∂ such that s |=∂ Φ
may not be closed and hence

⊔
QΦ is not necessarily a compact set.

▶ Remark 26. Note that in Example 23 we were able to compute by hand the limit of the
sequence of ∃-R formulae describing fi(

⊔
QΦ), and obtained an ∃-R formula for the greatest

fixed point ΠΦ
s . This is not always possible: there exists an MDP M and a flat, non-strict

global window formula A G Φ so that ΠΦ
s cannot be expressed in FO-R. Indeed, FO-R

formulae can be seen as finite words over a countable alphabet, so that there are countably
many of them. If by contradiction ΠΦ

s was always expressible in FO-R, we could enumerate
all FO-R formulae and check for each of them if it describes a fixed-point of f where sinit is
mapped to a non-empty set, two properties also expressible in FO-R by using Lemma 19.
This would show that the synthesis problem is recursively enumerable, therefore in RE∩ coRE
i.e. decidable, which is absurd as it is coRE-complete as we will see in Section 4.

8 Once again, we omit the constraints that ensure that all variables encode probabilities.
9 Non-strict formulae describe closed sets, and all variables are in [0, 1] as they encode probabilities.
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Deterministic strategies. In this paragraph, we study the synthesis problem for determinis-
tic strategies. First, note that the window strategy defined by a deterministic strategy for
a given prefix and horizon is also deterministic. Conversely, if ∂ is a deterministic window
strategy then there exists a deterministic strategy in its cylinder. Therefore, Lemma 14
carries over, and finding a deterministic strategy satisfying a window formula reduces to
finding a deterministic window strategy for it. Then, note that for a fixed state s, each de-
terministic window strategy can be seen as a boolean assignment over the set Xs of variables,
and we have that |Xs| = |M|O(L). Therefore, the set of deterministic window strategies is
finite, of doubly-exponential size 2|M|O(L) . We denote by W the number of deterministic
window strategies. By guessing a window strategy and verifying it in EXPTIME, we get
a NEXPTIME upper bound on the synthesis problem for window formulae. By guessing a
strategy in an online manner we can lower this complexity, and show that the problem is in
fact PSPACE-complete.

▶ Proposition 27. The synthesis problem for window L-PCTL formulae is PSPACE-complete
when restricted to deterministic strategies.

Proof. We present a non-deterministic algorithm, running in polynomial space, that accepts
all positive instances of the synthesis problem with deterministic strategies. We will guess a
deterministic window strategy ∂ and check that Φ holds on the resulting MC. In order to
avoid guessing an exponential certificate (the entire strategy ∂), we will perform a depth-first
search (DFS) traversal of the MDP, starting from sinit and of horizon L, where we guess
every decision of ∂ in an online manner (∂(ρ) is guessed when the search path, that is the
path from sinit to the current state, is ρ for the first time). We will compute along the
way information that ultimately lets us evaluate if Φ holds on the root node of the search.
At any point in the DFS, when the current path traversed from sinit is ρ, this information
represents partial evaluations of subformulae of Φ on states along ρ, according to the strategy
∂. Formally, we equip each state in the DFS with a set of formulae to be evaluated. For
each path formula φ in the set, we store the probability of satisfying the formula according
to paths previously visited by the DFS. Once all of the subtree below a state has been seen
by the search, this value matches the probability P [φ], and we can then use this value to
evaluate the state formulae that needs to know P [φ] on the current state. In order to define
the sets of subformulae to evaluate, we can use the same induction rules as in the proof of
Proposition 16, that reduce the evaluation of a formula such as Xℓ Φ1 or Φ1 Uℓ Φ2 on a given
state to the evaluation of Φ1, Φ2, Xℓ−1 Φ1 or Φ1 Uℓ−1 Φ2 on the current or the next state.
Overall, we need to remember a path of length at most L, a set of subformulae of Φ on
each state in this path, and a probability for each such path formula. Assuming that the
probabilities can be stored in polynomial space, this is indeed a PSPACE algorithm.

