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Let p be a proper parabolic subalgebra of a simple Lie algebra g. Writing p = r ⊕ m with r being the Levi factor of p and m the nilpotent radical of p, the semi-direct product p = r (m) a , where (m) a is an abelian ideal of p, isomorphic to m as an r-module, is a Lie algebra. This is a special case of Inönü-Wigner contraction and may be considered as a degeneration of p. For any Lie algebra a, denote by Sy(a) the algebra of symmetric semi-invariants in the symmetric algebra S(a) of a under the adjoint action of a. In this paper we are interested in the polynomiality of the algebra Sy(p). Inspired by our method in [Fauquant-Millet F., Joseph A.: Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple, Ann. Sci. Éc. Norm. Sup. 38 (2005) 155-191] where we studied the polynomiality of Sy(p) (the nondegenerate case), we obtain in this paper a lower bound for the formal character of the algebra Sy(p), when the latter is well defined. The method in the nondegenerate case does not apply directly in the degenerate case : in the present paper we define a so-called generalized PBW filtration on a highest weight irreducible representation of g to provide the lower bound. Combined with an upper bound we will construct in the near future for particular contractions p, our goal is to show that the algebra Sy(p) is a polynomial algebra, by showing that both bounds coincide.

Introduction.

The base field k is algebraically closed of characteristic zero.

1.1. The aim of the paper. Let g be a simple Lie algebra over k and fix a Cartan subalgebra h of g. Then choose a set π of simple roots for (g, h) and denote by b the Borel subalgebra of g associated with it. Let p ⊃ b be a proper parabolic subalgebra of g. Denote by n, resp. n -, the maximal nilpotent subalgebra of g generated by all positive, resp. negative, root vectors, so that g = n -⊕ h ⊕ n and b = h ⊕ n. Let r denote the Levi factor of p (so that r is a reductive Lie algebra) and m the nilpotent radical of p. Then one has that p = r ⊕ m. Now consider the semi-direct product p = r (m) a where (m) a is isomorphic to m as an r-module, the superscript a meaning that (m) a is an abelian ideal of p. The semi-direct product p is still a Lie algebra which may be viewed as a degeneration of the parabolic subalgebra p (of course when m is already abelian, we have that p = p as a Lie algebra). The Lie algebra p is called an Inönü-Wigner contraction, or a one-parameter contraction of p (see [START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF]Sect. 4]). Denoting by a the derived subalgebra of any Lie algebra a, one has that p = r (m) a .

In this paper we are interested in the algebra Sy( p) of symmetric semiinvariants in the symmetric algebra S( p) of p under the adjoint action of p, which is also equal to the algebra S( p) p of symmetric invariants under the adjoint action of p . In some cases (especially when p is a maximal parabolic subalgebra), we have that Sy( p) = S( p ) p . For the natural Poisson structure on S( p), the algebra Sy( p) is also equal to the Poisson semicentre of S( p).

The study of the algebra Sy( p) will be called the degenerate case while the study of the algebra Sy(p) = S(p) p of symmetric semi-invariants in the symmetric algebra S(p) of p under the adjoint action of p will be called the nondegenerate case. The aim of the present paper is to construct a lower bound for the formal character of Sy( p) (when the latter is well defined), by adapting methods in the nondegenerate case [START_REF] Fauquant-Millet | Sur les semi-invariants d'une sous-algèbre parabolique d'une algèbre enveloppante quantifiée[END_REF]Prop. 3.1] or [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF]Sect. 6] .

We then hope to get an upper bound for the formal character of Sy( p) (at least for the contraction of a parabolic subalgebra p such that dim m is not too big with respect to dim r ) which would be equal to this lower bound. This would imply that the algebra Sy( p) is a polynomial algebra, for which we could give the number of algebraically independent generators, their weight and degree.

Motivated by computation for several examples of contractions p of maximal parabolic subalgebras in a simple Lie algebra g, where we get an upper bound for the formal character of Sy( p) which coincides with the lower bound in the present paper, we hope to extend in the near future the construction for the contraction of every maximal parabolic subalgebra, at least in classical cases.

Results about one-parameter contractions, and especially about their ring of invariants (or semi-invariants) are reviewed below. Feigin in [START_REF] Feigin | G M A -degeneration of flag varieties[END_REF] introduced the contraction g of a semi-simple Lie algebra g given by the decomposition g = b ⊕ n -, motivated by some problem in representation theory (see [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF]). He then studied degenerations of flag varieties related to this contraction in [START_REF] Feigin | Degenerate flag varieties and the median Genocchi numbers[END_REF]. For such a contraction g, Panyushev and Yakimova studied in [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF] the algebra of symmetric invariants S(g) g and showed that it is always a polynomial algebra in rank(g) generators. In [START_REF] Yakimova | One-parameter contractions of Lie-Poisson brackets[END_REF] Yakimova showed that the algebra of symmetric semi-invariants Sy(g) is also always polynomial.

Extending Feigin's construction, Panyushev and Yakimova studied the contraction g of a semi-simple Lie algebra g given by the decomposition g = p ⊕ m -(where m -is the nilpotent radical of the opposite parabolic subalgebra of p). They showed in [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] that the algebra of symmetric invariants S(g) g is always polynomial when g is simple of type A or C and for particular parabolic subalgebras in type B, using results on centralisers in [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF].

Based on results of Panyushev and Yakimova, Phommady [START_REF] Phommady | Semi-invariants symétriques de contractions paraboliques[END_REF] studied the polynomiality of the algebra of symmetric semi-invariants Sy(g): he proved that it is always a polynomial algebra in type A and gave a counter-example in type C.

All the previous contractions are semi-direct products of the form q = s V with s being a Lie algebra (not necessarily reductive) and V being a finitedimensional representation of s. It was observed [START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF]Sect. 3]) that, if S(q) q is polynomial, then it is the same for S(V ) s . When q is the contraction of a Z 2 -grading of a reductive Lie algebra, the polynomiality of the ring of invariants S(q) q was studied in [START_REF] Panyushev | On the coadjoint representation of Z2-contractions of reductive Lie algebras[END_REF]. On the other hand when s is a semisimple Lie algebra, Panyushev and Yakimova used the classification in [START_REF] Elashvili | Canonical form and stationary subalgebras of points of general position for simple linear Lie groups[END_REF], [START_REF] Elashvili | Stationary subalgebras of points of general position for irreducible linear Lie groups[END_REF], [START_REF] Popov | Invariant Theory[END_REF], [START_REF] Schwarz | Representations of simple Lie groups with regular rings of invariants[END_REF] to give a classification (see [START_REF] Panyushev | Semi-direct products of Lie algebras and covariants[END_REF], [START_REF] Panyushev | Semi-direct products involving Sp2n or Spinn with free algebras of symmetric invariants[END_REF], [START_REF] Panyushev | Symmetric invariants related to representations of exceptional simple groups[END_REF]) of all finitedimensional representations of simple Lie groups (that is, for s being simple) and also of all irreducible representations of arbitrary semisimple groups with toral generic stabilisers, for which S(q) q is a polynomial algebra. However when s is simple of type A, their classification was partial (see [START_REF] Yakimova | Some semi-direct products with free algebras of symmetric invariants[END_REF]).

Observe that in our paper we deal with a semi-direct product q = s V with s = r being semisimple (and not necessarily simple in general) and V = m. However even when r is simple, the study of Panyushev and Yakimova does not seem to always give the answer whether Sy( p) is or not polynomial. For example if we consider the contraction p = r (m) a of the maximal parabolic subalgebra p = r⊕m of g simple of type B 4 , whose Levi subalgebra r is simple of type A 3 , then m does not occur among the representations of sl 4 treated by Panyushev and Yakimova in [START_REF] Panyushev | Semi-direct products of Lie algebras and covariants[END_REF] or in [START_REF] Yakimova | Some semi-direct products with free algebras of symmetric invariants[END_REF]. In this case, we have constructed an adapted pair for p which provides an upper bound for the formal character of Sy( p) = S( p ) p and this upper bound coincides with the lower bound we have built in this paper. Thus we obtain in this case that the algebra of symmetric semi-invariants Sy( p) is a polynomial algebra in three generators, for which we can give their weight and degree.

Note also that it is shown in [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF]Th. 1.1] that the bi-homogeneous components of highest degree relative to m of homogeneous elements in S(p ) p lie in S( p ) p = S(p ) p . Moreover [START_REF] Yakimova | One-parameter contractions of Lie-Poisson brackets[END_REF]Th. 3.8] may give a criterion to know whether S(p ) p is polynomial, based on the degrees relative to m of generators of S(p ) p , if the latter is finitely generated. Unfortunately, even when S(p ) p is known to be polynomial and when the degree is known for each homogeneous generator of S(p ) p , it does not seem to be easy to compute its degree relative to m.

1.2. The method. The method we use in this paper is completely different from this of Panyushev and Yakimova. Our method is partly inspired by this used in [START_REF] Fauquant-Millet | Sur les semi-invariants d'une sous-algèbre parabolique d'une algèbre enveloppante quantifiée[END_REF], [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF] to study the polynomiality of the algebra of symmetric semi-invariants Sy(p). The study of the latter algebra will be called the nondegenerate case, while we will call the study of Sy( p) the degenerate case. In the degenerate case, the method to build a lower bound is more complicated than in the nondegenerate case, and then we cannot just rewrite the proof used in the nondegenerate case. In particular we will construct some degeneration of an irreducible representation of the simple Lie algebra g and we will consider matrix coefficients associated with it. We also have to define a suitable action of some associative algebra A, which provides the adjoint action of p on S( p) after some identifications we will explain below.

Denote by P + (π) the set of dominant integral weights of (g, h) and let V (λ) be the irreducible highest weight g-module of highest weight λ, for

λ ∈ P + (π) (so that V (λ) is finite-dimensional).
Let us describe our method and our main result more precisely.

• In subsections 3.1 and 3.2 we fix λ ∈ P + (π) and denote by

p -= r ⊕ m -⊃ b -= h ⊕ n -the opposite parabolic subalgebra of p,
where m -is the nilpotent radical of p -and by p-= r (m -) a the one-parameter contraction of p -. Then, inspired by the construction in [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF], we define what we call a generalized PBW filtration (F k (V (λ))) k∈N on V (λ), which is an increasing and exhaustive filtration on V (λ), induced by the canonical (or standard degree) filtration

(U k (m -)) k∈N on the enveloping algebra U (m -) of m -.
The associated graded space, that we call the degenerate highest weight module associated with λ, is denoted by

V (λ) := gr F (V (λ)) = k∈N gr k (V (λ))
where gr k (V (λ)) = F k (V (λ))

F k-1 (V (λ)) for all k ∈ N with F -1 (V (λ)) := {0}. If v λ is a nonzero vector of highest weight λ in V (λ), we denote by V (λ) the irreducible U (r)-submodule of V (λ) generated by v λ and by V (λ) ⊂ V (λ) the canonical image of V (λ) in V (λ). We will observe that, as U (r)-modules, we have V (λ)

V (λ). Set ṽλ the canonical image of v λ in V (λ). We define a left U ( p-)-module structure on V (λ), for which we have that V (λ) = U (r).ṽ λ and that

V (λ) = U ( p-).ṽ λ = S(m -). V (λ) = U ( p-). V (λ).
• In subsections 4.1, 4.2, 4.4, denoting by T (m) the tensor algebra of m, we consider the associative algebra A = T (m)#U (r), which is the Hopf smash product of the left U (r)-algebra T (m) by the Hopf algebra U (r), as defined for example in [17, 1.1.8]. As T (m) is also equipped with a coproduct, we obtain that this smash product A also inherits a structure of a bialgebra and indeed of a Hopf algebra.

We then consider the coadjoint action, which we denote by ad * , of U ( p) on p -p * (as vector spaces). Then ad * extends uniquely by derivation to an action of U ( p) on S(p -). From this action ad * , we define what we call a generalized adjoint action ad * * of A on U ( p-), which coincides with the adjoint action on U ( p-), when restricted to U (r).

• In subsections 5.1 and 5.3, we consider spaces of matrix coefficients.

For λ ∈ P + (π), we set ṽw 0 λ the canonical image in V (λ) of a chosen nonzero lowest weight vector in V (λ) and by V (λ) the U (r)submodule of V (λ) generated by ṽw 0 λ . We denote by V (λ) * the dual space of V (λ). For all ξ ∈ V (λ) * and v ∈ V (λ), the matrix coefficient c ξ, v ∈ U ( p-) * is defined by :

c ξ, v (u) = ξ(u. v) for all u ∈ U ( p-).
Then we define C p (λ) to be the subspace of U ( p-) * generated by

{c ξ, v | ξ ∈ V (λ) * , v ∈ V (λ)}
and C r (λ) to be the subspace of C p (λ) generated by

{c ξ, v | ξ ∈ V (λ) * , v ∈ V (λ)}.
We set C p = λ∈P + (π) C p (λ) and C r = λ∈P + (π) C r (λ). We show that these are direct sums and that C r is a subalgebra of U ( p-) * .

