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SYMMETRIC SEMI-INVARIANTS FOR SOME
INÖNÜ-WIGNER CONTRACTIONS.

FLORENCE FAUQUANT-MILLET

Abstract. Let p be a proper parabolic subalgebra of a simple Lie al-
gebra g. Writing p = r ⊕ m with r being the Levi factor of p and m
the nilpotent radical of p, the semi-direct product p̃ = r n (m)a, where
(m)a is an abelian ideal of p̃, isomorphic to m as an r-module, is a Lie
algebra. This is a special case of Inönü-Wigner contraction and may
be considered as a degeneration of p. For any Lie algebra a, denote by
Sy(a) the algebra of symmetric semi-invariants in the symmetric algebra
S(a) of a under the adjoint action of a. In this paper we are interested
in the polynomiality of the algebra Sy(p̃). Inspired by our method in
[Fauquant-Millet F., Joseph A.: Semi-centre de l’algèbre enveloppante
d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple, Ann.
Sci. Éc. Norm. Sup. 38 (2005) 155–191] where we studied the poly-
nomiality of Sy(p) (the nondegenerate case), we obtain in this paper
a lower bound for the formal character of the algebra Sy(p̃), when the
latter is well defined. The method in the nondegenerate case does not
apply directly in the degenerate case : in the present paper we define a
so-called generalized PBW filtration on a highest weight irreducible rep-
resentation of g to provide the lower bound. Combined with an upper
bound we will construct in the near future for particular contractions p̃,
our goal is to show that the algebra Sy(p̃) is a polynomial algebra, by
showing that both bounds coincide.

Mathematics Subject Classification : 16 W 22, 17 B 22, 17 B 35.
Key words : Inönü-Wigner contraction, parabolic subalgebra, symmetric

invariants, semi-invariants.

1. Introduction.

The base field k is algebraically closed of characteristic zero.

1.1. The aim of the paper. Let g be a simple Lie algebra over k and
fix a Cartan subalgebra h of g. Then choose a set π of simple roots for
(g, h) and denote by b the Borel subalgebra of g associated with it. Let
p ⊃ b be a proper parabolic subalgebra of g. Denote by n, resp. n−, the
maximal nilpotent subalgebra of g generated by all positive, resp. negative,
root vectors, so that g = n− ⊕ h ⊕ n and b = h ⊕ n. Let r denote the Levi
factor of p (so that r is a reductive Lie algebra) and m the nilpotent radical
of p. Then one has that p = r ⊕ m. Now consider the semi-direct product
p̃ = rn (m)a where (m)a is isomorphic to m as an r-module, the superscript
a meaning that (m)a is an abelian ideal of p̃. The semi-direct product p̃ is
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still a Lie algebra which may be viewed as a degeneration of the parabolic
subalgebra p (of course when m is already abelian, we have that p̃ = p as
a Lie algebra). The Lie algebra p̃ is called an Inönü-Wigner contraction,
or a one-parameter contraction of p (see [31, Sect. 4]). Denoting by a′ the
derived subalgebra of any Lie algebra a, one has that p̃′ = r′ n (m)a.

In this paper we are interested in the algebra Sy(p̃) of symmetric semi-
invariants in the symmetric algebra S(p̃) of p̃ under the adjoint action of p̃,
which is also equal to the algebra S(p̃)p̃

′ of symmetric invariants under the
adjoint action of p̃′. In some cases (especially when p is a maximal parabolic
subalgebra), we have that Sy(p̃) = S(p̃′)p̃

′ . For the natural Poisson structure
on S(p̃), the algebra Sy(p̃) is also equal to the Poisson semicentre of S(p̃).

The study of the algebra Sy(p̃) will be called the degenerate case while
the study of the algebra Sy(p) = S(p)p

′ of symmetric semi-invariants in the
symmetric algebra S(p) of p under the adjoint action of p will be called the
nondegenerate case. The aim of the present paper is to construct a lower
bound for the formal character of Sy(p̃) (when the latter is well defined), by
adapting methods in the nondegenerate case [9, Prop. 3.1] or [10, Sect. 6] .

We then hope to get an upper bound for the formal character of Sy(p̃)
(at least for the contraction of a parabolic subalgebra p such that dimm
is not too big with respect to dim r′) which would be equal to this lower
bound. This would imply that the algebra Sy(p̃) is a polynomial algebra,
for which we could give the number of algebraically independent generators,
their weight and degree.

Motivated by computation for several examples of contractions p̃ of max-
imal parabolic subalgebras in a simple Lie algebra g, where we get an upper
bound for the formal character of Sy(p̃) which coincides with the lower bound
in the present paper, we hope to extend in the near future the construction
for the contraction of every maximal parabolic subalgebra, at least in classi-
cal cases.

Results about one-parameter contractions, and especially about their ring
of invariants (or semi-invariants) are reviewed below. Feigin in [13] intro-
duced the contraction g̃ of a semi-simple Lie algebra g given by the decom-
position g = b ⊕ n−, motivated by some problem in representation theory
(see [15]). He then studied degenerations of flag varieties related to this con-
traction in [14]. For such a contraction g̃, Panyushev and Yakimova studied
in [20] the algebra of symmetric invariants S(g̃)g̃ and showed that it is always
a polynomial algebra in rank(g) generators. In [30] Yakimova showed that
the algebra of symmetric semi-invariants Sy(g̃) is also always polynomial.

Extending Feigin’s construction, Panyushev and Yakimova studied the
contraction g̃ of a semi-simple Lie algebra g given by the decomposition
g = p⊕m− (where m− is the nilpotent radical of the opposite parabolic sub-
algebra of p). They showed in [21] that the algebra of symmetric invariants
S(g̃)g̃ is always polynomial when g is simple of type A or C and for par-
ticular parabolic subalgebras in type B, using results on centralisers in [19].
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Based on results of Panyushev and Yakimova, Phommady [25] studied the
polynomiality of the algebra of symmetric semi-invariants Sy(g̃): he proved
that it is always a polynomial algebra in type A and gave a counter-example
in type C.

All the previous contractions are semi-direct products of the form q = snV
with s being a Lie algebra (not necessarily reductive) and V being a finite-
dimensional representation of s. It was observed ([31, Sect. 3]) that, if S(q)q

is polynomial, then it is the same for S(V )s. When q is the contraction
of a Z2-grading of a reductive Lie algebra, the polynomiality of the ring
of invariants S(q)q was studied in [18]. On the other hand when s is a
semisimple Lie algebra, Panyushev and Yakimova used the classification in
[5], [6], [27], [29] to give a classification (see [22], [23], [24]) of all finite-
dimensional representations of simple Lie groups (that is, for s being simple)
and also of all irreducible representations of arbitrary semisimple groups with
toral generic stabilisers, for which S(q)q is a polynomial algebra. However
when s is simple of type A, their classification was partial (see [32]).

Observe that in our paper we deal with a semi-direct product q = s n V
with s = r′ being semisimple (and not necessarily simple in general) and V =
m. However even when r′ is simple, the study of Panyushev and Yakimova
does not seem to always give the answer whether Sy(p̃) is or not polynomial.
For example if we consider the contraction p̃ = r n (m)a of the maximal
parabolic subalgebra p = r⊕m of g simple of type B4, whose Levi subalgebra
r′ is simple of type A3, then m does not occur among the representations of
sl4 treated by Panyushev and Yakimova in [22] or in [32]. In this case, we
have constructed an adapted pair for p̃′ which provides an upper bound for
the formal character of Sy(p̃) = S(p̃′)p̃

′ and this upper bound coincides with
the lower bound we have built in this paper. Thus we obtain in this case
that the algebra of symmetric semi-invariants Sy(p̃) is a polynomial algebra
in three generators, for which we can give their weight and degree.

Note also that it is shown in [20, Th. 1.1] that the bi-homogeneous com-
ponents of highest degree relative to m of homogeneous elements in S(p′)p

′

lie in S(p̃′)p̃
′

= S(p′)p̃
′ . Moreover [30, Th. 3.8] may give a criterion to know

whether S(p′)p̃
′ is polynomial, based on the degrees relative to m of genera-

tors of S(p′)p
′ , if the latter is finitely generated. Unfortunately, even when

S(p′)p
′ is known to be polynomial and when the degree is known for each

homogeneous generator of S(p′)p
′ , it does not seem to be easy to compute

its degree relative to m.

1.2. The method. The method we use in this paper is completely different
from this of Panyushev and Yakimova. Our method is partly inspired by
this used in [9], [10] to study the polynomiality of the algebra of symmetric
semi-invariants Sy(p). The study of the latter algebra will be called the
nondegenerate case, while we will call the study of Sy(p̃) the degenerate
case. In the degenerate case, the method to build a lower bound is more
complicated than in the nondegenerate case, and then we cannot just rewrite
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the proof used in the nondegenerate case. In particular we will construct
some degeneration of an irreducible representation of the simple Lie algebra
g and we will consider matrix coefficients associated with it. We also have
to define a suitable action of some associative algebra A, which provides the
adjoint action of p̃ on S(p̃) after some identifications we will explain below.

Denote by P+(π) the set of dominant integral weights of (g, h) and let
V (λ) be the irreducible highest weight g-module of highest weight λ, for
λ ∈ P+(π) (so that V (λ) is finite-dimensional).

Let us describe our method and our main result more precisely.
• In subsections 3.1 and 3.2 we fix λ ∈ P+(π) and denote by p− =
r ⊕ m− ⊃ b− = h ⊕ n− the opposite parabolic subalgebra of p,
where m− is the nilpotent radical of p− and by p̃− = r n (m−)a

the one-parameter contraction of p−. Then, inspired by the con-
struction in [15], we define what we call a generalized PBW filtration
(Fk(V (λ)))k∈N on V (λ), which is an increasing and exhaustive filtra-
tion on V (λ), induced by the canonical (or standard degree) filtration
(Uk(m

−))k∈N on the enveloping algebra U(m−) of m−.
The associated graded space, that we call the degenerate highest

weight module associated with λ, is denoted by

Ṽ (λ) := grF (V (λ)) =
⊕
k∈N

grk(V (λ))

where grk(V (λ)) = Fk(V (λ))
Fk−1(V (λ)) for all k ∈ N with F−1(V (λ)) := {0}.

If vλ is a nonzero vector of highest weight λ in V (λ), we denote
by V ′(λ) the irreducible U(r)-submodule of V (λ) generated by vλ
and by Ṽ ′(λ) ⊂ Ṽ (λ) the canonical image of V ′(λ) in Ṽ (λ). We
will observe that, as U(r)-modules, we have Ṽ (λ) ' V (λ). Set ṽλ
the canonical image of vλ in Ṽ (λ). We define a left U(p̃−)-module
structure on Ṽ (λ), for which we have that Ṽ ′(λ) = U(r).ṽλ and that

Ṽ (λ) = U(p̃−).ṽλ = S(m−).Ṽ ′(λ) = U(p̃−).Ṽ ′(λ).

• In subsections 4.1, 4.2, 4.4, denoting by T (m) the tensor algebra of
m, we consider the associative algebra A = T (m)#U(r), which is
the Hopf smash product of the left U(r)-algebra T (m) by the Hopf
algebra U(r), as defined for example in [17, 1.1.8]. As T (m) is also
equipped with a coproduct, we obtain that this smash product A
also inherits a structure of a bialgebra and indeed of a Hopf algebra.

We then consider the coadjoint action, which we denote by ad∗, of
U(p̃) on p− ' p̃∗ (as vector spaces). Then ad∗ extends uniquely by
derivation to an action of U(p̃) on S(p−). From this action ad∗, we
define what we call a generalized adjoint action ad∗∗ of A on U(p̃−),
which coincides with the adjoint action on U(p̃−), when restricted to
U(r).
• In subsections 5.1 and 5.3, we consider spaces of matrix coefficients.
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For λ ∈ P+(π), we set ṽw0λ the canonical image in Ṽ (λ) of a
chosen nonzero lowest weight vector in V (λ) and by Ṽ ′′(λ) the U(r)-
submodule of Ṽ (λ) generated by ṽw0λ. We denote by Ṽ (λ)∗ the dual
space of Ṽ (λ). For all ξ ∈ Ṽ (λ)∗ and v ∈ Ṽ ′(λ), the matrix coefficient
cξ, v ∈ U(p̃−)∗ is defined by :

cξ, v(u) = ξ(u. v) for all u ∈ U(p̃−).

Then we define C̃p(λ) to be the subspace of U(p̃−)∗ generated by

{cξ, v | ξ ∈ Ṽ (λ)∗, v ∈ Ṽ ′(λ)}

and C̃r(λ) to be the subspace of C̃p(λ) generated by

{cξ, v | ξ ∈ Ṽ ′′(λ)∗, v ∈ Ṽ ′(λ)}.

We set C̃p =
∑

λ∈P+(π) C̃p(λ) and C̃r =
∑

λ∈P+(π) C̃r(λ). We show
that these are direct sums and that C̃r is a subalgebra of U(p̃−)∗.
• In subsection 5.5, we consider the dual representation of ad∗∗, which
defines a left A-module structure on U(p̃−)∗. When restricted to
U(r), the dual representation of ad∗∗ defines a left U(r)-module struc-
ture on every C̃r(λ), λ ∈ P+(π), and then on C̃r, which coincides with
the coadjoint representation.
• In subsections 6.1 and 6.2, for all λ ∈ P+(π), we denote by C̃r(λ)U(r′),
resp. C̃U(r′)

r the vector space, resp. the algebra, of invariants in C̃r(λ),
resp. in C̃r, under the coadjoint representation of U(r′). We have
that

C̃
U(r′)
r =

⊕
λ∈P+(π)

C̃r(λ)U(r′).

