

Learning Multivariate Time Series with Unsupervised Representation Methods using Simulated Datasets

Thabang Lebese, Cécile Mattrand, David Clair, Jean-Marc Bourinet

▶ To cite this version:

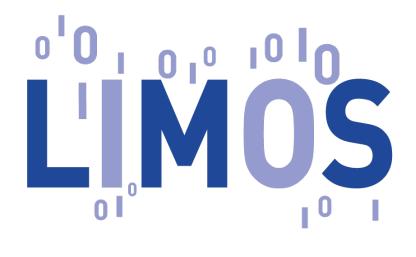
Thabang Lebese, Cécile Mattrand, David Clair, Jean-Marc Bourinet. Learning Multivariate Time Series with Unsupervised Representation Methods using Simulated Datasets. .., Apr 2023, Louvain-la-Neuve, Belgium. 2023. hal-04442065

HAL Id: hal-04442065 https://hal.science/hal-04442065

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License



LABORATOIRE D'INFORMATIQUE, DE MODÉLISATION ET D'OPTIMISATION DES SYSTÈMES

1. Overview

- Unsupervised representation learning is useful for extracting representations from unlabeled multivariate time-series
- Extracted representations can match underlying patterns or states
- We explore **3** unsupervised learning SOTAs: Triplet Loss, TNC and CPC
- We evaluate each on three **simulated datasets**
- Evaluations are on two downstream tasks: **clustering** and classification

2. Motivation

- Multivariate time series are mostly unlabeled, potentially long and of unequal lengths in the same dataset
- Modeling MTS requires significant time and expertise
- Unsupervised representation learning helps with understanding of generating processes and boosts performance of subsequent ML tasks
- Objectives if this work:
 - 1) Implement and reproduce three unsupervised learning SOTAs (Triplet Loss¹, TNC² and CPC³) techniques on three simulated datasets
 - 2) Demonstrate their strengths, weaknesses and determine suitability of each
- We demonstrate their practicality in various scenarios

