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1. Overview
• Triplet Loss𝟏 uses contrastive learning by sampling a tuple of triplets
(𝑥"#$, 𝑥%&' , 𝑥(

)&*)
• There is weight sharing between similar (𝑥"#$, 𝑥%&') and non-similar (𝑥(

)&*, 
𝑥%&') time series samples

• We sample multiple negative 𝑥(∈[-, /]
)&* randomly chosen independently

• We optimize the objective:

• TNC𝟐 combines  contrastive learning with Positive Unlabeled (PU) 
Learning 

• It has 3 components: 
1) Temporal Neighborhood:  determining regions with similar underlying 

states
2) Encoder: a sequential deep/shallow neural network
3) Discriminator: a multi-headed binary classifier 

• TNC optimizes the objective:

• CPC𝟑 combines predictive coding with contrastive learning. 
• The objective is to minimize mutual information between 𝑥34- and 

contextual latent states 𝑐3
• Here components are jointly optimized via an InfoNCE loss

1) Encoder: a sequential deep/shallow neural network
2) Auto-regressor:  constructing contexts from encodings

• CPC Optimizes the objective:
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2. Motivation

• Multivariate time series are mostly unlabeled, potentially 
long and of unequal lengths in the same dataset

• Modeling MTS requires significant time and expertise
• Unsupervised representation learning helps with 

understanding of generating processes and boosts 
performance of subsequent ML tasks

• Objectives if this work:
1) Implement and reproduce three unsupervised learning 

SOTAs (Triplet Loss-, TNC5 and CPC6) techniques on 
three simulated datasets

2) Demonstrate their strengths, weaknesses and 
determine suitability of each

• We  demonstrate their practicality in various scenarios

3. Baselines & training setup

• All baselines use a Deep BiRNN as encoder backbone
• CPC uses Gated Recurrent Units (GRU) as a regressor

• Across baselines:
• All latent space dimensionality set to 10
• Window size set to 50 across baselines
• We perform a 60/20/20 - train/validation/test data 

split accordingly
• Maximum training epochs limited to (140, 400, 500) for 

(TNC, CPC, Triplet loss)
• Cross baseline hyper-parameter tuning:
• Window size selection 
• PU learning weight parameter (TNC)
• No parameter tuning for the latent space

5. Datasets

4. Methods

6. Results

Our evaluation metrics: KPIs
• Clusterability: TNC outperforms other two models
• These scores are evaluated on top of k − means7 clusters

• On Silhouette score and  DBI: TNC has best overall scores
• Overall performance decreases with dataset complexity  and length
• Triplet Loss has a better Silhouette score than CPC, but CPC has better DBI than 

Triplet Loss

• Classifiability: TNC outperforms other two models
• We use AUPCR and  Accuracy: overall best scores are with TNC

• Overall performance diminishes with dataset complexity  and length
• Although Triplet Loss has better scores for both AUPCR and accuracy over CPC

7. Conclusion
• TNC outperformed two other methods on investigated KPI scores
• Weight parameter in TNC is important for the loss and representation 

quality
• Window size selection is crucial for performance across baselines
• TNC is a better option and worthy of further consideration

8. Future work

• Evaluate TNC on real MVT car data with 2.5 years of driving
• Explore scenarios such as increasing number of features to incorporate 

different sensory data
• Combine all strategies to learn larger datasets of multiple vehicles

1. Representation with Triplet loss  [J.Y. Franceschi, et.al. (2020)]
2. Representation Temporal Neighborhood Coding [S. Tonekaboni, et.al. (2021)]
3. Representation with Contrastive Predictive Coding [A. van den Oord, et.al. (2019)]
4. K-means: Classification and analysis of multivariate observations [J. MacQueen, (1967)]
5. t-SNE: Visualizing data using t-SNE [L. Van der Maaten, et.al. (2008)]

• Unsupervised representation learning is useful for 
extracting representations from unlabeled multivariate 
time-series

• Extracted representations can match  underlying patterns 
or states

• We explore 3  unsupervised learning SOTAs: Triplet
Loss, TNC and CPC

• We evaluate each on three simulated datasets
• Evaluations are  on two downstream tasks: clustering and

classification
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