Denote by π′ ⊂ π the subset of simple roots of (g, h) associated with
the parabolic subalgebra p, set hπ′ = h ∩ p′, and denote by ( , ) the
nondegenerate symmetric bilinear form on h∗ × h∗ induced by the
Killing form on g. Since, for all λ ∈ P+(π), Ṽ ′(λ) is an irreducible
U(r)-module, the Jacobson density theorem implies that the U(r)-
module C̃r(λ) is isomorphic to the U(r)-module Ṽ ′′(λ)∗⊗Ṽ ′(λ) where
the latter is endowed with the diagonal action of U(r). It follows that,
for all λ ∈ P+(π), C̃r(λ)U(r′) is of dimension less or equal to one, and
equal to one if and only if

(w′0λ− w0λ, π
′) = 0

where w′0, resp. w0, is the longest element in the Weyl group of
(r′, hπ′), resp. of (g, h). As a consequence we show (as in [9, prop.
3.1]) that C̃U(r′)

r is a polynomial algebra, for which we can compute
the number of algebraically independent generators and their weight.



6 FLORENCE FAUQUANT-MILLET

• In subsections 7.1, 7.3, 7.4 and 7.5, inspired by [10, 6.1], one defines
on the algebra U(p̃−)∗ what we call the generalized Kostant filtration
(F k

K(U(p̃−)∗))k∈N, which is a decreasing, exhaustive and separated
ring filtration. This filtration is invariant under the action of A given
by the dual representation of ad∗∗.

One denotes by grK(U(p̃−)∗) =
⊕

k∈N gr
k
K(U(p̃−)∗) the graded

algebra associated with this filtration where, for all k ∈ N,

grkK(U(p̃−)∗) =
F k
K(U(p̃−)∗)

F k+1
K (U(p̃−)∗)

.

The dual representation of ad∗∗ induces a left action of A on this
graded algebra and one checks that, for all x ∈ m, for all f ∈ C̃r ∩
F k
K(U(p̃−)∗), one has for this action

x.f ∈ F k+1
K (U(p̃−)∗)

that is, that

x.grkK(f) = 0

where grkK(f) denotes the canonical image of f in grK(U(p̃−)∗).
Then for all k ∈ N and all vector space V , denoting by Sk(V )

the vector subspace of the symmetric algebra S(V ) of V formed by
all homogeneous polynomials of degree k, one defines a morphism
ψk : grkK(U(p̃−)∗) −→ Sk(p

−)∗. It is easily checked that actually ψk
is an isomorphism of left U(p̃)-modules, where the left structure on
grkK(U(p̃−)∗) is induced by the dual representation of ad∗∗ and where
the left structure on Sk(p

−)∗ is given by the dual representation
of ad∗. With this structure, it is easily checked that Sk(p−)∗ is
isomorphic to the U(p̃)-module Sk(p̃) = Sk(p) where the action of p̃
is the adjoint action which extends by derivation the Lie bracket in
p̃. Thus we obtain an isomorphism of U(p̃)-modules and of algebras
from grK(U(p̃−)∗) to S(p̃).
• Denote by grK

(
C̃
U(r′)
r

)
the graded algebra associated with the in-

duced generalized Kostant filtration on C̃U(r′)
r . The former may be

viewed as a subalgebra of grK(U(p̃−)∗), which by equation in the
above alinea is invariant under the action of U(p̃′) induced by the
action of A on U(p̃−)∗ given by the dual representation of ad∗∗. Fi-
nally one can establish the main result of our paper (see subsection
7.6).

Theorem. There is an injection of algebras and of U(h)-modules
from grK

(
C̃
U(r′)
r

)
into the Poisson semicentre Sy(p̃) = S(p̃)p̃

′. This
implies a lower bound for the formal character of Sy(p̃), when the
latter is well defined.
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2. Notation.

2.1. General notation. Let g be a simple Lie algebra over k, h be a Cartan
subalgebra of g and choose a set π of simple roots for (g, h). Denote by ∆±

the set of positive, resp. negative, roots of (g, h) with respect to π and
∆ = ∆+ t∆− the set of roots of (g, h). Denote by [ , ] the Lie bracket in g
and by 〈 , 〉 the natural duality between h and h∗. Then for all root α ∈ ∆,
set gα = {x ∈ g | ∀h ∈ h, [h, x] = 〈h, α〉x} and fix a nonzero root vector xα
in gα.

Denote by n =
⊕

α∈∆+ gα, resp. n− =
⊕

α∈∆− gα, the maximal nilpotent
subalgebra of g generated by positive, resp. negative, root vectors, so that
g = n⊕ h⊕ n−. Let b = n⊕ h be the Borel subalgebra of g.

For each subset π′ of π, we denote by ∆±π′ the subset of ∆± generated by π′

that is, ∆±π′ = (±Nπ′) ∩∆±. Set nπ′ =
⊕

α∈∆+
π′
gα, resp. n−π′ =

⊕
α∈∆−

π′
gα.

Then the (standard) parabolic subalgebra p ⊃ b of g associated with π′ is

p = n⊕ h⊕ n−π′ .

The Levi factor r of p is

r = nπ′ ⊕ h⊕ n−π′

and its derived subalgebra (which is semisimple) is r′ = nπ′ ⊕ hπ′ ⊕ n−π′ ,
where hπ′ = h ∩ p′, with p′ = [p, p] being the derived subalgebra of p. If for
all α ∈ π, α̌ denotes the coroot associated with α, we have that hπ′ is the
k-vector space generated by the coroots α̌, with α ∈ π′.

The longest element of the Weyl group W , resp. W ′, of (g, h), resp. of
(r′, hπ′), is denoted by w0, resp. w′0.

Set hπ\π
′

= {h ∈ h | 〈h, π′〉 = 0} so that h = hπ′ ⊕ hπ\π
′ . Denote by m

the nilpotent radical of p, so that p = r⊕m. We have that n = nπ′ ⊕m and
that m =

⊕
α∈∆+\∆+

π′
gα. The opposite subalgebra p− of p is the parabolic

subalgebra of g defined by

p− = n− ⊕ h⊕ nπ′ .

We denote by m− the nilpotent radical of p− (so that p− = r ⊕ m−). The
Killing form K on g× g induces an isomorphism between the dual space p∗

of p and the vector space p−, since K is non degenerate on p×p−. Moreover
sinceK is also non degenerate on h×h, it induces a non degenerate symmetric
bilinear form ( , ) on h∗ × h∗ which is invariant under the action of W (see
for instance [11, 5.2.2]).

For all α ∈ π, resp. α ∈ π′, let $α, resp. $′α, be the fundamental weight
associated with α with respect to (g, h), resp. with respect to (r′, hπ′). Then
P (π) =

∑
α∈π Z$α, resp. P (π′) =

∑
α∈π′ Z$′α, is the weight lattice of (g, h),

resp. (r′, hπ′). Moreover P+(π) =
∑

α∈π N$α, resp. P+(π′) =
∑

α∈π′ N$′α,
is the set of dominant integral weights of (g, h), resp. (r′, hπ′). By [10, 2.5],
there exists some positive integer r such that
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(1) P (π) ⊂ P (π′)⊕ 1

r

∑
α∈π\π′

Z$α

and for all α ∈ π′, the projection of $α in P (π′) with respect to this decom-
position (1) is $′α. For λ =

∑
α∈πmα$α ∈ P (π) (mα ∈ Z for each α ∈ π),

we denote by λ′ =
∑

α∈π′mα$
′
α its projection in P (π′) with respect to the

decomposition (1).
For any finite-dimensional Lie algebra a, we denote by U(a) its universal

enveloping algebra and by S(a) its symmetric algebra, which may be viewed
as the (commutative) graded algebra associated with the canonical filtration
(Uk(a))k∈N on U(a) (see [4, 2.3]). We may also identify S(a) with the algebra
k[a∗] of polynomial functions on the dual space a∗ of a. For all k ∈ N, we
denote by Sk(a) the vector subspace of S(a) formed by all homogeneous
polynomials of degree k.

For all λ ∈ P+(π), the irreducible highest weight g-module of highest
weight λ (which is obtained by quotienting the corresponding Verma module
by its largest proper sub-g-module, as defined for example in [4, 7.1.11]) is
denoted by V (λ) : recall ([4, 7.2.6]) that this is a finite-dimensional U(g)-
module. We may pay attention that (unlike the notation in [4, 7.1.4, 7.1.12])
the highest weight of V (λ) in our paper is λ and not λ − ρ, where ρ is the
sum of all fundamental weights of (g, h).

2.2. Semi-direct product. Recall the parabolic subalgebra p = r⊕m and
its opposite parabolic subalgebra p− = r ⊕ m−, with m, resp. m−, the
nilpotent radical of p, resp. p−.

We now consider the semi-direct product p̃ = r n (m)a, resp. p̃− = r n
(m−)a, where (m)a, resp. (m−)a, is isomorphic to m, resp. m−, as an r-
module, but where the superscript a means that (m)a, resp. (m−)a, is an
abelian ideal of p̃, resp. of p̃−. Such a semi-direct product is still a Lie
algebra by [31, Sect. 4] for example, called an Inönü-Wigner contraction, or
a one-parameter contraction of p, resp. of p−. The k-vector space p̃, resp.
p̃−, is equal to p, resp. p−, as a vector space and if we denote by [ , ]p̃, resp.
[ , ]p̃− the Lie bracket in p̃, resp. p̃−, and by [ , ] the Lie bracket in g, then
one has that

(2) ∀z, z′ ∈ r, ∀x, x′ ∈ m, [z, x]p̃ = [z, x], [z, z′]p̃ = [z, z′], [x, x′]p̃ = 0

(3)
∀z, z′ ∈ r, ∀y, y′ ∈ m−, [z, y]p̃− = [z, y], [z, z′]p̃− = [z, z′], [y, y′]p̃− = 0.

3. The degenerate highest weight module.

In this section, we fix λ ∈ P+(π) and we will define, from the irreducible
highest weight module V (λ) of highest weight λ, some vector space denoted
by Ṽ (λ) which can be endowed with a left U(p̃−)-module structure, so that
it is isomorphic to V (λ) as a left U(r)-module.
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3.1. The generalized PBW filtration. Consider V (λ) the irreducible
highest weight g-module of highest weight λ as defined in subsection 2.1.

Generalizing the PBW filtration on a highest weight irreducible g-module
introduced in [15], when p = b is a Borel subalgebra of g (that is, when π′ =
∅), we define what we call the generalized Poincaré-Birkhoff-Witt filtration
on V (λ) as follows.

Choose vλ a nonzero weight vector in V (λ) of highest weight λ and vw0λ

a nonzero weight vector in V (λ) of lowest weight w0λ. Since n− = n−π′ ⊕m−,
the multiplication in the enveloping algebra gives, by the Poincaré-Birkhoff-
Witt theorem [4, 2.1.11], an isomorphism of vector spaces U(n−π′)⊗U(m−) '
U(n−). Then we have that

V (λ) = U(n−π′).(U(m−).vλ) = U(r).(U(m−).vλ) = U(m−).(U(n−π′).vλ)

since m− is an ideal of p−. In other words, every element in V (λ) is a finite
sum of vectors of the form u′u.vλ or of the form uu′.vλ where u′ ∈ U(r)
and u ∈ U(m−). Set V ′(λ) = U(n−π′).vλ. The latter is an irreducible U(r)-
module.

Recall (Uk(m
−))k∈N the canonical filtration (also called standard degree

filtration in [15]) on the enveloping algebra U(m−) of m−. More precisely
Uk(m

−) is the vector subspace of U(m−) generated by the products y1 · · · yp
where yi ∈ m− for all i, 1 ≤ i ≤ p, and p ≤ k.

For all k ∈ N, let Fk(V (λ)) be the vector subspace of V (λ) generated by

{v ∈ V (λ) | ∃p ∈ N, p ≤ k, ∃y1, . . . , yp ∈ m−, ∃u′ ∈ U(r);
v = u′ y1 · · · yp.vλ}.

where u′ y1 · · · yp denotes an element in U(p−). Observe that we also have
that Fk(V (λ)) is the vector subspace of V (λ) generated by

{v ∈ V (λ) | ∃p ∈ N, p ≤ k, ∃y1, . . . , yp ∈ m−, ∃u′ ∈ U(r);
v = y1 · · · yp u′.vλ}

since [r, m−] ⊂ m−.
In other words, one has that F0(V (λ)) = U(r).vλ = U(n−π′).vλ = V ′(λ)

and for all k ∈ N, Fk(V (λ)) = Uk(m
−).V ′(λ) is a left U(r)-module. We have

the lemma.
Lemma. Set F := (Fk(V (λ)))k∈N. Then F is an increasing and exhaustive
filtration on V (λ).
Proof. F is increasing since the canonical filtration (Uk(m

−))k∈N on U(m−)
is increasing. Moreover

⋃
k∈N Fk(V (λ)) = V (λ) since V (λ) = U(m−).V ′(λ)

and since the canonical filtration on U(m−) is exhaustive. �

We call F the generalized Poincaré-Birkhoff-Witt filtration on V (λ) since
when π′ = ∅, it coincides with the PBW filtration on V (λ) introduced in
[15]. The associated graded space is denoted by

Ṽ (λ) := grF (V (λ)) =
⊕
k∈N

Fk(V (λ))

Fk−1(V (λ))
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where F−1(V (λ)) := {0} and we call Ṽ (λ) the degenerate highest weight
module associated with λ. For all v ∈ Fk(V (λ)), we denote by grk(v) its

canonical image in grk(V (λ)) :=
Fk(V (λ))

Fk−1(V (λ))
. Denote by Ṽ ′(λ) the canoni-

cal image of V ′(λ) in Ṽ (λ) that is, Ṽ ′(λ) = gr0(V ′(λ)) = gr0(V (λ)) ⊂ Ṽ (λ).