• In subsection 5.5, we consider the dual representation of ad * * , which defines a left A-module structure on U ( p-) * . When restricted to U (r), the dual representation of ad * * defines a left U (r)-module structure on every C r (λ), λ ∈ P + (π), and then on C r , which coincides with the coadjoint representation. • In subsections 6.1 and 6.2, for all λ ∈ P + (π), we denote by C r (λ) U (r ) , resp. C U (r ) r the vector space, resp. the algebra, of invariants in C r (λ), resp. in C r , under the coadjoint representation of U (r ). We have that C

U (r ) r = λ∈P + (π) C r (λ) U (r ) .
Denote by π ⊂ π the subset of simple roots of (g, h) associated with the parabolic subalgebra p, set h π = h ∩ p , and denote by ( , ) the nondegenerate symmetric bilinear form on h * × h * induced by the Killing form on g. Since, for all λ ∈ P + (π), V (λ) is an irreducible U (r)-module, the Jacobson density theorem implies that the

U (r)- module C r (λ) is isomorphic to the U (r)-module V (λ) * ⊗ V (λ)
where the latter is endowed with the diagonal action of U (r). It follows that, for all λ ∈ P + (π), C r (λ) U (r ) is of dimension less or equal to one, and equal to one if and only if

(w 0 λ -w 0 λ, π ) = 0
where w 0 , resp. w 0 , is the longest element in the Weyl group of (r , h π ), resp. of (g, h). As a consequence we show (as in [9, prop. 3.1]) that C U (r ) r is a polynomial algebra, for which we can compute the number of algebraically independent generators and their weight.

• In subsections 7.1, 7.3, 7.4 and 7.5, inspired by [10, 6.1], one defines on the algebra U ( p-) * what we call the generalized Kostant filtration (F k K (U ( p-) * )) k∈N , which is a decreasing, exhaustive and separated ring filtration. This filtration is invariant under the action of A given by the dual representation of ad * * .

One denotes by gr K (U ( p-) * ) = k∈N gr k K (U ( p-) * ) the graded algebra associated with this filtration where, for all k ∈ N,

gr k K (U ( p-) * ) = F k K (U ( p-) * ) F k+1 K (U ( p-) * )
.

The dual representation of ad * * induces a left action of A on this graded algebra and one checks that, for all x ∈ m, for all f ∈ C r ∩ F k K (U ( p-) * ), one has for this action

x.f ∈ F k+1 K (U ( p-) * ) that is, that x.gr k K (f ) = 0
where gr k K (f ) denotes the canonical image of f in gr K (U ( p-) * ). Then for all k ∈ N and all vector space V , denoting by S k (V ) the vector subspace of the symmetric algebra S(V ) of V formed by all homogeneous polynomials of degree k, one defines a morphism ψ k : gr k K (U ( p-) * ) -→ S k (p -) * . It is easily checked that actually ψ k is an isomorphism of left U ( p)-modules, where the left structure on gr k K (U ( p-) * ) is induced by the dual representation of ad * * and where the left structure on S k (p -) * is given by the dual representation of ad * . With this structure, it is easily checked that S k (p -) * is isomorphic to the U ( p)-module S k ( p) = S k (p) where the action of p is the adjoint action which extends by derivation the Lie bracket in p. Thus we obtain an isomorphism of U ( p)-modules and of algebras from gr K (U ( p-) * ) to S( p). . The former may be viewed as a subalgebra of gr K (U ( p-) * ), which by equation in the above alinea is invariant under the action of U ( p ) induced by the action of A on U ( p-) * given by the dual representation of ad * * . Finally one can establish the main result of our paper (see subsection 7.

6).

Theorem. There is an injection of algebras and of U (h)-modules from gr K C U (r ) r into the Poisson semicentre Sy( p) = S( p) p . This implies a lower bound for the formal character of Sy( p), when the latter is well defined.

Notation.

2.1. General notation. Let g be a simple Lie algebra over k, h be a Cartan subalgebra of g and choose a set π of simple roots for (g, h). Denote by ∆ ± the set of positive, resp. negative, roots of (g, h) with respect to π and ∆ = ∆ + ∆ -the set of roots of (g, h). Denote by [ , ] the Lie bracket in g and by , the natural duality between h and h * . Then for all root α ∈ ∆, set g α = {x ∈ g | ∀h ∈ h, [h, x] = h, α x} and fix a nonzero root vector x α in g α .

Denote by n = α∈∆ + g α , resp. n -= α∈∆ -g α , the maximal nilpotent subalgebra of g generated by positive, resp. negative, root vectors, so that g = n ⊕ h ⊕ n -. Let b = n ⊕ h be the Borel subalgebra of g.

For each subset π of π, we denote by ∆ ± π the subset of ∆ ± generated by π that is,

∆ ± π = (±Nπ ) ∩ ∆ ± . Set n π = α∈∆ + π g α , resp. n - π = α∈∆ - π g α .
Then the (standard) parabolic subalgebra p ⊃ b of g associated with π is

p = n ⊕ h ⊕ n - π . The Levi factor r of p is r = n π ⊕ h ⊕ n - π and its derived subalgebra (which is semisimple) is r = n π ⊕ h π ⊕ n -
π , where h π = h ∩ p , with p = [p, p] being the derived subalgebra of p. If for all α ∈ π, αˇdenotes the coroot associated with α, we have that h π is the k-vector space generated by the coroots αˇ, with α ∈ π .

The longest element of the Weyl group W , resp. W , of (g, h), resp. of (r , h π ), is denoted by w 0 , resp. w 0 .

Set

h π\π = {h ∈ h | h, π = 0} so that h = h π ⊕ h π\π .
Denote by m the nilpotent radical of p, so that p = r ⊕ m. We have that n = n π ⊕ m and that m = α∈∆ + \∆ + π g α . The opposite subalgebra p -of p is the parabolic subalgebra of g defined by

p -= n -⊕ h ⊕ n π .
We denote by m -the nilpotent radical of p -(so that p -= r ⊕ m -). The Killing form K on g × g induces an isomorphism between the dual space p * of p and the vector space p -, since K is non degenerate on p × p -. Moreover since K is also non degenerate on h×h, it induces a non degenerate symmetric bilinear form ( , ) on h * × h * which is invariant under the action of W (see for instance [11, 5.2.2]).

For all α ∈ π, resp. α ∈ π , let α , resp. α , be the fundamental weight associated with α with respect to (g, h), resp. with respect to (r , h π ). Then P (π) = α∈π Z α , resp. P (π ) = α∈π Z α , is the weight lattice of (g, h), resp. (r , h π ). Moreover P + (π) = α∈π N α , resp. P + (π ) = α∈π N α , is the set of dominant integral weights of (g, h), resp. (r , h π ). By [10, 2.5], there exists some positive integer r such that (1)

P (π) ⊂ P (π ) ⊕ 1 r α∈π\π Z α
and for all α ∈ π , the projection of α in P (π ) with respect to this decomposition (1) is α . For λ = α∈π m α α ∈ P (π) (m α ∈ Z for each α ∈ π), we denote by λ = α∈π m α α its projection in P (π ) with respect to the decomposition [START_REF] Bourbaki | Eléments de mathématique, Groupes et Algèbres de Lie[END_REF].

For any finite-dimensional Lie algebra a, we denote by U (a) its universal enveloping algebra and by S(a) its symmetric algebra, which may be viewed as the (commutative) graded algebra associated with the canonical filtration (U k (a)) k∈N on U (a) (see [4, 2.3]). We may also identify S(a) with the algebra k[a * ] of polynomial functions on the dual space a * of a. For all k ∈ N, we denote by S k (a) the vector subspace of S(a) formed by all homogeneous polynomials of degree k.

For all λ ∈ P + (π), the irreducible highest weight g-module of highest weight λ (which is obtained by quotienting the corresponding Verma module by its largest proper sub-g-module, as defined for example in [4, 7.1.11]) is denoted by V (λ) : recall ([4, 7.2.6]) that this is a finite-dimensional U (g)module. We may pay attention that (unlike the notation in [4, 7.1.4, 7.1.12]) the highest weight of V (λ) in our paper is λ and not λ -ρ, where ρ is the sum of all fundamental weights of (g, h).

2.2.

Semi-direct product. Recall the parabolic subalgebra p = r ⊕ m and its opposite parabolic subalgebra p -= r ⊕ m -, with m, resp. m -, the nilpotent radical of p, resp. p -.

We now consider the semi-direct product p = r (m) a , resp. p-= r (m -) a , where (m) a , resp. (m -) a , is isomorphic to m, resp. m -, as an rmodule, but where the superscript a means that (m) a , resp. (m -) a , is an abelian ideal of p, resp. of p-. Such a semi-direct product is still a Lie algebra by [START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF]Sect. 4] for example, called an Inönü-Wigner contraction, or a one-parameter contraction of p, resp. of p -. The k-vector space p, resp. p-, is equal to p, resp. p -, as a vector space and if we denote by [ , ] p, resp.

[ , ] p-the Lie bracket in p, resp. p-, and by [ , ] the Lie bracket in g, then one has that

(2) ∀z, z ∈ r, ∀x, x ∈ m, [z, x] p = [z, x], [z, z ] p = [z, z ], [x, x ] p = 0 (3) ∀z, z ∈ r, ∀y, y ∈ m -, [z, y] p-= [z, y], [z, z ] p-= [z, z ], [y, y ] p-= 0.
3. The degenerate highest weight module.

In this section, we fix λ ∈ P + (π) and we will define, from the irreducible highest weight module V (λ) of highest weight λ, some vector space denoted by V (λ) which can be endowed with a left U ( p-)-module structure, so that it is isomorphic to V (λ) as a left U (r)-module.

3.1.

The generalized PBW filtration. Consider V (λ) the irreducible highest weight g-module of highest weight λ as defined in subsection 2.1.

Generalizing the PBW filtration on a highest weight irreducible g-module introduced in [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF], when p = b is a Borel subalgebra of g (that is, when π = ∅), we define what we call the generalized Poincaré-Birkhoff-Witt filtration on V (λ) as follows.

Choose v λ a nonzero weight vector in V (λ) of highest weight λ and v w 0 λ a nonzero weight vector in V (λ) of lowest weight w 0 λ. Since n -= n - π ⊕ m -, the multiplication in the enveloping algebra gives, by the Poincaré-Birkhoff-Witt theorem [4, 2.1.11], an isomorphism of vector spaces

U (n - π ) ⊗ U (m -) U (n -). Then we have that V (λ) = U (n - π ).(U (m -).v λ ) = U (r).(U (m -).v λ ) = U (m -).(U (n - π ).v λ ) since m -is an ideal of p -. In other words, every element in V (λ) is a finite sum of vectors of the form u u.v λ or of the form uu .v λ where u ∈ U (r) and u ∈ U (m -). Set V (λ) = U (n - π ).v λ . The latter is an irreducible U (r)- module.
Recall (U k (m -)) k∈N the canonical filtration (also called standard degree filtration in [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF]) on the enveloping algebra

U (m -) of m -. More precisely U k (m -) is the vector subspace of U (m -) generated by the products y 1 • • • y p where y i ∈ m -for all i, 1 ≤ i ≤ p, and p ≤ k. For all k ∈ N, let F k (V (λ)) be the vector subspace of V (λ) generated by {v ∈ V (λ) | ∃p ∈ N, p ≤ k, ∃y 1 , . . . , y p ∈ m -, ∃u ∈ U (r); v = u y 1 • • • y p .v λ }.
where u y 1 • • • y p denotes an element in U (p -). Observe that we also have that F k (V (λ)) is the vector subspace of V (λ) generated by

{v ∈ V (λ) | ∃p ∈ N, p ≤ k, ∃y 1 , . . . , y p ∈ m -, ∃u ∈ U (r); v = y 1 • • • y p u .v λ } since [r, m -] ⊂ m -.
In other words, one has that

F 0 (V (λ)) = U (r).v λ = U (n - π ).v λ = V (λ) and for all k ∈ N, F k (V (λ)) = U k (m -).V (λ) is a left U (r)-module. We have the lemma. Lemma. Set F := (F k (V (λ))) k∈N .
Then F is an increasing and exhaustive filtration on V (λ).

Proof. F is increasing since the canonical filtration (U k (m -)) k∈N on U (m -) is increasing. Moreover k∈N F k (V (λ)) = V (λ) since V (λ) = U (m -).V (λ)
and since the canonical filtration on U (m -) is exhaustive.

