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Stein Boltzmann Sampling:
A Variational Approach for Global Optimization

Gaëtan Serré 1 Argyris Kalogeratos 1 Nicolas Vayatis 1

Abstract
In this paper, we introduce a new flow-based
method for global optimization of Lipschitz func-
tions, called Stein Boltzmann Sampling (SBS).
Our method samples from the Boltzmann distribu-
tion that becomes asymptotically supported over
the set of the minimizers of the function to be op-
timized. Candidate solutions are sampled via the
Stein Variational Gradient Descent algorithm. We
prove the asymptotic convergence of our method,
introduce two SBS variants, and provide a detailed
comparison with several state-of-the-art global op-
timization algorithms on various benchmark func-
tions. The design of our method, the theoretical
results, and our experiments, suggest that SBS is
particularly well-suited to be used as a continua-
tion of efficient global optimization methods as it
can produce better solutions while making a good
use of the budget.

1. Introduction
In this paper, we consider global optimization of an un-
known Lipschitz continuous, a priori nonconvex, function.
Optimizing an unknown function is a typical situation in real
applications: hyperparameter calibration or complex system
design emerge in several domains, such as biology, physics
simulation, epidemiology, machine learning (e.g. (Pintér,
1991; Lee et al., 2017)). For this, sequential methods are
usually employed, which means that at each iteration the
algorithm uses information extracted from the previous can-
didate solutions to propose the new ones. Many sequential
and stochastic methods has been introduced to address this
problem. Recent results (Zhang et al., 2020; Davis et al.,
2022; Jordan et al., 2023) showed that only stochastic al-
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gorithms can approximate optimal points of an arbitrary
Lipschitz function, when considering a relaxed (but still
meaningful) optimality criterion.

Sequential methods rely on two components: a sampling
process to explore the search space, and a selection process
to choose the next candidate solution using the information
given by the previous samples. In this work, we introduce a
new sequential, flow-based and deterministic method called
Stein Boltzmann Sampling (SBS) for Lipschitz functions.
Our method uses the Stein Variational Gradient Descent
(SVGD) (Liu & Wang, 2016) method to sample from the
Boltzmann distribution, which has the characteristic that
tends to a distribution supported over the set of the minimiz-
ers. SVGD constructs a flow in the space of probability mea-
sures (similarly to the way a gradient flow would evolve in
Rd) that moves towards the target sampling measure. Even
though our method is not a typical stochastic one (since
SVGD sampling is deterministic), we prove its asymptotic
convergence for any Lipschitz function using elements of
the SVGD theory. We show that the SBS method achieves
competitive performance on standard global optimization
benchmarks versus three stochastic state-of-the-art meth-
ods. The first one, ADALIPO (Malherbe & Vayatis, 2017),
is consistent over Lipschitz functions and is adapted for a
very low computational budget (i.e. function evaluations at
candidate minimizers). The second and third ones, CMA-
ES (Hansen & Ostermeier, 1996; 2001; Hansen et al., 2003)
and WOA (Mirjalili & Lewis, 2016), are two inconsistent
methods but known to be very efficient in practice. Due to
either early stopping conditions or time complexity, these
three existing methods do not scale computationally well,
hence they are not suited for when the available computa-
tional budget is low.

The contributions of this paper are as follows: First, we
provide a new proof of the asymptotic convergence of SVGD,
implying the consistency of our method. For the sake of
completeness, we also provide proofs of all background
results in the Appendix. To ensure ensure the correctness
and reproducibility of the technical proofs, for some of the
results (background or not), we provide links to proofs in
Lean, a proof assistant (de Moura & Ullrich, 2021; mathlib
Community, 2020). Then, we introduce two SBS variants:
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one that uses particle filtering to reduce the budget needed,
and a hybrid second one that uses SBS as a continuation
of CMA-ES or WOA to combine their efficiency with the
consistency and scalability of our method. The goal is
to provide methods that make more efficient use of the
computational budget, for future real-world applications.
Finally, we provide a detailed comparison of our method
with the three aforementioned state-of-the-art methods on
several global optimization benchmarks. We also interpret
the attraction and repulsion forces of SVGD in the context
of global optimization.

Notations. We consider the following notations: d ∈ N is
the dimension of the optimization problem; f : Ω → R
is the function to optimize, its domain Ω ⊂ Rd is a com-
pact set; x∗ ∈ X∗ is one of the global minima of f , i.e.
∀x∗, f∗ = f(x∗). Moreover, λ : Bd → R≥0 is the
standard Lebesgue measure on the Borel algebra of Rd.
Given an arbitrary function f , its support is supp(f) =
{x ∈ Ω | f(x) ̸= 0}. We denote by Cp the set of p-times
continuously differentiable functions, and by C∞

c (Ω) the set
of smooth functions on Ω that have compact support. Given
two measurable spaces (Ω1,Σ1) and (Ω2,Σ2), a measur-
able function f : Σ1 → Σ2 and a measure µ over Σ1, let
f#µ denote the pushforward measure, i.e.

∀B ∈ Σ2, f#µ(B) = µ(f−1(B)).

2. Stein Boltzmann Sampling
2.1. The proposed method

We introduce the Stein Boltzmann Sampling (SBS) method.
The idea is to sample from a distribution that converges
asymptotically to a distribution supported over the set of
minimizers X∗ of an arbitrary continuous function f . We
use the continuous Boltzmann distribution (BD) for this
purpose.

Definition 2.1 (Continuous Boltzmann distribution). Given
a function f ∈ C0(Ω,R), the Boltzmann distribution over f
is induced by the probability density function m

(κ)
f,Ω : Ω →

R≥0 defined by:

m
(κ)
f,Ω(x) = m(κ)(x) =

e−κf(x)∫
Ω
e−κf(t)dt

, ∀κ ∈ R≥0. (1)

A characteristic property of the BD is that it tends to distri-
bution supported over the set of minimizers X∗ as κ tends
to infinity. If λ(X∗) > 0, the BD tends to a uniform distri-
bution over X∗ (see Figure 1). If X∗ is finite, it tends to a
sum of Dirac distribution over X∗ where the weight on each
minimizer depends on the local geometry of the function
(Hwang, 1980). More details can be found in Section 3.1.
The SBS method aims to sample from the BD with κ large
enough in order for the function values at the sampled points
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Figure 1. The Boltzmann
p.d.f. becomes uniform
over the set of minimiz-
ers X∗ of the given func-
tion f to optimize, as κ
grows, tending to infinity.

Algorithm 1 Stein Boltzmann Sampling (SBS)

Input: f : Ω→ R; number of vectors (particles) N ; Boltzmann
parameter κ; step-size ε; number of SVGD iterations n; an initial
distribution µ̂1 over the particles
Output: x̂, an estimate of x∗

Sample N particles: X1 ←
(
x(1), . . . , x(N)

)
∼ µ̂⊗N

1

for i = 1 to n do
Compute the vector field ϕ⋆

µ̂i
(see Section 2.1)

Xi+1 ← Xi + εϕ⋆
µ̂i
(Xi) update of the particle system

µ̂i+1 ← 1
N

∑N
j=1 δX(j)

i+1

empirical measure over the parti-

cles
end for
x̂← argmin 1≤j≤Nf(X

(j)
n+1) the ”best” particle

return x̂

to be close to the global minimum. As m(κ) converges to
a distribution supported over X∗, the approximation of f∗

can be made arbitrarily accurate. However, as it is not effi-
cient to sample from BD by estimating the intractable term∫
Ω
e−κf(t)dt using classical Monte-Carlo methods, we pro-

pose to use instead the Stein Variational Gradient Descent
(SVGD) method. Given an initial measure µ, SVGD con-
structs iteratively a flow of measures that moves towards the
target measure, noted as π. The update direction is given
by:

ϕ⋆
µ = Ex∼µ [∇ log π(x)k(·, x) +∇xk(·, x)] ,

where k is the reproducing kernel of a specific RKHS H
(see Section 3.2 for more details). In our case, π is the BD.
As it appears within a gradient-log term, we do not need
the normalization constant of the BD to compute ϕ⋆

µ. The
pseudocode of the proposed SBS method can be found in
Algorithm 1. Next in this section, we prove the asymptotic
convergence of SBS.