3.2. Structure of module on the degenerate highest weight mod-
ule. Recall that, for all k ∈ N, Fk(V (λ)) is a finite-dimensional left U(r)-
module and that the Lie algebra r is reductive and the elements of its centre
act reductively in Fk(V (λ)). Then by [4, 1.6.4] one has that Fk(V (λ))
is a semisimple U(r)-module. Moreover Fk−1(V (λ)) is a submodule of
Fk(V (λ)). Then there exists a left U(r)-submodule F k(V (λ)) of Fk(V (λ))
such that Fk(V (λ)) = F k(V (λ))⊕Fk−1(V (λ)) and we have that

Fk(V (λ)) =

k⊕
i=0

F i(V (λ))

where F 0(V (λ)) = F0(V (λ)). One deduces that

V (λ) =
⊕
k∈N

F k(V (λ)).

It allows us to define, for all k ∈ N, an isomorphism of vector spaces

βkλ : grk(V (λ)) −→ F k(V (λ))

such that, for all v ∈ Fk(V (λ)), v =
∑k

i=0 vi with vi ∈ F i(V (λ)), for all
0 ≤ i ≤ k,

βkλ(grk(v)) = vk.

Then the direct sum βλ =
⊕

k∈N β
k
λ is an isomorphism between the vector

spaces Ṽ (λ) and V (λ).
Set, for all y ∈ m−, z ∈ r and v ∈ Fk(V (λ)),

(4) y.grk(v) = grk+1(y.v)

and

(5) z.grk(v) = grk(z.v).

We will see below that equations (4) and (5) extend to a left U(p̃−)-module
structure on Ṽ (λ) and that βλ is an isomorphism of U(r)-modules.

Set ñ− = n−π′ n (m−)a : it is a Lie subalgebra of p̃−. Set also ṽλ = gr0(vλ).
Denote by θ : S(p−) −→ U(p−) the symmetrisation, as defined in [4,

2.4.6]. More precisely for k ∈ N∗, and for all y1, . . . , yk ∈ p−,

θ(y1 · · · yk) =
1

k!

∑
σ∈Sk

yσ(1) · · · yσ(k)

where Sk is the set of permutations of k elements, the product in the left
hand side lying in Sk(p

−) and the product in the right hand side lying in
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Uk(p
−). Endow the symmetric algebra S(p−), resp. the enveloping alge-

bra U(p−), with the adjoint action of U(r), denoted by ad, which extends
uniquely by derivation the adjoint action of r on p− given by Lie bracket. By
[4, 2.4.10] the map θ is an isomorphism of adU(r)-modules. For all k ∈ N, set
Uk(m−) = θ(Sk(m

−)). Then Uk(m−) is a left adU(r)-submodule of Uk(m−)
and actually one has that Uk(m−) = Uk(m−)⊕Uk−1(m−) by [4, 2.4.4, 2.4.5].
Denote by prUk(m−) the projection onto Uk(m−) with respect to the above
decomposition. We have the following.

Lemma. Let λ ∈ P+(π) and k ∈ N.
(i) Equations (4) and (5) extend to a left U(p̃−)-action on the vector

space Ṽ (λ) and for this structure we have the following equalities :

(6) Ṽ ′(λ) = U(r).ṽλ

(7) Ṽ (λ) = U(p̃−).ṽλ = U(ñ−).ṽλ = S(m−).Ṽ ′(λ) = U(p̃−).Ṽ ′(λ).

(ii) For all s ∈ Sk(m−), u′ ∈ U(r) and u ∈ Uk(m−) one has :

(8) su′.ṽλ = grk(θ(s)u
′.vλ)

(9) grk(uu
′.vλ) = grk(prUk(m−)(u)u′.vλ)

(10) grk(V (λ)) = Sk(m
−).Ṽ ′(λ).

(iii) The map βλ is an isomorphism of U(r)-modules between Ṽ (λ) and
V (λ). Then Ṽ ′(λ) is a left irreducible U(r)-module and Ṽ (λ) has
the same set of weights as V (λ), especially λ is the highest weight of
Ṽ (λ) and w0λ is its lowest weight.

(iv) One may choose F k(V (λ)) to be included in Uk(m−).V ′(λ).

Proof. By [4, 2.1.1] and (3) of subsection 2.2, one may observe that the
algebra U(p̃−) is the quotient of the tensor algebra T (p̃−) = T (p−) of the
vector space p̃− = p− by the two-sided ideal generated by the set

{z⊗z′−z′⊗z−[z, z′], z⊗y−y⊗z−[z, y], y⊗y′−y′⊗y; z, z′ ∈ r, y, y′ ∈ m−}
and that, by the Poincaré-Birkhoff-Witt theorem [4, 2.1.11], the multipli-
cation is an isomorphism between the k-vector spaces U(r) ⊗ S(m−) and
U(p̃−).

Fix k ∈ N. For all x ∈ m− ⊕ r = p−, denote by x.Fk(V (λ)) the vector
subspace of V (λ) formed by all the vectors x.v, with v ∈ Fk(V (λ)) (where
x.v denotes the action of x on v by the left U(g)-module structure on V (λ)).

Then for all y ∈ m−, one has that y.Fk(V (λ)) ⊂ Fk+1(V (λ)), and for all
z ∈ r, one has that z.Fk(V (λ)) ⊂ Fk(V (λ)). It follows that equation (4)
extends to a left action of S(m−) on Ṽ (λ) since moreover, for y, y′ ∈ m−

and v ∈ Fk(V (λ)), we have:

y.(y′.(grk(v))− y′.(y.grk(v)) = grk+2((yy′ − y′y).v) = grk+2([y, y′].v) = 0.
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Similarly equation (5) extends to a left action of U(r) on Ṽ (λ) induced by
the left action of U(r) on V (λ). Finally both equations (4) and (5) extend
to a left action of U(p̃−) on Ṽ (λ) (by say, [4, 2.2.1, 2.2.2]). Equation (6)
follows since Ṽ ′(λ) = gr0(V ′(λ)) = gr0(U(r).vλ).

Let ṽ ∈ Ṽ (λ). There exists k ∈ N and vi ∈ Fi(V (λ)), for 0 ≤ i ≤ k, such
that ṽ =

∑k
i=0 gri(vi) with, for all i, vi =

∑ni
j=1 u

′
ijuij .vλ where u′ij ∈ U(r)

and uij ∈ Ui(m−). Then by equation (5), one has

gri(vi) =

ni∑
j=1

u′ij .gri(uij .vλ)

and by equation (4),

gri(uij .vλ) ∈ Si(m−).gr0(vλ).

Actually we may take the u′ij in U(n−π′), since

V (λ) = U(n−).vλ = U(n−π′).(U(m−).vλ).

We then have Ṽ (λ) = U(p̃−).ṽλ = U(ñ−).ṽλ. Since Ṽ ′(λ) = U(r).ṽλ and
since the multiplication gives the isomorphism of vector spaces U(p̃−) '
S(m−)⊗U(r), we also have that Ṽ (λ) = S(m−).Ṽ ′(λ) = U(p̃−).Ṽ ′(λ). Hence
equation (7).

Let k ∈ N∗ and set s = y1 · · · yk ∈ Sk(m−) with yi ∈ m− for all 1 ≤ i ≤ k.
Then θ(s) = y1 · · · yk + u ∈ Uk(m−) with u ∈ Uk−1(m−) and y1 · · · yk ∈
Uk(m

−). Then equations (4) and (5) and the fact that Uk−1(m−)U(r).vλ =
Fk−1(V (λ)) give equation (8). Equation (9) is obvious by the decomposition
Uk(m

−) = Uk(m−)⊕ Uk−1(m−). Both equations imply equation (10).
By equation (5), we have that grk(V (λ)) is an U(r)-module. Moreover if

ṽ ∈ grk(V (λ)) is such that ṽ = grk(vk) with vk ∈ F k(V (λ)), we have that
βkλ(ṽ) = vk. Let z ∈ r. Then by equation (5), one has that z.ṽ = grk(z.vk)
which implies that

βkλ(z.ṽ) = z.vk = z.βkλ(ṽ),

since z.vk ∈ F k(V (λ)) because F k(V (λ)) is an U(r)-module. This shows
(iii). Finally to prove (iv) it suffices to observe that Uk(m−).V ′(λ) is a
finite dimensional U(r)-module. Set Wk = Uk(m−).V ′(λ) ∩ Fk−1(V (λ)).
Then Wk is a left U(r)-submodule of Uk(m−).V ′(λ) and then there exists a
left U(r)-submodule W ′k such that Uk(m−).V ′(λ) = Wk ⊕W ′k. Now W ′k ∩
Fk−1(V (λ)) = {0} and then one may choose the U(r)-module F k(V (λ)) to
contain W ′k. But Fk(V (λ)) = Fk−1(V (λ))⊕F k(V (λ)) = Uk(m

−).V ′(λ) ⊂
Uk(m−).V ′(λ) + Uk−1(m−).V ′(λ) since Uk(m−) = Uk(m−) ⊕ Uk−1(m−). It
follows that W ′k = F k(V (λ)), which completes the proof. �

3.3. Another structure of module on the degenerate highest weight
module. Recall the isomorphism βλ of U(r)-modules from Ṽ (λ) into V (λ)



SYMMETRIC SEMI-INVARIANTS FOR SOME INÖNÜ-WIGNER CONTRACTIONS 13

(lemma 3.2 (iii)). For all ṽ ∈ Ṽ (λ) and all x ∈ p, one sets

(11) ρλ(x)(ṽ) = β−1
λ (x.βλ(ṽ))

where x.βλ(ṽ) stands for the left action of x ∈ g on βλ(ṽ) ∈ V (λ).
It is easily checked that ρλ is a morphism of Lie algebras from p to

gl(Ṽ (λ)), hence that it extends to a left action of U(p) on Ṽ (λ) (again
by [4, 2.2.1, 2.2.2]). Moreover for all x ∈ r and ṽ ∈ Ṽ (λ), since βλ is a mor-
phism of U(r)-modules, one has that ρλ(x)(ṽ) = x.ṽ where the right hand
side denotes the left action of r on Ṽ (λ) defined in subsection 3.2.

Remark. By [10, 2.7], one has that V ′(λ) = {v ∈ V (λ) | m.v = 0}. Hence

(12) Ṽ ′(λ) = {ṽ ∈ Ṽ (λ) | ρλ(m)(ṽ) = 0}

since Ṽ ′(λ) = β−1
λ (V ′(λ)).

4. Action of a smash product.

In this section, we will define a smash productA = T (m)#U(r), containing
the enveloping algebra U(r) and the tensor algebra T (m), where the action
of U(r) on T (m) derives from the adjoint action of r in T (m) which extends
uniquely by derivation the adjoint action given by Lie bracket. This algebra
A is an associative algebra, which is actually a Hopf algebra. We will define
what we call a generalized adjoint action (denoted by ad∗∗) of the algebra
A on the enveloping algebra U(p̃−) and another left action of A on U(p̃−),
where the latter is simply left multiplication when restricted to U(r). The
action ad∗∗ derives from the coadjoint action, denoted by ad∗, of p̃ on p−

(note that, as vector spaces, one has p̃∗ ' p−). We will see in subsection 7.3
why we need to take this coadjoint action ad∗.

4.1. A smash product. Recall that m denotes the nilpotent radical of p
and that T (m) denotes the tensor algebra of m. Since [r, m] ⊂ m, the algebra
T (m) is an U(r)-algebra (in the sense of [17, 1.1.6]) with the adjoint action
of r on T (m) (denoted by ad) extending by derivation the adjoint action of r
on m given by the Lie bracket in g. Then we may consider the Hopf smash
product A = T (m)#U(r) in the sense of [17, 1.1.8]. More precisely A is equal
as a vector space to the tensor product T (m) ⊗ U(r), with multiplication
given by (s⊗u)(s′⊗u′) = s ad u1(s′)⊗u2u

′ where ∆(u) = u1⊗u2 (Sweedler
notation), ∆ being the coproduct in U(r), s, s′ ∈ T (m) and u, u′ ∈ U(r).

For example for all z ∈ r, s, s′ ∈ T (m) and u ∈ U(r), one has that
(s′⊗ z)(s⊗u) = s′ ad z(s)⊗u+ s′s⊗ zu. By setting s⊗ 1 = s and 1⊗u = u
we may view T (m) and U(r) as subalgebras of A. Then one has in A that
s⊗ u = (s⊗ 1)(1⊗ u) = su and that

(13) ∀z ∈ r, ∀s ∈ T (m), ad z(s) = zs− sz
and in particular

(14) ∀z ∈ r, ∀x ∈ m, [z, x] = zx− xz.
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Observe that A is an associative unitary algebra (see [17, 1.1.8]) which is
also a bialgebra thanks to the coproducts in T (m) and in U(r). More precisely
denoting also by ∆ the coproduct in T (m), and by ∆A the coproduct in A,
we set for s ∈ T (m) and u ∈ U(r), ∆A(s ⊗ u) = (s1 ⊗ u1) ⊗ (s2 ⊗ u2)
if ∆(s) = s1 ⊗ s2 and ∆(u) = u1 ⊗ u2 with Sweedler notation. We then
have that ∆A((s⊗ 1)(1⊗ u)) = ∆A(s⊗ 1)∆A(1⊗ u) and more generally for
s, s′ ∈ T (m) and u, u′ ∈ U(r), ∆A((s⊗ u)(s′ ⊗ u′)) = ∆A(s⊗ u)∆A(s′ ⊗ u′)
by the cocommutativity of ∆. Note that the coproduct ∆A extends the
coproduct ∆ in T (m) and in U(r). Actually the bialgebra A is a Hopf algebra
with the coidentity ε given by ε(x) = 0 for all x ∈ p and the antipode given
by a ∈ A 7→ a> ∈ A, where

(15) a> = (−1)rxr · · ·x1 ∈ A

if a = x1 · · ·xr ∈ A (product in A) with x1, . . . , xr ∈ p extended by linearity
to every element in A. One checks easily that the coidentity and the antipode
(which coincide respectively with the coidentity and the antipode on T (m)
and on U(r), see for instance [17, 1.2.5]) are compatible with equation (14)
which defines the smash product A.