We argue that these probabilities can always be stored in polynomial space. Indeed, they
correspond to the measure, in the MC defined by ∂, of a finite union of cylinders defined
by prefixes of length at most L. Since ∂ is deterministic, these measures are finite sums
of real numbers obtained as the product of at most L constants appearing as transition
probabilities on M. Using a standard binary representation of rational numbers as irreducible
fractions, we get that since L is polynomial in |Φ| these probabilities are always rational and
of polynomial size.

We show a reduction from the synthesis problem with a generalized reachability objective
in a two-player game. Given an arena with a set V of vertices that are partitioned into
vertices belonging to Player 1 and Player 2, given an initial vertex v0, and reachability sets
F1, . . . , Fk, the problem asks for a (deterministic) Player 1 strategy that ensures reaching
each of the sets against any Player 2 strategies. The generalized reachability problem is
PSPACE-complete [12].
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We construct an MDP M with Q = V set of states and transitions which are the same
as the edges of the two-player game arena. A Player 1 vertex corresponds to a state in the
MDP such that for every outgoing edge (v, vi) from v, we have an action ai labelling the
transition (v, vi) in M. For a Player 2 vertex v, all the outgoing edges (v, vi) correspond to
transitions for the same action to vertices vi with equal probability. Also a state v ∈ Q in M
is labelled xi for i ≤ i ≤ k if and only if the corresponding vertex v ∈ Fi in the two-player
game. Further, if Player 1 has a wining strategy in the generalized reachability game, then
she can visit all the reachability sets within a total of nk steps with a deterministic strategy.

Now consider the property Φ defined as
∧k

i=1 P
[
Fnk xi

]
= 1. There exists a deterministic

strategy from v0 in M satisfying Φ if and only if Player 1 has a winning strategy for the
generalized reachability objective. ◀

As there are finitely many deterministic window strategies of horizon L, the fixed point
computation always terminates and thus provides decidability. We also reduce the problem
asking if an alternating Turing machine running in polynomial space accepts a given word to
deterministic strategy synthesis.

▶ Proposition 28. The synthesis problem for global window L-PCTL formulae is in
2EXPTIME when restricted to deterministic strategies. Moreover, it is EXPTIME-hard.

Proof. For global window formulae, we need to change the set QΦ, defined in Section 3, to
only contain deterministic window strategies. It is still a complete lattice, and Proposition 22
carries over for deterministic strategies. Moreover, for every portfolio Π, there are finitely
many strictly smaller portfolios, at most |M|W . As the sequence (fi(

⊔
QΦ))i∈N is non-

increasing, the fixed point is reached in at most |M|W steps. Each step can be performed
without relying on the theory of the reals, by representing the window strategies explicitly as
trees of depth L. Applying the operator f on a portfolio amounts to checking if a tree is a
prefix of another. Overall, the fixed point computation is doubly-exponential.

Note that if we rely on computing ∃-R formulae for (fi(
⊔

QΦ))i∈N instead of these explicit
sets of strategies, the formulae could a priori grow to sizes in |Φ||M|O(L+|M|W ), so that we
end up with a triply-exponential upper bound.

For the EXPTIME-hardness, we use APSPACE = EXPTIME and present a polynomial
reduction from alternating polynomial-space Turing machines. We consider a Turing machine
of states Q and tape alphabet Σ, so that each state q is equipped with a label L(q) ∈ {∀, ∃},
except for the accepting and rejecting states q⊤ and q⊥, where L(q) = q. Let w ∈ Σ∗ be an
input word, and let n ∈ N be a bound on the length of the tape used when running w on the
machine. Since we considered a polynomial space machine, n is polynomial. W.l.o.g., we
assume that for every input, the Turing machine we consider above halts, and the input is
accepted if and only if it halts in q⊤.