2.2. Asymptotic convergence of SBS

To prove the asymptotic convergence of SBS, we need to
prove that the sequence of measures constructed by SVGD,
noted (µn)n∈N (see Equation (6)), converges to the measure
induced by the BD, noted π. To do so, we need to study
the flow of measures induced by the update direction of
SVGD. Theorem 2.3 and Theorem 2.2 are known results
in the literature. We provide a different proof for the latter
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in Appendix A.6. Then, we introduce two lemmas that are
crucial to prove the asymptotic convergence of SBS for any
Lipschitz function, under absolute continuity assumptions
on π and µ.
Theorem 2.2 (Time derivative of measure flow (Liu, 2017)).
Let ϕ : R≥0 × Ω → Ω, ϕ(t, ·) = ϕt(·) be a vector field.
Let (Tt)0≤t : Ω → Ω be a locally Lipschitz family of dif-
feomorphisms, representing the trajectories associated with
the vector field ϕt, and such that T0 = Id. Let µt = Tt#µ.
Then, the following linear transport equation holds{

∂µt

∂t = −∇ · (ϕtµt),∀t > 0

µ0 = µ
(2)

where (∇·) is the divergence operator, in the sense of dis-
tributions (see details in Appendix A.6). Moreover, the
sequence (µn)n∈N, constructed by Equation (6), is a dis-
cretized solution of the linear transport equation, consider-
ing the vector field ϕ⋆

µt
. One can consider the resulting flow

of measures

Φ : R≥0 × P2(Ω) → P2(Ω),

(t, µ) 7→ Φt(µ) = µt.

We provide a different proof of this theorem in Ap-
pendix A.6, using optimal transport theory. This proof is
more general in T but less constructive. We also prove that
that sequence (µn)n∈N is an asymptotic solution of Equa-
tion (2). The latter equation has also been deeply studied
in (Lu et al., 2019). This result allows to study the time-
derivative of the KL-divergence between µt and π. Let Sµ

be an integral operator associated to H and K(µ|π) a dis-
crepancy measure between two measures µ and π called
Kernelized Stein Discrepancy (KSD). Both objects are de-
fined in Section 3.2. We have the following result.
Theorem 2.3 (Time-derivative of the KL-divergence (Liu,
2017)). Let (Tt)0≤t : Ω → Ω be a locally Lipschitz family
of diffeomorphisms, representing the trajectories associated
with the vector field ϕ⋆

µt
= Sµt∇ log π

µt
, such that T0 =

Id. Let µt = Tt#µ. Then, the time derivative of the KL-
divergence between µt and π is given by

∂KL(µt||π)
∂t

= −K(µt|π).

Furthermore, as K(µt|π) is nonnegative, the KL-divergence
is non-increasing along the flow of measures.

(See proof in Appendix A.7). In order to show the conver-
gence of continuous-time SVGD, we proved that the KSD
is a valid discrepancy measure. Let denote the absolutely
continuity of measure µ w.r.t. π by µ ≪ π.
Lemma 2.4 (KSD valid discrepancy). Let µ, π ∈ P2(Ω)
such that µ ≪ π ≪ λ. Then,

µ = π ⇐⇒ K(µ|π) = 0.

(See proof in Appendix A.8). The previous lemma directly
implies that π is the unique fixed point of the flow of mea-
sures Φ.

Lemma 2.5 (Unique fixed point). Let π ∈ P2(Ω) such
that π ≪ λ. Let Φ be the flow of measures defined in
Theorem 2.2. Let E be the set of measures in P2(Ω) that
are absolutely continuous w.r.t. π. Then, for any t ≥ 0, π is
the unique fixed point of (µ : E) 7→ Φt(µ).

Since K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H (see Section 3.2), the proof is

straightforward using the previous lemma. See complete
proof in Appendix A.9. Finally, we provide a proof of the
weak convergence of µt to π.

Theorem 2.6 (Weak convergence of SVGD). Let µ, π ∈
P2(Ω) such that µ ≪ π ≪ λ and KL(µ||π) < ∞. Let
(Tt)0≤t : Ω → Ω be a locally Lipschitz family of diffeo-
morphisms, representing the trajectories associated with
the vector field ϕ⋆

µt
= Sµt

∇ log π
µt

, such that T0 = Id. Let
µt = Tt#µ. Then, we have that

µt ⇀ π.

See proof in Appendix A.10. The proof relies on The-
orem 2.3 and Lemma 2.5; it is inspired by the proof of
Theorem 2.8 in (Lu et al., 2019).

2.3. Discrete setting

In practice, SVGD is a discrete time algorithm that iteratively
updates a set of particles and not a continuous measure µ. It
starts by sampling a sequence of particles from a distribution
µ: X =

(
x(1), . . . , x(N)

)
, and then computes the next ones

as follows:

Xn+1 = Xn + εϕ⋆
µ̂n

(Xn) ,

where µ̂n(A) =
1

N

N∑
i=1

δ
X

(i)
n
(A).

(3)

The previous results are sufficient to show the main theoret-
ical result concerning SBS: its asymptotic convergence in
discrete setting.

Theorem 2.7 (SBS asymptotic convergence). Let f : Ω →
R be a Lipschitz function. Let κ > 0 and let π be the BD
defined in Definition 2.1 associated with f and κ. Let µ̂0 ∈
P2(Ω) such that µ̂0 ≪ λ, supp(µ̂0) = Ω and KL(µ̂0||π) <
∞. Let µ̂n be defined by Equation (3). Then, when ε → 0,{
f
(
X(n)

) ∣∣∣ X(n) = (x(1), . . . , x(N)) ∼ µ̂⊗N
n

}
L−−−−→

κ→∞
N→∞
n→∞

{f∗}.

Proof. The Rademacher’s theorem states that ∇f exists
almost everywhere, and therefore ∇ logm(κ) also exists a.e.
The rest of the proof is a direct application of Theorem 2.6
and Properties 3.1. ■
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The implementation of SBS uses Equation (3) and estimate
the gradients using finite differences. At each iteration, it
updates the set of particles in the direction induced by ϕ⋆

µ̂n

by a small step size, computed using the Adam optimizer
(Kingma & Ba, 2015). We choose the initial distribution
µ̂1 to be the uniform distribution on Ω as it maximizes the
entropy (related to the exploration aspect of the method) and
meets all the requirements of the SVGD theory. To better
understand the previous results and objects involved, we in-
troduce an non-exhaustive list of definitions and theoretical
results related to SVGD in the next section.

3. Background
In this section, we introduce some background results re-
lated to the Boltzmann distribution (BD) and the theory
related to SVGD.

3.1. Boltzmann distribution

Recall that the BD has been formally defined in Defini-
tion 2.1. The BD is a well-known distribution in statistical
physics. It is used to model the distribution of the energy
of a system in thermal equilibrium. The parameter κ is
called the inverse temperature. The higher κ is, the more
concentrated the mass is around the minima of f . When κ
tends to infinity, the BD tends to a distribution supported
over the minima of f . The BD is typically used in a discrete
settings, i.e. where the number of states is finite. The contin-
uous version can be defined using the Gibbs measure. The
following properties come from (Luo, 2019). For the sake
of completeness, we provide the proofs in Appendix A.1.