Roughly speaking, the Hopf algebra A coincides with the enveloping al-
gebra U(p) or even U(p̃), except that no relations are required for the asso-
ciative product of elements in m.

4.2. Coadjoint action. Recall the opposite parabolic subalgebra p− of p.
Thanks to the Killing form on g, we have the isomorphism of vector spaces
p̃∗ ' p−. As it was already mentioned in [18, 2], p− is a p̃-module, by the
socalled coadjoint representation (denoted by ad∗) of p̃ = r n (m)a in p−

defined as follows.

(16) ∀x ∈ r, ∀ y ∈ p−, ad∗x(y) = [x, y].

(17) ∀x ∈ m, ∀ y ∈ p−, ad∗x(y) = prr([x, y])

where prr is the projection of g = r⊕m⊕m− onto r. In particular

(18) ∀x ∈ m, ∀ y ∈ r, ad∗x(y) = 0.

Lemma. The map ad∗ : p̃ −→ gl(p−) is a morphism between the Lie algebras
p̃ and gl(p−). In other words it gives a representation of p̃ in p−, which
extends uniquely to a representation of U(p̃) in p−. This representation also
extends uniquely by derivation to a representation of U(p̃) in the symmetric
algebra S(p−), which we still denote by ad∗.

Proof. We give a proof of the lemma for the reader’s convenience. It suffices
to prove that, for all x, x′ ∈ p̃, and for all y ∈ p−, we have

(19) (ad∗x ◦ ad∗x′)(y)− (ad∗x′ ◦ ad∗x)(y)− ad∗[x, x′]p̃(y) = 0.
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Assume that x, x′ ∈ m. Then [x, x′]p̃ = 0 by equation (2) in subsection
2.2. Moreover for all y ∈ p−,

(ad∗x ◦ ad∗x′)(y) = ad∗x(prr([x
′, y])) = 0

by (17) and (18). Then equality (19) follows in this case.
Assume that x, x′ ∈ r. Then equality (19) follows from equations (2) and

(16).
It remains to prove equality (19) for x ∈ m and x′ ∈ r. By equations (2),

(16) and (17) one has that, for all y ∈ p−,

(ad∗x ◦ ad∗x′)(y)− (ad∗x′ ◦ ad∗x)(y)− ad∗[x, x′]p̃(y)

= ad∗x([x′, y])− ad∗x′(prr([x, y]))− prr([[x, x′], y])

= prr([x, [x′, y]])− [x′, prr([x, y])]− prr([[x, x′], y]).

Denote by prm, resp. prm− , the projection of g = r⊕m⊕m− onto m, resp.
onto m−.

Then

(20) [x′, prr([x, y])] =
[
x′, [x, y]− prm−([x, y])− prm([x, y])

]
and we have

(21) [x′, prm−([x, y])] ∈ m−, [x′, prm([x, y])] ∈ m, [x′, prr([x, y])] ∈ r.

Then by (20) and (21) we have that

(22) [x′, prr([x, y])] = prr([x
′, [x, y]]).

It follows by (22) that

(ad∗x ◦ ad∗x′)(y)− (ad∗x′ ◦ ad∗x)(y)− ad∗[x, x′]p̃(y)

= prr
(
[x, [x′, y]]− [x′, [x, y]]− [[x, x′], y]

)
= 0

by Jacobi identity in g.
Applying [4, 2.2.1] and [4, 1.2.14] completes the proof of the lemma. �

4.3. Partial symmetrisation. Recall the symmetrisation θ : S(p−) −→
U(p−) which is an isomorphism of adU(r)-modules, when S(p−) and U(p−)
are endowed with the adjoint action ad (see 3.2). Denote also by ad the
adjoint action of U(r) on U(p̃−), extending by derivation the Lie bracket of
r on p̃− (see equation (3)).

Set θ̃ : S(p−) ' S(m−)⊗ S(r) −→ U(p̃−) ' S(m−)⊗ U(r)
defined by the following.

(23) ∀s ∈ S(m−), ∀s′ ∈ S(r), θ̃(ss′) = s θ(s′).

We call the map θ̃ a partial symmetrisation. Observe that θ̃ does not
coincide with the symmetrisation ˜̃

θ of S(p̃−) = S(p−) in U(p̃−). For instance,
for y ∈ m− and z ∈ r, one has that θ̃(yz) = yz, while ˜̃

θ(yz) = 1
2(yz + zy) =

yz + 1
2 [z, y].
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Lemma. The map θ̃ is an isomorphism of adU(r)-modules, when S(p−) and
U(p̃−) are endowed with the adjoint action.

Proof. Since IdS(m−) and θ|S(r) : S(r) −→ U(r) are isomorphisms, it follows
that θ̃ = IdS(m−) ⊗ θ|S(r) is an isomorphism too.

Let z ∈ r, s ∈ S(m−) and s′ ∈ S(r). Observe that one has that ad z(s) ∈
S(m−), and this element may be viewed equally as an element in S(p−)
or in U(p̃−). Moreover ad z(s′) ∈ S(r) and ad z(θ(s′)) ∈ U(r). Since ad z
is a derivation and since θ is a morphism of adU(r)-modules we have, by
equation (23):

θ̃(ad z(ss′)) = θ̃(ad z(s)s′ + s ad z(s′))

= ad z(s)θ(s′) + s θ(ad z(s′))

= ad z(s)θ(s′) + s ad z(θ(s′))

= ad z (s θ(s′))

= ad z(θ̃(ss′))

This proves the lemma. �

4.4. Generalized adjoint action. Recall the isomorphism of vector spaces
U(p̃−) ' S(m−)⊗ U(r). Then one has that

(24) U(p̃−) '
⊕
k∈N

Sk(m
−)⊗ U(r)

and for all k ∈ N,

(25) Uk(p̃
−) '

⊕
0≤j≤k

Sj(m
−)⊗ Uk−j(r)

as vector spaces. Recall also the coadjoint representation of p̃ in the sym-
metric algebra S(p−), which we have denoted by ad∗ (subsection 4.2). Fix
k and j in N and set S−1(m−) = {0}. One has by equation (17) that

(26) ∀x ∈ m, ∀s ∈ Sk(m−), ad∗x(s) ∈ Sk−1(m−)r ⊂ Sk(p−).

Then one has that

(27) ∀x ∈ m, ∀s ∈ Sk(m−), ∀u′ ∈ Uj(r),

θ̃(ad∗x(s))u′ ∈ Sk−1(m−)Uj+1(r) ⊂ Uk+j(p̃
−)

and that

(28) ∀z ∈ r, ∀s ∈ Sk(m−), ∀u′ ∈ U(r), ad z(su′) ∈ Sk(m−)U(r) ⊂ U(p̃−).

We set

(29)
∀x ∈ m, ∀s ∈ Sk(m−), ∀u′ ∈ U(r), ad∗∗x(su′) = θ̃(ad∗x(s))u′ ∈ U(p̃−)
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and

(30) ∀z ∈ r, ∀s ∈ Sk(m−), ∀u′ ∈ U(r), ad∗∗z(su′) = ad z(su′) ∈ U(p̃−).

Observe that

(31) ∀x ∈ m, ∀u′ ∈ U(r), ad∗∗x(u′) = 0

and

(32) ∀x ∈ m, ∀s ∈ Sk(m−), ∀u′ ∈ U(r), ad∗∗x(su′) = ad∗∗x(s)u′.

Lemma. Equations (29) and (30) extend to a left action of A on the en-
veloping algebra U(p̃−). We call this action the generalized adjoint action of
A on U(p̃−).

Proof. Since equation (30) is just the adjoint action, it extends to a left
action of U(r) on U(p̃−) by [4, 2.2.1, 2.4.9].

Now consider x ∈ m. One can extend equation (29) by linearity so that
ad∗∗x ∈ End(U(p̃−)). Let us explain why this is well defined.

Note first that, for y ∈ m− and z ∈ r, one sets

ad∗∗x(zy) = ad∗∗x(yz) + ad∗∗x([z, y]).

More generally by equation (24) every element in U(p̃−) may be written
in the form

∑
i∈I siu

′
i with I a finite set and for all i ∈ I, si ∈ S(m−) and

u′i ∈ U(r), with the si, i ∈ I, linearly independent. Then if such an element
is zero, we have that u′i = 0 for all i ∈ I, and then ad∗∗x(

∑
i∈I siu

′
i) =∑

i∈I θ̃(ad
∗x(si))u

′
i = 0.

Moreover for s, s′ ∈ S(m−), one has

ad∗∗x(ss′) = θ̃(ad∗x(ss′)) = θ̃(ad∗x(s′s)) = ad∗∗x(s′s)

since ad∗x is an endomorphism of S(p−). Then ad∗∗x is well defined on
U(p̃−).

Finally ad∗∗ is a linear map from m to End(U(p̃−)), which extends natu-
rally to a k-algebras morphism from T (m) to End(U(p̃−)). We then obtain
left U(r) and T (m)-module structures on U(p̃−).

It remains to check that both structures imply a left A-module structure
on U(p̃−), that is, are compatible with equation (13), which defines the
smash product A. For this it suffices to prove that

(33) ∀x ∈ m, ∀z ∈ r, ad∗∗z ◦ ad∗∗x− ad∗∗x ◦ ad∗∗z = ad∗∗[z, x].

Let x ∈ m, z ∈ r, s ∈ S(m−) and u′ ∈ U(r). Since ad z is a derivation in
U(p̃−), one has that
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ad∗∗(zx− xz)(su′) = (ad∗∗z ◦ ad∗∗x− ad∗∗x ◦ ad∗∗z)(su′)

= ad z(θ̃(ad∗x(s))u′)

− ad∗∗x(ad z(s)u′ + s ad z(u′))

= ad z(θ̃(ad∗x(s)))u′ + θ̃(ad∗x(s))ad z(u′)

− θ̃(ad∗x(ad z(s)))u′ − θ̃(ad∗x(s))ad z(u′)

since moreover ad z(s) ∈ S(m−) and ad z(u′) ∈ U(r). Then

ad∗∗(zx− xz)(su′) = θ̃((ad z ◦ ad∗x)(s))u′ − θ̃(ad∗x(ad z(s)))u′

by lemma 4.3 and then

ad∗∗(zx− xz)(su′) = θ̃((ad∗z ◦ ad∗x)(s))u′ − θ̃((ad∗x ◦ ad∗z)(s))u′

since, for all t ∈ S(p−), one has that ad z(t) = ad∗z(t) by equation (16).
Since

ad∗z ◦ ad∗x− ad∗x ◦ ad∗z = ad∗[z, x]

in End(S(p−)) by the proof of Lemma 4.2, the required equation (33) follows.
�

Remark. We will see in subsection 4.5 why we call this left action ad∗∗ of
A on U(p̃−) a generalized adjoint action.

4.5. Left and right actions. Here we will define a right, resp. a left action,
of A on U(p̃−) as follows.

(34) ∀u′ ∈ U(r), ∀u ∈ U(p̃−), R(u′)(u) = uu′

(product in U(p̃−)). Then R|U(r) is a right action of U(r) on U(p̃−) called the
regular right action (see [4, 2.2.21]). We extend this right action by setting

(35) ∀x ∈ m, R(x) = 0.

One checks immediately that the map R induces a right action of A on U(p̃−)
(still denoted by R). It follows that the map a ∈ A 7→ R(a>) is a left action
of A on U(p̃−).

One also sets:

(36) ∀u′ ∈ U(r), ∀u ∈ U(p̃−), L(u′)(u) = u′u

(product in U(p̃−)).
Then L|U(r) is a left action of U(r) on U(p̃−) called the regular left action

(see [4, 2.2.21]). We extend this left action by setting

(37) ∀x ∈ m, L(x) = ad∗∗x

(see equation (29)), which extends by the proof of lemma 4.4 to a left action
of T (m) on U(p̃−).
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Lemma. The map L extends to a left action of A on U(p̃−) (still denoted
by L). Note that this is not in general a left action of U(p) nor of U(p̃) on
U(p̃−).

Proof. We have to check that the map L preserves equation (13) which de-
fines the smash product A and for this it suffices to check that L preserves
equation (14). In other words we have to check that

(38) ∀z ∈ r, ∀x ∈ m, L([z, x]) = L(z) ◦ L(x)− L(x) ◦ L(z).

Let x ∈ m, z ∈ r, s ∈ Sk(m−) and u′ ∈ U(r). One has that

(L(z) ◦ L(x)− L(x) ◦ L(z)− L([z, x]))(su′)

= z ad∗∗x(su′)− ad∗∗x(zsu′)− ad∗∗[z, x](su′)

= z ad∗∗x(su′)− (ad∗∗x ◦ ad∗∗z)(su′)− ad∗∗x(su′z)

−ad∗∗[z, x](su′)

since ad∗∗z(su′) = ad z(su′) = zsu′ − su′z in U(p̃−).
Recall that ad∗∗x(su′z) = θ̃(ad∗x(s))u′z = ad∗∗x(su′)z. Then

(L(z) ◦ L(x)− L(x) ◦ L(z)− L([z, x]))(su′)

= z ad∗∗x(su′)− (ad∗∗x ◦ ad∗∗z)(su′)− ad∗∗x(su′)z

−ad∗∗[z, x](su′)

= (ad∗∗z ◦ ad∗∗x)(su′)− (ad∗∗x ◦ ad∗∗z)(su′)− ad∗∗[z, x](su′)

since in U(p̃−) we have (ad∗∗z ◦ ad∗∗x)(su′) = z ad∗∗x(su′) − ad∗∗x(su′) z.
Now equation (33) gives equation (38). �

Recall (see [17, 1.3.1] for instance) that adjoint action in a Hopf algebra
A may be expanded by using the right action R and the left action L of A
as in the following proposition. Hence we may view ad∗∗ as a generalized
adjoint action (here the Hopf algebra A does not act on itself but on U(p̃−)).

