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Abstract

In this paper, we introduce a new flow-based method for global optimization of
continuous Sobolev functions, called Stein Boltzmann Sampling (SBS). Our method
samples from the Boltzmann distribution, as it becomes asymptotically supported
over the set of the minimizers of the function to be optimized. Candidate solutions
are sampled via the Stein Variational Gradient Descent (SVGD) algorithm. We
prove the asymptotic convergence of our method by introducing a novel framework
of the SVGD theory, suitable for global optimization, that allows to address more
general target distributions over a compact subset of Rd. We present two SBS
variants and provide a detailed comparison with several state-of-the-art global
optimization algorithms on various benchmark functions, showing that SBS and its
variants are highly competitive. Its design of our method, the theoretical results,
and the experiments suggest that SBS is particularly well-suited to be used as a
continuation for particles or distribution-based methods, conjointly with particles
filtering strategies, to produce sharp approximations while making a good use of
the budget.

1 Introduction

In this paper, we consider global optimization of an unknown continuous, Sobolev, a priori nonconvex,
function. Optimizing an unknown function is a typical situation in real applications: hyperparameter
calibration or complex system design emerge in several domains, such as biology, physics simulation,
epidemiology, machine learning (e.g. (Pintér, 1991; Lee et al., 2017)). For this purpose, sequential
methods are usually employed, which means that at each iteration the algorithm uses information
extracted from the previous candidate solutions to propose the new ones. Many sequential and
stochastic methods has been introduced to address this problem. Recent results (Zhang et al., 2020;
Davis et al., 2022; Jordan et al., 2023) showed that only stochastic algorithms can approximate
optimal points of an arbitrary Lipschitz function, when considering a relaxed (but still meaningful)
optimality criterion.

Sequential methods rely on two components: a sampling process to explore the search space, and a
selection process to choose the next candidate solution using the information given by the previous
samples. In this work, we introduce a new sequential and flow-based method called Stein Boltzmann
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Sampling (SBS) for Sobolev functions. It uses the Stein Variational Gradient Descent (SVGD) (Liu
& Wang, 2016) method to sample from the Boltzmann distribution, which has the characteristic of
converging towards a distribution supported on all minimizers. SVGD constructs a flow in the space
of probability measures (similarly to the way a gradient flow would evolve in Rd) that moves towards
the target sampling measure. Even though our method is not a typical stochastic one (since SVGD
sampling is deterministic), we prove its asymptotic convergence for any Sobolev function using
elements of the SVGD theory. We show that the SBS method achieves competitive performance on
standard global optimization benchmarks versus five stochastic state-of-the-art methods. The first
one, ADALIPO (Malherbe & Vayatis, 2017), is consistent over Lipschitz functions and is adapted for
a very low computational budget (i.e. function evaluations at candidate minimizers). The second
one, BAYESOPT (Martinez-Cantin, 2014) is well-known and adapted for small budget. The third one
uses MALA to sample from the Boltzmann distribution, in a similar way to our method (Grenander
& Miller, 1994; Welling & Teh, 2011; Raginsky et al., 2017). The last ones, CMA-ES (Hansen &
Ostermeier, 1996, 2001; Hansen et al., 2003) and WOA (Mirjalili & Lewis, 2016), are two inconsistent
methods but known to be very efficient in practice. Due to either early stopping conditions or time
complexity, these two methods do not scale computationally well, hence they are not suited for when
the available computational budget is low.

The contributions of this paper are as follows: First, we provide a new proof of the asymptotic
convergence of SVGD over a compact subset of Rd for a class of target distribution. The class
of distribution considered is more general than the one considered usually and allows to show
the convergence of SBS for any continuous Sobolev function. In Appendix, we provide detailed
definitions and results of the SVGD theory in this novel framework. To ensure ensure the correctness
and reproducibility of the technical proofs, for some of the results, we provide links to proofs in Lean,
a proof assistant (de Moura & Ullrich, 2021; mathlib Community, 2020). Then, we introduce two SBS
variants: one that uses particle filtering to reduce the budget needed, and a hybrid one that uses SBS
as a continuation of CMA-ES or WOA to combine their efficiency with the consistency and scalability
of our method. The goal is to provide methods that make more efficient use of the computational
budget, for future real-world applications. Finally, we provide a detailed comparison of our method
with the five aforementioned state-of-the-art methods on several global optimization benchmarks. We
also interpret the attraction and repulsion forces of SVGD in the context of global optimization.

Notations. We consider the following notations: d ∈ N is the dimension of the optimization problem;
f : Ω → R is the function to optimize, its domain Ω ⊂ Rd is a smooth, connected and compact set;
x∗ ∈ X∗ is one of the global minima of f , i.e. ∀x∗, f∗ = f(x∗). Moreover, λ : Bd → R≥0 is the
standard Lebesgue measure on the Borel algebra of Rd. Given an arbitrary function f , its support
is supp(f) = {x ∈ Ω | f(x) ̸= 0}. We denote by Cp the set of p-times continuously differentiable
functions, and by C∞

c (Ω) the set of smooth functions on Ω that have compact support. Given two
measurable spaces (Ω1,Σ1) and (Ω2,Σ2), a measurable function f : Σ1 → Σ2 and a measure µ over
Σ1, let f#µ denote the pushforward measure, i.e.

∀B ∈ Σ2, f#µ(B) = µ(f−1(B)).

For any natural numbers m and p, let Wm,p be the Sobolev space of functions with m weak derivatives
in Lp

µ(Ω):

Wm,p ≜
{
f ∈ Lp

µ(Ω)
∣∣∣ ∀α ∈ Nd, |α| ≤ m,Dαf ∈ Lp

µ(Ω)
}
,

where µ is clear from the context. Let the Hilbert space Hm be the Sobolev space Wm,2.
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Figure 1: Illustration of the vector field ϕ⋆ in the discrete setting where π is the BD w.r.t. x 7→ sin∥x∥2. One
can see that, the particles are attracted to the two d− 1 manifolds where the function is minimized, and, after
some SVGD iterations, they are concentrated around these regions.

2



2 Stein Boltzmann Sampling

2.1 The proposed method

We introduce the Stein Boltzmann Sampling (SBS) method. The idea is to sample from a distribution
that converges asymptotically to a distribution supported over the set of minimizers X∗ of an arbitrary
continuous function f . We use the continuous Boltzmann distribution (BD) for this purpose, as it is a
classical object in the global optimization theory and as it makes a link between our method and the
simulated annealing method (Kirkpatrick et al., 1983) (see Section 6).
Definition 2.1 (Continuous Boltzmann distribution). Given a function f ∈ C0(Ω,R), the Boltzmann
distribution over f is induced by the probability density function m

(κ)
f,Ω : Ω → R≥0 defined by:

m
(κ)
f,Ω(x) = m(κ)(x) =

e−κf(x)∫
Ω
e−κf(t) dt

, ∀κ ∈ R≥0. (1)

A characteristic property of the BD is that it tends to distribution supported over the set of minimizers
X∗ as κ tends to infinity. If λ(X∗) > 0, the BD tends to a uniform distribution over X∗ (see
Figure 2). If λ(X∗) = 0, it tends to a distribution over X∗ where the concentration of the mass
depends on the local geometry of the minimizing manifolds (Hwang, 1980). More details can be
found in Appendix A.1. The SBS method aims to sample from the BD with κ large enough in order
for the function values at the sampled points to be close to the global minimum. As m(κ) converges to
a distribution supported over X∗, the approximation of f∗ can be made arbitrarily accurate. However,
as it is not efficient to sample from BD by estimating the intractable term

∫
Ω
e−κf(t) dt using classical

Monte-Carlo methods, we propose to use instead the Stein Variational Gradient Descent (SVGD)
algorithm. While the SVGD theory and dynamics has been deeply studied in the literature (e.g. (Liu,
2017; Lu et al., 2019; Korba et al., 2020; Duncan et al., 2023; Sun et al., 2023)), its use for global
optimization has not been considered. Thus, we introduce a new framework of the SVGD theory,
suitable for global optimization, that allows to address more general target distributions over Ω and
we prove classical results in this new framework (see Appendix A.2).

Given an initial measure µ, SVGD constructs iteratively a sequence of measures that get closer to the
target measure (in terms of KL-divergence), noted π. The update direction is given by:

ϕ⋆
µ = Ex∼µ [∇ log π(x)k(·, x) +∇xk(·, x)] ,

where the gradient operator is understand in the sense of distributions and k is the reproducing kernel
of a specific RKHS H (see Appendix A.2 for more details). In our case, π is the BD. As it appears
within a gradient-log term, we do not need the normalization constant of the BD to compute ϕ⋆

µ. The
pseudocode of the proposed SBS method can be found in Algorithm 1. We also provide a collection
of all the key notations and their meaning used throughout the paper in Table 3. Next in this section,
we prove the asymptotic convergence of SBS.