Let M be the MDP from Figure 2, where each named state is assigned an identical
label. We describe a window formula Φ that ensures that controller only makes choices that
faithfully represent an execution of the alternating Turing machine. Let N = 2n + 5 be the
number of steps needed to follow a cycle from s to s in M. If l is a label in M, we shorten
the L-PCTL formula P

[
FN l

]
= 1 as FN

1 l. It means that every path of length N must reach
l. Intuitively, a run of the Turing machine can be described as a path in this MDP, where
one full loop around s describes a configuration of the Turing machine: visiting ai means
that cell number i contains a, visiting aH

i means that additionally the reading head is in
position i, and entering the gadget qa means that we are in state q and will read an a. Either
controller or the environment gets to pick the next transition, and then we go back to s.
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1
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⊤
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Figure 2 The MDP used in the reduction from APSPACE to deterministic synthesis for global
window formulae. The colored transitions m1, m2, . . . represent different actions, black transitions
are available for every action, and the probability of a transition is 1 if unspecified. The letters a, b,
c enumerate the tape alphabet Σ, while q1, q2, . . . enumerate the states in Q, with q⊤ the accepting
state. The only randomized transition is in the universal gadget qa, and uses a uniform distribution
over reachable states.

The formula Φ is obtained as the conjunction of the following constraints:
In order to ensure that the tape is initialized appropriately, we ask for every letter a ∈ Σ

in position i > 1 in the input word w that sinit ⇒ FN
1 ai. If the first letter in w is a and the

initial state of the Turing machine is q1, we also ask sinit ⇒ FN
1 aH

1 ∧ FN
1 qa

1 .
In order to simulate the transitions on the tape cells correctly, we ask for every 1 ≤ i < n,

a, c ∈ Σ and transition q
a,b,L−−−→ q′ that

(s ∧ FN
1 ci ∧ FN

1 aH
i+1) ⇒ P

[
XN−2((q a,b,L−−−→ q′) ⇒ FN

1 cH
i ∧ FN

1 bi+1)
]

= 1 .

We similarly ask for every 1 ≤ i < n, a, c ∈ Σ and transition q
a,b,R−−−→ q′ that

(s ∧ FN
1 aH

i ∧ FN
1 ci+1) ⇒ P

[
XN−2((q a,b,R−−−→ q′) ⇒ FN

1 bi ∧ FN
1 cH

i+1)
]

= 1 .

The other tape cells should be left untouched, so that for every 1 ≤ i < n, a, b ∈ Σ and
transition q

c,d,L−−−→ q′, we ask that

(s ∧ FN
1 ai ∧ FN

1 bi+1) ⇒ P
[
XN−2((q c,d,L−−−→ q′) ⇒ FN

1 ai)
]

= 1 .
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Similarly for every transition transition q
c,d,R−−−→ q′, we ask that

(s ∧ FN
1 ai ∧ FN

1 bi+1) ⇒ P
[
XN−2((q c,d,R−−−→ q′) ⇒ FN

1 bi+1)
]

= 1 .

Finally, in order to update the state, we ask for every transition q
a,b,D−−−→ q′ with D ∈ {L, R}

and every 1 ≤ i ≤ n, c ∈ Σ that (q a,b,D−−−→ q′) ∧ FN
1 cH

i ⇒ FN
1 q′c .

Then, we let q⊤ and q⊥ be the labels that hold on all states qa
⊤ and qa

⊥, respectively, for all
a ∈ Σ. We consider the global window formula A G[(Φ ∨ q⊤) ∧ ¬q⊥], and show that there is a
winning strategy for this formula in M if and only if the alternating Turing machine accepts
the input word w. Indeed, an alternating Turing machine equipped with an initial word can
be seen as a turn-based two-player zero-sum reachability game played on the execution tree
of the machine, where we ask if there exists a strategy for player ∃ that ensures against every
strategy of ∀ the state q⊤ is reached. ◀

Memoryless strategies. We study the synthesis of memoryless strategies. The window
strategy defined by a memoryless strategy for a given prefix and a horizon is also memoryless.
Conversely, a memoryless window strategy has a memoryless strategy in its cylinders. By
Lemma 14, finding a memoryless strategy satisfying a window formula reduces to finding
a memoryless window strategy for it. Let s be a state. As usual, a window strategy ∂ for
state s can be seen as an assignment in [0, 1] for variables Xs. However, the memoryless
property asks that ∂(ρ) = ∂(ρ′) for all ρ, ρ′ that share the same last state s′, or equivalently
xρ,a = xlast(ρ),a for all ρ. Thus, we can replace every instance of xρ,a by xlast(ρ),a in the ∃-R
formula of Proposition 16, so that the set of free variables used to represent a memoryless
window strategy for s is Xs = {xs′,a | ∃ρ ∈ FPaths<L