Properties 3.1 (Properties of the Boltzmann distribution).
Let m(κ) be defined as in Definition 2.1. Then, we have the
following properties:

• If λ(X∗) = 0, then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
∞ if x ∈ X∗

0 otherwise.

• If 0 < λ(X∗), then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
1

λ(X∗) if x ∈ X∗

0 otherwise.

• ∀f ∈ C0(Ω,R),

lim
κ→∞

∫
Ω

f(x) m(κ)(x)dx = f∗.

A visual representation of the BD is given in Figure 1. One
can see that, as κ increases, m(κ) becomes more and more
concentrated around the minima of f . We use the BD in-
duced by the density m(κ) (also noted m(κ) for simplicity)

of Equation (1). To sample from tat distribution, we need to
compute the integral

∫
Ω
e−κf(t)dt, which however, is likely

to be intractable for a general f .

3.2. Stein Variational Gradient Descent

Sampling from an intractable distribution is a common task
in Bayesian inference, where the target distribution is a
posterior. Computation becomes difficult due to the pres-
ence of an intractable integral within the likelihood. The
Stein Variational Gradient Descent (Liu & Wang, 2016) is a
method that transforms iteratively an arbitrary measure µ to
a target measure π. In the case of SBS, π is the BD defined
in Definition 2.1, for any κ > 0. The algorithm is based
on the Stein method (Stein, 1972). The theory of SVGD has
been developed in several works over the years. Note that
recently, (Korba et al., 2021) introduced a new sampling
algorithm based on the same objective to SVGD, though less
sensitive to the choice of the step-size. The remainder of
this section highlights some key definitions and theoretical
results related to SVGD.

3.2.1. DEFINITIONS

We start by defining the set of probability measures on Ω
that have finite n-th moment. Let Pn(Ω) denote the set of
probability measures on (Ω,A) such that

∀µ ∈ Pn(Ω),

∫
Ω

∥x∥ndµ(x) < ∞.

In SVGD theory, µ and π must belong to P2(Ω), and they
must be absolutely continuous w.r.t. λ, i.e.

∀A ⊆ Ω, λ(A) = 0 =⇒ µ(A) = 0 ∧ π(A) = 0.

Moreover, for KL(µ||π) to be well-defined, µ must be ab-
solutely continuous w.r.t. π. As the absolutely continuous
relation is transitive, we can note µ ≪ π ≪ λ. In the follow-
ing, we denote the density w.r.t. λ of an arbitrary measure µ
by the function µ : Ω → R≥0.

3.2.2. STEIN DISCREPANCY

The Stein method defines the Stein operator associated to a
measure µ (Liu, 2017):

Aµ : C1(Ω,Ω) → C0(Ω,R),
ϕ 7→ ∇ logµ(·)⊤ϕ(·) +∇ · ϕ(·),

where (∇) is the gradient operator and (∇·) is the diver-
gence operator. We denote this mapping by Aµϕ, for any ϕ
in C1(Ω,Ω). It also defines a class of functions, the Stein
class of measures.

Definition 3.2 (Stein class of measures (Liu et al., 2016)).
Let µ ∈ P2(Ω) such that µ ≪ λ, and let ϕ : Ω → Ω. As Ω
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is compact, the boundary of Ω (denoted by ∂Ω) is nonempty.
We say that ϕ is in the Stein class of µ if∮

∂Ω

µ(x)ϕ(x) · n⃗(x)dS(x) = 0,

where n⃗(x) is the unit normal vector to the boundary of Ω.
We denote by S(µ) the Stein class of µ.

The key property of S(µ) is that, for any function f in S(µ),
the expectation of Aµf w.r.t. µ is null.

Lemma 3.3 (Stein identity (Stein, 1972)). Let µ ∈ P2(Ω)
such that µ ≪ λ, and let ϕ ∈ S(µ). Then,

Ex∼µ[Aµϕ(x)] = 0.

(See proof in Appendix A.2). Now, one can consider:

Ex∼µ[Aπϕ(x)] , where ϕ ∈ S(π). (4)

If µ ̸= π, Equation (4) would no longer be null for any ϕ
in S(π). In fact, the magnitude of this expectation relates
to how different µ and π are, and is used to define a dis-
crepancy measure, known as the Stein discrepancy (Gorham
& Mackey, 2015). The latter considers the “maximum vi-
olation of Stein’s identity” given a proper set of functions
F ⊆ S(π):

S(µ, π) = max
ϕ∈F

{Ex∼µ[Aπϕ(x)]} . (5)

Note that S(µ, π) is not symmetric. The set S(π) might be
different to S(µ), and even if they are equal, inverting the
densities in the expectation leads to a different result. The
choice of F is crucial as it determines the discriminative
power and tractability of the Stein discrepancy. It also has
to be included in S(π). Traditionally, F is chosen to be the
set of all functions with bounded Lipschitz norms, but this
choice casts a challenging functional optimization problem.
To overcome this difficulty, (Liu et al., 2016) chooses F to
be a vector-valued RKHS, which allows to find closed-form
solution to Equation (5). The Stein discrepancy restricted to
that RKHS is known as Kernelized Stein Discrepancy.

3.2.3. KERNELIZED STEIN DISCREPANCY

From now on, we consider µ, π ∈ P2(Ω) such that π is the
target measure, µ ≪ π ≪ λ, and supp(µ) = Ω. This last
assumption allows us to write:

∀B ⊆ Ω, λ(B) = 0 ⇐⇒ µ(B) = 0.

Next, we define the vector-valued RKHS that will be used
in the Kernelized Stein Discrepancy.

Definition 3.4 (Product RKHS (Liu & Wang, 2016)). Let
k : Ω× Ω → R be a continuous, symmetric, and positive-
definite kernel such that ∀x ∈ Ω, k(·, x) ∈ S(µ) ∩ S(π).

Using the Moore–Aronszajn theorem (Aronszajn, 1950), we
consider the associated real-valued RKHS H0. Let H be
the product RKHS induced by H0, i.e. ∀f = (f1, . . . , fd)

⊤,
f ∈ H ⇐⇒ ∀1 ≤ i ≤ d, fi ∈ H0. The inner product of
H is defined by

⟨f, g⟩H =
∑

1≤i≤d

⟨fi, gi⟩H0
.

Let L2
µ(Ω) be the set of functions from Ω to R that are

square-integrable w.r.t. µ. Let L2
µ(Ω,Ω) be the set of func-

tions from Ω to Ω that are component-wise in L2
µ(Ω), i.e.

∀f ∈ L2
µ(Ω,Ω), ∀1 ≤ i ≤ d, fi ∈ L2

µ(Ω).

We proved that, assuming k is square-integrable w.r.t. µ,
that the integral operator

Tk : L2
µ(Ω) → L2

µ(Ω)

Tkf 7→
∫
Ω

k(·, x)f(x)dµ(x)

is a mapping from L2
µ(Ω) to H0, i.e. Tk : L2

µ(Ω) → H0.
(See proof in Appendix A.3). This allows to define another
integral operator

Sµ : L2
µ(Ω,Ω) → H

f 7→ Tkf,

where Tk is applied component-wise. The proof in Ap-
pendix A.3 also shows that H is a subset of L2

µ(Ω,Ω). Thus,
we can define the inclusion map

ι : H ↪−→ L2
µ(Ω,Ω),

whose adjoint is ι⋆ = Sµ. Then, have the following equality:

∀f ∈ L2
µ(Ω,Ω),∀g ∈ H,

⟨f, ιg⟩L2
µ(Ω,Ω) = ⟨ι⋆f, g⟩H = ⟨Sµf, g⟩H.

We can now define the KSD.