2.2 Asymptotic convergence of SBS

First, define Pn(Ω) as the set of probability measures on Ω such that
∀µ ∈ Pn(Ω), µ≪ λ ∧ µ(·) ∈W 1,n(Ω) ∧ supp(µ(·)) = Ω,
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Figure 2: The Boltzmann p.d.f. becomes uniform
over the set of minimizers X∗ of the given function f
to optimize, as κ grows, tending to infinity.
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Figure 3: The volume of the global minimizers is
much smaller than the volume of the local minimizers.
The value of the function at the local minimizers is
close to the value of the global ones. In Figure 2,
κ ≜ 100 is sufficient for the the majority of the mass
to be concentrated around the global minimizers. Here,
κ needs to be bigger.
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where µ(·) is the density of µ w.r.t. λ. To prove the asymptotic convergence of SBS, we need to
prove that the sequence of measures constructed by SVGD, noted (µn)n∈N (for more details, see
Appendix A.2), converges to the measure induced by the BD, noted π. To do so, we need to study
the flow of measures induced by the update direction of SVGD. To use theoretical results of our
new SVGD framework, we need to ensure µ and π belongs to P2(Ω). For the latter, we assume that
f is in C0(Ω) ∩W 1,4(Ω) so that mκ is in H1(Ω) (see proof in Appendix B.2). Theorem 2.2 and
Theorem 2.3 are known results in the literature that we prove in our new SVGD framework. Then, we
introduce two lemmas that are crucial to prove the asymptotic convergence of SBS.
Theorem 2.2 (Time derivative of measure flow (Liu, 2017)). Let ϕ : R≥0×Ω → Ω, ϕ(t, ·) = ϕt(·) be
a vector field and µ ∈ P2(Ω). Let (Tt)0≤t : Ω → Ω be a locally Lipschitz family of diffeomorphisms,
representing the trajectories associated with the vector field ϕt, and such that T0 = Id. Let
µt = Tt#µ. Then, µt is the unique solution of the following nonlinear transport equation:{∂µt

∂t = −∇ · (ϕtµt),∀t > 0

µ0 = µ
, (2)

where (∇·) is the divergence operator, in the sense of distributions (see details in Appendix B.7).
Moreover, the sequence (µn)n∈N, constructed by SVGD, is a discretized solution of (2), considering
the vector field ϕ⋆

µt
. One can consider the resulting flow of measures

Φ : R≥0 × P2(Ω) → P2(Ω),

(t, µ) 7→ Φt(µ) = µt.

We provide a different proof of this theorem in Appendix B.7, using optimal transport theory. This
proof is more general in T but less constructive. We also prove that that sequence (µn)n∈N is a
discretized solution of (2). The latter equation has also been deeply studied in (Lu et al., 2019).
This result allows to study the time-derivative of the KL-divergence between µt and π. Let Sµ be
an integral operator associated to H and K(µ|π) a discrepancy measure between µ and π in P2(Ω)
called Kernelized Stein Discrepancy (KSD). Both objects are defined in Appendix A.2. We have the
following result.
Theorem 2.3 (Time-derivative of the KL-divergence (Liu, 2017)). Let (Tt)0≤t : Ω → Ω be a
locally Lipschitz family of diffeomorphisms, representing the trajectories associated with the vector
field ϕ⋆

µt
= Sµt

∇ log π
µt

, such that T0 = Id. Let µt = Tt#µ. Then, the time derivative of the
KL-divergence between µt and π is given by

∂KL(µt||π)
∂t

= −K(µt|π).

Furthermore, as K(µt|π) is nonnegative, the KL-divergence is non-increasing along the flow of
measures.

(See proof in Appendix B.8). In order to show the convergence of continuous-time SVGD, we proved
that the KSD is a valid discrepancy measure.
Lemma 2.4 (KSD valid discrepancy). Let µ, π ∈ P2(Ω). Then,

µ = π ⇐⇒ K(µ|π) = 0.

(See proof in Appendix B.9). The previous lemmas directly imply that π is the unique fixed point of
the flow of measures Φ.
Lemma 2.5 (Unique fixed point). Let π ∈ P2(Ω) and Φ be the flow of measures defined in Theo-
rem 2.2. Then, for any t ≥ 0, π is the unique fixed point of (µ : P2(Ω)) 7→ Φt(µ).

Since K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H (see Appendix A.2), the proof is straightforward using the previous lemmas.

See complete proof in Appendix B.10. Finally, we provide a proof of the weak convergence of µt to
π.
Theorem 2.6 (Weak convergence of SVGD). Let µ, π ∈ P2(Ω). Let (Tt)0≤t : Ω → Ω be a locally
Lipschitz family of diffeomorphisms, representing the trajectories associated with the vector field
ϕ⋆
µt

= Sµt
∇ log π

µt
, such that T0 = Id. Let µt = Tt#µ. Then, we have that

µt ⇀ π.

See proof in Appendix B.11. The proof relies on Theorem 2.3 and Lemma 2.5; it is inspired by the
proof of Theorem 2.8 in (Lu et al., 2019).
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2.3 Discrete setting

In practice, SVGD is a discrete time algorithm that iteratively updates a set of particles and not a
continuous measure µ. It starts by sampling a sequence of particles from a distribution µ: X =(
x(1), . . . , x(N)

)
∼ µ⊗N , and then computes the next ones as follows:

Xn+1 = Xn + εϕ⋆
µ̂n

(Xn) ,

where µ̂n(A) =
1

N

N∑
i=1

δ
X

(i)
n
(A).

(3)

One can see a representation of the vector field ϕ⋆ in the discrete setting where π is the BD in Figure 1.
The previous results are sufficient to show the main theoretical result concerning SBS: its asymptotic
convergence in discrete setting.

Theorem 2.7 (SBS asymptotic convergence). Let f : Ω → R be in C0(Ω) ∩W 1,4(Ω). Let κ > 0
and let π be the BD defined in Definition 2.1 associated with f and κ. Let µ0 ∈ P2(Ω) and let µ̂n be
defined by (3). Then,{

f
(
X(n)

) ∣∣∣ X(n) = (x(1), . . . , x(N)) ∼ µ̂⊗N
n

}
⇀
ε→0
n→∞
N→∞
κ→∞

{f∗}.

The proof relies on three main components: the almost sure convergence of the empirical measure
µ̂n to µn, the weak convergence of µn to π using Theorem 2.2 and Theorem 2.6 (that are applicable
as f ∈ C0(Ω) ∩W 1,4(Ω)), and the fact that the BD tends to a distribution supported over the set of
minimizers X∗ as κ tends to infinity. The proof is provided in Appendix B.12.

To summarize, we proved that SBS is asymptotically convergent for any functions that are continuous
and belong to W 1,4(Ω). We adapted the theory of SVGD for target measures that are in P2(Ω) over
a compact subset of Rd (see Appendix A.2). This is a different framework than the one usually
considered in the literature, where the target density is smooth and the domain is Rd (e.g. (Liu &
Wang, 2016; Liu et al., 2016)). Some works have been done to relax the assumptions on the target
measure (e.g. (Korba et al., 2020; Sun et al., 2023)). However, thanks to the compactness of Ω, our
assumptions on π are less restrictive and only consider integration constraints on its 1st order weak
derivatives, making our framework more adapted to global optimization problems.

The implementation of SBS uses (3) and estimate the gradients using finite differences. At each
iteration, it updates the set of particles in the direction induced by ϕ⋆

µ̂n
by a small step size, computed

using the Adam optimizer (Kingma & Ba, 2015). We choose the initial distribution µ0 to be the
uniform distribution on Ω as it maximizes the entropy (related to the exploration aspect of the method)
and we use the RBF kernel function. These two objects are used in most literature on SVGD and meet
the requirements of the theory. To better understand the previous results and objects involved, we

(a) SBS (b) Particle filtering-based SBS-PF

Figure 4: Illustration of the plain SBS (left) and its particle filtering variant (right) on the 2d Ackley function
(see Table 1). The color gradient represents the value of the function, from blue (low, preferred) to red (high).
For SBS, particles are initialized uniformly over the domain. Then, they are updated in the direction induced
by ϕ⋆

µ̂n
with a small step size. The trajectories of the particles draw the discretized flow of measures Φt. On

the particle filtering SBS-PF variant, the particles are initialized and updated in the same way, but those being
unpromising are rapidly removed and are not replaced; this is visible as there are no persisting trajectories in
the area where the function has high value. This results in a significant reduction of the budget while having
comparable performance.
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introduce an non-exhaustive list of definitions and theoretical results related to SVGD Appendix A.2.

Algorithm 1 Stein Boltzmann Sampling (SBS)

Input: f : Ω → R; number of vectors (particles)
N ; Boltzmann parameter κ; step-size ε; number of
SVGD iterations n; an initial distribution µ0 over
the particles
Output: x̂, an estimate of x∗

Sample N particles: X1 ←
(
x(1), . . . , x(N)

)
∼

µ⊗N
0

for i = 1 to n do
Compute the vector field ϕ⋆

µ̂i
(see Section 2.1)

Xi+1 ← Xi + εϕ⋆
µ̂i
(Xi) update of the particle

system
µ̂i+1 ← 1

N

∑N
j=1 δX(j)

i+1

empirical measure

over the particles
end for
x̂← argmin 1≤j≤Nf(X

(j)
n+1) the "best" particle

return x̂

Algorithm 2 Initialization choice of SBS-HYBRID

Input: number of candidates n; CMA-ES budget b
Output: n candidates

Run CMA-ES for b function evaluations
Run WOA with n candidates
if CMA-ES found a better value than WOA then

Sample n candidates from the last CMA-ES Gaus-
sian

else
Use the n candidates from WOA

end if
return the n candidates

3 SBS variants

In addition to the main SBS method, we introduce two variants that can be more efficient in practice.
The first one uses a particle filtering approach that removes the less promising particles (without
replacing them). The second one is a hybrid method that uses SBS as a continuation for other global
optimization methods, or –seen the other way around– those methods are used to initialize SBS. The
particle filtering variant uses less budget than the main SBS. The hybrid variant uses some of the
budget to run one of the pre-existing methods to initialize SBS with better starting points; the aim is
to approximate the global minimum better than SBS with the same budget.