M (s), s′ = last(ρ)}. Similarly, the variables
yρ,Φ and zρ,φ can be replaced by by ylast(ρ),Φ and zlast(ρ),φ respectively, as the satisfaction of
a state formula, or the probability of satisfying a path formula, only depend on the current
state. The formula is now of polynomial size, so that we obtain as a corollary:

▶ Proposition 29. The synthesis problem for window L-PCTL formulae is in PSPACE when
restricted to memoryless strategies.

Further, following a reduction in [15], it can be shown that the MR synthesis problem for
window L-PCTL objectives is at least as hard as the Square-Root-Sum problem which is
known to be in PSPACE, but whose exact complexity is a longstanding open problem.

We now study the memoryless synthesis problem for global window formulae. For each
state s, let Rs denote the ∃-R formula encoding the window formula Φ for state s, as per
Proposition 29. The free variables are the variables in Xs ⊆ X = {xs′,a | s′ ∈ S, a ∈ A}. A
memoryless strategy σ can be seen as a point in RX , so that σ(s, a) is assigned to xs,a. For
all states s and s′, we define a variable rs,s′ ∈ {0, 1} quantified existentially, and construct a
formula ensuring that if rs,s′ = 0 then s′ is not reachable from s under the strategy σ. This
formula states rs,s = 1 for all states s, and asks that the variables r are a solution to the
system of equations asking, for all s, s′, s′′ and a, that if rs,s′ = 1 and xs′,aP(s′, a, s′′) > 0
then rs,s′′ = 1. Therefore, the set of states s′ so that rs,s′ = 1 is an over-approximation.10

Then, the formula asking that there exists a value for each variable r so that Rs′

holds whenever rs,s′ = 1 represents the memoryless strategies that satisfy Φ on an over-
approximation of the states reachable from s, which is equivalent to satisfying A G Φ when

10 For example, the formula is satisfied if rs,s′ is 1 for all s, s′, which represents an over-approximation of
the set of states reachable from s where every state is reachable.
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starting from state s. Note that since the variables rs,s′ are existentially quantified, and Φ is
only required to be satisfied on states reachable from s, then there always exists a valuation
for these r variables that sets rs,s′ to 1 if and only if s′ is reachable from s. It follows that:

▶ Proposition 30. The synthesis problem for global window L-PCTL formulae is in PSPACE
when restricted to memoryless strategies.

PCTL satisfiability. We now consider the satisfiability problem, that asks, given a formula
Φ, if there a exists an MC M so that M |= Φ. This is a longstanding open problem for
PCTL formulae. One can also consider variants of the problem, that either restrict Φ to a
sublogic of PCTL or limit M to MCs that belong to a particular set, such as finite MCs
or MCs where all probabilities are rational numbers. The decidability of these variants is
also open and, as noted in [7], some PCTL formulae are only satisfiable by infinite MCs. In
particular, we say that an MC M has granularity bounded by N ∈ N if every probability
in the transition function P is equal to a rational a

b with b ≤ N . The bounded granularity
satisfiability problem asks, given Φ and N , if there exists an MC of granularity bounded by N

that satisfies Φ. The bounded granularity satisfiability problem for global window L-PCTL
formulae can be reduced to the HD strategy synthesis problem for global window L-PCTL
formulae. Therefore, we obtain the following result as a corollary of Proposition 28:

▶ Theorem 31. The bounded granularity satisfiability problem for global window L-PCTL
formulae is decidable in complexity doubly-exponential in |Φ| and N . Moreover, finite MCs
are sufficient, in the sense that for every formula A G Φ that admits a model M of granularity
bounded by N , there exists a finite MC M ′ of granularity bounded by N so that M ′ |= A G Φ.