We call F the generalized Poincaré-Birkhoff-Witt filtration on V (λ) since when π = ∅, it coincides with the PBW filtration on V (λ) introduced in [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF]. The associated graded space is denoted by

V (λ) := gr F (V (λ)) = k∈N F k (V (λ)) F k-1 (V (λ))
where F -1 (V (λ)) := {0} and we call V (λ) the degenerate highest weight module associated with λ. For all v ∈ F k (V (λ)), we denote by

gr k (v) its canonical image in gr k (V (λ)) := F k (V (λ)) F k-1 (V (λ)) . Denote by V (λ) the canoni- cal image of V (λ) in V (λ) that is, V (λ) = gr 0 (V (λ)) = gr 0 (V (λ)) ⊂ V (λ).
3.2. Structure of module on the degenerate highest weight module. Recall that, for all k ∈ N, F k (V (λ)) is a finite-dimensional left U (r)module and that the Lie algebra r is reductive and the elements of its centre act reductively in F k (V (λ)). Then by [4, 1.6.4] one has that

F k (V (λ)) is a semisimple U (r)-module. Moreover F k-1 (V (λ)) is a submodule of F k (V (λ)). Then there exists a left U (r)-submodule F k (V (λ)) of F k (V (λ)) such that F k (V (λ)) = F k (V (λ)) ⊕ F k-1 (V (λ)
) and we have that

F k (V (λ)) = k i=0 F i (V (λ))
where

F 0 (V (λ)) = F 0 (V (λ)). One deduces that V (λ) = k∈N F k (V (λ)).
It allows us to define, for all k ∈ N, an isomorphism of vector spaces

β k λ : gr k (V (λ)) -→ F k (V (λ)) such that, for all v ∈ F k (V (λ)), v = k i=0 v i with v i ∈ F i (V (λ)), for all 0 ≤ i ≤ k, β k λ (gr k (v)) = v k . Then the direct sum β λ = k∈N β k
λ is an isomorphism between the vector spaces V (λ) and V (λ).

Set, for all

y ∈ m -, z ∈ r and v ∈ F k (V (λ)), (4) 
y.gr k (v) = gr k+1 (y.v) and ( 5)

z.gr k (v) = gr k (z.v).
We will see below that equations ( 4) and ( 5) extend to a left U ( p-)-module structure on V (λ) and that β λ is an isomorphism of U (r)-modules.

Set ñ-= n - π (m -) a : it is a Lie subalgebra of p-. Set also ṽλ = gr 0 (v λ ). Denote by θ : S(p -) -→ U (p -) the symmetrisation, as defined in [4, 2.4.6]. More precisely for k ∈ N * , and for all y 1 , . . . ,

y k ∈ p -, θ(y 1 • • • y k ) = 1 k! σ∈S k y σ(1) • • • y σ(k)
where S k is the set of permutations of k elements, the product in the left hand side lying in S k (p -) and the product in the right hand side lying in U k (p -). Endow the symmetric algebra S(p -), resp. the enveloping algebra U (p -), with the adjoint action of U (r), denoted by ad, which extends uniquely by derivation the adjoint action of r on p -given by Lie bracket. By [4, 2.4.10] the map θ is an isomorphism of ad U (r)-modules. For all k ∈ N, set

U k (m -) = θ(S k (m -)). Then U k (m -) is a left ad U (r)-submodule of U k (m -)
and actually one has that

U k (m -) = U k (m -) ⊕ U k-1 (m -) by [4, 2.4.4, 2.4.5].
Denote by pr U k (m -) the projection onto U k (m -) with respect to the above decomposition. We have the following.

Lemma. Let λ ∈ P + (π) and k ∈ N.

(i) Equations ( 4) and ( 5) extend to a left U ( p-)-action on the vector space V (λ) and for this structure we have the following equalities :

(6) V (λ) = U (r).ṽ λ (7) V (λ) = U ( p-).ṽ λ = U (ñ -).ṽ λ = S(m -). V (λ) = U ( p-). V (λ). (ii) For all s ∈ S k (m -), u ∈ U (r) and u ∈ U k (m -) one has : (8) su .ṽ λ = gr k (θ(s)u .v λ ) (9) gr k (uu .v λ ) = gr k (pr U k (m -) (u)u .v λ ) (10) gr k (V (λ)) = S k (m -). V (λ).
(iii) The map β λ is an isomorphism of U (r)-modules between V (λ) and V (λ). Then V (λ) is a left irreducible U (r)-module and V (λ) has the same set of weights as V (λ), especially λ is the highest weight of V (λ) and w 0 λ is its lowest weight. (iv) One may choose F k (V (λ)) to be included in U k (m -).V (λ).

Proof. By [4, 2.1.1] and (3) of subsection 2.2, one may observe that the algebra U ( p-) is the quotient of the tensor algebra T ( p-) = T (p -) of the vector space p-= p -by the two-sided ideal generated by the set

{z⊗z -z ⊗z-[z, z ], z⊗y-y⊗z-[z, y], y⊗y -y ⊗y; z, z ∈ r, y, y ∈ m -}
and that, by the Poincaré-Birkhoff-Witt theorem [4, 2.1.11], the multiplication is an isomorphism between the k-vector spaces U (r) ⊗ S(m -) and U ( p-).

Fix k ∈ N. For all x ∈ m -⊕ r = p -, denote by x.F k (V (λ)) the vector subspace of V (λ) formed by all the vectors x.v, with v ∈ F k (V (λ)) (where x.v denotes the action of x on v by the left U (g)-module structure on V (λ)).

Then for all y ∈ m -, one has that y.F k (V (λ)) ⊂ F k+1 (V (λ)), and for all z ∈ r, one has that z.F k (V (λ)) ⊂ F k (V (λ)). It follows that equation (4) extends to a left action of S(m -) on V (λ) since moreover, for y, y ∈ m - and v ∈ F k (V (λ)), we have:

y.(y .(gr k (v)) -y .(y.gr k (v)) = gr k+2 ((yy -y y).v) = gr k+2 ([y, y ].v) = 0.
Similarly equation ( 5) extends to a left action of U (r) on V (λ) induced by the left action of U (r) on V (λ). Finally both equations ( 4) and ( 5) extend to a left action of U ( p-) on V (λ) (by say, [4, 2.2.1, 2.2.2]). Equation ( 6) follows since V (λ) = gr 0 (V (λ)) = gr 0 (U (r).v λ ).

Let ṽ ∈ V (λ). There exists k ∈ N and

v i ∈ F i (V (λ)), for 0 ≤ i ≤ k, such that ṽ = k i=0 gr i (v i ) with, for all i, v i = n i j=1 u ij u ij .v λ where u ij ∈ U (r) and u ij ∈ U i (m -).
Then by equation ( 5), one has

gr i (v i ) = n i j=1 u ij .gr i (u ij .v λ )
and by equation ( 4),

gr i (u ij .v λ ) ∈ S i (m -).gr 0 (v λ ).
Actually we may take the u ij in U (n - π ), since

V (λ) = U (n -).v λ = U (n - π ).(U (m -).v λ ).
We then have V (λ) = U ( p-).ṽ λ = U (ñ -).ṽ λ . Since V (λ) = U (r).ṽ λ and since the multiplication gives the isomorphism of vector spaces U ( p-) S(m -)⊗U (r), we also have that

V (λ) = S(m -). V (λ) = U ( p-). V (λ). Hence equation (7). Let k ∈ N * and set s = y 1 • • • y k ∈ S k (m -) with y i ∈ m -for all 1 ≤ i ≤ k. Then θ(s) = y 1 • • • y k + u ∈ U k (m -) with u ∈ U k-1 (m -) and y 1 • • • y k ∈ U k (m -).
Then equations ( 4) and ( 5) and the fact that U k-1 (m -)U (r).v λ = F k-1 (V (λ)) give equation [START_REF] Fauquant-Millet | Sur une algèbre parabolique P de Ǔq(sln+1) et ses semi-invariants par l'action adjointe de P[END_REF]. Equation ( 9) is obvious by the decomposition

U k (m -) = U k (m -) ⊕ U k-1 (m -).
Both equations imply equation [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF].

By equation ( 5), we have that

gr k (V (λ)) is an U (r)-module. Moreover if ṽ ∈ gr k (V (λ)) is such that ṽ = gr k (v k ) with v k ∈ F k (V (λ)), we have that β k λ (ṽ) = v k . Let z ∈ r.
Then by equation ( 5), one has that z.ṽ = gr k (z.v k ) which implies that

β k λ (z.ṽ) = z.v k = z.β k λ (ṽ), since z.v k ∈ F k (V (λ)) because F k (V (λ)) is an U (r)-module. This shows (iii). Finally to prove (iv) it suffices to observe that U k (m -).V (λ) is a finite dimensional U (r)-module. Set W k = U k (m -).V (λ) ∩ F k-1 (V (λ)). Then W k is a left U (r)-submodule of U k (m -).V (λ) and then there exists a left U (r)-submodule W k such that U k (m -).V (λ) = W k ⊕ W k . Now W k ∩ F k-1 (V (λ)) = {0} and then one may choose the U (r)-module F k (V (λ)) to contain W k . But F k (V (λ)) = F k-1 (V (λ)) ⊕ F k (V (λ)) = U k (m -).V (λ) ⊂ U k (m -).V (λ) + U k-1 (m -).V (λ) since U k (m -) = U k (m -) ⊕ U k-1 (m -). It follows that W k = F k (V (λ))
, which completes the proof.

3.3.

Another structure of module on the degenerate highest weight module. Recall the isomorphism β λ of U (r)-modules from V (λ) into V (λ) (lemma 3.2 (iii)). For all ṽ ∈ V (λ) and all x ∈ p, one sets [START_REF] Fauquant-Millet | La somme des faux degrés -un mystère en théorie des invariants[END_REF] ρ λ (x)(ṽ) = β -1 λ (x.β λ (ṽ)) where x.β λ (ṽ) stands for the left action of x ∈ g on β λ (ṽ) ∈ V (λ).

It is easily checked that ρ λ is a morphism of Lie algebras from p to gl( V (λ)), hence that it extends to a left action of U (p) on V (λ) (again by [4, 2.2.1, 2.2.2]). Moreover for all x ∈ r and ṽ ∈ V (λ), since β λ is a morphism of U (r)-modules, one has that ρ λ (x)(ṽ) = x.ṽ where the right hand side denotes the left action of r on V (λ) defined in subsection 3.2.

Remark. By [10, 2.7], one has that

V (λ) = {v ∈ V (λ) | m.v = 0}. Hence (12) V (λ) = {ṽ ∈ V (λ) | ρ λ (m)(ṽ) = 0} since V (λ) = β -1 λ (V (λ)).
4. Action of a smash product.

In this section, we will define a smash product A = T (m)#U (r), containing the enveloping algebra U (r) and the tensor algebra T (m), where the action of U (r) on T (m) derives from the adjoint action of r in T (m) which extends uniquely by derivation the adjoint action given by Lie bracket. This algebra A is an associative algebra, which is actually a Hopf algebra. We will define what we call a generalized adjoint action (denoted by ad * * ) of the algebra A on the enveloping algebra U ( p-) and another left action of A on U ( p-), where the latter is simply left multiplication when restricted to U (r). The action ad * * derives from the coadjoint action, denoted by ad * , of p on p - (note that, as vector spaces, one has p * p -). We will see in subsection 7.3 why we need to take this coadjoint action ad * . 4.1. A smash product. Recall that m denotes the nilpotent radical of p and that T (m) denotes the tensor algebra of m. Since [r, m] ⊂ m, the algebra T (m) is an U (r)-algebra (in the sense of [17, 1.1.6]) with the adjoint action of r on T (m) (denoted by ad) extending by derivation the adjoint action of r on m given by the Lie bracket in g. Then we may consider the Hopf smash product A = T (m)#U (r) in the sense of [17, 1.1.8]. More precisely A is equal as a vector space to the tensor product T (m) ⊗ U (r), with multiplication given by

(s ⊗ u)(s ⊗ u ) = s ad u 1 (s ) ⊗ u 2 u where ∆(u) = u 1 ⊗ u 2 (Sweedler notation), ∆ being the coproduct in U (r), s, s ∈ T (m) and u, u ∈ U (r).
For example for all z ∈ r, s, s ∈ T (m) and u ∈ U (r), one has that (s ⊗ z)(s ⊗ u) = s ad z(s) ⊗ u + s s ⊗ zu. By setting s ⊗ 1 = s and 1 ⊗ u = u we may view T (m) and U (r) as subalgebras of A. Then one has in A that s ⊗ u = (s ⊗ 1)(1 ⊗ u) = su and that [START_REF] Feigin | G M A -degeneration of flag varieties[END_REF] ∀z ∈ r, ∀s ∈ T (m), ad z(s) = zs -sz and in particular

(14) ∀z ∈ r, ∀x ∈ m, [z, x] = zx -xz.
Observe that A is an associative unitary algebra (see [17, 1.1.8]) which is also a bialgebra thanks to the coproducts in T (m) and in U (r). More precisely denoting also by ∆ the coproduct in T (m), and by ∆ A the coproduct in A, we set for s ∈ T (m) and

u ∈ U (r), ∆ A (s ⊗ u) = (s 1 ⊗ u 1 ) ⊗ (s 2 ⊗ u 2 ) if ∆(s) = s 1 ⊗ s 2 and ∆(u) = u 1 ⊗ u 2 with Sweedler notation. We then have that ∆ A ((s ⊗ 1)(1 ⊗ u)) = ∆ A (s ⊗ 1)∆ A (1 ⊗ u) and more generally for s, s ∈ T (m) and u, u ∈ U (r), ∆ A ((s ⊗ u)(s ⊗ u )) = ∆ A (s ⊗ u)∆ A (s ⊗ u )
by the cocommutativity of ∆. Note that the coproduct ∆ A extends the coproduct ∆ in T (m) and in U (r). Actually the bialgebra A is a Hopf algebra with the coidentity ε given by ε(x) = 0 for all x ∈ p and the antipode given by a ∈ A → a ∈ A, where

(15) a = (-1) r x r • • • x 1 ∈ A if a = x 1 • • • x r ∈ A (product in A) with x 1 , .
. . , x r ∈ p extended by linearity to every element in A. One checks easily that the coidentity and the antipode (which coincide respectively with the coidentity and the antipode on T (m) and on U (r), see for instance [17, 1.2.5]) are compatible with equation ( 14) which defines the smash product A.