Proposition. One has the following.

(39) ∀a ∈ A, ad∗∗a = L(a1) ◦R(a>2 )

where ∆A(a) = a1 ⊗ a2 (with Sweedler notation).

Proof. Observe that, as vector spaces, one has

A ' U(r)⊕m⊗ T (m)⊗ U(r).

Let a ∈ U(r). Then in this case, ad∗∗a = ad a and for all u ∈ U(p̃−) one
has (L(a1) ◦ R(a>2 ))(u) = a1ua

>
2 (product in U(p̃−)). Hence the required

equation (39) in this case, by [17, 1.3.1].
Assume now that a = uu′ with u ∈ m⊗T (m) and u′ ∈ U(r). Set ∆A(u) =

u1⊗u2 and ∆A(u′) = u′1⊗u′2. We have that u′1, u′2 ∈ U(r) and u1, u2 ∈ T (m)
and ∆A(a) = u1u

′
1⊗u2u

′
2. Moreover one has that ∆A(u) = u⊗1+

∑
i∈I u1i⊗
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u2i with for all i ∈ I, u2i ∈ m⊗T (m). But if u2i ∈ m⊗T (m) then R(u>2i) = 0.
It follows that, for all v ∈ U(p̃−), one has

(L(a1) ◦R(a>2 ))(v) = (L(uu′1) ◦R(u′
>
2 ))(v)

= (L(u) ◦ L(u′1) ◦R(u′
>
2 ))(v)

= (L(u) ◦ ad∗∗u′)(v)

= (ad∗∗u ◦ ad∗∗u′)(v)

= ad∗∗a(v)

which completes the proof. �

Remark. Actually one also has that

(40) ∀a ∈ A, ∀b ∈ A, R(b) ◦ L(a) = L(a) ◦R(b).

Indeed if a, b ∈ U(r) or if b ∈ m⊗T (m)⊗U(r) then equation (40) is immediate
by the associativity of the product in U(p̃−) or because, in the second case,
that R(b) = 0. Finally when b ∈ U(r) and a ∈ m ⊗ T (m) ⊗ U(r), equation
(40) follows from equation (32).

5. Matrix coefficients.

5.1. Definitions and further notation. Let λ ∈ P+(π). Here we use
the notation and results of subsection 3.2. By Lemma 3.2 the degenerate
highest weight module Ṽ (λ) is endowed with a left U(p̃−)-module structure.
Denote by Ṽ (λ)∗ its dual vector space. Let ṽ ∈ Ṽ (λ), ξ̃ ∈ Ṽ (λ)∗, u ∈
U(p̃−). Denoting by u.ṽ the action of u on ṽ for this left U(p̃−)-module
structure on Ṽ (λ), we denote by ξ̃.u the right action it implies on Ṽ (λ)∗,
namely (ξ̃.u)(ṽ) = ξ̃(u.ṽ). Recall ṽλ = gr0(vλ) and the isomorphism βλ :

Ṽ (λ) −→ V (λ) which is an isomorphism of left U(r)-modules. In particular
this isomorphism preserves the weights. Its dual map tβλ : V (λ)∗ −→ Ṽ (λ)∗

is also an isomorphism of right U(r)-modules. By definition of βλ, one has
that βλ(ṽλ) = vλ and then βλ(Ṽ ′(λ)) = β(U(r).ṽλ) = U(r).vλ = V ′(λ).

Recall ñ− = n−π′ n (m−)a ⊂ p̃−. Set ξ̃λ = tβλ(ξλ) where ξλ is the unique
vector in V (λ)∗ of (right) weight λ such that ξλ(vλ) = 1. Then ξ̃λ is the
unique vector in Ṽ (λ)∗ of weight λ such that ξ̃λ(ṽλ) = 1 and by weight
considerations one has that, for all y ∈ ñ−, ξ̃λ.y = 0 since ξλ is a vector
of lowest weight in V (λ)∗. Recall that vw0λ is a chosen nonzero vector in
V (λ) of weight w0λ and that it is a lowest weight vector in V (λ). Then set
ξw0λ ∈ V (λ)∗ the vector of (right) weight w0λ such that ξw0λ(vw0λ) = 1 :
ξw0λ is a highest weight vector in V (λ)∗. Set also ṽw0λ = β−1

λ (vw0λ) ∈ Ṽ (λ).
By weight considerations one has that y.ṽw0λ = 0 for all y ∈ ñ−. Set also
ξ̃w0λ = tβλ(ξw0λ) ∈ Ṽ (λ)∗. Then ξ̃w0λ(ṽw0λ) = 1. Since all vectors in V (λ)
of weight w0λ are proportional, one may observe that there exists k0 ∈ N
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such that

(41) vw0λ ∈ F k0(V (λ)).

Then one has that

(42) ṽw0λ = grk0(vw0λ).

Set V ′′(λ) = U(r).vw0λ = U(nπ′).vw0λ : it is an irreducible U(r)-module
of lowest weight w0λ. Setting Ṽ ′′(λ) = β−1

λ (V ′′(λ)) ⊂ Ṽ (λ), we have that
Ṽ ′′(λ) = U(r).ṽw0λ. Then its dual space Ṽ ′′(λ)∗ is such that Ṽ ′′(λ)∗ =
tβλ(V ′′(λ)∗) = ξ̃w0λ.U(n−π′) = ξ̃w0λ.U(r) ⊂ Ṽ (λ)∗.

Since U(p̃−) is a representation in Ṽ (λ) by (i) of Lemma 3.2, we may
consider by [4, 2.7.8] the space C(Ṽ (λ)) of matrix coefficients of Ṽ (λ) which
is the k-vector subspace of U(p̃−)∗ generated by the linear forms cλξ, v or
simply cξ, v defined by

cξ, v : u ∈ U(p̃−) 7→ ξ(u.v) ∈ k

for all ξ ∈ Ṽ (λ)∗ and v ∈ Ṽ (λ). By equation (7) of Lemma 3.2, we may also
define the k-vector subspace of C(Ṽ (λ)) generated by the matrix coefficients
cξ, v′ with ξ ∈ Ṽ (λ)∗ and v′ ∈ Ṽ ′(λ) ⊂ Ṽ (λ), which we will denote by C̃p(λ).

Finally denote by C̃r(λ) the subspace of C̃p(λ) generated by the matrix
coefficients cξ, v where ξ ∈ Ṽ ′′(λ)∗ and v ∈ Ṽ ′(λ).

5.2. Tensor decomposition.

Lemma. Let λ, µ ∈ P+(π). Then Ṽ ′(λ) ⊗ Ṽ ′(µ), resp. Ṽ ′′(λ)∗ ⊗ Ṽ ′′(µ)∗,
is a direct sum of some copies of Ṽ ′(ν), resp. Ṽ ′′(ν)∗, for ν ∈ P+(π). Each
of them contains the unique copy of Ṽ ′(λ+ µ), resp. of Ṽ ′′(λ+ µ)∗.

Proof. The proof is similar as the proof of [9, lemma 2.2]. We give it for the
reader’s convenience. Let ν be an h-weight of Ṽ ′(λ). Then ν ∈ λ − Nπ′.
Since λ ∈ P+(π) we have that, for all α ∈ π \ π′, 〈α̌, ν〉 ∈ N. Moreover
every vector in Ṽ ′(λ) is annihilated by ρλ(m) by remark 12. Since r′ is a
semisimple Lie algebra, the finite dimensional U(r′)-module (for diagonal
action) Ṽ ′(λ) ⊗ Ṽ ′(µ) decomposes into a direct sum of irreducible U(r′)-
modules, each of them being generated by a highest weight nonzero vector
whose h-weight actually belongs to P+(π) : this highest weight nonzero
vector ṽ is indeed such that (ρλ⊗ ρµ)(x)(ṽ) = 0 for all x ∈ n, where ρλ⊗ ρµ
is the tensor product of the representations ρλ and ρµ as defined for instance
in [4, 1.2.14] and its h-weight belongs to λ+µ−Nπ′. Thus the tensor product
Ṽ ′(λ) ⊗ Ṽ ′(µ) is a direct sum of some copies of Ṽ ′(ν), for ν ∈ P+(π) such
that ν ∈ λ+µ−Nπ′. Moreover U(r).(ṽλ⊗ ṽµ) is the unique copy of Ṽ ′(λ+µ)
which occurs in this tensor product.

Observe that Ṽ (λ)∗ may be viewed as a left U(r)-module, by setting for
all u ∈ U(r), for all ξ ∈ Ṽ (λ)∗, u.ξ = ξ.u>. Then Ṽ ′′(λ)∗ ' Ṽ ′(−w0λ) as
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left U(r)-modules. Then one obtains similarly the second part of the lemma,
Ṽ ′′(λ)∗⊗Ṽ ′′(µ)∗ being a direct sum of some copies of Ṽ ′′(ν)∗, with ν ∈ P+(π)

such that w0ν ∈ w0λ+ w0µ+ Nπ′. Finally (ξ̃w0λ ⊗ ξ̃w0µ).U(r) is the unique
copy of Ṽ ′′(λ+µ)∗ which occurs in the tensor product Ṽ ′′(λ)∗⊗ Ṽ ′′(µ)∗. �

5.3. Direct sums. Recall that the dual vector space U(p̃−)∗ of U(p̃−) is an
associative algebra with product given by the dual map of the coproduct in
U(p̃−) (see for instance [4, 2.7.4]).

Lemma. The sum C̃p =
∑

λ∈P+(π) C̃p(λ) is a direct sum. The same holds
for C̃r =

∑
λ∈P+(π) C̃r(λ). Moreover the latter is a subalgebra of U(p̃−)∗.

Proof. Let λ ∈ P+(π) and for all ξ ∈ Ṽ (λ)∗, denote by hξ : Ṽ ′(λ) −→ U(p̃−)∗

the map such that hξ(v) = cξ, v for all v ∈ Ṽ ′(λ). For all u′ ∈ U(r), recall
R(u′) the (regular) right action of u′ on U(p̃−) defined by R(u′)(u) = uu′

for all u ∈ U(p̃−), where uu′ is the product in U(p̃−) (see subsection 4.5).
Then its dual map tR(u′) : U(p̃−)∗ −→ U(p̃−)∗ defines a left action on
U(p̃−)∗, called the coregular right representation of U(r) on U(p̃−)∗ (see
[4, 2.7.7]). One sees easily that hξ is a morphism of U(r)-modules, when
U(p̃−)∗ is endowed with the coregular right representation of U(r) (see also [4,
2.7.11]). When ξ 6= 0, one checks that hξ(Ṽ ′(λ)) 6= {0} and then hξ(Ṽ ′(λ))
is an irreducible U(r)-module for the coregular right representation. Then
C̃p(λ) =

∑
ξ∈Ṽ (λ)∗\{0} hξ(Ṽ

′(λ)) is a sum of irreducible U(r)-modules all

isomorphic to Ṽ ′(λ). Since, for λ 6= µ ∈ P+(π), Ṽ ′(λ) and Ṽ ′(µ) are not
isomorphic as U(r)-modules, it follows that

∑
λ∈P+(π) C̃p(λ) is a direct sum.

Obviously C̃r =
∑

λ∈P+(π) C̃r(λ) is also a direct sum, since C̃r(λ) ⊂ C̃p(λ)

for all λ ∈ P+(π). Finally C̃r is an algebra by [4, 2.7.10], as a consequence
of lemma 5.2. �

5.4. Isomorphisms. Let λ ∈ P+(π) and set Φλ
p : Ṽ (λ)∗ ⊗ Ṽ ′(λ) −→ C̃p(λ)

defined by ξ ⊗ v′ 7→ cξ, v′ and extended by linearity. Similarly one sets
Φλ
r : Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ) −→ C̃r(λ) defined by ξ ⊗ v′ 7→ cξ, v′ extended by

linearity.

Lemma. The maps Φλ
p and Φλ

r are isomorphisms of vector spaces.

Proof. Firstly these maps are obviously well defined and onto. It remains
to verify the injectivity. Assume that there exists I a finite set, and for all
i ∈ I, ξi ∈ Ṽ (λ)∗ and v′i ∈ Ṽ ′(λ) = U(r).ṽλ such that

∑
i∈I cξi, v′i = 0. We

can also assume that the v′i, i ∈ I, are linearly independent. We want to
show that for all i ∈ I, ξi = 0. Assume that there exists i0 ∈ I such that
ξi0 6= 0 and complete ξi0 in a basis of Ṽ (λ)∗. By taking the dual basis, there
exists vi0 ∈ Ṽ (λ) such that ξi0(vi0) = 1. By (i) of lemma 3.2 there exists
u0 ∈ U(p̃−) such that vi0 = u0.ṽλ. Now recall that Ṽ ′(λ) is a left irreducible
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U(r)-module. Then by Jacobson density theorem (see [28, Chap. 3,§ 3, 2]),
there exists a ∈ U(r) such that for all i ∈ I \ {i0}, a.v′i = 0 and a.v′i0 = ṽλ.
Since u0a ∈ U(p̃−) we obtain that

∑
i∈I cξi, v′i(u0a) = 0 = ξi0(u0.(a.v

′
i0

)) =

ξi0(u0.ṽλ) = ξi0(vi0) = 1 which is a contradiction. Hence the lemma for the
map Φλ

p and of course also for Φλ
r . �

5.5. The dual representation of the generalized adjoint action. Re-
call the left representation of A in U(p̃−) defined in subsection 4.4 we have
denoted by ad∗∗. Then the dual representation of A in U(p̃−)∗ is defined as
follows.