Proof sketch. Given a formula with atomic propositions AP, and a granularity bound N ,
we intuitively consider an MC of states 2AP with an action for every distribution over 2AP

whose granularity is bounded by N , so that this action describes the next states and their
probabilities. Then, every MC of granularity bounded by N can be seen as a deterministic
strategy in this MDP, so that strategy synthesis and MC satisfiability are equivalent. We can
then apply Proposition 28. Moreover, finite MCs are sufficient as finite-memory strategies
are sufficient for global window PCTL when restricted to deterministic strategies. ◀

4 Undecidability

In Section 3, we have shown that the synthesis problem for flat, non-strict global window
L-PCTL formulae is in coRE. In this section, we argue that it is coRE-hard and that it
becomes Σ1

1-hard when relaxing the hypothesis that the formulae considered are non-strict.
When considering flat non-strict formulae, we proceed via a reduction from the non-

halting problem of a two-counter Minsky machine. A two-counter Minsky machine consists
of a list of instructions l1 : ins1, . . . , ln : insn and two counters c2 and c3 (the indices 2 and 3
are chosen to ease the notations) where, for all i ≤ n, we have insi an instruction in one the
following types, for j ∈ {2, 3} and 1 ≤ k, m ≤ n: Incj(k): cj := cj + 1; goto k; Branchj(k, m):
if cj = 0 then goto k; else cj := cj − 1, goto m; H: halt. The semantics of these instructions
is straightforward. The non-halting problem for Minsky machine, denoted MinskyNotStop, is
to decide, given a machine Msk, if its execution is infinite. This problem is undecidable, as
stated in the theorem below.

▶ Theorem 32 ([17]). MinskyNotStop is coRE-complete.
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Figure 3 The end of
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Figure 4 The end of a gadget on the left, and
the beginning of another one on the right.
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Figure 5 The be-
ginning of a gadget.

Given Msk = l1 : ins1, . . . , ln : insn on two counters c2 and c3, we build an MDP M and
an L-PCTL formula Φ such that there exists a strategy σ for M s.t. M[σ] |= Φ if and only
if Msk ∈ MinskyNotStop. The crucial point of the reduction is to encode the values of the
counters that may take unbounded values. It is done in M by encoding these values in the
probability (chosen by the strategy σ) to see a given predicate in the next few steps. More
specifically, in the situation where the counters are such that {c2 7→ x2; c3 7→ x3}, we consider
the probability p(x2, x3) = 5

6 × 1
2x2 × 1

3x3 . We then associate to each different instruction a
gadget, i.e. an MDP, and a formula encoding the update of probability p(x2, x3) according to
how the counters are changed by the corresponding instruction. Inside a gadget, one can find
predicates of the shape (P·). They are used to define the formulae specifying the expected
behavior of the strategy. Furthermore, there is also an entering and an exiting probability
which correspond to the encoding of the counters respectively before and after the effect of
the instructions. We define below formally the notion of well-placed gadgets.

▶ Definition 33 (Gadgets). A gadget Gd is an MDP with an entering probability and an
exiting probability. Consider Figure 3 that represents how every gadget Gd ends. The
exiting probability pex

Gd is the probability σ2(a) to visit the state on the top. It is equal to
pex

Gd = Ps(F1 P), i.e. the probability that F1 P holds on state s. Consider Figure 5. All gadgets
begin as in this figure: a state s′ with a successor satisfying the predicate P′. The entering
probability pen

Gd is the probability σ1(a) to see P′, that is: pen
Gd = Ps′(F1 P′). A gadget is

well-placed if, as for the gadget on the right of Figure 4, it is preceded by two dummy states,
themselves immediately preceded by a gadget.

Before looking at how specific instructions are encoded in the counters and the formula, we
have to ensure that the exiting probability of a gadget is equal to the entering probability of
the following well-placed gadget. This is done with the formula: Φkeep := Pkeep ⇒ (P(F1 P) =
6 · P(F4 P′)). These definitions ensure the following proposition:

▶ Proposition 34 (Entering probability of a well-placed gadget). Assume that a well-placed
gadget Gd′ follows a gadget Gd.Then, for a strategy σ s.t. the formula A G Φkeep is satisfied, the
exiting probability of gadget Gd is equal to the entering probability of gadget Gd′: pex

Gd = pen
Gd′ .