Roughly speaking, the Hopf algebra A coincides with the enveloping algebra U (p) or even U ( p), except that no relations are required for the associative product of elements in m.

Coadjoint action.

Recall the opposite parabolic subalgebra p -of p. Thanks to the Killing form on g, we have the isomorphism of vector spaces p * p -. As it was already mentioned in [START_REF] Panyushev | On the coadjoint representation of Z2-contractions of reductive Lie algebras[END_REF][START_REF] Bourbaki | Eléments de mathématique, Groupes et algèbres de Lie[END_REF], p -is a p-module, by the socalled coadjoint representation (denoted by ad * ) of p = r (m) a in p - defined as follows. [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF] ∀x ∈ r, ∀ y ∈ p -, ad * x(y) = [x, y].

(

) ∀x ∈ m, ∀ y ∈ p -, ad * x(y) = pr r ([x, y]) 17 
where pr r is the projection of g = r ⊕ m ⊕ m -onto r. In particular [START_REF] Panyushev | On the coadjoint representation of Z2-contractions of reductive Lie algebras[END_REF] ∀x ∈ m, ∀ y ∈ r, ad * x(y) = 0.

Lemma. The map ad * : p -→ gl(p -) is a morphism between the Lie algebras p and gl(p -). In other words it gives a representation of p in p -, which extends uniquely to a representation of U ( p) in p -. This representation also extends uniquely by derivation to a representation of U ( p) in the symmetric algebra S(p -), which we still denote by ad * .

Proof. We give a proof of the lemma for the reader's convenience. It suffices to prove that, for all x, x ∈ p, and for all y ∈ p -, we have

(19) (ad * x • ad * x )(y) -(ad * x • ad * x)(y) -ad * [x, x ] p(y) = 0.
Assume that x, x ∈ m. Then [x, x ] p = 0 by equation ( 2) in subsection 2.2. Moreover for all y ∈ p -, (ad * x • ad * x )(y) = ad * x(pr r ([x , y])) = 0 by ( 17) and [START_REF] Panyushev | On the coadjoint representation of Z2-contractions of reductive Lie algebras[END_REF]. Then equality [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] follows in this case.

Assume that x, x ∈ r. Then equality [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] follows from equations ( 2) and [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF].

It remains to prove equality [START_REF] Panyushev | On symmetric invariants of centralisers in reductive Lie algebras[END_REF] for x ∈ m and x ∈ r. By equations ( 2), ( 16) and ( 17) one has that, for all y ∈ p -,

(ad * x • ad * x )(y) -(ad * x • ad * x)(y) -ad * [x, x ] p(y) = ad * x([x , y]) -ad * x (pr r ([x, y])) -pr r ([[x, x ], y]) = pr r ([x, [x , y]]) -[x , pr r ([x, y])] -pr r ([[x, x ], y]).
Denote by pr m , resp. pr m -, the projection of

g = r ⊕ m ⊕ m -onto m, resp. onto m -. Then (20) [x , pr r ([x, y])] = x , [x, y] -pr m -([x, y]) -pr m ([x, y])
and we have

(21) [x , pr m -([x, y])] ∈ m -, [x , pr m ([x, y])] ∈ m, [x , pr r ([x, y])] ∈ r.
Then by [START_REF] Panyushev | A remarkable contraction of semisimple Lie algebras[END_REF] and [START_REF] Panyushev | Parabolic contractions of semisimple Lie algebras and their invariants[END_REF] we have that

(22) [x , pr r ([x, y])] = pr r ([x , [x, y]]).
It follows by ( 22) that We call the map θ a partial symmetrisation. Observe that θ does not coincide with the symmetrisation θ of S( p-) = S(p -) in U ( p-). For instance, for y ∈ m -and z ∈ r, one has that θ(yz) = yz, while θ(yz) = 1 2

(ad * x • ad * x )(y) -(ad * x • ad * x)(y) -ad * [x, x ] p(y) = pr r [x, [x , y]] -[x , [x, y]] -[[x,
(yz + zy) = yz + 1 2 [z, y].
Lemma. The map θ is an isomorphism of ad U (r)-modules, when S(p -) and U ( p-) are endowed with the adjoint action.

Proof. Since Id S(m -) and θ |S(r) : S(r) -→ U (r) are isomorphisms, it follows that θ = Id S(m -) ⊗ θ |S(r) is an isomorphism too. Let z ∈ r, s ∈ S(m -) and s ∈ S(r). Observe that one has that ad z(s) ∈ S(m -), and this element may be viewed equally as an element in S(p -) or in U ( p-). Moreover ad z(s ) ∈ S(r) and ad z(θ(s )) ∈ U (r). Since ad z is a derivation and since θ is a morphism of ad U (r)-modules we have, by equation ( 23 and for all k ∈ N,

(25) U k ( p-) 0≤j≤k S j (m -) ⊗ U k-j (r)
as vector spaces. Recall also the coadjoint representation of p in the symmetric algebra S(p -), which we have denoted by ad * (subsection 4.2). Fix k and j in N and set S -1 (m -) = {0}. One has by equation ( 17) that

(26) ∀x ∈ m, ∀s ∈ S k (m -), ad * x(s) ∈ S k-1 (m -)r ⊂ S k (p -).
Then one has that

(27) ∀x ∈ m, ∀s ∈ S k (m -), ∀u ∈ U j (r), θ(ad * x(s))u ∈ S k-1 (m -)U j+1 (r) ⊂ U k+j ( p-)
and that

(28) ∀z ∈ r, ∀s ∈ S k (m -), ∀u ∈ U (r), ad z(su ) ∈ S k (m -)U (r) ⊂ U ( p-).
We set Lemma. Equations ( 29) and ( 30) extend to a left action of A on the enveloping algebra U ( p-). We call this action the generalized adjoint action of A on U ( p-).

(29) ∀x ∈ m, ∀s ∈ S k (m -), ∀u ∈ U (r), ad * * x(su ) = θ(ad * x(s))u ∈ U ( p-)
Proof. Since equation ( 30) is just the adjoint action, it extends to a left action of U (r) on U ( p-) by [4, 2.2.1, 2.4.9]. Now consider x ∈ m. One can extend equation ( 29) by linearity so that ad * * x ∈ End(U ( p-)). Let us explain why this is well defined.

Note first that, for y ∈ m -and z ∈ r, one sets

ad * * x(zy) = ad * * x(yz) + ad * * x([z, y]).
More generally by equation ( 24) every element in U ( p-) may be written in the form i∈I s i u i with I a finite set and for all i ∈ I, s i ∈ S(m -) and u i ∈ U (r), with the s i , i ∈ I, linearly independent. Then if such an element is zero, we have that u i = 0 for all i ∈ I, and then ad * * x( i∈I s i u i ) = i∈I θ(ad * x(s i ))u i = 0. Moreover for s, s ∈ S(m -), one has ad * * x(ss ) = θ(ad * x(ss )) = θ(ad * x(s s)) = ad * * x(s s) since ad * x is an endomorphism of S(p -). Then ad * * x is well defined on U ( p-).

Finally ad * * is a linear map from m to End(U ( p-)), which extends naturally to a k-algebras morphism from T (m) to End(U ( p-)). We then obtain left U (r) and T (m)-module structures on U ( p-).

It remains to check that both structures imply a left A-module structure on U ( p-), that is, are compatible with equation [START_REF] Feigin | G M A -degeneration of flag varieties[END_REF], which defines the smash product A. For this it suffices to prove that 

ad * * (zx -xz)(su ) = θ((ad * z • ad * x)(s))u -θ((ad * x • ad * z)(s))u
since, for all t ∈ S(p -), one has that ad z(t) = ad * z(t) by equation [START_REF] Humphreys | Introduction to Lie Algebras and Representation Theory[END_REF].

Since

ad * z • ad * x -ad * x • ad * z = ad * [z, x]
in End(S(p -)) by the proof of Lemma 4.2, the required equation (33) follows.

Remark. We will see in subsection 4.5 why we call this left action ad * * of A on U ( p-) a generalized adjoint action. One also sets:

(36) ∀u ∈ U (r), ∀u ∈ U ( p-), L(u )(u) = u u (product in U ( p-)).
Then L |U (r) is a left action of U (r) on U ( p-) called the regular left action (see [4, 2.2.21]). We extend this left action by setting (37) ∀x ∈ m, L(x) = ad * * x (see equation ( 29)), which extends by the proof of lemma 4.4 to a left action of T (m) on U ( p-).

Lemma. The map L extends to a left action of A on U ( p-) (still denoted by L). Note that this is not in general a left action of U (p) nor of U ( p) on U ( p-).

Proof. We have to check that the map L preserves equation ( 13) which defines the smash product A and for this it suffices to check that L preserves equation [START_REF] Feigin | Degenerate flag varieties and the median Genocchi numbers[END_REF]. In other words we have to check that Recall (see [17, 1.3.1] for instance) that adjoint action in a Hopf algebra A may be expanded by using the right action R and the left action L of A as in the following proposition. Hence we may view ad * * as a generalized adjoint action (here the Hopf algebra A does not act on itself but on U ( p-)).

(38) ∀z ∈ r, ∀x ∈ m, L([z, x]) = L(z) • L(x) -L(x) • L(z). Let x ∈ m, z ∈ r, s ∈ S k (m -) and u ∈ U (r). One has that (L(z) • L(x) -L(x) • L(z) -L([z, x]))(su ) = z ad * * x(su ) -ad * * x(zsu ) -ad * * [z, x](su ) = z ad * * x(su ) -(ad * * x • ad * * z)(su ) -ad * * x(su z) -ad * * [z, x](su ) since ad * * z(su ) = ad z(su ) = zsu -su z in U ( p-). Recall that ad * * x(su z) = θ(ad * x(s))u z = ad * * x(su )z. Then (L(z) • L(x) -L(x) • L(z) -L([z, x]))(su ) = z ad * * x(su ) -(ad * * x • ad * * z)(su ) -ad * * x(su )z -ad * * [z, x] (su ) 
Proposition. One has the following.

(39) ∀a ∈ A, ad * * a = L(a 1 ) • R(a 2 )
where ∆ A (a) = a 1 ⊗ a 2 (with Sweedler notation).

Proof. Observe that, as vector spaces, one has

A U (r) ⊕ m ⊗ T (m) ⊗ U (r).
Let a ∈ U (r). Then in this case, ad * * a = ad a and for all u ∈ U ( p-) one has (L(a 1 ) • R(a 2 ))(u) = a 1 ua 2 (product in U ( p-)). Hence the required equation (39) in this case, by [17, 1.3.1]. Assume now that a = uu with u ∈ m ⊗ T (m) and u ∈ U (r). Set ∆ A (u) = u 1 ⊗u 2 and ∆ A (u ) = u 1 ⊗u 2 . We have that u 1 , u 2 ∈ U (r) and u 1 , u 2 ∈ T (m) and ∆ A (a) = u 1 u 1 ⊗u 2 u 2 . Moreover one has that ∆ A (u) = u⊗1+ i∈I u 1i ⊗ u 2i with for all i ∈ I, u 2i ∈ m⊗T (m). But if u 2i ∈ m⊗T (m) then R(u 2i ) = 0. It follows that, for all v ∈ U ( p-), one has

(L(a 1 ) • R(a 2 ))(v) = (L(uu 1 ) • R(u 2 ))(v) = (L(u) • L(u 1 ) • R(u 2 ))(v) = (L(u) • ad * * u )(v) = (ad * * u • ad * * u )(v) = ad * * a(v)
which completes the proof.