Particle filtering SBS (SBS-PF). We use a simple idea: to remove particles (i.e. candidate minimizers
of f ) that are less promising or stuck in bad local minima. We chose to remove a particle that does
not move and have a significantly higher function value than the others. Therefore, this strategy is
very likely to remove particles that are stuck in bad local minima. The difference between SBS and
this variant is visualized in Figure 4. One can see that, in SBS-PF, the unpromising candidates are
rapidly removed and are not replaced so that the remaining particles are more likely to converge to
the global minimum. This strategy results in a significant reduction of the budget used, while having
comparable results as SBS.

SBS-HYBRID. Another interesting direction is to use SBS as a continuation for particles or distribution-
based methods, such as WOA or CMA-ES. Indeed, the design of SBS allows to initialize the particles
with the result of such a method and then continue the optimization process. We introduce SBS-
HYBRID that runs few iterations of CMA-ES and WOA to choose the most promising algorithm among
them and continue the optimization with SBS (see Algorithm 2). Both WOA and CMA-ES are efficient
methods, thus, running them for a small number of iterations allows to find a good starting point for
SBS. Moreover, both methods are not well-fitted for a high budget for different reasons: CMA-ES uses
early stopping rules (i.e. for the covariance matrix to not become ill-conditioned), and WOA takes
more time to run than SBS for the same budget. SBS-HYBRID can be seen as a combination of SBS,
an asymptotic consistent method, on top of very efficient non-consistent methods. The strength of
SBS-HYBRID is that it provides very good results while it is still asymptotically consistent, since the
distribution of the particles induced by WOA and CMA-ES meet the assumptions of Theorem 2.6.

4 Choice of hyperparameters

In this section, we discuss the choice of the hyperparameters of SBS and its variants. We focus on the
choice of κ and the kernel, as they carry complex information about the behavior of SBS.
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Figure 5: log-distance to the global minimum versus the value of κ for SBS on the Himmelblau function
(left) and the Holder Table function (right). One can see that the choice of κ does not significantly affect the
performance of SBS, on both noisy and smooth functions.
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Figure 6: Execution time versus the number of evaluations for BAYESOPT, ADALIPO and CMA-ES on the
Himmelblau function. One can see that the time to run is significantly higher for BAYESOPT and ADALIPO than
for CMA-ES. Thus, the budget allowed for these two methods is set lower than the others.

Choice of κ. As detailed in the theoretical analysis sections, κ controls the shape of the distribution
SVGD samples from. The bigger κ, the more the mass of the distribution is concentrated around the
global minima of the function. Intuitively, the optimal κ to choose for a satisfying amount of the
mass to be around the global minima depends on the geometry of the function around local minima
(the asymptotic behavior of the BD depends on the local geometry, see (Hwang, 1980)). However,
one can see in Figure 5 that, in practice, the choice of κ does not significantly affect the performance
of SBS. The reason is that, if the modes of the BD that contains the most mass are the ones around
the global minima, SVGD succeeds in moving some particles in these modes (given enough particles).
Moreover, given κ, for those modes to not contain the most mass, it would require that the volume of
one or several local minimizers that have a close value to the global minimum is much larger than the
volume of the global minimizers (see Figure 3). These two conditions are interdependent. Choosing
a large κ ensures that, if the latter event happens, either the volume of the local minimizers is much
larger than the volume of the global minimizers (which is unlikely in practice) or the value of the
local minimizers is very close to the value of the global minimizers (which is a good thing). Thus,
the choice of κ can be set to a large value, such as 103, to have a good performance on average.

Choice of σ. In all variants of SBS, we use the RBF kernel with a bandwidth σ. The choice of σ is
crucial for the performance of the methods. As detailed in Section 6, the size of σ controls the forces
that occur between particles. When a lot of particles are close, they repel each other. This behavior
allows to explore the domain of the function. However, it also prevents SBS from converging in
narrow regions, where global minima could be located. Then, a natural choice of σ is 1

N2 , where N is
the number of particles. This choice ensures that, with few particles, σ is large enough to for SBS to
explore the domain while, with a lot a particles, the exploration is ensured by the uniform distribution
µ0 and the small σ allows the particles to converge to the global minimum. For the SBS-PF variant, σ
changes during the optimization process, as particles are being removed. For SBS-HYBRID, as the
initial particles are supposed to be close to the global minimum, σ is set to a very small value, such
as 10−10.

5 Benchmark

In this section, we compare numerically SBS and its variants with state-of-the-art global optimization
methods. We consider the following methods: CMA-ES (Hansen & Ostermeier, 1996, 2001; Hansen
et al., 2003), WOA (Mirjalili & Lewis, 2016) (a particle-swarm method), ADALIPO (Malherbe &
Vayatis, 2017), BAYESOPT (Martinez-Cantin, 2014), and a similar method to SBS but using MALA
instead of SVGD (Grenander & Miller, 1994; Welling & Teh, 2011; Raginsky et al., 2017). We
also provide a method that combines SBS-PF and SBS-HYBRID, named SBS-PF-HYBRID. We
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Figure 7: Illustration of the exploration/exploitation trade-off in SBS with different values of σ. In blue, the
repartition of the particles, in orange, x 7→ cos(x2) + x/5 + 1, in green m(κ).

use classical two dimensional benchmark functions for global optimization. Some are noisy and
multimodal (Ackley, Drop wave, Egg Holder, Holder Table, Michalewicz, Rastrigin, Levy), some are
smooth (Branin, Goldstein Price, Himmelblau, Rosenbrock, Camel, Sphere) (see more information in
(Surjanovic & Bingham)). We provide the implementation 1 of this experiment. For the results of
Table 1, we ran each method 10 times on each function. In the literature, the budget is defined as the
number of function evaluations. However, the computational time can vary significantly between
the methods and needs to be taken into account. Thus, the budget is set in order for the methods to
stop in a reasonable time. As one can see in Figure 6, the time to run ADALIPO and BAYESOPT is
significantly higher than the other methods. Thus, the budget allowed for these two methods is set
lower than the others: 2K for ADALIPO, 100 for BAYESOPT and 800K for the others.

We introduce a metric named Competitive ratio:

Competitive ratio(m) =
1

|F |
∑
f∈F

min

(
100,

dfm

dfbest

)
,

where F is the set of benchmark functions, dfbest is the smallest distance to the global minimum of f
among all the methods and dfm is the distance to the global minimum of f found by the method m.
This metric provides information on the average precision compared to the best method (lower is
better, best is 1).

As one can see, SBS outperforms the state-of-the-art methods and score the third rank on average.
SBS-PF achieves comparable results on average with significantly less evaluations (∼ 97% budget
reduction). Even if the asymptotic consistency does not hold for SBS-PF, the particle filtering strategy
allows to beat almost all SOTA methods (except WOA) while using only a fraction of the initial
budget. Moreover, SBS-HYBRID and SBS-PF-HYBRID outperform all the other methods on average.
They combine the efficiency of both CMA-ES and WOA with the large budget compatibility of SBS,
while the addition of particle filtering reduce the budget by ∼ 67%. In parallel, SBS, SBS-PF-HYBRID
and SBS-HYBRID score respectively the fourth, second and first rank on the competitive ratio metric,
showing that their approximation are precise, compared to the other methods. SBS and SBS-HYBRID
succeed in beating CMA-ES and WOA while being asymptotically consistent. In Appendix, we provide
the results of the same experiment on 50 dimensional benchmark functions for low computational
time methods (see Table 2). The budget is set to 8M. One can observe a fairly similar behavior as in
the 2d case. However, the budget reduction of SBS-PF-HYBRID is less significant (∼ 9%): the high
dimensionality of the functions and the initial distribution makes the unpromising particles harder to
distinguish.

We believe that, with more sophisticated particle filtering and adaptive locality of the kernel, SBS could
be further improved (see Section 6). Note that, in order to update the particles, SBS needs to compute
the gradient of the function. In our implementation, we estimate it using finite differences. However,
it takes the majority of the budget. More sophisticated methods, such as automatic differentiation,
could significantly reduce the number of evaluations, which would make SBS even more competitive.

6 Discussion

Link with Simulated Annealing. The link between SBS and Simulated Annealing (Kirkpatrick et al.,
1983) is not difficult to see. Indeed, both algorithms are asymptotic methods that sample from the BD.
However, the way they sample from that distribution is different. Simulated Annealing is a Markov
Chain Monte-Carlo method (Azencott, 1989), while SBS is a deterministic variational approach.

1github.com/gaetanserre/Stochastic-Global-Optimization
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Table 1: Comparative results. Comparison between all SBS variants with several state-of-the-art methods
on two dimensional benchmark functions. For each function, we report the average best function value found
(lower is better). SBS-HYBRID runs 1K iterations of CMA-ES and WOA. As one can see, SBS-HYBRID and SBS
respectively rank 1st and 3rd while SBS-PF-HYBRID and SBS-PF achieve competitive results with significantly
less evaluations (respectively ∼ 67% and ∼ 97% budget reduction).