Definition 3.5 (Kernelized Stein Discrepancy (Liu et al.,
2016)). Let H be a product RKHS as defined in Defini-
tion 3.4. The Kernelized Stein Discrepancy (KSD) is then
defined as:

K(µ|π) = max
f∈H

{Ex∼µ[Aπf(x)] | ∥f∥H ≤ 1} .

The construction of H was motivated by the fact that the
closed-form solution of the KSD is given by the following
theorem.

Theorem 3.6 (Steepest trajectory (Liu et al., 2016)). The
function that maximizes the KSD is given by:

ϕ⋆
µ

∥ϕ⋆
µ∥H

= argmax
f∈H

{Ex∼µ[Aπf(x)] | ∥f∥H ≤ 1} .
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where ϕ⋆
µ = Ex∼µ[∇ log π(x)k(·, x)+∇xk(·, x)]. It is the

steepest trajectory in H that maximizes K(µ|π). The KSD
is then given by

K(µ|π) = Ex∼µ[Aπϕ
⋆
µ(x)].

The proof strategy is to remark that, for any function
f ∈ H, Ex∼µ[Aπf(x)] = ⟨f, ϕ⋆

µ⟩. Then, the result fol-
lows from the Cauchy-Schwarz inequality. (See proof in
Appendix A.4). From here, we make the mild assumption
that

ϕ⋆
µ ∈

⋂
µ∈P2(Ω)

S(µ).

Choosing k(·, x) such that

∀y ∈ Ω, lim
d({x},∂Ω)→0

k(x, y) = 0,where

d(A,B) = inf {∥a− b∥2 | a ∈ A ∧ b ∈ B}

is enough to ensure this assumption. This would be the case
for a modified Gaussian kernel:

k(x, y) = exp

(
− ∥x− y∥22
2σ2f(x, y)

)
,

where f is a positive function that tends to 0 (sufficiently
fast for k to be in L2

µ(Ω,Ω)) when the distance between ∂Ω
and either x or y tends to 0. This leads to the following
result of the SVGD theory.

Theorem 3.7 (KL steepest descent trajectory (Liu & Wang,
2016)). Let H be a product RKHS (Definition 3.4). Let
ϕ⋆
µ ∈ H be as defined in Theorem 3.6. Let ε > 0 and

Tε : (Ω → Ω) → Ω

ϕ 7→ Id + εϕ.

Then,

argmin
ϕ∈H

{∇εKL(Tε(ϕ)#µ||π)|ε=0 | ∥ϕ∥H ≤ 1} =
ϕ⋆
µ

∥ϕ⋆
µ∥H

,

and ∇εKL((Id + εϕ⋆
µ)#µ||π)|ε=0 = −K(µ|π).

(See proof in Appendix A.5). This last result is the key
of the SVGD algorithm. It means that ϕ⋆

µ is the optimal
direction (within H) to update µ in order to minimize the
KL-divergence between µ and π. Indeed, the slope of the
function g : ε 7→ KL(Tε(ϕ

⋆
µ/∥ϕ⋆

µ∥H)#µ||π) is minimal at
0. As 0 ∈ H (that nullifies the gradient), the result ensures
that g is decreasing over [0, δ], for δ > 0 small enough.
Consequently, SVGD iteratively updates µ in the direction
induced by ϕ⋆

µ, with a small step size ε:

µn+1 = (Id + εϕ⋆
µn

)#µn. (6)

Furthermore, given the above assumption on ϕ⋆
µ, we have

the following lemma.

Lemma 3.8. Let H be a product RKHS as defined in Defi-
nition 3.4. Then, ϕ⋆

µ ∈ H as defined in Theorem 3.6. Given
the above assumption on ϕ⋆

µ, we have that

K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H .

Proof. We showed in Appendix A.4 that

Ex∼µ[Aπf(x)] = ⟨f, ϕ⋆
µ⟩H

for any f ∈ H. Thus, Ex∼µ[Aπϕ
⋆
µ(x)] = ⟨ϕ⋆

µ, ϕ
⋆
µ⟩H. ■

In particular, this lemma states that the derivative of the KL-
divergence when considering the direction ϕ⋆

µ is negative,
meaning that the sequence (KL(µn||π))n∈N is decreasing.

4. SBS variants
In addition to the main SBS method, we introduce two vari-
ants that can be more efficient in practice. The first one uses
a particle filtering approach that removes the less promising
particles (without replacing them). The second one is a hy-
brid method that uses SBS as a continuation for other global
optimization methods, or –seen the other way around– those
methods are used to initialize SBS. The particle filtering
variant uses less budget than the main SBS. The hybrid vari-
ant uses some of the budget to run one of the pre-existing
methods and then to initialize SBS with better starting points;
the aim is to approximate the global minimum better than
SBS with the same budget.

Particle filtering SBS (SBS-PF). We use a simple idea: to
remove particles (i.e. candidate minimizers of f ) that are
less promising or stuck in bad local minima. We chose to
remove a particle that does not move and have a signifi-
cantly higher function value than the others. Therefore, this
strategy is very likely to remove particles that are stuck in
bad local minima. The difference between SBS and this vari-
ant is visualized in Figure 2. One can see that, in SBS-PF,
the unpromising candidates are rapidly removed and are
not replaced so that the remaining particles are more likely
to converge to the global minimum. This strategy results

Algorithm 2 Initialization choice of SBS-HYBRID

Input: number of candidates n; CMA-ES budget b
Output: n candidates

Run CMA-ES for b function evaluations
Run WOA with n candidates
if CMA-ES found a better value than WOA then

Sample n candidates from the last CMA-ES Gaussian
else

Use the n candidates from WOA
end if
return the n candidates

6
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(a) SBS (b) Particle filtering-based SBS-PF

Figure 2. Illustration of the plain SBS (left) and its particle filtering variant (right) on the 2d Ackley function (see Table 1). The color
gradient represents the value of the function, from blue (low, preferred) to red (high). For SBS, particles are initialized uniformly over
the domain. Then, they are updated in the direction induced by ϕ⋆

µ̂n
with a small step size. The trajectories of the particles draw the

discretized flow of measures Φt. On the particle filtering SBS-PF variant, the particles are initialized and updated in the same way, but
those being unpromising are rapidly removed and are not replaced; this is visible as there are no persisting trajectories in the area where
the function has high value. This results in a significant reduction of the budget while having similar performance.

Figure 3. Illustration of the exploration/exploitation trade-off in SBS with different values of σ. In blue, the repartition of the particles, in
orange, x 7→ cos(x2) + x/5 + 1, in green m(κ).

in a significant reduction of the budget used, while having
similar results as SBS.

SBS-HYBRID. Another interesting direction is to use SBS as
a continuation for particles- or distribution-based methods,
such as WOA or CMA-ES. Indeed, the design of SBS allows
to initialize the particles with the result of such a method
and then continue the optimization process. We introduce
SBS-HYBRID that runs few iterations of CMA-ES and WOA
to choose the most promising algorithm among them and
continue the optimization with SBS (see Algorithm 2). Both
WOA and CMA-ES are efficient methods, thus, running them
for a small number of iterations allows to find a good starting
point for SBS. Moreover, both methods are not well-fitted
for a high budget for different reasons: CMA-ES uses early
stopping rules (i.e. for the covariance matrix to not become
ill-conditioned), and WOA takes more time to run than SBS
for the same budget. SBS-HYBRID can be seen as a com-
bination of SBS, an asymptotic consistent method, on top
of very efficient non-consistent methods. The strength of
SBS-HYBRIDis that it provides very good results while it is
still asymptotically consistent, since the asymptotic distri-
bution of the particles induced by WOA and CMA-ES meet
the assumptions of Theorem 2.6.