Remark. Actually one also has that Denote by V (λ) * its dual vector space. Let ṽ ∈ V (λ), ξ ∈ V (λ) * , u ∈ U ( p-). Denoting by u.ṽ the action of u on ṽ for this left U ( p-)-module structure on V (λ), we denote by ξ.u the right action it implies on V (λ) * , namely ( ξ.u)(ṽ) = ξ(u.ṽ). Recall ṽλ = gr 0 (v λ ) and the isomorphism β λ : V (λ) -→ V (λ) which is an isomorphism of left U (r)-modules. In particular this isomorphism preserves the weights. Its dual map t β λ : V (λ) * -→ V (λ) * is also an isomorphism of right U (r)-modules. By definition of β λ , one has that β λ (ṽ λ ) = v λ and then

(40) ∀a ∈ A, ∀b ∈ A, R(b) • L(a) = L(a) • R(b). Indeed if a, b ∈ U (r) or if b ∈ m⊗T (m)⊗U (
β λ ( V (λ)) = β(U (r).ṽ λ ) = U (r).v λ = V (λ). Recall ñ-= n - π (m -) a ⊂ p-. Set ξλ = t β λ (ξ λ )
where ξ λ is the unique vector in V (λ) * of (right) weight λ such that ξ λ (v λ ) = 1. Then ξλ is the unique vector in V (λ) * of weight λ such that ξλ (ṽ λ ) = 1 and by weight considerations one has that, for all y ∈ ñ-, ξλ .y = 0 since ξ λ is a vector of lowest weight in V (λ) * . Recall that v w 0 λ is a chosen nonzero vector in V (λ) of weight w 0 λ and that it is a lowest weight vector in V (λ). Then set ξ w 0 λ ∈ V (λ) * the vector of (right) weight w 0 λ such that ξ w 0 λ (v w 0 λ ) = 1 : ξ w 0 λ is a highest weight vector in V (λ) * . Set also ṽw 0 λ = β -1 λ (v w 0 λ ) ∈ V (λ). By weight considerations one has that y.ṽ w 0 λ = 0 for all y ∈ ñ-. Set also ξw 0 λ = t β λ (ξ w 0 λ ) ∈ V (λ) * . Then ξw 0 λ (ṽ w 0 λ ) = 1. Since all vectors in V (λ) of weight w 0 λ are proportional, one may observe that there exists

k 0 ∈ N such that (41) v w 0 λ ∈ F k 0 (V (λ)).
Then one has that (42)

ṽw 0 λ = gr k 0 (v w 0 λ ). Set V (λ) = U (r).v w 0 λ = U (n π ).v w 0 λ : it is an irreducible U (r)-module of lowest weight w 0 λ. Setting V (λ) = β -1 λ (V (λ)) ⊂ V (λ), we have that V (λ) = U (r).ṽ w 0 λ . Then its dual space V (λ) * is such that V (λ) * = t β λ (V (λ) * ) = ξw 0 λ .U (n - π ) = ξw 0 λ .U (r) ⊂ V (λ) * . Since U ( p-) is a representation in V (λ) by (i) of Lemma 3.2,
we may consider by [4, 2.7.8] the space C( V (λ)) of matrix coefficients of V (λ) which is the k-vector subspace of U ( p-) * generated by the linear forms c λ ξ, v or simply c ξ, v defined by

c ξ, v : u ∈ U ( p-) → ξ(u.v) ∈ k for all ξ ∈ V (λ) * and v ∈ V (λ)
. By equation ( 7) of Lemma 3.2, we may also define the k-vector subspace of C( V (λ)) generated by the matrix coefficients c ξ, v with ξ ∈ V (λ) * and v ∈ V (λ) ⊂ V (λ), which we will denote by C p (λ).

Finally denote by C r (λ) the subspace of C p (λ) generated by the matrix coefficients c ξ, v where ξ ∈ V (λ) * and v ∈ V (λ).

Tensor decomposition.

Lemma. Let λ, µ ∈ P + (π). Then V (λ) ⊗ V (µ), resp. V (λ) * ⊗ V (µ) * , is a direct sum of some copies of V (ν), resp. V (ν) * , for ν ∈ P + (π). Each of them contains the unique copy of V (λ + µ), resp. of V (λ + µ) * .

Proof. The proof is similar as the proof of [9, lemma 2.2]. We give it for the reader's convenience. Let ν be an h-weight of V (λ). Then ν ∈ λ -Nπ . Since λ ∈ P + (π) we have that, for all α ∈ π \ π , αˇ, ν ∈ N. Moreover every vector in V (λ) is annihilated by ρ λ (m) by remark 12. Since r is a semisimple Lie algebra, the finite dimensional U (r )-module (for diagonal action) V (λ) ⊗ V (µ) decomposes into a direct sum of irreducible U (r )modules, each of them being generated by a highest weight nonzero vector whose h-weight actually belongs to P + (π) : this highest weight nonzero vector ṽ is indeed such that (ρ λ ⊗ ρ µ )(x)(ṽ) = 0 for all x ∈ n, where ρ λ ⊗ ρ µ is the tensor product of the representations ρ λ and ρ µ as defined for instance in [4, 1.2.14] and its h-weight belongs to λ+µ-Nπ . Thus the tensor product V (λ) ⊗ V (µ) is a direct sum of some copies of V (ν), for ν ∈ P + (π) such that ν ∈ λ+µ-Nπ . Moreover U (r).( v λ ⊗ v µ ) is the unique copy of V (λ+µ) which occurs in this tensor product.

Observe that V (λ) * may be viewed as a left U (r)-module, by setting for all u ∈ U (r), for all ξ ∈ V (λ) * , u.ξ = ξ.u . Then V (λ) * V (-w 0 λ) as left U (r)-modules. Then one obtains similarly the second part of the lemma, V (λ) * ⊗ V (µ) * being a direct sum of some copies of V (ν) * , with ν ∈ P + (π) such that w 0 ν ∈ w 0 λ + w 0 µ + Nπ . Finally ( ξ w 0 λ ⊗ ξ w 0 µ ).U (r) is the unique copy of V (λ + µ) * which occurs in the tensor product V (λ) * ⊗ V (µ) * .

5.3. Direct sums. Recall that the dual vector space U ( p-) * of U ( p-) is an associative algebra with product given by the dual map of the coproduct in U ( p-) (see for instance [4, 2.7.4]).

Lemma. The sum

C p = λ∈P + (π) C p (λ) is a direct sum. The same holds for C r = λ∈P + (π) C r (λ).
Moreover the latter is a subalgebra of U ( p-) * .

Proof. Let λ ∈ P + (π) and for all ξ ∈ V (λ) * , denote by ). One sees easily that h ξ is a morphism of U (r)-modules, when U ( p-) * is endowed with the coregular right representation of U (r) (see also [4, 2.7.11]). When ξ = 0, one checks that h ξ ( V (λ)) = {0} and then h ξ ( V (λ)) is an irreducible U (r)-module for the coregular right representation. Then

h ξ : V (λ) -→ U ( p-) * the map such that h ξ (v) = c ξ, v for all v ∈ V (λ).
C p (λ) = ξ∈ V (λ) * \{0} h ξ ( V (λ)
) is a sum of irreducible U (r)-modules all isomorphic to V (λ). Since, for λ = µ ∈ P + (π), V (λ) and V (µ) are not isomorphic as U (r)-modules, it follows that λ∈P + (π) C p (λ) is a direct sum.

Obviously C r = λ∈P + (π) C r (λ) is also a direct sum, since C r (λ) ⊂ C p (λ)
for all λ ∈ P + (π). Finally C r is an algebra by [4, 2.7.10], as a consequence of lemma 5.2. 5.4. Isomorphisms. Let λ ∈ P + (π) and set Φ λ p : V (λ) * ⊗ V (λ) -→ C p (λ) defined by ξ ⊗ v → c ξ, v and extended by linearity. Similarly one sets

Φ λ r : V (λ) * ⊗ V (λ) -→ C r (λ) defined by ξ ⊗ v → c ξ, v extended by linearity.
Lemma. The maps Φ λ p and Φ λ r are isomorphisms of vector spaces. Proof. Firstly these maps are obviously well defined and onto. It remains to verify the injectivity. Assume that there exists I a finite set, and for all i ∈ I, ξ i ∈ V (λ) * and v i ∈ V (λ) = U (r).ṽ λ such that i∈I c ξ i , v i = 0. We can also assume that the v i , i ∈ I, are linearly independent. We want to show that for all i ∈ I, ξ i = 0. Assume that there exists i 0 ∈ I such that ξ i 0 = 0 and complete ξ i 0 in a basis of V (λ) * . By taking the dual basis, there exists v i 0 ∈ V (λ) such that ξ i 0 (v i 0 ) = 1. By (i) of lemma 3.2 there exists u 0 ∈ U ( p-) such that v i 0 = u 0 .ṽ λ . Now recall that V (λ) is a left irreducible U (r)-module. Then by Jacobson density theorem (see [START_REF] Renault | Algèbre non commutative, Collection "Varia Mathematica[END_REF]Chap. 3,[START_REF] Bourbaki | Eléments de mathématique, Algèbre commutative[END_REF][START_REF] Bourbaki | Eléments de mathématique, Groupes et algèbres de Lie[END_REF]), there exists a ∈ U (r) such that for all i ∈ I \ {i 0 }, a.v i = 0 and a.v i 0 = ṽλ . Since u 0 a ∈ U ( p-) we obtain that i∈I c ξ i , v i (u 0 a) = 0 = ξ i 0 (u 0 .(a.v i 0 )) = ξ i 0 (u 0 .ṽ λ ) = ξ i 0 (v i 0 ) = 1 which is a contradiction. Hence the lemma for the map Φ λ p and of course also for Φ λ r . 5.5. The dual representation of the generalized adjoint action. Recall the left representation of A in U ( p-) defined in subsection 4.4 we have denoted by ad * * . Then the dual representation of A in U ( p-) * is defined as follows.

(43

) ∀a ∈ A, ∀f ∈ U ( p-) * , a.f = f • ad * * a
(where recall a was defined in equation ( 15)). This defines a left action of A on U ( p-) * (see for instance [4, 2.2.19]) and by proposition 4.5, we deduce that one has

(44) ∀a ∈ A, ∀f ∈ U ( p-) * , a.f = f • L(a 2 ) • R(a 1 ) = ( t R(a 1 ) • t L(a 2 ))(f ) where ∆ A (a) = a 1 ⊗ a 2 .
In particular one has that

(45) ∀x ∈ p, ∀f ∈ U ( p-) * , x.f = t R(x)(f ) -t L(x)(f ).
Then one deduces the following lemma.

Lemma. Let λ ∈ P + (π). One has that

(46) ∀x ∈ r, ∀ξ ∈ V (λ) * , ∀v ∈ V (λ), x.c ξ, v = c ξ, x.v -c ξ.x, v . Proof. Let x ∈ r, ξ ∈ V (λ) * and v ∈ V (λ). One checks easily that t R(x)(c ξ, v ) = c ξ, x.v , resp. that t L(x)(c ξ, v ) = c ξ.x, v
, by definition of R, resp. of L, given in equation (34), resp. in equation (36). Then the lemma follows from equation (45).

Let λ ∈ P + (π). Endow U ( p-) * with the dual representation of A given by equation (43) and in particular with the dual representation of U (r) ⊂ A, which coincides in the latter case with the coadjoint representation of U (r). By equation (46) every C p (λ), resp. C r (λ), is a left U (r)-module for the coadjoint representation.

On the other hand, endow V (λ) with the left action of U (r) described in subsection 3.2 and V (λ) * with the left action of U (r) corresponding with its dual representation, namely for all ξ ∈ V (λ) * , for all u ∈ U (r), u.ξ = ξ.u . Then endow the tensor product V (λ) * ⊗ V (λ) with the diagonal action of

U (r), namely for u ∈ U (r) such that ∆(u) = u 1 ⊗ u 2 , for all ξ ∈ V (λ) * , for all v ∈ V (λ), (47) u.(ξ ⊗ v ) = u 1 .ξ ⊗ u 2 .v = ξ.u 1 ⊗ u 2 .v .
In particular, one has that

(48) ∀x ∈ r, ∀ξ ∈ V (λ) * , ∀v ∈ V (λ), x.(ξ ⊗ v) = -ξ.x ⊗ v + ξ ⊗ x.v.
Recall the isomorphisms of vector spaces Φ λ p and Φ λ r defined in subsection 5.4.