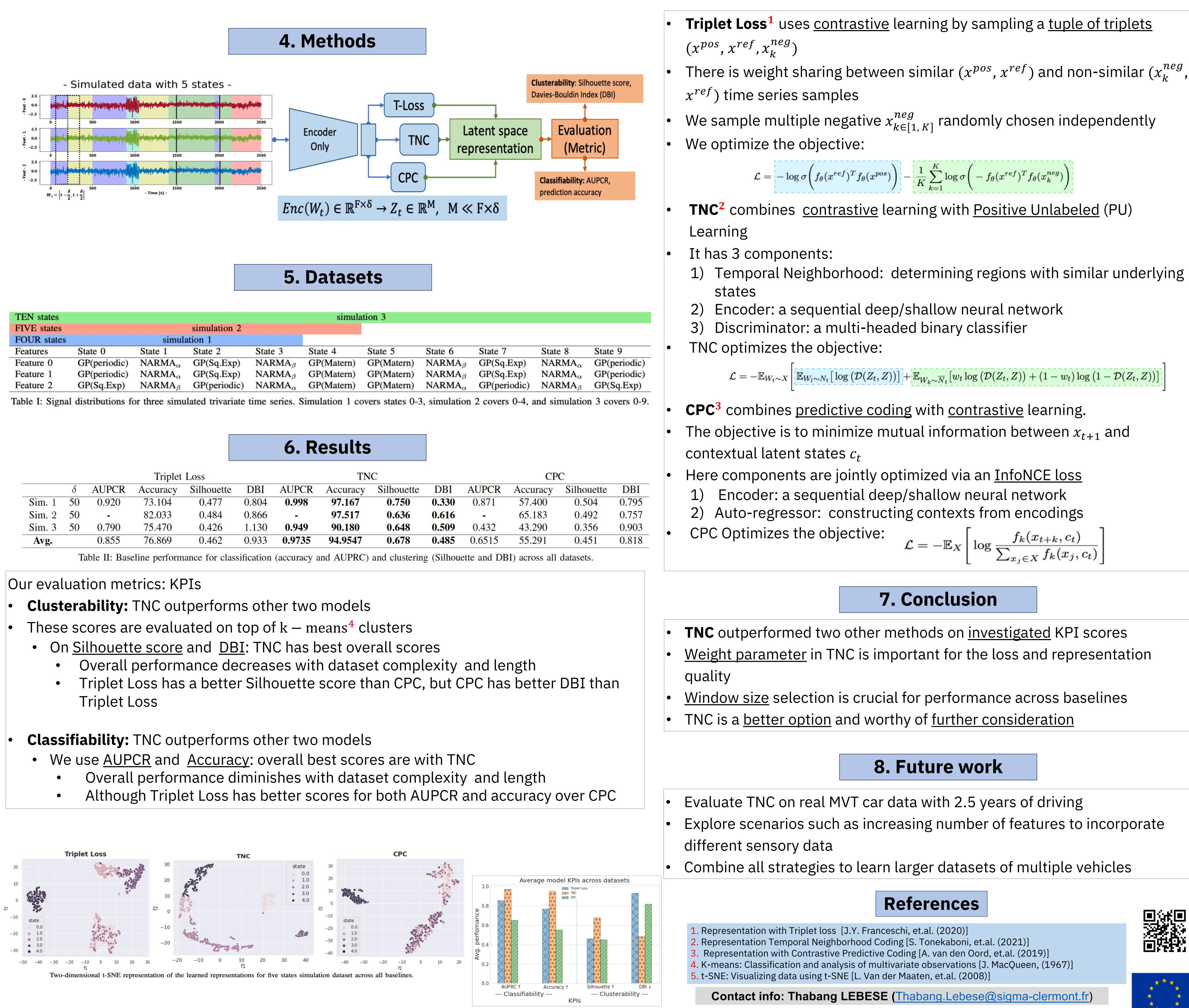
3. Baselines & training setup

- All baselines use a Deep **BiRNN** as encoder backbone
- CPC uses **Gated Recurrent Units (GRU)** as a regressor • Across baselines:
 - All **latent space dimensionality** set to 10
 - Window size set to 50 across baselines
 - We perform a 60/20/20 train/validation/test data split accordingly
- Maximum **training epochs** limited to (140, 400, 500) for (TNC, CPC, Triplet loss)
- Cross baseline **hyper-parameter** tuning:
- Window size selection
- PU learning weight parameter (TNC)
- No parameter tuning for the latent space

Learning Multivariate Time Series with Unsupervised Representation Methods using Simulated Datasets CLERMONT