5. Benchmark
In this section, we compare numerically SBS and its vari-
ants with state-of-the-art global optimization methods. We
consider the following methods: CMA-ES (Hansen & Oster-
meier, 1996; 2001; Hansen et al., 2003), WOA (Mirjalili &
Lewis, 2016), and ADALIPO (Malherbe & Vayatis, 2017).
We use classical two dimensional benchmark functions for
global optimization. Some are noisy, multimodal or very
smooth. We provide the implementation 1 of this experi-
ment. For the results of Table 1, we ran each method 100
times on each function. The budget is set in order for the
methods to stop in a reasonable time. For SBS and SBS-PF,
we set σ ≜ 10−5. For the SBS-HYBRID, σ ≜ 10−10. As
one can see, SBS is competitive with the state-of-the-art
methods and score the second rank on average. SBS-PF
achieves similar results on average with significantly less
evaluations. Moreover, SBS-HYBRID outperforms all the
other methods on average. It is a very performing method
that combines the efficiency of both CMA-ES and WOA with
the large budget compatibility of SBS. Even if SBS and
SBS-PF are competitive, they do not clearly outperform the
state-of-the-art methods. More clever particle filtering and
adaptive locality of the kernel have a potential to improve
further SBS (see Section 6). Note that, in order to update
the particles, SBS needs to compute the gradient of the func-

1github.com/gaetanserre/Stochastic-Global-Optimization
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Table 1. Comparative results. Comparison between all SBS variants with several state-of-the-art methods on two dimensional benchmark
functions. For each function, we report the average best function value found (lower is better). The budget for ADALIPO is set to 2K,
200K for WOA and to 800K for the others. The average budget used by CMA-ES is 547 and 90K for SBS-PF. SBS-HYBRID runs 1K
iterations of CMA-ES and WOA. As one can see, SBS and its variants are competitive with the state-of-the-art methods. The standard SBS

ranks second on average. The hybrid method SBS-HYBRID outperforms all the other methods on average.

STATE-OF-THE-ART PROPOSED METHODS

FUNCTIONS ADALIPO CMA-ES WOA SBS-PF SBS SBS-HYBRID

ACKLEY 1.53 19.29 5.40 · 10−7 0.028 0.015 8 · 10−3

BRANIN 0.4 0.39788 0.39789 0.39788 0.39788 0.39788
DROP WAVE −0.94 −0.83 −1 −0.96 −0.96 −0.95
EGG HOLDER −930 −395 −959 −941 −951 −946
GOLDSTEIN PRICE 3.56 6.08 3 3 3 3
HIMMELBLAU 0.007 4.2 · 10−16 1.1 · 10−5 2.2 · 10−7 5.7 · 10−8 4.5 · 10−15

HOLDER TABLE −19.19 −7.7 −19.20848 −19.20846 −19.20845 −19.2085
MICHALEWICZ −1.784 −1.5 −1.8012 −1.8012 −1.8013 −1.789
RASTRIGIN 0.13 4.49 3 · 10−13 0.02 0.01 0.4
ROSENBROCK 0.03 1.05 · 10−15 1.5 · 10−6 4 · 10−3 1.7 · 10−6 1.1 · 10−12

SPHERE 0.001 7.3 · 10−16 4.5 · 10−15 8.3 · 10−8 8.6 · 10−9 2.2 · 10−16

AVERAGE RANK 5.273 4.364 2.636 3.727 2.636 2.364

FINAL RANK 5 4 2 3 2 1

tion. In our implementation, we estimate it using finite
differences. However, it takes the majority of the budget.
More sophisticated methods, such as automatic differentia-
tion, significantly reduce the number of evaluations, which
would make SBS even more competitive.

6. Discussion
Link with Simulated Annealing. The link between SBS and
Simulated Annealing (Kirkpatrick et al., 1983) is not diffi-
cult to see. Indeed, both algorithms are asymptotic methods
that sample from the BD. However, the way they sample
from that distribution is different. Simulated Annealing is a
Markov Chain Monte-Carlo method, while SBS is a deter-
ministic variational approach. The minimum temperature
parameter of Simulated Annealing is the inverse of the κ
parameter of SBS. Thus, any scheduler for the temperature
used in Simulated Annealing can also be used in SBS. How-
ever, there is an extra degree of exploration/exploitation in
SBS, corresponding to the kernel size used by the employed
SVGD sampling.

Locality of the kernel. In classical SVGD implementations,
the used RBF kernel is: k(x, x′) = exp

(
−∥x−x′∥2

2

2σ2

)
, as it

is in the Stein class of any smooth density supported on Rd.
σ controls the locality of the attraction and repulsion forces
applied on the particles, respectively expressed as:

attr(x) = Ex′∼µ̂n [∇ log π(x′)k(x, x′)] ,

rep(x) = Ex′∼µ̂n [∇x′k(x, x′)] .

The first term attracts lonely particles to a close cluster of
particles, and the second term repels particles that are too
close to each other. They are respectively exploitation and
exploration forces. Indeed, the attraction allows particles to

“fall” in local minima, where a lot of particles are already
stuck in. The repulsion prevents particles from getting stuck
together at a narrow region of the search space, and forces
them to explore the space. The value of σ controls the range
of these forces. A small σ value leads to a weak repulsion
and thus more exploitation. An arbitrary small σ leads to a
uniform distribution over the local minima. In the contrary,
a large σ leads to more exploration, as the particles will
repel themselves from even from a very far distance. An
arbitrary large σ leads to a uniform discretization of the
space. In the case of SBS, the value of σ is not fixed and
can be chosen by the user. These behaviors are illustrated in
Figure 3.

7. Conclusion
In this paper, we introduced Stein Boltzmann Sampling
(SBS), a new method for global optimization of Lipschitz
functions. It is based on the Stein Variational Gradient
Descent algorithm, which is a deterministic variational ap-
proach. We proved that SBS is consistent and showed that
it is competitive with state-of-the-art methods on classical
benchmark functions. We also introduced a variant of SBS
that uses particle filtering to save budget while having better
performances than the original version. Moreover, we in-
troduced SBS-HYBRID, a hybrid method that combines the
efficiency of CMA-ES and WOA with the large budget com-
patibility of SBS, outperforming all the other methods on the
benchmark functions. This shows that SBS can be used as
a continuation for particles or distributions based methods,
particularly method that are not fitted for a large budget. For
future work, we plan to study further the convergence rate
of SBS and its components to make it more appealing for
global optimization in real-world applications.
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A. Proofs
In the following sections, we provide the proofs of the theorems and lemmas stated in the main text. We also provide Lean
proofs of some results. The Lean proofs are available here 2 . We use the same notation that in the main text. Recall that
K(µ|π) denotes the Kernelized Stein Discrepancy and ϕ⋆

µ is the steepest trajectory in H that minimizes K(T#µ|π). We also
introduce a new quantifier ∀µ, such that, given a predicate P and a measure µ,

[
∀µx ∈ E ⊆ Ω, P (x)

]
≜ [∃A ⊆ E,µ(A) = µ(E),∀x ∈ A,P (x)] .

This quantifier means that the predicate P is true for almost all x ∈ E w.r.t. the measure µ. When the considered measure is
the standard Lebesgue measure, we simply write ∀.

A.1. Proof of Properties 3.1

The continuous BD is a special case of the nascent minima distribution, introduced in (Luo, 2019), that has the generic form

m
(κ)
f,Ω(x) = m(κ)(x) =

τκ(f(x))∫
Ω
τκ(f(t))dt

, (7)

where τ : R → R>0 is monotonically decreasing. We have the following theorems for general τ .