STATE-OF-THE-ART PROPOSED METHODS

FUNCTIONS LANGEVIN BAYESOPT ADALIPO CMA-ES WOA SBS-PF SBS SBS-PF-HYBRID SBS-HYBRID

ACKLEY 12.779 0.322 1.286 9.916 9 × 10−8 0.002 8 × 10−4 1 × 10−5 5 × 10−6

BRANIN 0.398 0.398 0.400 0.398 0.398 0.398 0.398 0.398 0.398
DROP WAVE −0.052 −0.838 −0.955 −0.685 −1.000 −0.963 −0.981 −0.934 −0.981
EGG HOLDER 1049.132 −860.935 −937.983 −629.634 −959.641 −932.393 −958.142 −944.700 −946.280
GOLDSTEIN PRICE 2548.300 10.231 3.813 37.236 3.000 3.000 3.000 3.000 3.000

HIMMELBLAU 3 × 10−6 6 × 10−4 0.006 1 × 10−16 3 × 10−6 1 × 10−7 9 × 10−11 7 × 10−19 9 × 10−21

HOLDER TABLE −9.234 −19.169 −19.184 −10.843 −19.208 −19.209 −19.209 −19.209 −19.209

MICHALEWICZ −5 × 10−15 −1.801 −1.790 −1.696 −1.801 −1.801 −1.801 −1.801 −1.743

RASTRIGIN 4.944 2.780 0.191 4.155 4 × 10−15 0.100 1 × 10−9 0.497 0.398

ROSENBROCK 0.534 0.106 0.037 1 × 10−15 2 × 10−7 4 × 10−5 2 × 10−6 5 × 10−17 2 × 10−17

CAMEL 161.823 −0.967 −1.016 −1.032 −1.032 −1.032 −1.032 −1.032 −1.032

LEVY 75.563 0.056 0.024 3.445 1 × 10−8 9 × 10−8 2 × 10−12 1 × 10−19 6 × 10−20

SPHERE 1 × 10−5 8 × 10−4 6 × 10−4 2 × 10−16 3 × 10−16 8 × 10−8 8 × 10−12 2 × 10−19 1 × 10−21

COMP. RATIO 85.732 92.385 92.385 54.309 31.511 69.558 33.567 31.462 28.331

AVERAGE RANK 8.46 7.23 6.54 6.00 3.54 4.92 3.38 2.77 2.15

FINAL RANK 9 8 7 6 4 5 3 2 1

The minimum temperature parameter of Simulated Annealing is the inverse of the κ parameter of
SBS. Thus, any scheduler for the temperature used in Simulated Annealing can also be used in SBS.
However, there is an extra degree of exploration/exploitation in SBS, corresponding to the kernel size
used by the employed SVGD sampling.

Locality of the kernel. In classical SVGD implementations, the used RBF kernel is: k(x, x′) =
exp

(
−∥x− x′∥22/2σ2

)
, as it is in the Stein class of any smooth density supported on Rd. The

bandwidth σ controls the locality of the attraction and repulsion forces applied on the particles,
respectively expressed as:

attr(x) = Ex′∼µ̂n
[∇ log π(x′)k(x, x′)] ,

rep(x) = Ex′∼µ̂n [∇x′k(x, x′)] .

The first term attracts lonely particles to a close cluster of particles, and the second term repels
particles that are too close to each other. They are respectively exploitation and exploration forces.
Indeed, the attraction allows particles to “fall” in local minima, where a lot of particles are already
stuck in. The repulsion prevents particles from getting stuck together at a narrow region of the search
space, and forces them to explore the space. The value of σ controls the range of these forces. A
small σ value leads to a weak repulsion and thus more exploitation. An arbitrary small σ leads to a
uniform distribution over the local minima. In the contrary, a large σ leads to more exploration, as
the particles will repel themselves from even from a very far distance. An arbitrary large σ leads to a
uniform discretization of the space. In the case of SBS, the value of σ is not fixed and can be chosen
by the user. These behaviors are illustrated in Figure 7.

7 Conclusion

In this paper, we introduced SBS, a new method for global optimization. We proved that it is consistent
using theory of the SVGD algorithm, that we extended to a more general class of target measure,
thanks to the compactness of the domain. This new SVGD framework is particularly suitable for
global optimization, as it allows to sample from the BD of any continuous function given integration
constraints on its 1st order weak derivatives. We showed that SBS outperforms state-of-the-art methods
in average on classical benchmark functions. We also introduced SBS-PF, a variant of SBS that uses
particle filtering to save most of the budget while having comparable performance than the original
version. Moreover, we introduced SBS-HYBRID, a hybrid method that combines the efficiency of
CMA-ES and WOA with the large budget compatibility of SBS, outperforming all the other methods.
Our work suggests that, in order to obtain precise approximation while having reduced budget, SBS
should be use as a continuation for particles or distribution-based methods, conjointly with particles
filtering strategies. For the future, we plan to study further the convergence rate of SBS and its
components, and design more sophisticated particle filtering strategies to make it more appealing for
global optimization in real-world applications.
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Table 3: Collection of all notations and their meanings

Notation Definition

f function to minimize

d dimension of the domain of f

Ω compact subset of Rd, domain of f

X∗ set of global minimizers of f

W p,m Sobolev space of functions with p-integrable m-th order weak derivatives

Hm W 2,m

λ Lebesgue measure

m(κ) density of the BD with parameter κ

Aµ the Stein operator associated to the measure µ

S(µ) the Stein class of the measure µ

P2(Ω) the set of probability measures supported over Ω with density in H1

π target measure, the BD of f in SBS context

H0 the foundational RKHS of SVGD

k the kernel of the RKHS H0

H the product RKHS of SVGD constructed using H0

Tµ an integral operator from L2
µ(Ω) to H0

Sµ an integral operator from L2
µ(Ω,Ω) to H constructed using Tµ

ϕ∗
µ the optimal transport vector field in H constructed by SVGD

K(µ|π) the Kernelized Stein Discrepancy

(µn)n∈N sequence of measures constructed by SVGD

µ̂n empirical measure of the SVGD particles

(µt)t∈R≥0
net extension of (µn)n∈N

Φ : R≥0 × P2(Ω) the flow of measures associated to (µt)t∈R≥0

A Background

In this section, we introduce some background results related to the Boltzmann distribution (BD) and
the SVGD theory. Please note that, concerning the BD, these results are not new. Concerning SVGD,
we introduce a novel framework, suitable for global optimization, in which we prove classical results
of SVGD theory. The purpose of this section is to provide a self-contained presentation of the theory
behind SBS for the reader and to show the consistency of our novel SVGD framework.

A.1 Boltzmann distribution

Recall that the BD has been formally defined in Definition 2.1. The BD is a well-known distribution in
statistical physics. It is used to model the distribution of the energy of a system in thermal equilibrium.
The parameter κ is called the inverse temperature. The higher κ is, the more concentrated the mass is
around the minima of f . When κ tends to infinity, the BD tends to a distribution supported over the
minima of f . The BD is typically used in a discrete settings, i.e. where the number of states is finite.
The continuous version can be defined using the Gibbs measure. The following properties come from
(Luo, 2019). For the sake of completeness, we provide the proofs in Appendix B.1.
Properties A.1 (Properties of the Boltzmann distribution). Let m(κ) be defined as in Definition 2.1.
Then, we have the following properties:

• If λ(X∗) = 0, then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
∞ if x ∈ X∗

0 otherwise.
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• If 0 < λ(X∗), then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
λ(X∗)−1 if x ∈ X∗

0 otherwise.

• ∀f ∈ C0(Ω,R),

lim
κ→∞

∫
Ω

f(x) m(κ)(x) dx = f∗.

A visual representation of the BD is given in Figure 2. One can see that, as κ increases, m(κ) becomes
more and more concentrated around the minima of f . We use the BD induced by the density m(κ)

(also noted m(κ) for simplicity) of (1). We provide the proof of the properties in Appendix B.1. To
sample from this distribution, we need to compute the integral

∫
Ω
e−κf(t) dt, which however, is likely

to be intractable for a general f .

A.2 Stein Variational Gradient Descent

Sampling from an intractable distribution is a common task in Bayesian inference, where the target
distribution is a posterior one. Computation becomes difficult due to the presence of an intractable
integral within the likelihood. The Stein Variational Gradient Descent (Liu & Wang, 2016) is a
method that transforms iteratively an arbitrary measure µ to a target measure π. In the case of SBS, π
is the BD defined in Definition 2.1, for any κ > 0. The algorithm is based on the Stein method (Stein,
1972). The theory of SVGD has been developed in several works over the years. Note that recently,
(Korba et al., 2021) introduced a new sampling algorithm based on the same objective to SVGD, less
sensitive to the choice of the step-size but not suitable for non-convex objectives. The remainder of
this section introduces key definitions and theoretical results related to SVGD and shows that they hold
when considering a compact domain Ω and a target density in H1(Ω): a novel framework particularly
suitable for global optimization that we use to prove the consistency of SBS (see Section 2.2).

A.2.1 Definitions

For any natural number n, we start by defining the set of probability measures on Ω that have a
density w.r.t. the Lebesgue measure and are in W 1,n(Ω). Let Pn(Ω) denote the set of probability
measures on Ω such that

∀µ ∈ Pn(Ω), µ ≪ λ ∧ µ(·) ∈ W 1,n(Ω) ∧ supp(µ(·)) = Ω,

where µ(·) is the density of µ w.r.t. λ. In SVGD theory, µ and π must belong to P2(Ω). Thus,
their densities lie in H1(Ω). The condition on their support ensures that the KL divergence is
well-defined. In the following, we denote the density w.r.t. λ of an arbitrary measure µ by the function
µ : Ω → R≥0.

A.2.2 Stein discrepancy

The Stein method defines the Stein operator associated to a measure µ (Liu, 2017):

Aµ : C1(Ω,Ω) → C0(Ω,R),
ϕ 7→ ∇ logµ(·)⊤ϕ(·) +∇ · ϕ(·),

where (∇) and (∇·) are respectively the gradient and the divergence operators, in the sense of
distributions. We denote this mapping by Aµϕ, for any ϕ in C1(Ω,Ω). It also defines a class of
functions, the Stein class of measures.
Definition A.2 (Stein class of measures (Liu et al., 2016)). Let µ ∈ P2(Ω) such that µ ≪ λ, and let
ϕ : Ω → Ω. As Ω is compact, the boundary of Ω (denoted by ∂Ω) is nonempty. We say that ϕ is in
the Stein class of µ if ϕ ∈ H1(Ω) and∮

∂Ω

µ(x)ϕ(x) · n⃗(x) dS(x) = 0,

where n⃗(x) is the unit normal vector to the boundary of Ω. We denote by S(µ) the Stein class of µ.
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The key property of S(µ) is that, for any function f in S(µ), the expectation of Aµf w.r.t. µ is null.
Lemma A.3 (Stein identity (Stein, 1972)). Let µ ∈ P2(Ω) such that µ ≪ λ, and let ϕ ∈ S(µ). Then,

Ex∼µ[Aµϕ(x)] = 0.