Proposition. Let λ ∈ P + (π). With the left actions of U (r) given by equation (47) and equation ( 43) respectively, the isomorphisms of vector spaces Φ λ p and Φ λ r are isomorphisms of left U (r)-modules. Proof. It is immediate by equations ( 46) and (48).

6. a polynomial algebra.

6.1. A semigroup. Recall r the derived subalgebra of r : the former is a semi-simple Lie algebra. Denote by (U ( p-) * ) U (r ) the set of elements in U ( p-) * which are invariant under the coadjoint action of U (r ). Since for all z ∈ r , for all u ∈ U ( p-) such that ∆(u) = u 1 ⊗ u 2 , we have that ∆(ad z(u)) = ad z(u 1 )⊗u 2 +u 1 ⊗ad z(u 2 ), the set (U ( p-) * ) U (r ) is an algebra.

For all λ ∈ P + (π), recall that C r (λ) is a left U (r )-module (for the coadjoint representation of U (r )) by equation ( 46). Then define C r (λ) U (r ) as the set of elements in C r (λ) which are invariant under the coadjoint action of U (r ) : this is of course a vector space.

Denote by C r ) the set of elements in C r which are invariant under the coadjoint action of U (r ). Since C r is an algebra by lemma 5. [START_REF] Bourbaki | Eléments de mathématique, Algèbre commutative[END_REF] and by what we said above, C U (r ) r is an algebra. Since moreover the sum of the C r (λ)'s is a direct sum by lemma 5.3, we have that

U (r ) r ⊂ (U ( p-) * ) U (
(49) C U (r ) r = λ∈P + (π) C r (λ) U (r ) .
Let D be the set of all λ ∈ P + (π) such that (50) (w 0 λ -w 0 λ, π ) = 0.

Proposition. One has that, for all λ ∈ P + (π), dim C r (λ) U (r ) ≤ 1 with equality if and only if λ ∈ D and then

(51) C U (r ) r = λ∈D C r (λ) U (r ) .
Proof. The proof is quite similar as the proof in [8, Thm. §3]. We give it for the reader's convenience. Fix λ ∈ P + (π). Denote by Hom( V (λ) * , V (λ) * ) the set of all morphisms between the vector spaces V (λ) * and V (λ) * , endowed with the U (r )-module structure given by

(52) ∀u ∈ U (r ), ∀ϕ ∈ Hom( V (λ) * , V (λ) * ), ∀ξ ∈ V (λ) * , (u.ϕ)(ξ) = u 2 .ϕ(u 1 .ξ)
where ∆(u) = u 1 ⊗ u 2 . Denote by Φ the following morphism between V (λ) * ⊗ V (λ), endowed with the diagonal action of U (r ) given by equation (47) and Hom( V (λ) * , V (λ) * ), endowed with the action given by equation ( 52).

(53)

Φ : ξ ⊗ v ∈ V (λ) * ⊗ V (λ) → (ξ ∈ V (λ) * → ξ (v )ξ)
Then by [17, A.2.16] for instance, Φ is an isomorphism of U (r )-modules.

Denote by Hom U (r ) ( V (λ) * , V (λ) * ) the set of all U (r )-morphisms between V (λ) * and V (λ) * and by V (λ) * ⊗ V (λ) U (r ) the set of elements in the tensor product V (λ) * ⊗ V (λ) which are invariant under the diagonal action of U (r ) given by equation ( 47). Then we have

(54) Φ( V (λ) * ⊗ V (λ) U (r ) ) = Hom U (r ) ( V (λ) * , V (λ) * ).
Moreover the U (r )-modules V (λ) * and V (λ) (and also V (λ) * ) are irreducible. Then by Schur lemma (see for instance [START_REF] Renault | Algèbre non commutative, Collection "Varia Mathematica[END_REF]Chap. 3

, § 3, 1]), (55) dim Hom U (r ) ( V (λ) * , V (λ) * ) ≤ 1
with equality if and only if the irreducible U (r )-modules V (λ) * and V (λ) * are isomorphic that is, if and only if

(56) w 0 λ -w 0 λ = α∈π\π m α α with m α ∈ N, ∀α ∈ π \ π
or equivalently if and only if λ verifies equation (50) that is, if and only if λ ∈ D. Indeed we have that V (λ) * V (-w 0 λ) as left U (r)-modules by what we already said in the proof of Lemma 5.2. Similarly since V (λ) = U (n - π ).ṽ λ = U (n π ).ṽ w 0 λ where ṽw 0 λ is a chosen nonzero weight vector in V (λ) of weight w 0 λ, we have that V (λ) * V (-w 0 λ) as left U (r)-modules. Then the irreducible U (r )-modules V (λ) * and V (λ) * are isomorphic if and only if (-w 0 λ) = (-w 0 λ) where recall that the superscript "prime" denotes the projection in P (π ) of an element in P (π) with respect to the decomposition [START_REF] Bourbaki | Eléments de mathématique, Groupes et Algèbres de Lie[END_REF]. By proposition 5.5 one has that

(57) C r (λ) U (r ) = Φ λ r V (λ) * ⊗ V (λ) U (r ) .
Then by equations ( 54) and (55) we have that dim C r (λ) U (r ) ≤ 1 with equality if and only if λ ∈ D. For all λ ∈ D set c λ ∈ C r (λ) U (r ) \ {0} so that C r (λ) U (r ) = kc λ . By equation (49) we also have

(58) C U (r ) r = λ∈D kc λ .
This completes the proof.

Let λ ∈ D. Choose ϕ λ ∈ Hom U (r ) ( V (λ) * , V (λ) * ) \ {0} and denote by U (r ) + the kernel of the coidentity in the enveloping algebra U (r ). By [17, 7.1.16] we have that

(59) Φ -1 : Hom( V (λ) * , V (λ) * ) ∼ -→ U (r ) + .( ξw 0 λ ⊗ ṽw 0 λ ) ⊕ kΦ -1 (ϕ λ ).
It follows that we have, up to a nonzero scalar (60)

(Φ λ r ) -1 (c λ ) = ξw 0 λ ⊗ ṽw 0 λ + i∈I u - i . ξw 0 λ ⊗ u + i .ṽ w 0 λ where u ± i ∈ n ± π U (n ± π )
for all i ∈ I, I a finite set, since moreover ξw 0 λ ⊗ ṽw 0 λ is a cyclic vector for the U (r )-module V (λ) * ⊗ V (λ) endowed with the diagonal action. Hence the h-weight of c λ is equal to (61) w 0 λ -w 0 λ.

By equation (56) this weight belongs to P + (π) and by equation ( 50) it annihilates on π .

Let i and j denote the permutations in π defined below.

(62) ∀α ∈ π, j(α) = -w 0 (α)

(63) ∀α ∈ π , i(α) = -w 0 (α) (64) ∀α ∈ π \ π , i(α) = j(α) if j(α) ∈ π i(α) = j(ij) rα (α) otherwise
where r α is the smallest integer such that j(ij) rα (α) ∈ π . Let E(π ) be the set of ij -orbits in π, where ij denotes the subgroup generated by the composition map ij.

For instance, if p is a maximal parabolic subalgebra of g that is, if π \ π = {α}, then i(α) = α and the ij -orbit of α is Γ α = {(ji) s j(α), 0 ≤ s ≤ r α }.

Recall [9, Thm. 1] (see also [7, 4.1]):

Theorem. The set D is a free additive semigroup generated by the Z-linearly independent elements d Γ = γ∈Γ γ , Γ ∈ E(π ).

A filtration.

Assume that π = {α 1 , . . . , α n }. Then for all λ ∈ P + (π), there exist Now by equation (60) in the product c λ c µ appears, up to a nonzero scalar, the term c ξw 0 λ ⊗ ξw 0 µ, ṽw 0 λ ⊗ṽ w 0 µ = c ξw 0 (λ+µ) , ṽw 0 (λ+µ) ∈ C r (λ + µ).

k i ∈ Q + for all i, 1 ≤ i ≤ n, such that λ = n i=1 k i α i . Set deg(λ) = 2 n i=1 k i .
Indeed this term cannot be annihilated by the other terms, by lemmas 5. 

∈ U k-1 ( p-), ad z(u) ∈ U k-1 ( p-). Then z.f ∈ F k K (U ( p-) *
). Now assume that a = x ∈ m, and let u ∈ U k-1 ( p-). Recall equation [START_REF] Phommady | Semi-invariants symétriques de contractions paraboliques[END_REF]. Then u = k-1 j=0 s j u j with s j ∈ S j (m -) and u j ∈ U k-1-j (r), for all 0 ≤ j ≤ k -1.

Then by equation ( 29) one has :

ad * * x(u) = k-1 j=0 θ(ad * x(s j ))u j ∈ k-1 j=0 S j-1 (m -)U k-j (r) ⊂ U k-1 ( p-)
by equation [START_REF] Popov | Invariant Theory[END_REF]. It follows that x.f (u) = 0 and the lemma. where, for all k ∈ N, (68)

gr k K (U ( p-) * ) = F k K (U ( p-) * )/F k+1 K (U ( p-) * ).
Then gr K (U ( p-) * ) is the graded algebra associated with the generalized Kostant filtration F K on the algebra U ( p-) * . For all f ∈ F k K (U ( p-) * ), one denotes by gr k K (f ) its canonical image in gr k K (U ( p-) * ). By lemma 7.1 the dual representation of A on U ( p-) * (given by equation ( 43)) induces a left action on gr K (U ( p-) * ) defined by

(69) ∀a ∈ A, ∀f ∈ F k K (U ( p-) * ), a.gr k K (f ) = gr k K (a.f ). Proposition. Let x ∈ m and f ∈ F k K (U ( p-) * ) ∩ C r , k ∈ N. Then x.f ∈ F k+1 K (U ( p-) *
) and therefore (70)

x.gr k K (f ) = 0 where recall gr k K (g) = g + F k+1 K (U ( p-) * ), for all g ∈ F k K (U ( p-) * ).

Proof. Take

f = λ∈Λ i∈I λ c λ ξw 0 λ .a i , b i .ṽ λ ∈ F k K (U ( p-) * ) ∩ C r
with Λ ⊂ P + (π) a finite set and for all λ ∈ Λ, I λ a finite set, a i , b i ∈ U (n - π ), for all i ∈ I λ . Moreover one may assume, if f = 0, that a i , b i , for all i ∈ I λ , are nonzero weight vectors. We need the lemma below.

Lemma. Let k ∈ N and 0 ≤ j ≤ k. With the above hypotheses, we have that

(71) ∀u ∈ U j-1 (g), ∀u ∈ U k-j (r), λ∈Λ i∈I λ ξ w 0 λ (a i uu b i .v λ ) = 0.
Proof. The lemma is obvious for j = 0 since U -1 (g) = {0}. Assume that j ∈ N * . Take u ∈ U j-1 (g) and u ∈ U k-j (r). Since m.V (λ) = {0} and since U j-1 (g) = U j-1 (p -) ⊕ U j-2 (g)m, one may assume that u ∈ U j-1 (p -). One also may assume that u and u are nonzero weight vectors.

Since ξw 0 λ vanishes on the weight vectors β -1 λ (a i uu b i .v λ ) which are not of weight w 0 λ and by equation ( 42), one has that

λ∈Λ i∈I λ ξ w 0 λ (a i uu b i .v λ ) = λ∈Λ i∈I λ ξw 0 λ (β -1 λ (a i uu b i .v λ )) = λ∈Λ i∈I λ ξw 0 λ (gr k 0 (a i uu b i .v λ ))
where for all λ ∈ Λ,

I λ = {i ∈ I λ | β -1 λ (a i uu b i .v λ ) is of weight w 0 λ}. Now write u = j-1 t=0 u t v t with u t = θ(s t ) ∈ U t (m -) = θ(S t (m -)), s t ∈ S t (m -) and v t ∈ U j-1-t (r) for all 0 ≤ t ≤ j -1.
Then

gr k 0 (a i uu b i .v λ ) = a i j-1 t=0 s t v t u b i .ṽ λ by equation (8). But j-1 t=0 s t v t ∈ U j-1 ( p-) and recall that u ∈ U k-j (r). Then j-1 t=0 s t v t u ∈ U k-1 ( p-)
and we obtain the required equation (71

) since f (U k-1 ( p-)) = 0.
Fix x ∈ m being a nonzero weight vector and for all 0 ≤ j ≤ k, take s ∈ S j (m -) and u ∈ U k-j (r) being weight vectors. If j ≥ 1, one may assume that s = y 1 • • • y j ∈ S j (m -) with y t ∈ m -being a weight vector for all 1 ≤ t ≤ j.