Theorem A.1 (Nascent minima distribution properties). Let m(κ) and τ be defined in Equation (7). Then, we have the
following properties:

• If λ(X∗) = 0, then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
∞ if x ∈ X∗

0 otherwise
.

• If 0 < λ(X∗), then, ∀x ∈ Ω,

lim
κ→∞

m(κ)(x) =

{
1

λ(X∗) if x ∈ X∗

0 otherwise
.

Proof. Let’s prove the two properties together. Let p = τ(f(x′)) > 0, ∀x′ /∈ X∗. Then, ∃Ωp, such that 0 < λ(Ωp),
p < τ(f(t)), i.e. f(t) < f(x′). Thus,

m(κ)(x′) =
pκ∫

Ωp
τκ(f(t))dt+

∫
Ω/Ωp

τκ(f(t))dt

≤ pκ∫
Ωp

τκ(f(t))dt

=
1∫

Ωp
p−κτκ(f(t))dt

.

For any t in Ωp, p−1τ(f(t)) > 1. Therefore limκ→,∞
∫
Ωp

p−κτκ(f(t))dt = ∞. Hence,

∀x′ /∈ X∗, lim
κ→∞

m(κ)(x) = 0.

2gaetanserre.fr/assets/Lean/SBS/index.html
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Now, let’s consider any x′′ ∈ X∗ and p = τ(f(x′′)). We have

m(κ)(x′′) =
pκ∫

Ω
τκ(f(t))dt

=
1∫ ∗

X
p−κτκ(f(t))dt+

∫
Ω/X∗ p−κτκ(f(t))dt

=
1∫

X∗ dt+
∫
Ω/X∗ p−κτκ(f(t))dt

(∀t ∈ X∗, τ(f(t)) = p)

=
1

λ(X∗) +
∫
Ω/X∗ p−κτκ(f(t))dt

.

For any t in Ω/X∗, p−1τ(f(t)) < 1. Therefore, limκ→∞
∫
Ω/X∗ p

−κτκ(f(t))dt = 0. Thus,

∀x′′ ∈ X∗, lim
κ→∞

m(κ)(x′′) =

{
∞ if λ(X∗) = 0

1
λ(X∗) otherwise

.

■

Theorem A.2 (Convergence of expectation). ∀f ∈ C0(Ω,R), the following holds

lim
κ→∞

∫
Ω

f(x) m(κ)(x)dx = f∗.

Moreover, if X∗ = x∗, we have

lim
κ→∞

∫
Ω

x m(κ)(x)dx = x∗.

Proof. If f is constant, it is straightforward as m(κ) is a PDF. Suppose f not constant on Ω. For any ε > 0, let 0 < δ ≜
ε

1+(maxx∈Ω f(x)−f∗) ≤ ε. As f is continuous, ∃Ωδ = {x ∈ Ω | f(x) − f∗ < δ}, the corresponding level set. Using
Theorem A.1, ∃K ∈ N such that ∫

Ω/Ωδ

m(κ)(x)dx < δ

holds ∀κ > K, as m(κ) tends to 0 ∀x /∈ X∗. Thus,

0 <

∫
Ω

f(x)m(κ)(x)dx− f∗

=

∫
Ω

f(x)m(κ)(x)dx− f∗
∫
Ω

m(κ)(x)dx

=

∫
Ω

(f(x)− f∗)m(κ)(x)dx

=

∫
Ωδ

(f(x)− f∗)m(κ)(x)dx

+

∫
Ω/Ωδ

(f(x)− f∗)m(κ)(x)dx

< δ

∫
Ωδ

m(κ)(x)dx

+ (max
x∈Ω

f(x)− f∗)

∫
Ω/Ωδ

m(κ)(x)dx

< δ(1− δ) + (max
x∈Ω

f(x)− f∗)δ

< (1 + (max
x∈Ω

f(x)− f∗))δ = ε.
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The proof is similar for the second statement, by setting

Ωδ = {x ∈ Ω|∥x− x∗∥ < δ}.

■

Letting τ = x 7→ e−x gives Properties 3.1.

A.2. Proof of Lemma 3.3.

Proof.

Ex∼µ[Aµϕ(x)] =

∫
Ω

∇ logµ(x)⊤ϕ(x) +∇ · ϕ(x)dµ(x)

=

∫
Ω

µ(x)(∇ logµ(x)⊤ϕ(x))dx+

∫
Ω

µ(x)(∇ · ϕ(x))dx

=

∫
Ω

µ(x)(∇ logµ(x)⊤ϕ(x))dx−
∫
Ω

∇µ(x)⊤ϕ(x)dx

=

∫
Ω

∇µ(x)⊤ϕ(x)dx−
∫
Ω

∇µ(x)⊤ϕ(x)dx.

■

A.3. Proof of Tk is a map to H0

Proof. As k is continuous, symmetric, and positive-definite and as µ(Ω) < ∞ and as Tk is a self-adjoint operator, we can
apply the Mercer’s theorem to obtain a sequence of eigenfunctions (ϕi)i∈N and a sequence of eigenvalues (λi)i∈N such that
(ϕi)i∈I is an orthornormal basis of L2

µ(Ω), such that (λi)i∈N is nonnegative and converges to 0, and such that the following
holds:

∀s, t ∈ Ω, k(s, t) =

∞∑
i=1

λiϕi(s)ϕi(t).

The above series converges absolutely and uniformly on Ω× Ω. Let define the set

Hk =

{
f ∈ L2

µ(Ω)

∣∣∣∣∣f =

∞∑
i=1

λiaiϕi ∧
∞∑
i=1

λia
2
i < ∞

}
,

endowed with the inner product

∀f, g ∈ Hk, ⟨f, g⟩Hk
=

〈 ∞∑
i=1

λiaiϕi,

∞∑
i=1

λibiϕi

〉
Hk

=

∞∑
i=1

λiaibi. (8)

Routine works show that Equation (8) defines a inner product and that Hk is a Hilbert space. Let’s show that Hk is a
RKHS with kernel k, i.e., ∀t ∈ Ω, k(t, ·) ∈ Hk and, ∀f ∈ Hk, f(t) = ⟨f, k(t, ·)⟩Hk

. Let t ∈ Ω. First, Ω is compact,
µ(Ω) = 1 < ∞, and k(t, ·) is continuous on Ω, thus k(t, ·) ∈ L2

µ(Ω). Then, we have that

k(t, ·) =
∞∑
i=1

λiϕi(t)ϕi,

and
∞∑
i=1

λiϕ
2
i (t) = k(t, t) < ∞.
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Thus, k(t, ·) ∈ Hk. Let f ∈ Hk. One can write

⟨f, k(t, ·)⟩Hk
=

〈 ∞∑
i=1

λiaiϕi,

∞∑
i=1

λiϕi(t)ϕi

〉
Hk

=

∞∑
i=1

λiaiϕi(t)

= f(t).

Therefore, Hk is indeed a RKHS with kernel k.The Moore–Aronszajn theorem ensures that, given k, there exists an unique
RKHS such that k is its kernel. Thus, Hk = H0. That’s prove that H0 ⊆ L2

µ(Ω) =⇒ H ⊆ L2
µ(Ω,Ω). Let’s now prove

that ∀f ∈ L2
µ(Ω), Tkf ∈ H0. Let f ∈ L2

µ(Ω). We begin by proving that Tkf ∈ L2
µ(Ω).

|Tkf(t)| =
∣∣∣∣∫

Ω

k(t, s)f(s)dµ(s)

∣∣∣∣
≤

∫
Ω

|k(t, s)||f(s)|dµ(s)

= ⟨|k(t, ·)|, |f |⟩L2
µ(Ω)

≤ ∥k(t, ·)∥L2
µ(Ω) ∥f∥L2

µ(Ω).