Due to lack of space, we only exhibit the gadgets encoding the increment of a counter
and for testing if a counter value is 0. Consider the increment of counter c2. By definition of
p(x2, x3), incrementing that counter is simulated by multiplying the probability by 1

2 .We
define the gadget Gdc2++ and the formula Φc2++ ensuring that the probability is indeed
multiplied by 1

2 . The gadget Gdc2++ is depicted in Figure 6.In addition, we define the
L-PCTL formula Φc2++ such that Φc2++ := Pc2++ ⇒ (P(F2 Pc2) = 6 · 2 · P(F3 P+)). The
interest of these definitions lies in the proposition below.
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Figure 6 The gadget Gdc2++ for the
operation c2 := c2 + 1.
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▶ Proposition 35 (Incrementing Gadget Specification). If the entering probability pen
Gdc2++

of
the gadget Gdc2++ is equal to p(x2, x3) with x2, x3 ∈ N, then whenever the formula A G Φc2++
is satisfied, the exiting probability pex

Gdc2++
of this gadget is equal to pex

Gdc2++
= p(x2 + 1, x3).

We now consider the gadget that tests if a counter value is 0, let us exemplify it with
counter c2 in gadget Gdc2=0 depicted in Figure 7. The gadget Gd=5/6 used on the right tests
that both counters have value 0 (i.e. the entering probability is equal to 5/6).Then, the
idea is as follows: as long as counter c3 has a positive value, the strategy σ has to take the
bottom branch to decrement it and once this counter has reached 0, it can take the top
branch to check that the probability is indeed equal to 5/6. Note that one cannot decrement
counter c2 in this gadget, hence if its value is positive, there is no way to pass the test of the
comparison to 5/6. To ensure that the choice at state sc2=0 is deterministic, we consider the
formula Φ0,1 := Pchoose ⇒ (P(X P0,1) = 1 ∨ P(X P′

0,1) = 1). We have the proposition below:

▶ Proposition 36 (Testing Gadget Specification). Assume that the entering probability pen
Gdc2=0

of the gadget Gdc2=0 is equal to p(x2, x3) for some x2, x3 ∈ N. Then, there is a strategy σ

such that the formula A G[Φkeep ∧ Φ0,1 ∧ Φc3−− ∧ Φ=5/6] is satisfied if and only if x2 = 0.

We can similarly test that a counter is different from 0. A gadget corresponding to a
branching instruction can then be defined by using these gadgets.Finally, a gadget corre-
sponding to the Halt instruction only consists of a gadget where no strategy σ can satisfy the
formula considered. Overall, we can combine all these gadgets to encode all the instructions
of the Minsky machine Msk.We obtain the theorem below.

▶ Theorem 37. The synthesis problem for flat, non-strict global window L-PCTL formulae
is coRE-hard.

When considering arbitrary flat formulae without the non-strict constraint, we can adapt
the proof to reduce from the problem asking if there is an execution of a Minsky Machine
that visits infinitely often the first instruction [3], so that the strategy synthesis problem
becomes highly undecidable.

▶ Theorem 38. The synthesis problem for flat global window L-PCTL formulae is Σ1
1-hard.

The construction here is similar to the case with the non-strict constraint, except that
whenever the first instruction is seen, a choice is given to the strategy which can set in how
many number of steps n the first instruction will be seen again (note that this number may
be arbitrarily large). This choice is encoded by resetting a new counter c5 to value n, which
is then decremented each time the first instruction is not seen, and a problem arises if this

ICALP 2022



115:20 Strategy Synthesis for Global Window PCTL

counter ever reaches 0. In terms of probability, the value p(x2, x3) is initially multiplied by 1
5n

and then multiplied by 5 each time the first instruction is not seen. Hence, the probabilities
chose by σ may be arbitrarily close to 0, but cannot be equal to 0. This is where we need
the non-strict comparison with 0.
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