(See proof in Appendix B.3). Now, one can consider:

Ex∼µ[Aπϕ(x)] , where ϕ ∈ S(π). (4)

If µ ̸= π, (4) would no longer be null for any ϕ in S(π). In fact, the magnitude of this expectation
relates to how different µ and π are, and is used to define a discrepancy measure, known as the Stein
discrepancy (Gorham & Mackey, 2015). The latter considers the “maximum violation of Stein’s
identity” given a proper set of functions F ⊆ S(π):

S(µ, π) = max
ϕ∈F

{Ex∼µ[Aπϕ(x)]} . (5)

Note that S(µ, π) is not symmetric. The set S(π) might be different to S(µ), and even if they
are equal, inverting the densities in the expectation leads to a different result. The choice of F is
crucial as it determines the discriminative power and tractability of the Stein discrepancy. It also
has to be included in S(π). Traditionally, F is chosen to be the set of all functions with bounded
Lipschitz norms, but this choice casts a challenging functional optimization problem. To overcome
this difficulty, (Liu et al., 2016) chose F to be a universal vector-valued RKHS, which allows to find
closed-form solution to (5). The Stein discrepancy restricted to that RKHS is known as Kernelized
Stein Discrepancy.

A.2.3 Kernelized Stein Discrepancy

From now on, we consider µ, π ∈ P2(Ω) such that π is the target measure. Next, we define the
vector-valued RKHS that will be used in the Kernelized Stein Discrepancy.
Definition A.4 (Product RKHS (Liu & Wang, 2016)). Let k : Ω × Ω → R be a continuous,
symmetric, and integrally positive-definite kernel such that ∀x ∈ Ω, k(·, x) ∈ S(µ) ∩ S(π) and
∇xyk(x, y) ∈ L2

µ(Ω) (in the sense of distributions). Using the Moore–Aronszajn theorem (Aronszajn,
1950), we consider the associated real-valued RKHS H0. Let H be the product RKHS induced by
H0, i.e. ∀f = (f1, . . . , fd)

⊤, f ∈ H ⇐⇒ ∀1 ≤ i ≤ d, fi ∈ H0. The inner product of H is defined
by

⟨f, g⟩H =
∑

1≤i≤d

⟨fi, gi⟩H0
.

Let L2
µ(Ω) be the set of functions from Ω to R that are square-integrable w.r.t. µ. Let L2

µ(Ω,Ω) be
the set of functions from Ω to Ω that are component-wise in L2

µ(Ω), i.e.

∀f ∈ L2
µ(Ω,Ω), ∀1 ≤ i ≤ d, fi ∈ L2

µ(Ω).

As k is integrally positive-definite, H0 is dense in L2
µ(Ω) (see (Sriperumbudur et al., 2011)), which

shows its expressiveness. We proved that the integral operator

Tµ : L2
µ(Ω) → L2

µ(Ω)

f 7→
∫
Ω

k(·, x)f(x) dµ(x)

is a mapping from L2
µ(Ω) to H0, i.e. Tµ : L2

µ(Ω) → H0. (See proof in Appendix B.4). This allows
to define another integral operator

Sµ : L2
µ(Ω,Ω) → H

f 7→ (Tµf
(1), . . . , Tµf

(d))⊤,

where Tµ is applied component-wise. The proof in Appendix B.4 also shows that H is a subset of
L2
µ(Ω,Ω). Thus, we can define the inclusion map

ι : H ↪−→ L2
µ(Ω,Ω),
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whose adjoint is ι⋆ = Sµ. Then, have the following equality:

∀f ∈ L2
µ(Ω,Ω),∀g ∈ H,

⟨f, ιg⟩L2
µ(Ω,Ω) = ⟨ι⋆f, g⟩H = ⟨Sµf, g⟩H.

We can now define the KSD.

Definition A.5 (Kernelized Stein Discrepancy (Liu et al., 2016)). Let H be a product RKHS as
defined in Definition A.4. The Kernelized Stein Discrepancy (KSD) is then defined as:

K(µ|π) = max
f∈H

{Ex∼µ[Aπf(x)] | ∥f∥H ≤ 1} .

The construction of H was motivated by the fact that the closed-form solution of the KSD is given by
the following theorem.

Theorem A.6 (Steepest trajectory (Liu et al., 2016)). The function that maximizes the KSD is given
by:

ϕ⋆
µ

∥ϕ⋆
µ∥H

= argmax
f∈H

{Ex∼µ[Aπf(x)] | ∥f∥H ≤ 1} .

where ϕ⋆
µ = Ex∼µ[∇ log π(x)k(·, x) +∇xk(·, x)]. As supp(π) = Ω, ϕ⋆

µ is well-defined. It is the
steepest trajectory in H that maximizes K(µ|π). The KSD is then given by

K(µ|π) = Ex∼µ[Aπϕ
⋆
µ(x)].

The proof strategy is to remark that, for any function f ∈ H, Ex∼µ[Aπf(x)] = ⟨f, ϕ⋆
µ⟩H. Then, the

result follows from the Cauchy-Schwarz inequality. (See proof in Appendix B.5). This leads to the
following result of the SVGD theory.

Theorem A.7 (KL steepest descent trajectory (Liu & Wang, 2016)). Let H be a product RKHS
(Definition A.4). Let ϕ⋆

µ ∈ H be as defined in Theorem A.6. Let ε > 0 and

Tε : (Ω → Ω) → Ω

ϕ 7→ Id + εϕ.

Then,
argmin

ϕ∈H
{∇εKL(Tε(ϕ)#µ||π)|ε=0 | ∥ϕ∥H ≤ 1} =

ϕ⋆
µ

∥ϕ⋆
µ∥H

,

and ∇εKL((Id + εϕ⋆
µ)#µ||π)|ε=0 = −K(µ|π).

(See proof in Appendix B.6). This last result is the key of the SVGD algorithm. It means that ϕ⋆
µ

is the optimal direction (within H) to update µ in order to minimize the KL-divergence between
µ and π. As 0 ∈ H (that nullifies the gradient), the result ensures that the gradient of g : ε 7→
KL(Tε(ϕ

⋆
µ/∥ϕ⋆

µ∥H)#µ||π) is at most 0 and thus g is decreasing over [0, δ], for δ > 0 small enough.
Consequently, SVGD iteratively updates µ in the direction induced by ϕ⋆

µ, with a small step size ε:

µn+1 = (Id + εϕ⋆
µn

)#µn. (6)

Furthermore, given the above assumption on ϕ⋆
µ, we have the following lemma.

Lemma A.8. Let H be a product RKHS as defined in Definition A.4. Then, ϕ⋆
µ ∈ H as defined in

Theorem A.6. Given the above assumption on ϕ⋆
µ, we have that

K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H .

Proof. We showed in Appendix B.5 that

Ex∼µ[Aπf(x)] = ⟨f, ϕ⋆
µ⟩H

for any f ∈ H. Thus, Ex∼µ[Aπϕ
⋆
µ(x)] = ⟨ϕ⋆

µ, ϕ
⋆
µ⟩H. ■
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In particular, this lemma states that the derivative of the KL-divergence when considering the direction
ϕ⋆
µ is negative, meaning that the sequence (KL(µn||π))n∈N is decreasing, given that the step size is

small enough. In order to use theorems in Section 2.2, we need to ensure that

ϕ⋆
µ ∈ S(µ).

Given the assumption of the kernel, ϕ⋆
µ lies in H1(Ω). Thus, we need to choose k in order to ensure

that the integral of ϕ⋆
µ over ∂Ω is null. An easy way to guarantee this is to choose k such that

∀x ∈ Ω, lim
d({y},∂Ω)→0

∇xk(y, x) = 0, and

lim
d({y},∂Ω)→0

∇ log π(x)k(y, x) = 0,where

d(A,B) = inf {∥a− b∥2 | a ∈ A ∧ b ∈ B} .

This would be the case for a modified Gaussian kernel:

k(x, y) = exp

(
− ∥x− y∥22
2σ2f(x, y)

)
,

where f is a positive and symmetric function such that f and its gradient w.r.t. x tend to 0 near the
boundary of Ω sufficiently fast to ensure the previous conditions. This assumption allows to use
Lemma A.3 with ϕ⋆

µ, for any µ ∈ P2(Ω).

B Proofs

In the following sections, we provide the proofs of the theorems and lemmas stated in the main text.
We also provide Lean proofs of some results. The Lean proofs are available here 2 . Note that a
collection of all key notations and their meanings is available in Table 3. We also introduce a new
quantifier ∀µ, such that, given a predicate P and a measure µ,[

∀µx ∈ E ⊆ Ω, P (x)
]
≜ [∃A ⊆ E,µ(A) = µ(E),∀x ∈ A,P (x)] .

This quantifier means that the predicate P is true for almost all x ∈ E w.r.t. the measure µ. When the
considered measure is the standard Lebesgue measure, we simply write ∀.