(43) ∀a ∈ A, ∀f ∈ U(p̃−)∗, a.f = f ◦ ad∗∗a>

(where recall a> was defined in equation (15)).
This defines a left action of A on U(p̃−)∗ (see for instance [4, 2.2.19]) and

by proposition 4.5, we deduce that one has

(44) ∀a ∈ A, ∀f ∈ U(p̃−)∗, a.f = f ◦L(a>2 )◦R(a1) = (tR(a1)◦ tL(a>2 ))(f)

where ∆A(a) = a1 ⊗ a2.
In particular one has that

(45) ∀x ∈ p, ∀f ∈ U(p̃−)∗, x.f = tR(x)(f)− tL(x)(f).

Then one deduces the following lemma.

Lemma. Let λ ∈ P+(π). One has that

(46) ∀x ∈ r, ∀ξ ∈ Ṽ (λ)∗, ∀v ∈ Ṽ ′(λ), x.cξ, v = cξ, x.v − cξ.x, v.

Proof. Let x ∈ r, ξ ∈ Ṽ (λ)∗ and v ∈ Ṽ ′(λ). One checks easily that
tR(x)(cξ, v) = cξ, x.v, resp. that tL(x)(cξ, v) = cξ.x, v, by definition of R,
resp. of L, given in equation (34), resp. in equation (36). Then the lemma
follows from equation (45). �

Let λ ∈ P+(π). Endow U(p̃−)∗ with the dual representation of A given
by equation (43) and in particular with the dual representation of U(r) ⊂ A,
which coincides in the latter case with the coadjoint representation of U(r).
By equation (46) every C̃p(λ), resp. C̃r(λ), is a left U(r)-module for the
coadjoint representation.

On the other hand, endow Ṽ (λ) with the left action of U(r) described in
subsection 3.2 and Ṽ (λ)∗ with the left action of U(r) corresponding with its
dual representation, namely for all ξ ∈ Ṽ (λ)∗, for all u ∈ U(r), u.ξ = ξ.u>.
Then endow the tensor product Ṽ (λ)∗ ⊗ Ṽ ′(λ) with the diagonal action of
U(r), namely for u ∈ U(r) such that ∆(u) = u1 ⊗ u2, for all ξ ∈ Ṽ (λ)∗, for
all v′ ∈ Ṽ ′(λ),

(47) u.(ξ ⊗ v′) = u1.ξ ⊗ u2.v
′ = ξ.u>1 ⊗ u2.v

′.

In particular, one has that

(48) ∀x ∈ r, ∀ξ ∈ Ṽ (λ)∗, ∀v ∈ Ṽ ′(λ), x.(ξ ⊗ v) = −ξ.x⊗ v + ξ ⊗ x.v.
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Recall the isomorphisms of vector spaces Φλ
p and Φλ

r defined in subsection
5.4.

Proposition. Let λ ∈ P+(π). With the left actions of U(r) given by equation
(47) and equation (43) respectively, the isomorphisms of vector spaces Φλ

p and
Φλ
r are isomorphisms of left U(r)-modules.

Proof. It is immediate by equations (46) and (48). �

6. a polynomial algebra.

6.1. A semigroup. Recall r′ the derived subalgebra of r : the former is
a semi-simple Lie algebra. Denote by (U(p̃−)∗)U(r′) the set of elements in
U(p̃−)∗ which are invariant under the coadjoint action of U(r′). Since for
all z ∈ r′, for all u ∈ U(p̃−) such that ∆(u) = u1 ⊗ u2, we have that
∆(ad z(u)) = ad z(u1)⊗u2+u1⊗ad z(u2), the set (U(p̃−)∗)U(r′) is an algebra.

For all λ ∈ P+(π), recall that C̃r(λ) is a left U(r′)-module (for the coad-
joint representation of U(r′)) by equation (46). Then define C̃r(λ)U(r′) as the
set of elements in C̃r(λ) which are invariant under the coadjoint action of
U(r′) : this is of course a vector space.

Denote by C̃
U(r′)
r ⊂ (U(p̃−)∗)U(r′) the set of elements in C̃r which are

invariant under the coadjoint action of U(r′). Since C̃r is an algebra by
lemma 5.3 and by what we said above, C̃U(r′)

r is an algebra.
Since moreover the sum of the C̃r(λ)’s is a direct sum by lemma 5.3, we

have that

(49) C̃
U(r′)
r =

⊕
λ∈P+(π)

C̃r(λ)U(r′).

Let D be the set of all λ ∈ P+(π) such that

(50) (w′0λ− w0λ, π
′) = 0.

Proposition. One has that, for all λ ∈ P+(π), dim C̃r(λ)U(r′) ≤ 1 with
equality if and only if λ ∈ D and then

(51) C̃
U(r′)
r =

⊕
λ∈D

C̃r(λ)U(r′).

Proof. The proof is quite similar as the proof in [8, Thm. §3]. We give it for
the reader’s convenience. Fix λ ∈ P+(π). Denote by Hom(Ṽ ′(λ)∗, Ṽ ′′(λ)∗)

the set of all morphisms between the vector spaces Ṽ ′(λ)∗ and Ṽ ′′(λ)∗, en-
dowed with the U(r′)-module structure given by

(52) ∀u ∈ U(r′), ∀ϕ ∈ Hom(Ṽ ′(λ)∗, Ṽ ′′(λ)∗), ∀ξ ∈ Ṽ ′(λ)∗,

(u.ϕ)(ξ) = u2.ϕ(u>1 .ξ)

where ∆(u) = u1 ⊗ u2. Denote by Φ the following morphism between
Ṽ ′′(λ)∗⊗ Ṽ ′(λ), endowed with the diagonal action of U(r′) given by equation
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(47) and Hom(Ṽ ′(λ)∗, Ṽ ′′(λ)∗), endowed with the action given by equation
(52).

(53) Φ : ξ ⊗ v′ ∈ Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ) 7→ (ξ′ ∈ Ṽ ′(λ)∗ 7→ ξ′(v′)ξ)

Then by [17, A.2.16] for instance, Φ is an isomorphism of U(r′)-modules.
Denote by HomU(r′)(Ṽ ′(λ)∗, Ṽ ′′(λ)∗) the set of all U(r′)-morphisms be-

tween Ṽ ′(λ)∗ and Ṽ ′′(λ)∗ and by
(
Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ)

)U(r′) the set of elements
in the tensor product Ṽ ′′(λ)∗⊗ Ṽ ′(λ) which are invariant under the diagonal
action of U(r′) given by equation (47). Then we have

(54) Φ(
(
Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ)

)U(r′)
) = HomU(r′)(Ṽ ′(λ)∗, Ṽ ′′(λ)∗).

Moreover the U(r′)-modules Ṽ ′′(λ)∗ and Ṽ ′(λ) (and also Ṽ ′(λ)∗) are irre-
ducible. Then by Schur lemma (see for instance [28, Chap. 3, § 3, 1]),

(55) dim HomU(r′)(Ṽ ′(λ)∗, Ṽ ′′(λ)∗) ≤ 1

with equality if and only if the irreducible U(r′)-modules Ṽ ′′(λ)∗ and Ṽ ′(λ)∗

are isomorphic that is, if and only if

(56) w′0λ− w0λ =
∑

α∈π\π′
mα$α with mα ∈ N, ∀α ∈ π \ π′

or equivalently if and only if λ verifies equation (50) that is, if and only if
λ ∈ D .

Indeed we have that Ṽ ′′(λ)∗ ' Ṽ ′(−w0λ) as left U(r)-modules by what we
already said in the proof of Lemma 5.2. Similarly since Ṽ ′(λ) = U(n−π′).ṽλ =

U(nπ′).ṽw′0λ where ṽw′0λ is a chosen nonzero weight vector in Ṽ ′(λ) of weight
w′0λ, we have that Ṽ ′(λ)∗ ' Ṽ ′(−w′0λ) as left U(r)-modules. Then the
irreducible U(r′)-modules Ṽ ′′(λ)∗ and Ṽ ′(λ)∗ are isomorphic if and only if
(−w0λ)′ = (−w′0λ)′ where recall that the superscript “prime” denotes the
projection in P (π′) of an element in P (π) with respect to the decomposition
(1).

By proposition 5.5 one has that

(57) C̃r(λ)U(r′) = Φλ
r

((
Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ)

)U(r′)
)
.

Then by equations (54) and (55) we have that dim C̃r(λ)U(r′) ≤ 1 with equal-
ity if and only if λ ∈ D . For all λ ∈ D set cλ ∈ C̃r(λ)U(r′) \ {0} so that
C̃r(λ)U(r′) = kcλ. By equation (49) we also have

(58) C̃
U(r′)
r =

⊕
λ∈D

kcλ.

This completes the proof. �
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Let λ ∈ D . Choose ϕλ ∈ HomU(r′)(Ṽ ′(λ)∗, Ṽ ′′(λ)∗) \ {0} and denote by
U(r′)+ the kernel of the coidentity in the enveloping algebra U(r′). By [17,
7.1.16] we have that

(59) Φ−1 : Hom(Ṽ ′(λ)∗, Ṽ ′′(λ)∗)
∼−→ U(r′)+.(ξ̃w0λ ⊗ ṽw′0λ)⊕ kΦ−1(ϕλ).

It follows that we have, up to a nonzero scalar

(60) (Φλ
r )−1(cλ) = ξ̃w0λ ⊗ ṽw′0λ +

∑
i∈I

u−i .ξ̃w0λ ⊗ u
+
i .ṽw′0λ

where u±i ∈ n±π′U(n±π′) for all i ∈ I, I a finite set, since moreover ξ̃w0λ⊗ ṽw′0λ
is a cyclic vector for the U(r′)-module Ṽ ′′(λ)∗ ⊗ Ṽ ′(λ) endowed with the
diagonal action. Hence the h-weight of cλ is equal to

(61) w′0λ− w0λ.

By equation (56) this weight belongs to P+(π) and by equation (50) it
annihilates on π′.

Let i and j denote the permutations in π defined below.

(62) ∀α ∈ π, j(α) = −w0(α)

(63) ∀α ∈ π′, i(α) = −w′0(α)

(64) ∀α ∈ π \ π′,

{
i(α) = j(α) if j(α) 6∈ π′

i(α) = j(ij)rα(α) otherwise

where rα is the smallest integer such that j(ij)rα(α) 6∈ π′. Let E(π′) be
the set of 〈ij〉-orbits in π, where 〈ij〉 denotes the subgroup generated by the
composition map ij.

For instance, if p is a maximal parabolic subalgebra of g that is, if π \π′ =
{α}, then i(α) = α and the 〈ij〉-orbit of α is Γα = {(ji)sj(α), 0 ≤ s ≤ rα}.

Recall [9, Thm. 1] (see also [7, 4.1]):

Theorem. The set D is a free additive semigroup generated by the Z-linearly
independent elements dΓ =

∑
γ∈Γ$γ, Γ ∈ E(π′).

6.2. A filtration. Assume that π = {α1, . . . , αn}. Then for all λ ∈ P+(π),
there exist ki ∈ Q+ for all i, 1 ≤ i ≤ n, such that λ =

∑n
i=1 kiαi. Set

deg(λ) = 2
∑n

i=1 ki. By [17, 7.1.25], deg(λ) ∈ N. For all m ∈ N, we set
F ′m(C̃r) =

⊕
λ∈P+(π)|deg(λ)≤m C̃r(λ), which is a left U(r)-submodule of C̃r

for coadjoint action. Then (F ′m(C̃r))m∈N is an increasing filtration F ′ of the
algebra C̃r since for all λ, µ ∈ P+(π),

(65) C̃r(λ)C̃r(µ) ⊂
⊕

ν∈Nπ′|λ+µ−ν∈P+(π)

C̃r(λ+ µ− ν)



SYMMETRIC SEMI-INVARIANTS FOR SOME INÖNÜ-WIGNER CONTRACTIONS 27

by the proof of lemma 5.2. Then denote by grF ′(C̃r) the associated graded
algebra and for all c ∈ F ′m(C̃r), denote by grm,F ′(c) its canonical image in
grF ′(C̃r). Recall the notation in subsection 6.1.

Lemma. Let λ, µ ∈ D . Set m = deg(λ) and m′ = deg(µ).
Then grm,F ′(cλ)grm′,F ′(cµ) is a nonzero multiple of grm+m′,F ′(cλ+µ).

Proof. By definition of the multiplication in the graded algebra grF ′(C̃r),
one has that

grm,F ′(cλ)grm′,F ′(cµ) = grm+m′,F ′(cλcµ).

Now by equation (60) in the product cλcµ appears, up to a nonzero scalar,
the term

cξ̃w0λ
⊗ξ̃w0µ, ṽw′0λ

⊗ṽw′0µ
= cξ̃w0(λ+µ), ṽw′0(λ+µ)

∈ C̃r(λ+ µ).

Indeed this term cannot be annihilated by the other terms, by lemmas 5.3
and 5.4.

Since moreover cλcµ ∈ C̃
U(r′)
r , equations (58), (60) and (65) imply that

grm+m′,F ′(cλcµ) =
∑

ν∈D , deg(ν)=m+m′, ν∈λ+µ−Nπ′ grm+m′,F ′(cν)

= grm+m′,F ′(cλ+µ)

up to multiplication by a nonzero scalar. �

Now we can conclude the following.

Proposition. The algebra of invariants C̃U(r′)
r is a polynomial algebra over

k, whose number of algebraically independent generators is equal to the car-
dinality of the set E(π′).