Recall that

(72) ad * x(s) = 1≤t≤j|[x, yt]∈r y 1 • • • y t-1 [x, y t ]y t+1 • • • y j ∈ S j (p -).
By equation (76) it remains to show that (81)

λ∈Λ i∈I λ ξ w 0 λ (a i θ(ad m -x(s))u b i .v λ ) = 0.
Fix an index t, 1 ≤ t ≤ j, with [x, y t ] ∈ m -and set

u t = θ(y 1 • • • y t-1 [x, y t ]y t+1 • • • y j ).
Then u t ∈ U j (m -). Take λ ∈ Λ and i ∈ I λ (if there exist) such that

ξ w 0 λ (a i u t u b i .v λ ) = 0.
Since all weight vectors non vanishing on ξ w 0 λ are proportional to v w 0 λ , one has that a i u t u b i .v λ is proportional to v w 0 λ .

On the other hand, one knows that v w 0 λ ∈ F k 0 (V (λ)) ⊂ U k 0 (m -).V (λ) by (iv) of Lemma 3.2 and that k 0 = j -1 (otherwise I λ = ∅). Then by the irreducibility of the U (r)-module V (λ), there exists a nonzero weight vector

u i, t ∈ U j-1 (m -)U (n - π )U (n π ) such that (82) (a i u t -u i, t ).(u b i .v λ ) = 0.
In other words, we have that (83) Then one has that

a i u t -u i, t ∈ Ann U (m -)U (n - π )U (n π ) (u b i .v λ ) For all γ ∈ ∆ + \ ∆ + π ,
a i u t -u i, t ∈ γ∈∆ + \∆ + π U (m -)U (n - π )U (n π )x r γ, i -γ (86) 
+ β∈∆ + π U (m -)U (n - π )U (n π )x r + β, i β + β∈∆ + π U (m -)U (n - π )U (n π )x r - β, i -β .
By the Poincaré-Birkhoff-Witt theorem ([4, 2.1.11]) setting ∆ + \ ∆ + π = {γ 1 , . . . , γ r }, we have that (87)

u t = ν c ν x ν 1 -γ 1 • • • x νr -γr
where the sum over the ν = (ν 1 , . . . , ν r ) ∈ N r is finite, r ≤ j, and with, for all ν, c ν ∈ k. Moreover there exists only one ν ∈ N j with c ν = 0. Observe that

U (r)U j (m -) = U j (m -)U (r) and U j (m -)U (r) ∩ U j-1 (m -)U (r) = {0}.
Comparing equations ( 86) and (87) and using the above observation, one deduces that, for all γ ∈ ∆ + \ ∆ + π , there exists w γ, i ∈ U (m -) and that, for all β ∈ ∆ + π , there exists

w ±β, i ∈ U j (m -)U (n - π )U (n π ) such that (88) a i u t = γ∈∆ + \∆ + π a i w γ, i x r γ, i -γ + β∈∆ + π w β, i x r + β, i β + β∈∆ + π w -β, i x r - β, i -β .
Then by equations ( 84) and (85) one has that (89)

λ∈Λ i∈I λ ξ w 0 λ (a i u t u b i .v λ ) = 0. Hence λ∈Λ i∈I λ ξ w 0 λ (a i θ(ad m -x(s))u b i .v λ ) = 1≤t≤j|[x, yt]∈m -λ∈Λ i∈I λ ξ w 0 λ (a i u t u b i .v λ ) = 0
which is the required equation (81). We then obtain equation (80) and therefore, since θ is a morphism of ad U (g)-modules, 

-x.f (su ) = λ∈Λ i∈I λ ξ w 0 λ a i ad x(θ(s))u b i .v λ = λ∈Λ i∈I λ ξ w 0 λ a i (xθ(s) -θ(s)x)u b i .v λ = 0 since moreover m.V (λ) = {0} and V (λ) * .m = {0}. 7 
∈ U ( p), ∀f ∈ S k (p -) * , u.f = f • ad * u ,
where u denotes the image of u by the antipode defined similarly as in equation [START_REF] Feigin | PBW filtration and bases for irreducible modules in type An[END_REF]. We have the following.

Lemma. Let k ∈ N. Then the U ( p)-module S k (p -) * is isomorphic to the U ( p)-module S k ( p) = S k (p) when the latter is endowed with the adjoint action of p which extends by derivation the Lie bracket in p.

Proof. For k = 0, the assertion is obvious. Recall (subsection 2.1) that we denote by K the Killing form on g × g. Then the vector space p p is isomorphic to the dual space (p -) * through the map

f : x ∈ p → K(x, -) |p -.
When (p -) * is endowed with the action of U ( p) given by equation ( 44) and p with the adjoint action of p, the map f is an isomorphism of U ( p)-modules.

Indeed assume firstly that x ∈ m. Then for all x ∈ p and for all y ∈ p -, x .f (x)(y) = -K(x, pr r ([x , y])) by equations ( 17) and (44). If moreover x ∈ m, then K(x, pr r ([x , y])) = 0.

But one also has [x , x] p = 0 by equation (2). Then

x .f (x) = f ([x , x] p) in this case. If x ∈ r, then x .f (x)(y) = -K(x, pr r ([x , y])) = -K(x, [x , y]) since [x , y] = pr r ([x , y]) + pr m ([x , y]) + pr m -([x , y]).
Then by the invariance of the Killing form, we obtain that

x .f (x)(y) = K([x , x], y) = f ([x , x] p)(y)
by equation [START_REF] Bourbaki | Eléments de mathématique, Groupes et algèbres de Lie[END_REF]. Now if x ∈ r, then the assertion follows immediatly from the invariance of the Killing form and equation ( 16). This proves the lemma for k = 1.

Let now k ∈ N * . Consider the map f k : S k ( p) -→ S k (p -) * defined by

f k (x 1 • • • x k ) = K k (x 1 • • • x k , -) |S k (p -)
for all x 1 , . . . , x k ∈ p where K k is defined as in [11, 2.7], namely : for y 1 , . . . , y k ∈ p -,

K k (x 1 • • • x k , y 1 • • • y k ) = 1 k! σ∈S k k i=1 K(x i , y σ(i) )
where we denote by S k the group of permutations of k elements. By [11, 2.7] we have that f k is an isomorphism of vector spaces. It remains to show that f k is an isomorphism of U ( p)-modules.

Let x 1 , . . . , x k ∈ p, y 1 , . . . , y k ∈ p -and x ∈ p. Then one has

x.f k (x 1 • • • x k )(y 1 • • • y k ) = -K k (x 1 • • • x k , ad * x(y 1 • • • y k )) = - k i=1 K k (x 1 • • • x k , y 1 • • • y i-1 ad * x(y i )y i+1 • • • y k ) = - 1 k! k i=1 σ∈S k t =σ -1 (i)
K(x t , y σ(t) )K(x σ -1 (i) , ad * x(y i ))

= -1 k! k j=1 σ∈S k t =j K(x t , y σ(t) )K(x j , ad * x(y σ(j) ))

by exchanging both sums and setting j = σ -1 (i).

On the other hand, one has

f k (ad px(x 1 • • • x k ))(y 1 • • • y k = k i=1 f k (x 1 • • • x i-1 [x, x i ] px i+1 • • • x k )(y 1 • • • y k ) = k i=1 1 k! σ∈S k t =i K(x t , y σ(t) )K([x, x i ] p, y σ(i) )
By the case k = 1 one obtains that, for all 1 ≤ i ≤ k, and all σ ∈ S k , K([x, x i ] p, y σ(i) )) = -K(x i , ad * x(y σ(i) )).

This completes the lemma by the above. 

Then

ψ k (x.f )(ss ) = -f (ad x(s)θ(s ) + s θ(ad x(s ))) since θ is a morphism of U (r)-modules for the adjoint action.

On the other hand

x.ψ k (f )(ss ) = -ψ k (f )(ad x(ss ))

= -ψ k (f )(ad x(s)s + s ad x(s ))

= -f (ad x(s)θ(s ) + s θ(ad x(s )))

This completes the lemma. Indeed write u = su with s ∈ S j (m -) and u ∈ U k-j (r) for 0 ≤ j ≤ k. If j = 0 then ad * * x • ad * * x (su ) = 0 = ad * * x • ad * * x(su ) by equation [START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF]. Now assume that 1 ≤ j ≤ k and take s = y 1 • • • y j ∈ S j (m -), with y i ∈ m - for all 1 ≤ i ≤ j. By definition of ad * * (see equation ( 29)), we obtain that Denote also by S( p) U (p ) the algebra of invariants in S( p) by the adjoint action of U ( p ) : this is also the algebra of semi-invariants in S( p), which we denote by Sy( p). From Proposition 7.5, one deduces the following.

Theorem. One has that ψ(gr K ( C U (r ) r

)) ⊂ Sy( p). π that is, for p g, one has that δ Γ ∈ P + (π) \ {0} for all Γ ∈ E(π ) by [10, 5.4.3]. Then in this case ch C U (r ) r is well defined.

Proposition. Assume, for all ν ∈ h * , that the weight vectorspace Sy( p) ν is finite-dimensional, so that the formal character ch Sy( p) is well defined. (1 -e δ Γ ) -1 ≤ ch Sy( p).

Proof. Recall that the generalized Kostant filtration F K is decreasing, separated and that F 0 K (U ( p-) * ) = U ( p-) * . Then, for every finite dimensional subspace V of U ( p-) * , there exists N ∈ N such that V ∩F N K (U ( p-) * ) = {0}. One deduces easily that the graded vector space gr K (V ) associated to the induced generalized Kostant filtration on V is isomorphic to V . Using Theorem 7.6 and a same argument as in [10, 7.1] completes the proof.

•

  Denote by gr K C U (r ) r the graded algebra associated with the induced generalized Kostant filtration on C U (r ) r

4 . 3 .

 43 x ], y] = 0 by Jacobi identity in g. Applying [4, 2.2.1] and [4, 1.2.14] completes the proof of the lemma. Partial symmetrisation. Recall the symmetrisation θ : S(p -) -→ U (p -) which is an isomorphism of ad U (r)-modules, when S(p -) and U (p -) are endowed with the adjoint action ad (see 3.2). Denote also by ad the adjoint action of U (r) on U ( p-), extending by derivation the Lie bracket of r on p-(see equation (3)). Set θ : S(p -) S(m -) ⊗ S(r) -→ U ( p-) S(m -) ⊗ U (r) defined by the following. (23) ∀s ∈ S(m -), ∀s ∈ S(r), θ(ss ) = s θ(s ).

4 . 4 .

 44 ):θ(ad z(ss )) = θ(ad z(s)s + s ad z(s )) = ad z(s)θ(s ) + s θ(ad z(s )) = ad z(s)θ(s ) + s ad z(θ(s )) = ad z (s θ(s )) = ad z( θ(ss ))This proves the lemma. Generalized adjoint action. Recall the isomorphism of vector spaces U ( p-) S(m -) ⊗ U (r). Then one has that[START_REF] Panyushev | Symmetric invariants related to representations of exceptional simple groups[END_REF] U ( p-) k∈N S k (m -) ⊗ U (r)

and ( 30 )

 30 ∀z ∈ r, ∀s ∈ S k (m -), ∀u ∈ U (r), ad * * z(su ) = ad z(su ) ∈ U ( p-).Observe that[START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF] ∀x ∈ m, ∀u ∈ U (r), ad * * x(u ) = 0 and (32) ∀x ∈ m, ∀s ∈ S k (m -), ∀u ∈ U (r), ad * * x(su ) = ad * * x(s)u .

  (33) ∀x ∈ m, ∀z ∈ r, ad * * z • ad * * x -ad * * x • ad * * z = ad * * [z, x]. Let x ∈ m, z ∈ r, s ∈ S(m -) and u ∈ U (r). Since ad z is a derivation in U ( p-), one has that ad * * (zx -xz)(su ) = (ad * * z • ad * * x -ad * * x • ad * * z)(su ) = ad z( θ(ad * x(s))u ) -ad * * x(ad z(s)u + s ad z(u )) = ad z( θ(ad * x(s)))u + θ(ad * x(s))ad z(u ) -θ(ad * x(ad z(s)))u -θ(ad * x(s))ad z(u ) since moreover ad z(s) ∈ S(m -) and ad z(u ) ∈ U (r). Then ad * * (zx -xz)(su ) = θ((ad z • ad * x)(s))u -θ(ad * x(ad z(s)))u by lemma 4.3 and then

4. 5 .

 5 Left and right actions. Here we will define a right, resp. a left action, of A on U ( p-) as follows. (34) ∀u ∈ U (r), ∀u ∈ U ( p-), R(u )(u) = uu (product in U ( p-)). Then R |U (r) is a right action of U (r) on U ( p-) called the regular right action (see [4, 2.2.21]). We extend this right action by setting (35) ∀x ∈ m, R(x) = 0. One checks immediately that the map R induces a right action of A on U ( p-) (still denoted by R). It follows that the map a ∈ A → R(a ) is a left action of A on U ( p-).