B.1 Proof of Properties A.1

The continuous BD is a special case of the nascent minima distribution, introduced in (Luo, 2019),
that has the generic form

m
(κ)
f,Ω(x) = m(κ)(x) =

τκ(f(x))∫
Ω
τκ(f(t)) dt

, (7)

where τ : R → R>0 is monotonically decreasing. We have the following theorems for general τ .

Theorem B.1 (Nascent minima distribution properties). Let m(κ) and τ be defined in (7). Then, we
have the following properties:

• If λ(X∗) = 0, then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
∞ if x ∈ X∗

0 otherwise
.

• If 0 < λ(X∗), then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
λ(X∗)−1 if x ∈ X∗

0 otherwise
.

2gaetanserre.fr/assets/Lean/SBS/index.html
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Proof. Let’s prove the two properties together. Let p = τ(f(x′)) > 0, ∀x′ /∈ X∗. Then, ∃Ωp, such
that 0 < λ(Ωp), p < τ(f(t)), i.e. f(t) < f(x′). Thus,

m(κ)(x′) =
pκ∫

Ωp
τκ(f(t)) dt+

∫
Ω/Ωp

τκ(f(t)) dt

≤ pκ∫
Ωp

τκ(f(t)) dt

=
1∫

Ωp
p−κτκ(f(t)) dt

.

For any t in Ωp, p−1τ(f(t)) > 1. Therefore limκ→,∞
∫
Ωp

p−κτκ(f(t)) dt = ∞. Hence,

∀x′ /∈ X∗, lim
κ→∞

m(κ)(x) = 0.

Now, let’s consider any x′′ ∈ X∗ and p = τ(f(x′′)). We have

m(κ)(x′′) =
pκ∫

Ω
τκ(f(t)) dt

=
1∫ ∗

X
p−κτκ(f(t)) dt+

∫
Ω/X∗ p−κτκ(f(t)) dt

=
1∫

X∗ dt+
∫
Ω/X∗ p−κτκ(f(t)) dt

(∀t ∈ X∗, τ(f(t)) = p)

=
1

λ(X∗) +
∫
Ω/X∗ p−κτκ(f(t)) dt

.

For any t in Ω/X∗, p−1τ(f(t)) < 1. Therefore, limκ→∞
∫
Ω/X∗ p

−κτκ(f(t)) dt = 0. Thus,

∀x′′ ∈ X∗, lim
κ→∞

m(κ)(x′′) =

{
∞ if λ(X∗) = 0

1
λ(X∗) otherwise

.

■

Theorem B.2 (Convergence of expectation). ∀f ∈ C0(Ω,R), the following holds

lim
κ→∞

∫
Ω

f(x) m(κ)(x) dx = f∗.

Moreover, if X∗ = x∗, we have

lim
κ→∞

∫
Ω

x m(κ)(x) dx = x∗.

Proof. If f is constant, it is straightforward as m(κ) is a PDF. Suppose f not constant on Ω. For any
ε > 0, let 0 < δ ≜ ε

1+(maxx∈Ω f(x)−f∗) ≤ ε. As f is continuous, ∃Ωδ = {x ∈ Ω | f(x)− f∗ < δ},
the corresponding level set. Using Theorem B.1, ∃K ∈ N such that∫

Ω/Ωδ

m(κ)(x) dx < δ

17



holds ∀κ > K, as m(κ) tends to 0 ∀x /∈ X∗. Thus,

0 <

∫
Ω

f(x)m(κ)(x) dx− f∗

=

∫
Ω

f(x)m(κ)(x) dx− f∗
∫
Ω

m(κ)(x) dx

=

∫
Ω

(f(x)− f∗)m(κ)(x) dx

=

∫
Ωδ

(f(x)− f∗)m(κ)(x) dx

+

∫
Ω/Ωδ

(f(x)− f∗)m(κ)(x) dx

< δ

∫
Ωδ

m(κ)(x) dx

+ (max
x∈Ω

f(x)− f∗)

∫
Ω/Ωδ

m(κ)(x) dx

< δ(1− δ) + (max
x∈Ω

f(x)− f∗)δ

< (1 + (max
x∈Ω

f(x)− f∗))δ = ε.

The proof is similar for the second statement, by setting

Ωδ = {x ∈ Ω|∥x− x∗∥ < δ}.

■

Letting τ = x 7→ e−x gives Properties A.1.

B.2 Proof of f ∈ C0(Ω) ∩W 1,4(Ω) =⇒ mκ ∈ H1(Ω)

Proof. As f and exp(·) lie in C0(Ω), e−κf is also in C0(Ω). As Ω is compact, e−2κf is bounded.
Thus, e−κf lies in L2(Ω): ∫

Ω

e−2κf(x) dx < λ(Ω) ∗ C < ∞.

Moreover, ∀α ∈ Nd such that |α| ≤ 1, we have

Dα(e−κf ) = −κe−κfDαf.

As f is in W 1,4(Ω), Dαf is in L4(Ω). Thus, Dα(e−κf ) is also in L2(Ω):∫
Ω

(
Dα(e−κf(x))

)2

dx =

∫
Ω

−κe−2κf(x) (Dαf(x))
2
dx

= ⟨−κe−κf , (Dαf)
2⟩L2(Ω)

≤
∥∥−κe−2κf

∥∥
L2(Ω)

∥∥∥(Dαf)
2
∥∥∥
L2(Ω)

=
∥∥−κe−2κf

∥∥
L2(Ω)

∥Dαf∥2L4(Ω)

< ∞.

■
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B.3 Proof of Lemma A.3.

Proof. As µ(·) and ϕ are in H1(Ω), and as Ω is smooth, one can apply the integration by parts
formula in Ω ⊂ Rd (see (Evans & Gariepy, 2015)):

Ex∼µ[Aµϕ(x)] =

∫
Ω

∇ logµ(x)⊤ϕ(x) +∇ · ϕ(x) dµ(x)

=

∫
Ω

µ(x)(∇ logµ(x)⊤ϕ(x)) dx+

∫
Ω

µ(x)(∇ · ϕ(x)) dx

=

∫
Ω

µ(x)(∇ logµ(x)⊤ϕ(x)) dx−
∫
Ω

∇µ(x)⊤ϕ(x) dx

=

∫
Ω

∇µ(x)⊤ϕ(x) dx−
∫
Ω

∇µ(x)⊤ϕ(x) dx

= 0.

■

B.4 Proof of Tµ is a map to H0

Proof. As k is continuous, symmetric, and positive-definite and as µ(Ω) < ∞ and as Tµ is a self-
adjoint operator, we can apply the Mercer’s theorem to obtain a sequence of eigenfunctions (ϕi)i∈N
and a sequence of eigenvalues (λi)i∈N such that (ϕi)i∈I is an orthornormal basis of L2

µ(Ω), such that
(λi)i∈N is nonnegative and converges to 0, and such that the following holds:

∀s, t ∈ Ω, k(s, t) =

∞∑
i=1

λiϕi(s)ϕi(t).

The above series converges absolutely and uniformly on Ω× Ω. Let define the set

Hk =

{
f ∈ L2

µ(Ω)

∣∣∣∣∣f =

∞∑
i=1

λiaiϕi ∧
∞∑
i=1

λia
2
i < ∞

}
,

endowed with the inner product

∀f, g ∈ Hk, ⟨f, g⟩Hk
=

〈 ∞∑
i=1

λiaiϕi,

∞∑
i=1

λibiϕi

〉
Hk

=

∞∑
i=1

λiaibi. (8)

Routine works show that (8) defines a inner product and that Hk is a Hilbert space. Let’s show that
Hk is a RKHS with kernel k, i.e., ∀t ∈ Ω, k(t, ·) ∈ Hk and, ∀f ∈ Hk, f(t) = ⟨f, k(t, ·)⟩Hk

. Let
t ∈ Ω. First, Ω is compact, µ(Ω) = 1 < ∞, and k(t, ·) is continuous on Ω, thus k(t, ·) ∈ L2

µ(Ω).
Then, we have that

k(t, ·) =
∞∑
i=1

λiϕi(t)ϕi,

and
∞∑
i=1

λiϕ
2
i (t) = k(t, t) < ∞.

Thus, k(t, ·) ∈ Hk. Let f ∈ Hk. One can write

⟨f, k(t, ·)⟩Hk
=

〈 ∞∑
i=1

λiaiϕi,

∞∑
i=1

λiϕi(t)ϕi

〉
Hk

=

∞∑
i=1

λiaiϕi(t)

= f(t).

Therefore, Hk is indeed a RKHS with kernel k.The Moore–Aronszajn theorem ensures that, given
k, there exists an unique RKHS such that k is its kernel. Thus, Hk = H0. That’s prove that
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H0 ⊆ L2
µ(Ω) =⇒ H ⊆ L2

µ(Ω,Ω). Let’s now prove that ∀f ∈ L2
µ(Ω), Tµf ∈ H0. Let f ∈ L2

µ(Ω).
We begin by proving that Tµf ∈ L2

µ(Ω).

|Tµf(t)| =
∣∣∣∣∫

Ω

k(t, s)f(s) dµ(s)

∣∣∣∣
≤

∫
Ω

|k(t, s)||f(s)| dµ(s)

= ⟨|k(t, ·)|, |f |⟩L2
µ(Ω)

≤ ∥k(t, ·)∥L2
µ(Ω) ∥f∥L2

µ(Ω).

Then,

∥Tµf(t)∥2L2
µ(Ω) =

∫
Ω

|Tµf(t)|2 dt

≤
∫
Ω

∥k(t, ·)∥2L2
µ(Ω) dt ∥f∥

2
L2

µ(Ω)

= ∥k∥2L2
µ
∥f∥2L2

µ(Ω)

< ∞.

We now prove that Tµf ∈ H0.