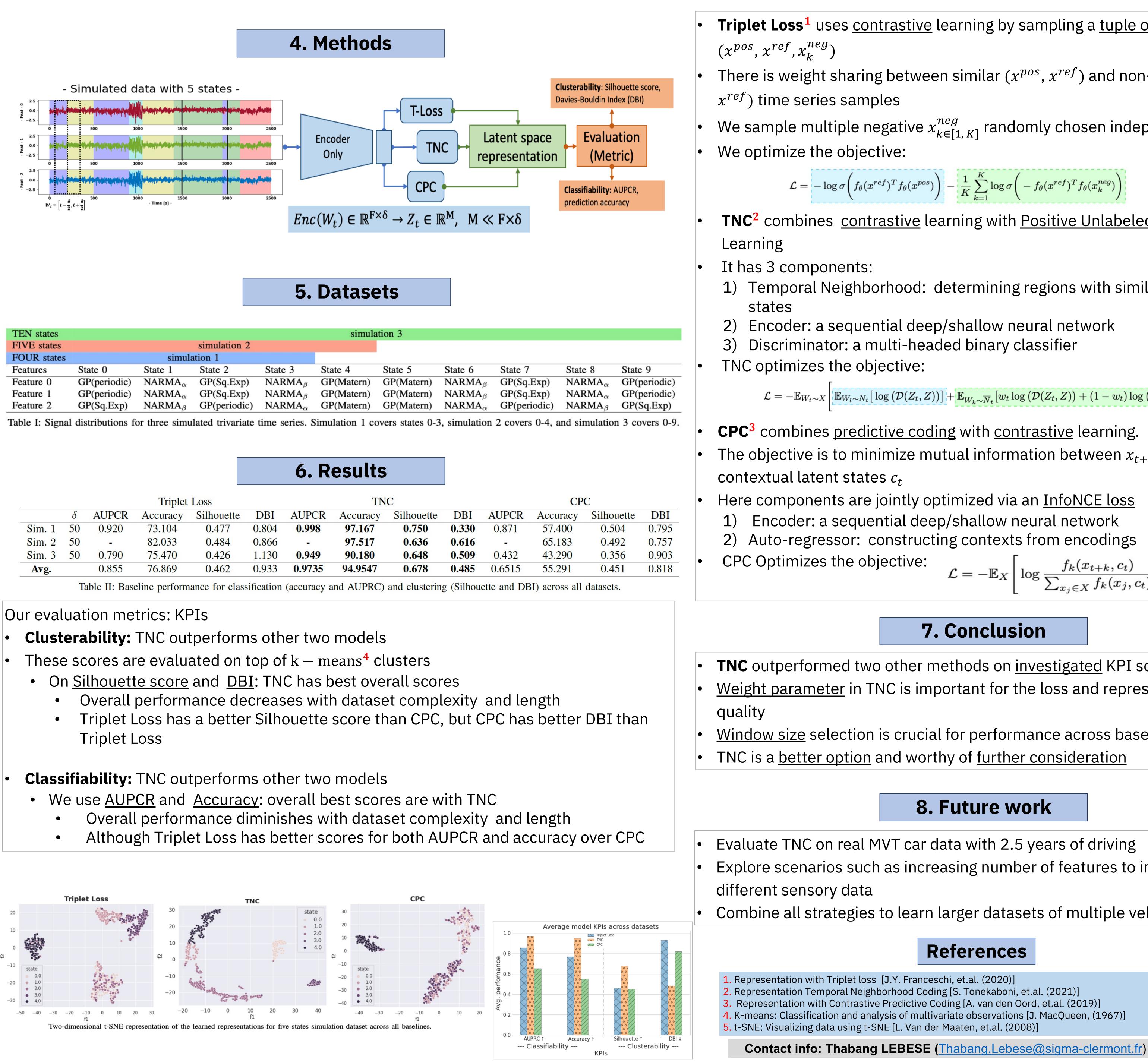
T. Lebese¹; C. Mattrand²; D. Clair³; JM. Bourinet⁴

^{1,4}LIMOS, Université Clermont Auvergne, France; ^{2,3,4}SIGMA Clermont, ^{2,3}Institut Pascal, Université Clermont Auvergne, France International Symposium on Intelligent Data Analysis (IDA 2023)



TEN states		tion 3				
FIVE states						
FOUR states		simula				
Features	State 0	State 1	State 2	State 3	State 4	State 5
Feature 0	GP(periodic)	$NARMA_{\alpha}$	GP(Sq.Exp)	$NARMA_{\beta}$	GP(Matern)	GP(Matern)
Feature 1	GP(periodic)	$NARMA_{\alpha}$	GP(Sq.Exp)	$NARMA_{\beta}$	GP(Matern)	GP(Matern)
Feature 2	GP(Sq.Exp)	$NARMA_{\beta}$	GP(periodic)	$NARMA_{\alpha}$	GP(Matern)	GP(Matern)

		Triplet Loss					TNC		
	δ	AUPCR	Accuracy	Silhouette	DBI	AUPCR	Accuracy	Silhouette	
Sim. 1	50	0.920	73.104	0.477	0.804	0.998	97.167	0.750	
Sim. 2	50	-	82.033	0.484	0.866	-	97.517	0.636	
Sim. 3	50	0.790	75.470	0.426	1.130	0.949	90.180	0.648	
Avg.		0.855	76.869	0.462	0.933	0.9735	94.9547	0.678	
	1036	0.0000 5880 5266	2201 0403	1523	56033	3.6	an subscription to the	20 Julio - 16	



S