=

  (ad * * z • ad * * x)(su ) -(ad * * x • ad * * z)(su ) -ad * * [z, x](su ) since in U ( p-) we have (ad * * z • ad * * x)(su ) = z ad * * x(su ) -ad * * x(su ) z. Now equation (33) gives equation (38).

5 . 5 . 1 .

 551 r) then equation (40) is immediate by the associativity of the product in U ( p-) or because, in the second case, that R(b) = 0. Finally when b ∈ U (r) and a ∈ m ⊗ T (m) ⊗ U (r), equation (40) follows from equation (32). Matrix coefficients. Definitions and further notation. Let λ ∈ P + (π). Here we use the notation and results of subsection 3.2. By Lemma 3.2 the degenerate highest weight module V (λ) is endowed with a left U ( p-)-module structure.

  For all u ∈ U (r), recall R(u ) the (regular) right action of u on U ( p-) defined by R(u )(u) = uu for all u ∈ U ( p-), where uu is the product in U ( p-) (see subsection 4.5). Then its dual map t R(u ) : U ( p-) * -→ U ( p-) * defines a left action on U ( p-) * , called the coregular right representation of U (r) on U ( p-) * (see[4, 2.7.7]

  [START_REF] Joseph | Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] 7.1.25], deg(λ) ∈ N. For all m ∈ N, we setF m ( C r ) = λ∈P + (π)|deg(λ)≤m C r (λ), which is a left U (r)-submodule of C r for coadjoint action. Then (F m ( C r )) m∈N is an increasing filtration F of the algebra C r since for all λ, µ ∈ P + (π),(65) C r (λ) C r (µ) ⊂ ν∈Nπ |λ+µ-ν∈P + (π) C r (λ + µ -ν)by the proof of lemma 5.2. Then denote by gr F ( C r ) the associated graded algebra and for all c ∈ F m ( C r ), denote by gr m, F (c) its canonical image in gr F ( C r ). Recall the notation in subsection 6.1.Lemma. Let λ, µ ∈ D. Set m = deg(λ) and m = deg(µ).Then gr m, F (c λ )gr m , F (c µ ) is a nonzero multiple of gr m+m , F (c λ+µ ).Proof. By definition of the multiplication in the graded algebra gr F ( C r ), one has that gr m, F (c λ )gr m , F (c µ ) = gr m+m , F (c λ c µ ).

3 and 5. 4 .

 4 Since moreover c λ c µ ∈ C U (r ) r , equations (58), (60) and (65) imply that gr m+m , F (c λ c µ ) = ν∈D, deg(ν)=m+m , ν∈λ+µ-Nπ gr m+m , F (c ν ) = gr m+m , F (c λ+µ ) up to multiplication by a nonzero scalar. Now we can conclude the following. Proposition. The algebra of invariants C U (r ) r is a polynomial algebra over k, whose number of algebraically independent generators is equal to the cardinality of the set E(π ). Proof. It follows as in the proof of [9, Thm. 1] (see also [9, Prop. 3.1]). Let λ i , i ∈ I, be a set of Z-linearly independent generators of D and set m i = deg(λ i ) for all i ∈ I (one has that |I| = |E(π )| by Thm 6.1). Denote by gr F ( C U (r ) r ) the graded algebra of the algebra C U (r ) r associated with the induced filtration. Note that the above lemma also holds in this graded algebra. Then equation (58) and the above lemma imply that gr m i , F (c λ i ), i ∈ I, are k-algebraically independent and generate gr F C U (r ) r . Hence gr F C U (r ) r is a polynomial algebra over k in |E(π )| generators and it follows (see [3, Chap. III, § 2, n • 9, Prop. 10]) that the algebra C U (r ) r is also a polynomial algebra over k in |E(π )| generators c λ i , i ∈ I, whose h-weight is equal to δ i = w 0 λ i -w 0 λ i by equation (61).

7 .

 7 Generalized Kostant filtration and morphism.7.1. Generalized Kostant filtration. In[10, 6.1] we have defined what we called the Kostant filtration (denoted by F K ) on the Hopf dual of the enveloping algebra of the simple Lie algebra g. Here we will consider what we call the generalized Kostant filtration on the dual algebra U ( p-) * of U ( p-). More precisely, we set(66) ∀k ∈ N, F k K (U ( p-) * ) = {f ∈ U ( p-) * | f (U k-1 ( p-)) = 0} where (U k ( p-)) k∈N∪{-1} is the canonical filtration on U ( p-), with U -1 ( p-) = {0}.Lemma. The generalized Kostant filtration (F k K (U ( p-) * )) k∈N is a decreasing, exhaustive and separated filtration on the algebra U ( p-) * . Moreover this filtration is invariant by the left action of A defined by equation (43).Proof. The first assertions are obvious.Let us show the invariance by the left action of A. Let a ∈ A, k ∈ N and f ∈ F k K (U ( p-) * ). If a = z ∈ r, then ad * * z = ad z by equation[START_REF] Yakimova | One-parameter contractions of Lie-Poisson brackets[END_REF] and for all u

7. 2 .

 2 The graded algebra associated with the generalized Kostant filtration. Set (67) gr K (U ( p-) * ) = k∈N gr k K (U ( p-) * )

  denote by r γ, i the smallest positive integer such that (84) x r γ, i -γ .(u b i .v λ ) = 0. If we denote by µ i the weight of the vector u b i .v λ , we have that r γ, i = γˇ, µ i + 1, since x γ .(u b i .v λ ) = 0. Similarly for all β ∈ ∆ + π denote by r ± β, i the smallest positive integer such that (85) x r ± β, i ±β .(u b i .v λ ) = 0. See [16, 21] for more details.

7. 4 .

 4 Kostant morphism. Recall subsection 4.3 and let k ∈ N. We defineψ k : F k K (U ( p-) * ) -→ S k (p -) * by the following. For all f ∈ F k K (U ( p-) * ), we set : (91) ∀j ∈ N, 0 ≤ j ≤ k, ∀s ∈ S j (m -), ∀s ∈ S k-j (r), ψ k (f )(ss ) = f (s θ(s ))that we extend by linearity, so that ψ k is a linear map. As in [10, 6.2] we call ψ k the Kostant map.Proposition. Let k ∈ N. The kernel of the linear map ψ k is equal toF k+1 K (U ( p-) * ). Moreover ψ k is onto. Proof. It follows from the fact that k j=0 S j (m -) ⊗ θ(S k-j (r)) is a complement of U k-1 ( p-) in U k ( p-).Endow U ( p-) * with the dual representation of A given by equation (43). Let k ∈ N. Then F k K (U ( p-) * ) is a left A-module by lemma 7.1 and S k (p -) * is a left U ( p)-module (see subsection 7.3).

7. 5 .

 5 Recall subsections 7.1 and 7.4. By Proposition and Lemma 7.4 we obtain the following lemma. Lemma. For all k ∈ N, the induced morphism (still denoted by ψ k ) is an isomorphism of left U ( p)-modules from gr k K (U ( p-) * ) to S k (p -) * . Proof. We already know that the left A-module structure on U ( p-) * given by equation (43) induces a left A-module structure on gr k K (U ( p-) * ) by the invariance of the Kostant filtration under the left action of A (see equation (69)). Then the induced morphism ψ k is an isomorphism from the left A-module gr k K (U ( p-) * ) to the left U ( p)-module S k (p -) * . Moreover since S k (p -) * is a left U ( p)-module, it follows that it is the same for gr k K (U ( p-) * ). Let us verify directly that gr k K (U ( p-) * ) is indeed a left U ( p)-module. Let x, x ∈ m and u ∈ U k ( p-). One checks that (94) (ad * * x • ad * * x -ad * * x • ad * * x)(u) ∈ U k-1 ( p-).

  ad * * x • ad * * x (su ) = 1≤i =k≤j t ∈{i, k} y t θ(ad * x(y k ))θ(ad * x (y i ))u = 1≤i =k≤j t ∈{i, k} y t θ(ad * x(y k )ad * x (y i ))u mod U k-1 ( p-) = 1≤i =k≤j t ∈{i, k} y t θ(ad * x(y i )ad * x (y k ))u mod U k-1 ( p-) = ad * * x • ad * * x(su ) mod U k-1 ( p-)since for all a, b ∈ r, one has θ(a)θ(b) = θ(ab) mod U 1 (r).One deduces that, for allf ∈ F k K (U ( p-) * ), for all x, x ∈ m, x.(x .f ) -x .(x.f ) ∈ F k+1 K (U ( p-) * ) and then x.(x .gr k K (f )) = x .(x.gr k K (f )).Recall the notation in the proof of Lemma 7.3. Let k ∈ N and setj k = f -1 k , which is an isomorphism of U ( p)-modules from S k (p -) * to S k ( p). Moreover set ψ 0 k = j k • ψ k and ψ 0 = k∈N ψ 0 k :this is by the above an isomorphism of U ( p)-modules from gr K (U ( p-) * ) to S( p). Now as in[10, 6.6] set ψk = 1 k! ψ 0 k and ψ = k∈N ψk . One deduces the following, as in[10, 6.6].Proposition. ψ is an isomorphism of U ( p)-modules and of algebras from gr K (U ( p-) * ) to S( p).

7. 6 .

 6 Denote by gr K ( C r ) the graded algebra associated to the induced generalized Kostant filtration on C r , and by gr K ( C U (r ) r ) the graded algebra associated to the induced generalized Kostant filtration on C U (r ) r . Denote by (gr K (U ( p-) * )) U (p ) the algebra of invariants in gr K (U ( p-) * ) by the action of U ( p ) given by equation (69). We have that gr K ( C r ) ⊂ gr K (U ( p-) * ) and by Proposition 7.2 that gr K ( C U (r ) r ) ⊂ (gr K (U ( p-) * )) U (p ) .

7. 7 .

 7 Let M denote a left h-module such that each of its weight spacesM ν = {m ∈ M | ∀h ∈ h, h.m = ν(h)m}, for all ν ∈ h * , is finite dimensional. Then one may define ([17, 3.4.7]) the formal character ch M of M as follows. ch M = ν∈h * dim M ν e ν .Recall the set E(π ) in subsection 6.1, and for all Γ ∈ E(π ), set δ Γ = w 0 d Γ -w 0 d Γ , with d Γ = γ∈Γ γ . By Prop. 6.2 and Theorem 6.1, the algebra of invariants C U (r ) r is a polynomial algebra in |E(π )| variables, each of them having δ Γ , Γ ∈ E(π ), as an h-weight. Moreover for g simple and π

  .3. An important isomorphism. Recall subsection 4.2 and in particular the representation, denoted by ad * , of U ( p) in S(p -) (see lemma 4.2) and also in every S k (p -) (k ∈ N). We then can endow S k (p -) * with the dual representation of U ( p) given by

	(90)	∀u

By equations ( 43) and ( 29), one has that

Then if j = 0 one has obviously that x.f (su ) = 0, by equation [START_REF] Yakimova | Symmetric invariants of Z2-contractions and other semi-direct products[END_REF].

From now on, assume that j ≥ 1. By the above and by what we said in the proof of the previous lemma we have that

where for all λ ∈ Λ,

) by equations ( 27) and [START_REF] Fauquant-Millet | Semi-centre de l'algèbre enveloppante d'une sousalgèbre parabolique d'une algèbre de Lie semi-simple[END_REF], and by equation ( 42) we have that j -1 = k 0 .

Consider θ : S(g) -→ U (g) the symmetrization (which is an isomorphism of ad U (g)-modules) and the adjoint action (denoted by ad) of m on S(g) which extends uniquely by derivation the adjoint action of m on g given by Lie bracket. Observe that (76) ad x(s) = ad * x(s) + ad m -x(s) + ad m x(s).

Moreover for all 1 ≤ t ≤ j, one has that

By equations (75), (77) and the previous lemma, it follows that

By equation (77) and the previous lemma, and since m.V (λ) = {0} one also has that (79)

Assume firstly that x ∈ m.

Then by equation (91)

by equations ( 43) and ( 29). Write ad * x(s) = i∈I s i z i with s i ∈ S j-1 (m -) and z i ∈ r for all i ∈ I, by equation [START_REF] Popov | Sections in invariant theory[END_REF]. Then (92)

by definition of θ (see subsection 4.3). On the other hand, one has by equation ( 44) :

since ad * x(s ) = 0 by equation [START_REF] Panyushev | On the coadjoint representation of Z2-contractions of reductive Lie algebras[END_REF].

Then by equation (91

But, for all i ∈ I, s i θ(z i s ) = s i θ(z i )θ(s ) mod U k-1 ( p-). Equations ( 92) and (93) imply that by equation ( 16).