Tµf =

∫
Ω

k(·, s)f(s) dµ(s)

=

∫
Ω

∞∑
i=1

λif(s)ϕi(s)ϕi(·) dµ(s)

=

∞∑
i=1

λiϕi(·)
∫
Ω

f(s)ϕi(s) dµ(s)

=

∞∑
i=1

λi⟨f, ϕi⟩L2
µ(Ω)ϕi.

As (ϕi)i∈N is an orthonormal basis of L2
µ(Ω) we have that∫
Ω

ϕiϕj dµ = 1{i=j},

which implies, using Parseval’s identity,

∞∑
i=1

⟨f, ϕi⟩2L2
µ(Ω) = ∥f∥2L2

µ(Ω) < ∞.

As (λi)i∈N converges to 0, ∃I ∈ N such that ∀i > I , λi < 1. Thus,

∞∑
i=1

λi⟨f, ϕi⟩2L2
µ(Ω) =

I∑
i=1

λi⟨f, ϕi⟩2L2
µ(Ω) +

∞∑
i=I+1

λi⟨f, ϕi⟩2L2
µ(Ω)

≤
I∑

i=1

λi⟨f, ϕi⟩2L2
µ(Ω) +

∞∑
i=I+1

⟨f, ϕi⟩2L2
µ(Ω)

≤
I∑

i=1

λi⟨f, ϕi⟩2L2
µ(Ω) + ∥f∥2L2

µ(Ω)

< ∞.

Therefore, ∀f ∈ L2
µ(Ω), Tµf ∈ H0, which proves that Tµ : L2

µ(Ω) ↪−→ H0. ■
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B.5 Proof of Theorem A.6

Proof. First, we show that ϕ⋆
µ ∈ H, i.e. ∀1 ≤ i ≤ d, (ϕ⋆

µ)
(i) ∈ H0. Let define the function

f (i) : Ω → R,

x 7→
∂ log π

µ (x)

∂xi
.

As supp(µ) = Ω, f (i) is well-defined and, as π and µ are in H1(Ω), f (i) is in L2(Ω). Then, as
∀x ∈ Ω, k(·, x) ∈ S(µ), it is easy to show that

(ϕ⋆
µ)

(i) = Tµf
(i) ∈ H0.

Thus, ϕ⋆
µ = Sµ∇ log π

µ ∈ H. Next, we prove that

∀f ∈ H,Ex∼µ [Aπf(x)] = ⟨f, ϕ⋆
µ⟩H.

⟨f, ϕ⋆
µ⟩H =

d∑
ℓ=1

〈
f (ℓ),Ex∼µ

[
∇ log π(ℓ)(x)k(x·) +∇xk

(ℓ)(x, ·)
]〉

H0

= Ex∼µ

[
d∑

ℓ=1

⟨f (ℓ),∇ log π(ℓ)(x)k(·, x) +∇xk
(ℓ)(x, ·)⟩H0

]

= Ex∼µ

[
d∑

ℓ=1

∇ log π(ℓ)(x)⟨f (ℓ), k(·, x)⟩H0
+ ⟨f (ℓ),∇xk

(ℓ)(x, ·)⟩H0

]

= Ex∼µ

[
d∑

ℓ=1

∇ log π(ℓ)(x)f (ℓ)(x) +
∂f (ℓ)(x)

∂xℓ

]
(Zhou, 2008)

= Ex∼µ

[
∇ log π(x)⊤f(x) +∇ · f(x)

]
.

Moreover, using the Cauchy-Schwarz inequality, we have that

⟨f, ϕ⋆
µ⟩H ≤ ∥f∥H∥ϕ⋆

µ∥H.

Thus, as ∥f∥H ≤ 1,

K(µ, π) ≤ ∥ϕ⋆
µ∥H.

Finally, by letting f =
ϕ⋆
µ

∥ϕ⋆
µ∥H

, we have that

Ex∼µ [Aπf ] = ⟨f, ϕ⋆
µ⟩H = ∥ϕ⋆

µ∥H.

■

B.6 Proof of Theorem A.7

Proof. Note Tε = T , µ[T ] the density of T#µ w.r.t. λ. First, when ε is sufficiently small, T is close
to the identity and is guaranteed to be a one-to-one. Using change of variable, we know that T−1

# π
admits a density π[T−1] w.r.t. λ and

π[T−1](x) = π(T (x)) · |det∇xT (x)|,∀x ∈ Ω.

Remark B.3. It is easy to see that, if T is a one-to-one map, then

∀x ∈ Ω,
(
µ[T ] ◦ T

)
(x) = µ(x).
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Let’s show that KL(T#µ||π) = KL(µ||T−1
# π).

KL(T#µ||π) =
∫
Ω

log

(
µ[T ](x)

π(x)

)
dT#µ(x)

=

∫
T−1(Ω)

log

(
(µ[T ] ◦ T )(x)
(π ◦ T )(x)

)
dµ(x)

=

∫
T−1(Ω)

log

(
(µ[T ] ◦ T )(x)

(π[T−1] ◦ T−1 ◦ T )(x)

)
dµ(x)

=

∫
T−1(Ω)

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

=

∫
Ω

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

(
T−1(Ω) =

{
x
∣∣ T−1(x) ∈ Ω

}
= Ω

)
= KL(µ||T−1

# π).

For more details, see Lean proof 3 . Thus, we have

∇εKL(µ||T−1
# π) = ∇ε

∫
Ω

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

=

∫
Ω

µ(x)∇ε

[
log(µ(x))− log

(
π[T−1](x)

)]
dx

= −
∫
Ω

µ(x)∇ε log
(
π[T−1](x)

)
dx

= −Ex∼µ

[
∇ε log

(
π[T−1](x)

)]
.

Now, let’s compute ∇ε log
(
π[T−1](x)

)
.

∇ε log
(
π[T−1](x)

)
= ∇ε log (π(T (x)) · |det(∇xT (x))|)
= ∇ε log π(T (x)) +∇ε log|det(∇xT (x))|
= ∇T (x) log π(T (x))

⊤∇εT (x) +∇ε log|det(∇xT (x))|

= ∇T (x) log π(T (x))
⊤∇εT (x) +

1

det(∇xT (x))
∇ε det(∇xT (x))

= ∇T (x) log π(T (x))
⊤∇εT (x) +

1

det(∇xT (x))

∑
ij

(∇ε∇xT (x)ijCij)

= ∇T (x) log π(T (x))
⊤∇εT (x) +

∑
ij

(
∇ε∇xT (x)ij (∇xT (x))

−1
ji

)
= ∇T (x) log π(T (x))

⊤∇εT (x) + trace
(
(∇xT (x))

−1 · ∇ε∇xT (x)
)
,

where C is the cofactor matrix of ∇xT (x). Finally, the result of the theorem is a special case of the
above result. Indeed, ∀ϕ ∈ H, if T = Id + εϕ, then

• T (x)|ε=0 = x;

• ∇εT (x) = ϕ(x);

• ∇xT (x)|ε=0 = Id;

• ∇ε∇xT (x) = ∇xϕ(x).

This gives
∇εKL(T#µ||π)|ε=0 = −Ex∼µ

[
∇ log π(x)⊤ϕ(x) +∇ · ϕ(x)

]
.

Applying Theorem A.6 ends the proof. ■
3gaetanserre.fr/assets/Lean/SBS/html/KL.lean.html
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B.7 Proof of Theorem 2.2

Proof. First, as Ω is a subset of a metric space (Euclidean space) and is compact, it is also complete
for the induced metric. In addition, as it is connected, it is also path-connected. These properties
combined with the fact that Ω is smooth ensure that Ω is a smooth complete manifold. Finally, as
(Tt)0≤t is a locally Lipschitz family of diffeomorphisms representing the trajectories associated with
the vector field ϕt, and as µt = Tt#µ, then, a direct application of Theorem 5.34 from (Villani, 2003)
gives that µt is the unique solution of the nonlinear transport equation{∂µt

∂t +∇ · (µtϕt) = 0,∀t > 0,

µ0 = µ
,

where the divergence operator (∇·) is defined by duality against smooth compactly supported
functions, i.e.

∀µ ∈ M(Ω),∀ϕ : Ω → Ω,∀φ ∈ C∞
c (Ω), ⟨T∇·(ϕµ), φ⟩ = −⟨Tµ, ϕ · ∇φ⟩,

where M(Ω) is the set of measures on Ω, for any µ in M(Ω), Tµ is the distribution associated
with µ, and, for any φ in C∞

c (Ω), ⟨Tµ, φ⟩ =
∫
Ω
φ dµ (see also (Villani, 2009)). Furthermore, as

µn+1 = (Id + εϕ⋆
µn

)#µn (see (6)), one can write∫
Ω

φ dµn+1 =

∫
Ω

φ ◦ (Id + εϕ⋆
µn

) dµn,∀φ ∈ C∞
c (Ω).

∼
ε→0

∫
Ω

φ+ ε(∇φ · ϕ⋆
µn

) dµn

(
Taylor expansion of φ(x) at x+ εϕ⋆

µn
(x)

)
=

∫
Ω

φ dµn +

∫
Ω

ε
(
∇φ · ϕ⋆

µn

)
dµn

=

∫
Ω

φ dµn −
∫
Ω

εφ d
(
∇ · (µnϕ

⋆
µn

)
)

⇐⇒
∫
Ω

φ dµn+1 −
∫
Ω

φ dµn = −ε

∫
Ω

φ d
(
∇ · (µnϕ

⋆
µn

)
)
.