Proof. It follows as in the proof of [9, Thm. 1] (see also [9, Prop. 3.1]).
Let λi, i ∈ I, be a set of Z-linearly independent generators of D and set
mi = deg(λi) for all i ∈ I (one has that |I| = |E(π′)| by Thm 6.1). Denote by
grF ′(C̃

U(r′)
r ) the graded algebra of the algebra C̃U(r′)

r associated with the in-
duced filtration. Note that the above lemma also holds in this graded algebra.
Then equation (58) and the above lemma imply that grmi,F ′(cλi), i ∈ I, are
k-algebraically independent and generate grF ′

(
C̃
U(r′)
r

)
. Hence grF ′

(
C̃
U(r′)
r

)
is a polynomial algebra over k in |E(π′)| generators and it follows (see [3,
Chap. III, § 2, n◦ 9, Prop. 10]) that the algebra C̃U(r′)

r is also a polynomial
algebra over k in |E(π′)| generators cλi , i ∈ I, whose h-weight is equal to
δi = w′0λi − w0λi by equation (61). �

7. Generalized Kostant filtration and morphism.

7.1. Generalized Kostant filtration. In [10, 6.1] we have defined what
we called the Kostant filtration (denoted by FK) on the Hopf dual of the
enveloping algebra of the simple Lie algebra g. Here we will consider what we
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call the generalized Kostant filtration on the dual algebra U(p̃−)∗ of U(p̃−).
More precisely, we set

(66) ∀k ∈ N, F k
K(U(p̃−)∗) = {f ∈ U(p̃−)∗ | f(Uk−1(p̃−)) = 0}

where (Uk(p̃
−))k∈N∪{−1} is the canonical filtration on U(p̃−), with U−1(p̃−) =

{0}.

Lemma. The generalized Kostant filtration (F k
K(U(p̃−)∗))k∈N is a decreas-

ing, exhaustive and separated filtration on the algebra U(p̃−)∗. Moreover this
filtration is invariant by the left action of A defined by equation (43).

Proof. The first assertions are obvious.
Let us show the invariance by the left action of A. Let a ∈ A, k ∈ N and

f ∈ F k
K(U(p̃−)∗).

If a = z ∈ r, then ad∗∗z = ad z by equation (30) and for all u ∈ Uk−1(p̃−),
ad z(u) ∈ Uk−1(p̃−). Then z.f ∈ F k

K(U(p̃−)∗).
Now assume that a = x ∈ m, and let u ∈ Uk−1(p̃−). Recall equation

(25). Then u =
∑k−1

j=0 sju
′
j with sj ∈ Sj(m

−) and u′j ∈ Uk−1−j(r), for all
0 ≤ j ≤ k − 1.

Then by equation (29) one has :

ad∗∗x(u) =
k−1∑
j=0

θ̃(ad∗x(sj))u
′
j ∈

k−1∑
j=0

Sj−1(m−)Uk−j(r) ⊂ Uk−1(p̃−)

by equation (27).
It follows that x.f(u) = 0 and the lemma. �

7.2. The graded algebra associated with the generalized Kostant
filtration. Set

(67) grK(U(p̃−)∗) =
⊕
k∈N

grkK(U(p̃−)∗)

where, for all k ∈ N,

(68) grkK(U(p̃−)∗) = F k
K(U(p̃−)∗)/F k+1

K (U(p̃−)∗).

Then grK(U(p̃−)∗) is the graded algebra associated with the generalized
Kostant filtration FK on the algebra U(p̃−)∗. For all f ∈ F k

K(U(p̃−)∗), one
denotes by grkK(f) its canonical image in grkK(U(p̃−)∗).

By lemma 7.1 the dual representation of A on U(p̃−)∗ (given by equation
(43)) induces a left action on grK(U(p̃−)∗) defined by

(69) ∀a ∈ A,∀f ∈ F k
K(U(p̃−)∗), a.grkK(f) = grkK(a.f).

Proposition. Let x ∈ m and f ∈ F k
K(U(p̃−)∗) ∩ C̃r, k ∈ N. Then x.f ∈

F k+1
K (U(p̃−)∗) and therefore

(70) x.grkK(f) = 0

where recall grkK(g) = g + F k+1
K (U(p̃−)∗), for all g ∈ F k

K(U(p̃−)∗).
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Proof. Take

f =
∑
λ∈Λ

∑
i∈Iλ

cλ
ξ̃w0λ

.ai, bi.ṽλ
∈ F k

K(U(p̃−)∗) ∩ C̃r

with Λ ⊂ P+(π) a finite set and for all λ ∈ Λ, Iλ a finite set, ai, bi ∈ U(n−π′),
for all i ∈ Iλ. Moreover one may assume, if f 6= 0, that ai, bi, for all i ∈ Iλ,
are nonzero weight vectors. We need the lemma below.

Lemma. Let k ∈ N and 0 ≤ j ≤ k. With the above hypotheses, we have that

(71) ∀u ∈ Uj−1(g), ∀u′ ∈ Uk−j(r),
∑
λ∈Λ

∑
i∈Iλ

ξw0λ(aiuu
′bi.vλ) = 0.

Proof. The lemma is obvious for j = 0 since U−1(g) = {0}. Assume that
j ∈ N∗. Take u ∈ Uj−1(g) and u′ ∈ Uk−j(r). Since m.V ′(λ) = {0} and since
Uj−1(g) = Uj−1(p−) ⊕ Uj−2(g)m, one may assume that u ∈ Uj−1(p−). One
also may assume that u and u′ are nonzero weight vectors.

Since ξ̃w0λ vanishes on the weight vectors β−1
λ (aiuu

′bi.vλ) which are not
of weight w0λ and by equation (42), one has that∑

λ∈Λ

∑
i∈Iλ

ξw0λ(aiuu
′bi.vλ) =

∑
λ∈Λ

∑
i∈Iλ

ξ̃w0λ(β−1
λ (aiuu

′bi.vλ))

=
∑
λ∈Λ

∑
i∈I′λ

ξ̃w0λ(grk0(aiuu
′bi.vλ))

where for all λ ∈ Λ, I ′λ = {i ∈ Iλ | β−1
λ (aiuu

′bi.vλ) is of weight w0λ}.
Now write u =

∑j−1
t=0 utvt with ut = θ(st) ∈ U t(m−) = θ(St(m

−)), st ∈
St(m

−) and vt ∈ Uj−1−t(r) for all 0 ≤ t ≤ j − 1.
Then

grk0(aiuu
′bi.vλ) = ai

(j−1∑
t=0

stvt

)
u′bi.ṽλ

by equation (8).
But

∑j−1
t=0 stvt ∈ Uj−1(p̃−) and recall that u′ ∈ Uk−j(r). Then(j−1∑

t=0

stvt

)
u′ ∈ Uk−1(p̃−)

and we obtain the required equation (71) since f(Uk−1(p̃−)) = 0. �

Fix x ∈ m being a nonzero weight vector and for all 0 ≤ j ≤ k, take
s ∈ Sj(m

−) and u′ ∈ Uk−j(r) being weight vectors. If j ≥ 1, one may
assume that s = y1 · · · yj ∈ Sj(m−) with yt ∈ m− being a weight vector for
all 1 ≤ t ≤ j.

Recall that

(72) ad∗x(s) =
∑

1≤t≤j|[x, yt]∈r

y1 · · · yt−1[x, yt]yt+1 · · · yj ∈ Sj(p−).
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Set

(73) adm−x(s) =
∑

1≤t≤j|[x, yt]∈m−
y1 · · · yt−1[x, yt]yt+1 · · · yj ∈ Sj(m−)

and

(74) admx(s) =
∑

1≤t≤j|[x, yt]∈m

y1 · · · yt−1[x, yt]yt+1 · · · yj ∈ Sj(g).

By equations (43) and (29), one has that

−x.f(su′) = f(ad∗∗x(su′)) = f(θ̃(ad∗x(s))u′).

Then if j = 0 one has obviously that x.f(su′) = 0, by equation (31).
From now on, assume that j ≥ 1. By the above and by what we said in

the proof of the previous lemma we have that

(75) − x.f(su′) =
∑
λ∈Λ

∑
i∈I′λ

ξ̃w0λ

(
aiθ̃(ad

∗x(s))u′bi.ṽλ

)
where for all λ ∈ Λ, I ′λ = {i ∈ Iλ | ∃ci ∈ k∗; aiθ̃(ad∗x(s))u′bi.ṽλ = ciṽw0λ}.

Fix λ ∈ Λ and i ∈ I ′λ. One has that aiθ̃(ad∗x(s))u′bi.ṽλ ∈ grj−1(V (λ)) by
equations (27) and (10), and by equation (42) we have that j − 1 = k0.

Consider θ : S(g) −→ U(g) the symmetrization (which is an isomorphism
of adU(g)-modules) and the adjoint action (denoted by ad) of m on S(g)
which extends uniquely by derivation the adjoint action of m on g given by
Lie bracket. Observe that

(76) ad x(s) = ad∗x(s) + adm−x(s) + admx(s).

Moreover for all 1 ≤ t ≤ j, one has that

θ(y1 · · · yt−1[x, yt]yt+1 · · · yj) =

θ(y1 · · · yt−1yt+1 · · · yj)[x, yt] mod Uj−1(g).(77)

By equations (75), (77) and the previous lemma, it follows that

(78) − x.f(su′) =
∑
λ∈Λ

∑
i∈I′λ

ξw0λ

(
aiθ(ad

∗x(s))u′bi.vλ

)
By equation (77) and the previous lemma, and since m.V ′(λ) = {0} one

also has that

(79)
∑
λ∈Λ

∑
i∈I′λ

ξw0λ(aiθ(admx(s))u′bi.vλ) = 0.

We claim that

(80) − x.f(su′) =
∑
λ∈Λ

∑
i∈I′λ

ξw0λ

(
aiθ(ad x(s))u′bi.vλ

)
.
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By equation (76) it remains to show that

(81)
∑
λ∈Λ

∑
i∈I′λ

ξw0λ(aiθ(adm−x(s))u′bi.vλ) = 0.

Fix an index t, 1 ≤ t ≤ j, with [x, yt] ∈ m− and set

ut = θ(y1 · · · yt−1[x, yt]yt+1 · · · yj).
Then ut ∈ U j(m−). Take λ ∈ Λ and i ∈ I ′λ (if there exist) such that

ξw0λ(aiutu
′bi.vλ) 6= 0.

Since all weight vectors non vanishing on ξw0λ are proportional to vw0λ,
one has that aiutu′bi.vλ is proportional to vw0λ.

On the other hand, one knows that vw0λ ∈ F k0(V (λ)) ⊂ Uk0(m−).V ′(λ)
by (iv) of Lemma 3.2 and that k0 = j − 1 (otherwise I ′λ = ∅). Then by the
irreducibility of the U(r)-module V ′(λ), there exists a nonzero weight vector
ui, t ∈ U j−1(m−)U(n−π′)U(nπ′) such that

(82) (aiut − ui, t).(u′bi.vλ) = 0.

In other words, we have that

(83) aiut − ui, t ∈ AnnU(m−)U(n−
π′ )U(nπ′ )

(u′bi.vλ)

For all γ ∈ ∆+ \∆+
π′ , denote by rγ, i the smallest positive integer such that

(84) x
rγ, i
−γ .(u

′bi.vλ) = 0.

If we denote by µi the weight of the vector u′bi.vλ, we have that rγ, i =
〈γ ,̌ µi〉+ 1, since xγ .(u′bi.vλ) = 0.

Similarly for all β ∈ ∆+
π′ denote by r±β, i the smallest positive integer such

that

(85) x
r±β, i
±β .(u

′bi.vλ) = 0.

See [16, 21] for more details.
Then one has that

aiut − ui, t ∈
∑

γ∈∆+\∆+
π′

U(m−)U(n−π′)U(nπ′)x
rγ, i
−γ(86)

+
∑
β∈∆+

π′

U(m−)U(n−π′)U(nπ′)x
r+
β, i

β

+
∑
β∈∆+

π′

U(m−)U(n−π′)U(nπ′)x
r−β, i
−β .

By the Poincaré-Birkhoff-Witt theorem ([4, 2.1.11]) setting ∆+ \ ∆+
π′ =

{γ1, . . . , γr}, we have that

(87) ut =
∑
~ν

c~ν x
ν1
−γ1
· · ·xνr−γr
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where the sum over the ~ν = (ν1, . . . , νr) ∈ Nr is finite, r ≤ j, and with, for
all ~ν, c~ν ∈ k. Moreover there exists only one ~ν ∈ Nj with c~ν 6= 0.

Observe that

U(r)U j(m−) = U j(m−)U(r) and U j(m−)U(r) ∩ U j−1(m−)U(r) = {0}.
Comparing equations (86) and (87) and using the above observation, one

deduces that, for all γ ∈ ∆+ \∆+
π′ , there exists wγ, i ∈ U(m−) and that, for

all β ∈ ∆+
π′ , there exists w±β, i ∈ U j(m−)U(n−π′)U(nπ′) such that

(88) aiut =
∑

γ∈∆+\∆+
π′

aiwγ, ix
rγ, i
−γ +

∑
β∈∆+

π′

wβ, ix
r+
β, i

β +
∑
β∈∆+

π′

w−β, ix
r−β, i
−β .

Then by equations (84) and (85) one has that

(89)
∑
λ∈Λ

∑
i∈I′λ

ξw0λ(aiutu
′bi.vλ) = 0.

Hence ∑
λ∈Λ

∑
i∈I′λ

ξw0λ(aiθ(adm−x(s))u′bi.vλ) =

∑
1≤t≤j|[x, yt]∈m−

∑
λ∈Λ

∑
i∈I′λ

ξw0λ(aiutu
′bi.vλ) = 0

which is the required equation (81). We then obtain equation (80) and
therefore, since θ is a morphism of adU(g)-modules,

−x.f(su′) =
∑
λ∈Λ

∑
i∈I′λ

ξw0λ

(
aiad x(θ(s))u′bi.vλ

)
=
∑
λ∈Λ

∑
i∈I′λ

ξw0λ

(
ai(xθ(s)− θ(s)x)u′bi.vλ

)
= 0

since moreover m.V ′(λ) = {0} and V ′′(λ)∗.m = {0}. �

7.3. An important isomorphism. Recall subsection 4.2 and in particular
the representation, denoted by ad∗, of U(p̃) in S(p−) (see lemma 4.2) and
also in every Sk(p−) (k ∈ N). We then can endow Sk(p

−)∗ with the dual
representation of U(p̃) given by

(90) ∀u ∈ U(p̃), ∀f ∈ Sk(p−)∗, u.f = f ◦ ad∗u>,
where u> denotes the image of u by the antipode defined similarly as in
equation (15).