Then,

∥Tkf(t)∥2L2
µ(Ω) =

∫
Ω

|Tkf(t)|2dt

≤
∫
Ω

∥k(t, ·)∥2L2
µ(Ω)dt ∥f∥

2
L2

µ(Ω)

= ∥k∥2L2
µ
∥f∥2L2

µ(Ω)

< ∞.

We now prove that Tkf ∈ H0.

Tkf =

∫
Ω

k(·, s)f(s)dµ(s)

=

∫
Ω

∞∑
i=1

λif(s)ϕi(s)ϕi(·)dµ(s)

=

∞∑
i=1

λiϕi(·)
∫
Ω

f(s)ϕi(s)dµ(s)

=

∞∑
i=1

λi⟨f, ϕi⟩L2
µ(Ω)ϕi.

As (ϕi)i∈N is an orthonormal basis of L2
µ(Ω) we have that∫

Ω

ϕiϕjdµ = 1{i=j},

which implies, using Parseval’s identity,

∞∑
i=1

⟨f, ϕi⟩2L2
µ(Ω) = ∥f∥2L2

µ(Ω) < ∞.

13
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As (λi)i∈N converges to 0, ∃I ∈ N such that ∀i > I , λi < 1. Thus,

∞∑
i=1

λi⟨f, ϕi⟩2L2
µ(Ω) =

I∑
i=1

λi⟨f, ϕi⟩2L2
µ(Ω) +

∞∑
i=I+1

λi⟨f, ϕi⟩2L2
µ(Ω)

≤
I∑

i=1

λi⟨f, ϕi⟩2L2
µ(Ω) +

∞∑
i=I+1

⟨f, ϕi⟩2L2
µ(Ω)

≤
I∑

i=1

λi⟨f, ϕi⟩2L2
µ(Ω) + ∥f∥2L2

µ(Ω)

< ∞.

Therefore, ∀f ∈ L2
µ(Ω), Tkf ∈ H0, which proves that Tk : L2

µ(Ω) ↪−→ H0. ■

A.4. Proof of Theorem 3.6

Proof. First, we show that ϕ⋆
µ ∈ H, i.e. ∀1 ≤ i ≤ d, (ϕ⋆

µ)
(i) ∈ H0. Let define the function

f (i) : Ω → R,

x 7→
∂ log π

µ (x)

∂xi
.

Then, as ∀x ∈ Ω, k(·, x) ∈ S(µ), it is easy to show that

(ϕ⋆
µ)

(i) = Tkf
(i) ∈ H0.

Thus, ϕ⋆
µ = Sµ∇ log π

µ ∈ H. Next, we prove that

∀f ∈ H,Ex∼µ [Aπf(x)] = ⟨f, ϕ⋆
µ⟩H.

⟨f, ϕ⋆
µ⟩H =

d∑
ℓ=1

⟨f (ℓ),Ex∼µ

[
∇ log π(ℓ)(x)k(x·) +∇xk

(ℓ)(x, ·)
]
⟩H0

= Ex∼µ

[
d∑

ℓ=1

⟨f (ℓ),∇ log π(ℓ)(x)k(·, x) +∇xk
(ℓ)(x, ·)⟩H0

]

= Ex∼µ

[
d∑

ℓ=1

∇ log π(ℓ)(x)⟨f (ℓ), k(·, x)⟩H0
+ ⟨f (ℓ),∇xk

(ℓ)(x, ·)⟩H0

]

= Ex∼µ

[
d∑

ℓ=1

∇ log π(ℓ)(x)f (ℓ)(x) +
∂f (ℓ)(x)

∂xℓ

]
(Zhou, 2008)

= Ex∼µ

[
∇ log π(x)⊤f(x) +∇ · f(x)

]
.

Moreover, using the Cauchy-Schwarz inequality, we have that

⟨f, ϕ⋆
µ⟩H ≤ ∥f∥H∥ϕ⋆

µ∥H.

Thus,
K(µ, π) ≤ ∥ϕ⋆

µ∥H.

Finally, by letting f =
ϕ⋆
µ

∥ϕ⋆
µ∥H

, we have that

Ex∼µ [Aπf ] = ⟨f, ϕ⋆
µ⟩H = ∥ϕ⋆

µ∥H.

For more details, see Lean proof 3 . ■
3gaetanserre.fr/assets/Lean/SBS/html/SteepestDirection.lean.html
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A.5. Proof of Theorem 3.7

Proof. Note Tε = T , µ[T ] the density of T#µ w.r.t. λ. First, when ε is sufficiently small, T is close to the identity and is
guaranteed to be a one-to-one. Using change of variable, we know that T−1

# π admits a density π[T−1] w.r.t. λ and

π[T−1](x) = π(T (x)) · |det∇xT (x)|,∀x ∈ Ω.

Remark A.3. It is easy to see that, if T is a one-to-one map, then

∀x ∈ Ω,
(
µ[T ] ◦ T

)
(x) = µ(x).

Let’s show that KL(T#µ||π) = KL(µ||T−1
# π).

KL(T#µ||π) =
∫
Ω

log

(
µ[T ](x)

π(x)

)
dT#µ(x)

=

∫
T−1(Ω)

log

(
(µ[T ] ◦ T )(x)
(π ◦ T )(x)

)
dµ(x)

=

∫
T−1(Ω)

log

(
(µ[T ] ◦ T )(x)

(π[T−1] ◦ T−1 ◦ T )(x)

)
dµ(x)

=

∫
T−1(Ω)

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

=

∫
Ω

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

(
T−1(Ω) =

{
x
∣∣ T−1(x) ∈ Ω

}
= Ω

)
= KL(µ||T−1

# π).

For more details, see Lean proof 4 . Thus, we have

∇εKL(µ||T−1
# π) = ∇ε

∫
Ω

µ(x) log

(
µ(x)

π[T−1](x)

)
dx

=

∫
Ω

µ(x)∇ε

[
log(µ(x))− log

(
π[T−1](x)

)]
dx

= −
∫
Ω

µ(x)∇ε log
(
π[T−1](x)

)
dx

= −Ex∼µ

[
∇ε log

(
π[T−1](x)

)]
.

Now, let’s compute ∇ε log
(
π[T−1](x)

)
.

∇ε log
(
π[T−1](x)

)
= ∇ε log (π(T (x)) · |det(∇xT (x))|)
= ∇ε log π(T (x)) +∇ε log|det(∇xT (x))|
= ∇T (x) log π(T (x))

⊤∇εT (x) +∇ε log|det(∇xT (x))|

= ∇T (x) log π(T (x))
⊤∇εT (x) +

1

det(∇xT (x))
∇ε det(∇xT (x))

= ∇T (x) log π(T (x))
⊤∇εT (x) +

1

det(∇xT (x))

∑
ij

(∇ε∇xT (x)ijCij)

= ∇T (x) log π(T (x))
⊤∇εT (x) +

∑
ij

(
∇ε∇xT (x)ij (∇xT (x))

−1
ji

)
= ∇T (x) log π(T (x))

⊤∇εT (x) + trace
(
(∇xT (x))

−1 · ∇ε∇xT (x)
)
,

where C is the cofactor matrix of ∇xT (x). Finally, the result of the theorem is a special case of the above result. Indeed,
∀ϕ ∈ H, if T = Id + εϕ, then

4gaetanserre.fr/assets/Lean/SBS/html/KL.lean.html
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• T (x)|ε=0 = x;

• ∇εT (x) = ϕ(x);

• ∇xT (x)|ε=0 = Id;

• ∇ε∇xT (x) = ∇xϕ(x).

This gives

∇εKL(T#µ||π)|ε=0 = −Ex∼µ

[
∇ log π(x)⊤ϕ(x) +∇ · ϕ(x)

]
.