This shows that iteratively updates µ in the direction Id + εϕ⋆
µn

, given a small ε, corresponds to a
finite difference approximation of the nonlinear transport equation. ■

B.8 Proof of Theorem 2.3

Proof. Using the Leibniz integral rule, the time derivative of the KL-divergence writes

∂KL(µt||π)
∂t

=
∂

∂t

∫
Ω

log
dµt

dπ
dµt

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

µt(x)
∂ log µt(x)

π(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

µt(x)
∂ logµt(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

∂µt(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∂

∂t

∫
Ω

µt dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx

(
as, ∀t ≥ 0,

∫
Ω

dµt = 1

)
.
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Furthermore, µt is the unique solution of the nonlinear transport equation of Theorem 2.2, where
ϕ⋆
µt

= Sµt∇ log π
µt

(see Appendix B.5). Thus, we have

∂KL(µt||π)
∂t

= −
∫
Ω

∇ · (µt(x)ϕ
⋆
µt
(x)) log

µt(x)

π(x)
dx

=

∫
Ω

µt(x)ϕ
⋆
µt
(x) · ∇ log

µt(x)

π(x)
dx

(
ϕ⋆
µt

∈ Sµt

)
=

∫
Ω

ϕ⋆
µt
(x) · ∇ log

µt(x)

π(x)
dµt(x)

=
〈
ιϕ⋆

µt
,∇ log

µt

π

〉
L2

µ(Ω,Ω)

=
〈
ϕ⋆
µt
, Sµt∇ log

µt

π

〉
H

=

〈
ϕ⋆
µt
,−Sµt∇ log

π

µt

〉
H

= −
〈
ϕ⋆
µt
, ϕ⋆

µt

〉
H

= −
∥∥ϕ⋆

µt

∥∥2
H

= −K(µt|π).

■

B.9 Proof of Lemma 2.4

Proof. We recall that, using Appendix B.5,

K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H = Ex∼µ

[
Aπϕ

⋆
µ

]
.

The right implication is straightforward. Assume that µ = π. We know that ϕ⋆
µ is in S(µ) = S(π),

thus, using Lemma A.3, we have that

Ex∼µ

[
Aπϕ

⋆
µ

]
= K(µ|π) = Ex∼π

[
Aπϕ

⋆
µ

]
= 0.

The left implication is more involved. Assume that K(µ|π) = 0. In Appendix B.5, we have shown
that

ϕ⋆
µ = Sµ∇ log

π

µ
.

This implies that

K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H =

〈
Sµ∇ log

π

µ
, Sµ∇ log

π

µ

〉
H

=

〈
∇ log

π

µ
, ιSµ∇ log

π

µ

〉
L2

µ(Ω,Ω)

.

Thus, one can rewrite the KSD as

K(µ|π) =
∫
Ω

∫
Ω

∇ log
π

µ
(x)⊤k(x′, x)∇ log

π

µ
(x′) dµ(x) dµ(x′).

Since k is positive definite, we have that

K(µ|π) = 0 ⇐⇒ ∇ log
π

µ
(x) = 0,∀µx ∈ Ω.

Moreover, as the density of µ is supported over Ω, there is no set E ⊂ Ω such that λ(E) > 0 and
µ(E) = 0. Thus, a predicate P (x) is true for almost all x ∈ Ω, w.r.t. µ if and only if P (x) is true for
almost all x in Ω, w.r.t. λ.

Finally, if ∀x ∈ Ω, ∇ log π
µ (x) = 0, it implies that ∃c ∈ R>0 such that, µ(x) = cµ(x). As µ(·) and

π(·) are probability densities over Ω, c = 1:

µ(Ω) = 1 =

∫
Ω

µ(x) dx = c

∫
Ω

π(x) dx = c.
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Thus,
∇ log

π

µ
(x) = 0 ⇐⇒ π(x) = µ(x),∀x ∈ Ω.

For more details, see Lean proof 4 . ■

B.10 Proof of Lemma 2.5

Proof. We first show that π is a fixed point of (µ : P2(Ω)) 7→ Φt(µ), i.e. Φt(π) = π. To do so, recall
that

K(π|π) = ∥ϕ⋆
π∥

2
H .

Using the right implication of Lemma 2.4, we have that

∥ϕ⋆
π∥

2
H = 0,

which implies that
⇐⇒ ϕ⋆

π(x) = 0,∀πx ∈ Ω.

Thus, ∀πx ∈ Ω,
Tπ(x) = x+ εϕ⋆

π(x) = x,

implying Φt(π) = π.

Then, suppose that ∃ν ∈ P2(Ω) such that ν ̸= π and Φt(ν) = ν for any t ≥ 0. We have that

∂KL(Φt(ν)||π)
∂t

= 0 = −K(ν||π).

However, using the left implication of Lemma 2.4, we obtain a contradiction.

For more details, see Lean proof4. ■

B.11 Proof of Theorem 2.6

Proof. By construction of P2(Ω), KL(µ||π) is finite. Moreover, as stated in Theorem 2.3, t 7→
KL(µt||π) is decreasing. Thus, it exists a positive real constant c, such that, for any sequence
(tn)n∈N such that tn → ∞, KL(µtn ||π) → c. It implies that, for any such sequence (tn)n∈N, it
exists a subsequence (tk)k∈N such that µtk ⇀ µ∞, meaning that Φt(µ) ⇀ µ∞ (see Theorem 2.6
(Billingsley, 1999)). Therefore, µ∞ is a fixed point of Φt, for any t ≥ 0 and any µ ∈ P2(Ω) such
that KL(µ||π) is finite. Finally, using Lemma 2.5, we have that µ∞ = π. ■

B.12 Proof of Theorem 2.7

Proof. In order to apply any SVGD theoretical results, we need to ensures that every assumptions are
satisfied. First, we know by hypothesis that µ0 ∈ H1(Ω) and the fact that f ∈ C0(Ω) ∩W 1,4(Ω)
ensure that π ∈ H1(Ω) as well (see Appendix B.2). We assume the kernel k to satisfy the conditions
of Appendix A.2.3. We know by hypothesis and by construction of the BD that supp(µ0) =
supp(π) = Ω. Finally, KL(µ0||π) is finite. This allows to use Theorem 2.2 and Theorem 2.6, or any
other theoretical results relative to SVGD.

Using the strong law of large numbers, one can show that, for any n ∈ N, the discrete measure
µ̂n converges almost surely to µn as µ̂n is the empirical measure arising from an i.i.d sequence of
samples from µn. Thus, µ̂n

a.s.−−−−→
N→∞

µn. Moreover, in Appendix B.7, we showed that

∀φ ∈ C∞
c (Ω), ⟨Tµn+1−µn , φ⟩ −−−→

ε→0
⟨T∇·(µnϕ⋆

µn
), φ⟩.

Let µ be the net limit of (µn)n∈N as ε tends to 0:

ν• : R≥0 → P2(Ω),

t 7→ µ⌊t/ε⌋,

4gaetanserre.fr/assets/Lean/SBS/html/KSD.lean.html
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such that
(µn)n∈N −−−→

ε→0
(νt)t∈R≥0

,

for a certain notion of convergence in P2(Ω), e.g.

∀t ∈ R≥0, sup
n∈N

{∥µn − νt∥TV} −−−→
ε→0

0.

We have that, for any t ∈ R≥0 and any φ ∈ C∞
c (Ω),

lim
ε→0

⟨Tνt+ε−νt
, φ⟩ = lim

ε→0
⟨Tµ⌊(t+ε)/ε⌋ − µ⌊t/ε⌋, φ⟩

= lim
ε→0

⟨Tµ⌊t/ε⌋+1
− µ⌊t/ε⌋, φ⟩

= −ε⟨T∇·(µ⌊t/ε⌋ϕ⋆
µ⌊t/ε⌋

), φ⟩

= −ε⟨T∇·(νtϕ⋆
νt

), φ⟩.

This allows to state on the derivative of ν:

lim
ε→0

∫
Ω

φ d
νt+ε − νt

ε
= −

∫
Ω

φ∇ · (νtϕ⋆
νt
) dνt

⇐⇒ ∂νt
∂t

= −∇ · (νtϕ⋆
νt
).

Thus, as ν0 = µ0, ν• is a solution of (2). Finally, as (µt)t∈R≥0
is the unique solution of the nonlinear

transport equation, we have that

(µn)n∈N −−−→
ε→0

(µt)t∈R≥0
.

This result is expected by construction of (µn)n∈N and (2).

Now, using Theorem 2.6, we have that (µn)n∈N ⇀
ε→0
n→∞

π and thus, (µ̂n)n∈N ⇀
ε→0
n→∞
N→∞

π. The fact that

the Boltzmann distribution ensures that π tends to a distribution supported on X∗ as κ tends to ∞
(see Properties A.1) gives the desired result.

■

26


	Introduction
	Stein Boltzmann Sampling
	The proposed method
	Asymptotic convergence of sbs
	Discrete setting

	sbs variants
	Choice of hyperparameters
	Benchmark
	Discussion
	Conclusion
	Background
	Boltzmann distribution
	Stein Variational Gradient Descent
	Definitions
	Stein discrepancy
	Kernelized Stein Discrepancy


	Proofs
	Proof of properties:boltzmann-properties
	Proof of f C0() W1, 4() -3mumH1()
	Proof of lemma:stein-identity.
	Proof of T is a map to H0
	Proof of theorem:steepest-trajectory
	Proof of theorem:kl-steepest-descent-trajectory
	Proof of theorem:time-derivative-measure-flow
	Proof of theorem:time-derivative-kl
	Proof of lemma:ksd-valid-discrepancy
	Proof of lemma:fixed-point
	Proof of theorem:weak-convergence
	Proof of theorem:sbs-asymptotic-convergence