We have the following.

Lemma. Let k ∈ N. Then the U(p̃)-module Sk(p−)∗ is isomorphic to the
U(p̃)-module Sk(p̃) = Sk(p) when the latter is endowed with the adjoint ac-
tion of p̃ which extends by derivation the Lie bracket in p̃.
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Proof. For k = 0, the assertion is obvious. Recall (subsection 2.1) that we
denote by K the Killing form on g × g. Then the vector space p̃ ' p is
isomorphic to the dual space (p−)∗ through the map

f : x ∈ p̃ 7→ K(x, −)|p− .

When (p−)∗ is endowed with the action of U(p̃) given by equation (44) and p̃
with the adjoint action of p̃, the map f is an isomorphism of U(p̃)-modules.

Indeed assume firstly that x′ ∈ m. Then for all x ∈ p̃ and for all y ∈ p−,
x′.f(x)(y) = −K(x, prr([x

′, y])) by equations (17) and (44). If moreover
x ∈ m, then

K(x, prr([x
′, y])) = 0.

But one also has [x′, x]p̃ = 0 by equation (2). Then

x′.f(x) = f([x′, x]p̃)

in this case. If x ∈ r, then

x′.f(x)(y) = −K(x, prr([x
′, y])) = −K(x, [x′, y])

since [x′, y] = prr([x
′, y]) + prm([x′, y]) + prm−([x′, y]). Then by the invari-

ance of the Killing form, we obtain that

x′.f(x)(y) = K([x′, x], y) = f([x′, x]p̃)(y)

by equation (2). Now if x′ ∈ r, then the assertion follows immediatly from
the invariance of the Killing form and equation (16). This proves the lemma
for k = 1.

Let now k ∈ N∗. Consider the map fk : Sk(p̃) −→ Sk(p
−)∗ defined by

fk(x1 · · ·xk) = Kk(x1 · · ·xk, −)|Sk(p−)

for all x1, . . . , xk ∈ p̃ where Kk is defined as in [11, 2.7], namely : for
y1, . . . , yk ∈ p−,

Kk(x1 · · ·xk, y1 · · · yk) =
1

k!

∑
σ∈Sk

k∏
i=1

K(xi, yσ(i))

where we denote by Sk the group of permutations of k elements.
By [11, 2.7] we have that fk is an isomorphism of vector spaces. It remains

to show that fk is an isomorphism of U(p̃)-modules.
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Let x1, . . . , xk ∈ p̃, y1, . . . , yk ∈ p− and x ∈ p̃. Then one has

x.fk(x1 · · ·xk)(y1 · · · yk)
= −Kk(x1 · · ·xk, ad∗x(y1 · · · yk))

= −
k∑
i=1

Kk(x1 · · ·xk, y1 · · · yi−1ad
∗x(yi)yi+1 · · · yk)

= − 1

k!

k∑
i=1

∑
σ∈Sk

∏
t6=σ−1(i)

K(xt, yσ(t))K(xσ−1(i), ad
∗x(yi))

= − 1

k!

k∑
j=1

∑
σ∈Sk

∏
t6=j

K(xt, yσ(t))K(xj , ad
∗x(yσ(j)))

by exchanging both sums and setting j = σ−1(i).
On the other hand, one has

fk(adp̃x(x1 · · ·xk))(y1 · · · yk) =
k∑
i=1

fk(x1 · · ·xi−1[x, xi]p̃xi+1 · · ·xk)(y1 · · · yk)

=
k∑
i=1

1

k!

∑
σ∈Sk

∏
t6=i

K(xt, yσ(t))K([x, xi]p̃, yσ(i))

By the case k = 1 one obtains that, for all 1 ≤ i ≤ k, and all σ ∈ Sk,

K([x, xi]p̃, yσ(i))) = −K(xi, ad
∗x(yσ(i))).

This completes the lemma by the above. �

7.4. Kostant morphism. Recall subsection 4.3 and let k ∈ N.
We define

ψk : F k
K(U(p̃−)∗) −→ Sk(p

−)∗

by the following. For all f ∈ F k
K(U(p̃−)∗), we set :

(91)
∀j ∈ N, 0 ≤ j ≤ k, ∀s ∈ Sj(m−), ∀s′ ∈ Sk−j(r), ψk(f)(ss′) = f(s θ(s′))

that we extend by linearity, so that ψk is a linear map. As in [10, 6.2] we
call ψk the Kostant map.

Proposition. Let k ∈ N. The kernel of the linear map ψk is equal to
F k+1
K (U(p̃−)∗). Moreover ψk is onto.

Proof. It follows from the fact that
⊕k

j=0 Sj(m
−)⊗ θ(Sk−j(r)) is a comple-

ment of Uk−1(p̃−) in Uk(p̃−). �

Endow U(p̃−)∗ with the dual representation of A given by equation (43).
Let k ∈ N. Then F k

K(U(p̃−)∗) is a left A-module by lemma 7.1 and Sk(p−)∗

is a left U(p̃)-module (see subsection 7.3).



SYMMETRIC SEMI-INVARIANTS FOR SOME INÖNÜ-WIGNER CONTRACTIONS 35

Lemma. Let k ∈ N. Then the Kostant map ψk is a morphism from the left
A-module F k

K(U(p̃−)∗) to the left U(p̃)-module Sk(p−)∗.

Proof. Let f ∈ F k
K(U(p̃−)∗) and 0 ≤ j ≤ k, j ∈ N, s ∈ Sj(m

−) and
s′ ∈ Sk−j(r).

Assume firstly that x ∈ m.
Then by equation (91)

ψk(x.f)(ss′) = (x.f)(s θ(s′))

= −f(ad∗∗x(s θ(s′)))

= −f(θ̃(ad∗x(s))θ(s′))

by equations (43) and (29).
Write ad∗x(s) =

∑
i∈I sizi with si ∈ Sj−1(m−) and zi ∈ r for all i ∈ I, by

equation (26).
Then

(92) ψk(x.f)(ss′) = −
∑
i∈I

f(siθ(zi)θ(s
′))

by definition of θ̃ (see subsection 4.3).
On the other hand, one has by equation (44) :

(x.ψk(f))(ss′) = −ψk(f)(ad∗x(ss′))

= −ψk(f)(ad∗x(s)s′)

since ad∗x(s′) = 0 by equation (18).
Then by equation (91)

(93) (x.ψk(f))(ss′) = −
∑
i∈I

f(siθ(zis
′))

But, for all i ∈ I, siθ(zis′) = siθ(zi)θ(s
′) mod Uk−1(p̃−). Equations (92)

and (93) imply that

(ψk(x.f)− (x.ψk(f)))(ss′) = 0

since f(Uk−1(p̃−)) = 0.
Now assume that x ∈ r.

ψk(x.f)(ss′) = (x.f)(s θ(s′))

= −f(ad x(s θ(s′)))

= −f(ad x(s)θ(s′) + s ad x(θ(s′)))

by equation (16).
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Then
ψk(x.f)(ss′) = −f(ad x(s)θ(s′) + s θ(ad x(s′)))

since θ is a morphism of U(r)-modules for the adjoint action.
On the other hand

x.ψk(f)(ss′) = −ψk(f)(ad x(ss′))

= −ψk(f)(ad x(s)s′ + s ad x(s′))

= −f(ad x(s)θ(s′) + s θ(ad x(s′)))

This completes the lemma. �

7.5. Recall subsections 7.1 and 7.4. By Proposition and Lemma 7.4 we
obtain the following lemma.

Lemma. For all k ∈ N, the induced morphism (still denoted by ψk) is an
isomorphism of left U(p̃)-modules from grkK(U(p̃−)∗) to Sk(p−)∗.

Proof. We already know that the left A-module structure on U(p̃−)∗ given
by equation (43) induces a left A-module structure on grkK(U(p̃−)∗) by the
invariance of the Kostant filtration under the left action of A (see equa-
tion (69)). Then the induced morphism ψk is an isomorphism from the left
A-module grkK(U(p̃−)∗) to the left U(p̃)-module Sk(p−)∗. Moreover since
Sk(p

−)∗ is a left U(p̃)-module, it follows that it is the same for grkK(U(p̃−)∗).
Let us verify directly that grkK(U(p̃−)∗) is indeed a left U(p̃)-module. Let
x, x′ ∈ m and u ∈ Uk(p̃−). One checks that

(94) (ad∗∗x ◦ ad∗∗x′ − ad∗∗x′ ◦ ad∗∗x)(u) ∈ Uk−1(p̃−).

Indeed write u = su′ with s ∈ Sj(m−) and u′ ∈ Uk−j(r) for 0 ≤ j ≤ k. If
j = 0 then ad∗∗x ◦ ad∗∗x′(su′) = 0 = ad∗∗x′ ◦ ad∗∗x(su′) by equation (31).
Now assume that 1 ≤ j ≤ k and take s = y1 · · · yj ∈ Sj(m−), with yi ∈ m−

for all 1 ≤ i ≤ j. By definition of ad∗∗ (see equation (29)), we obtain that

ad∗∗x ◦ ad∗∗x′(su′)

=
∑

1≤i 6=k≤j

∏
t6∈{i, k}

ytθ(ad
∗x(yk))θ(ad

∗x′(yi))u
′

=
∑

1≤i 6=k≤j

∏
t6∈{i, k}

ytθ(ad
∗x(yk)ad

∗x′(yi))u
′ mod Uk−1(p̃−)

=
∑

1≤i 6=k≤j

∏
t6∈{i, k}

ytθ(ad
∗x(yi)ad

∗x′(yk))u
′ mod Uk−1(p̃−)

= ad∗∗x′ ◦ ad∗∗x(su′) mod Uk−1(p̃−)

since for all a, b ∈ r, one has θ(a)θ(b) = θ(ab) mod U1(r).
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One deduces that, for all f ∈ F k
K(U(p̃−)∗), for all x, x′ ∈ m,

x.(x′.f)− x′.(x.f) ∈ F k+1
K (U(p̃−)∗)

and then
x.(x′.grkK(f)) = x′.(x.grkK(f)).

�

Recall the notation in the proof of Lemma 7.3. Let k ∈ N and set jk = f−1
k ,

which is an isomorphism of U(p̃)-modules from Sk(p
−)∗ to Sk(p̃). Moreover

set ψ0
k = jk ◦ψk and ψ0 =

⊕
k∈N ψ

0
k : this is by the above an isomorphism of

U(p̃)-modules from grK(U(p̃−)∗) to S(p̃). Now as in [10, 6.6] set ψ̃k = 1
k!ψ

0
k

and ψ̃ =
⊕

k∈N ψ̃k. One deduces the following, as in [10, 6.6].

Proposition. ψ̃ is an isomorphism of U(p̃)-modules and of algebras from
grK(U(p̃−)∗) to S(p̃).

7.6. Denote by grK(C̃r) the graded algebra associated to the induced gen-
eralized Kostant filtration on C̃r, and by grK(C̃

U(r′)
r ) the graded algebra

associated to the induced generalized Kostant filtration on C̃
U(r′)
r . Denote

by (grK(U(p̃−)∗))U(p̃′) the algebra of invariants in grK(U(p̃−)∗) by the action
of U(p̃′) given by equation (69). We have that

grK(C̃r) ⊂ grK(U(p̃−)∗)

and by Proposition 7.2 that

grK(C̃
U(r′)
r ) ⊂ (grK(U(p̃−)∗))U(p̃′).

Denote also by S(p̃)U(p̃′) the algebra of invariants in S(p̃) by the adjoint
action of U(p̃′) : this is also the algebra of semi-invariants in S(p̃), which we
denote by Sy(p̃). From Proposition 7.5, one deduces the following.

Theorem. One has that

ψ̃(grK(C̃
U(r′)
r )) ⊂ Sy(p̃).

7.7. Let M denote a left h-module such that each of its weight spaces
Mν = {m ∈M | ∀h ∈ h, h.m = ν(h)m}, for all ν ∈ h∗, is finite dimensional.
Then one may define ([17, 3.4.7]) the formal character chM ofM as follows.

chM =
∑
ν∈h∗

dimMν e
ν .

Recall the set E(π′) in subsection 6.1, and for all Γ ∈ E(π′), set δΓ =
w′0dΓ − w0dΓ, with dΓ =

∑
γ∈Γ$γ . By Prop. 6.2 and Theorem 6.1, the

algebra of invariants C̃U(r′)
r is a polynomial algebra in |E(π′)| variables, each

of them having δΓ, Γ ∈ E(π′), as an h-weight. Moreover for g simple and
π′ ( π that is, for p ( g, one has that δΓ ∈ P+(π) \ {0} for all Γ ∈ E(π′) by
[10, 5.4.3]. Then in this case ch C̃

U(r′)
r is well defined.
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Proposition. Assume, for all ν ∈ h∗, that the weight vectorspace Sy(p̃)ν
is finite-dimensional, so that the formal character chSy(p̃) is well defined.
Then

ch C̃
U(r′)
r ≤ chSy(p̃)

namely ∏
Γ∈E(π′)

(1− eδΓ)−1 ≤ chSy(p̃).

Proof. Recall that the generalized Kostant filtration FK is decreasing, sep-
arated and that F 0

K(U(p̃−)∗) = U(p̃−)∗. Then, for every finite dimensional
subspace V of U(p̃−)∗, there exists N ∈ N such that V ∩FN

K (U(p̃−)∗) = {0}.
One deduces easily that the graded vector space grK(V ) associated to the
induced generalized Kostant filtration on V is isomorphic to V . Using The-
orem 7.6 and a same argument as in [10, 7.1] completes the proof. �
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