Applying Theorem 3.6 ends the proof. ■

A.6. Proof of Theorem 2.2

Proof. As (Tt)0≤t is a locally Lipschitz family of diffeomorphisms representing the trajectories associated with the vector
field ϕt, and as µt = Tt#µ, then, a direct application of Theorem 5.34 from (Villani, 2003) gives that µt is the only solution
of the linear transport equation {

∂µt

∂t +∇ · (µtϕt) = 0,∀t > 0,

µ0 = µ
,

where the divergence operator (∇·) is defined by duality against smooth compactly supported functions, i.e.

∀µ ∈ P(Ω),∀ϕ : Ω → Ω,∀φ ∈ C∞
c (Ω), ⟨T∇·(ϕµ), φ⟩ = −⟨Tµ, ϕ · ∇φ⟩,

where, ∀µ ∈ P(Ω), Tµ ∈ D′(Ω) and ∀φ ∈ C∞
c (Ω), ⟨Tµ, φ⟩ =

∫
Ω
φ dµ (see also (Villani, 2009)). Furthermore, as

µn+1 = (Id + εϕ⋆
µn

)#µn (see Equation (6)), one can write

∫
Ω

φdµn+1 =

∫
Ω

φ ◦ (Id + εϕ⋆
µn

)dµn,∀φ ∈ C∞
c (Ω).

∼
ε→0

∫
Ω

φ+ ε(∇φ · ϕ⋆
µn

)dµn

(
Taylor expansion of φ(x) at x+ εϕ⋆

µn
(x)

)
=

∫
Ω

φ dµn +

∫
Ω

ε
(
∇φ · ϕ⋆

µn

)
dµn

=

∫
Ω

φ dµn −
∫
Ω

εφ d
(
∇ · (µnϕ

⋆
µn

)
)

⇐⇒
∫
Ω

φ dµn+1 −
∫
Ω

φ dµn = −ε

∫
Ω

φ d
(
∇ · (µnϕ

⋆
µn

)
)
.

This shows that iteratively updates µ in the direction Id + εϕ⋆
µn

, given a small ε, corresponds to a finite difference
approximation of the linear transport equation. ■

16
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A.7. Proof of Theorem 2.3

Proof. Using the Leibniz integral rule, the time derivative of the KL-divergence writes

∂KL(µt||π)
∂t

=
∂

∂t

∫
Ω

log
dµt

dπ
dµt

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

µt(x)
∂ log µt(x)

π(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

µt(x)
∂ logµt(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∫
Ω

∂µt(x)

∂t
dx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx+

∂

∂t

∫
Ω

µtdx

=

∫
Ω

∂µt(x)

∂t
log

µt(x)

π(x)
dx

(
as, ∀t ≥ 0,

∫
Ω

dµt = 1

)
.

Furthermore, µt is the unique solution of the linear transport equation of Theorem 2.2, where ϕ⋆
µt

= Sµt∇ log π
µt

. Thus, we
have

∂KL(µt||π)
∂t

= −
∫
Ω

∇ · (µt(x)ϕ
⋆
µt
(x)) log

µt(x)

π(x)
dx

=

∫
Ω

µt(x)ϕ
⋆
µt
(x) · ∇ log

µt(x)

π(x)
dx

(
ϕ⋆
µt

∈ Sµt

)
=

∫
Ω

ϕ⋆
µt
(x) · ∇ log

µt(x)

π(x)
dµt(x)

=
〈
ιϕ⋆

µt
,∇ log

µt

π

〉
L2

µ(Ω,Ω)

=
〈
ϕ⋆
µt
, Sµt

∇ log
µt

π

〉
H

=

〈
ϕ⋆
µt
,−Sµt

∇ log
π

µt

〉
H

= −
〈
ϕ⋆
µt
, ϕ⋆

µt

〉
H

= −
∥∥ϕ⋆

µt

∥∥2
H

= −K(µt|π).

■

A.8. Proof of Lemma 2.4

Proof. We recall that

K(µ|π) = Ex∼µ

[
∇ log π(x)⊤ϕ⋆

µ(x) +∇ · ϕ⋆
µ(x)

]
.

17
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The right implication is straightforward. Assume that µ = π. We know that ϕ⋆
µ is in S(π), thus

Ex∼µ

[
∇ log π(x)⊤ϕ⋆

µ(x) +∇ · ϕ⋆
µ(x)

]
=

∫
Ω

∇ log π(x)⊤ϕ⋆
µ(x) +∇ · ϕ⋆

µ(x) dµ(x)

=

∫
Ω

∇ log π(x)⊤ϕ⋆
µ(x) +∇ · ϕ⋆

µ(x) dπ(x)

=

∫
Ω

π(x)
(
∇ log π(x)⊤ϕ⋆

µ(x) +∇ · ϕ⋆
µ(x)

)
dx

=

∫
Ω

∇π(x)⊤ϕ⋆
µ(x) dx−

∫
Ω

∇π(x)⊤ϕ⋆
µ(x) dx

= 0.

The left implication is more involved. Assume that K(µ|π) = 0. Remember that

K(µ|π) =
∥∥ϕ⋆

µ

∥∥2
H =

〈
∇ log

π

µ
, ιSµ∇ log

π

µ

〉
L2

µ(Ω,Ω)

.

Thus, we can rewrite the KSD as

K(µ|π) =
∫
Ω

∫
Ω

∇ log
π

µ
(x)⊤k(x′, x)∇ log

π

µ
(x′) dµ(x) dµ(x′).

Since k is positive definite, we have that

K(µ|π) = 0 ⇐⇒ ∇ log
π

µ
(x) = 0,∀µx ∈ Ω.

Finally, as µ(·) and π(·) are probability densities, we have that

∇ log
π

µ
(x) = 0 ⇐⇒ π(x) = µ(x),∀µx ∈ Ω.

For more details, see Lean proof 5 . ■

A.9. Proof of Lemma 2.5

Proof. We first show that π is a fixed point of (µ : E) 7→ Φt(µ), i.e. Φt(π) = π. To do so, recall that

K(π|π) = ∥ϕ⋆
π∥

2
H .

Using the right implication of Lemma 2.4, we have that

∥ϕ⋆
π∥

2
H = 0,

which implies that
⇐⇒ ϕ⋆

π(x) = 0,∀πx ∈ Ω.

Thus, ∀πx ∈ Ω,
Tπ(x)|ε=0 = x+ εϕ⋆

π(x) = x,

implying Φt(π) = π.

Then, suppose that ∃ν ∈ E such that ν ̸= π and Φt(ν) = ν for any t ≥ 0. We have that

∂KL(Φt(ν)||π)
∂t

= 0 = −K(ν||π).

However, using the left implication of Lemma 2.4, we obtain a contradiction.

For more details, see Lean proof 6 . ■
5gaetanserre.fr/assets/Lean/SBS/html/KSD.lean.html
6gaetanserre.fr/assets/Lean/SBS/html/KSD.lean.html
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A.10. Proof of Theorem 2.6

Proof. As stated in Theorem 2.3, t 7→ KL(µt||π) is decreasing. Moreover, as KL(µ||π) is finite, it exists a positive real
constant c, such that, for any sequence (tn)n∈N such that tn → ∞, KL(µtn ||π) → c. It implies that, for any such sequence
(tn)n∈N, it exists a subsequence (tk)k∈N such that µtk ⇀ µ∞, meaning that Φt(µ) ⇀ µ∞ (see Theorem 2.6 (Billingsley,
1999)). Therefore, µ∞ is a fixed point of Φt, for any t ≥ 0 and any µ ∈ P2(Ω) such that KL(µ||π) is finite. Finally, using
Lemma 2.5, we have that µ∞ = π. ■
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