
HAL Id: hal-04442046
https://hal.science/hal-04442046v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reverse Engineering of HOL Proofs
Shuai Wang

To cite this version:

Shuai Wang. Reverse Engineering of HOL Proofs. INRIA Paris-Rocquencourt. 2015. �hal-04442046�

https://hal.science/hal-04442046v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Reverse Engineering of HOL Proofs

Shuai Wang

July 2015 (revisited in Sep 2016)

Project Proposal

Thesis submitted in accordance with the requirements of the ENS Cachan and INRIA as
MPRI M1 internship report.

• Course: MPRI

• Level: M1

• Personal Tutor: Dr. David Baelde (ENS Cachan)

• Supervisor: Dr. Gilles Dowek

• Institute: INRIA

• Team: Deducteam

• Address: INRIA, 23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.

This internship is to analysis the translation of HOL-proofs to Dedukti in order to build
constructive proofs when possible. The goal of this project is a first quantitative analysis of
the proportion of proofs in usual classical mathematics that do not genuinely use the excluded
middle and that could be expressed constructively.

Declaration Of Authorship

I declare that this thesis and the work presented in it are my own and has been generated by
me as the result of my own original research.

I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University;

• Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated;

• Where I have consulted the published work of others, this is always clearly attributed;

• Where I have quoted from the work of others, the source is always given. With the
exception of such quotations, this thesis is entirely my own work;

• I have acknowledged all main sources of help;

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself;

Signed __________Date _____________

i

Contents

Contents iii

List of Figures v

Acknowledgement vi

Datasets, Code, and Reproduciblity vii

Nomenclature vii

1 Introduction 1

2 Basics 2
2.1 Higher Order Logic . 2
2.2 HOL Light . 4

2.2.1 Introduction to HOL Light . 4
2.2.2 Types and Terms . 4
2.2.3 Constants and Connectives . 4
2.2.4 Inference Rules of HOL Light . 6

3 HOL Proof Checking with OpenTheory, Holide and Dedukti 8
3.1 OpenTheory and OpenTheory HOL Light . 8

3.1.1 OpenTheory Version 6 . 9
3.2 λΠ-calculus and λΠ-calculus Modulo and Dedukti 10
3.3 Holide . 12

3.3.1 Translation . 13
3.3.2 Correctness . 15
3.3.3 Holide2 . 15

4 Reverse Engineering of HOL Proofs 17
4.1 Double Negation Translation . 18
4.2 Kernel Hacking for Reverse Engineering of HOL Proofs 19

ii

5 HOLALA 20
5.1 Kernel Hacking . 20

5.1.1 Logic Kernel . 20
5.1.2 Proof Logging . 22

5.2 Holide2x . 22
5.2.1 HOL Terms . 23
5.2.2 HOL Proofs . 23

6 Proof Analysis and Evaluation 24
6.1 Workflow . 24
6.2 Proof Checking . 25
6.3 Proof Analysis . 27
6.4 ProofCloud . 28

7 Conclusion and Future Work 33
7.1 Conclusion and Contribution . 33
7.2 Optimisation of proofs . 33
7.3 HOL-Modulo . 34
7.4 HOL-Tableaux . 34
7.5 ProofCloud . 35

A Comparison of Sequent Calculus, Natural Deduction and HOL Light 36

B Proof of Law of Excluded Middle 40
B.1 Law of Excluded Middle . 40
B.2 Diaconescu’s Proof of Law of Excluded Middle 40
B.3 A New Proof of Law of Excluded Middle . 41
B.4 Proof of ¬¬LEM . 42

C Attempts of reverse engineering of HOL Light Proofs 43
C.1 HOL-intermediate . 44
C.2 HOLIU . 44
C.3 HOLbot . 45

D The Specification of ProofCloud 46
D.1 The Specification of ProofCloud . 46

Index 47

iii

List of Tables

2.1 Primitive and Axiomatic Definitions of Connectives and Constants of Q0 . . . 3
2.2 HOL Light Notations . 5
2.3 Primitive Inference Rules of HOL Light [20] 6
2.4 HOL Light Deduced Inference Rules . 7

3.1 OpenTheory version 5 Logic Kernel [21] . 9
3.2 New and Updated Inference Rules of OpenTheory (version 6) 9
3.3 Differences between version 5 and version 6 10
3.4 Typing Rules of the λΠ-calculus . 12

4.1 Properties of Translation Compared . 19

5.1 Primitive and Axiomatic Definitions of Connectives and Constants Comparison 20
5.2 Additional Primitive Inference Rules of HOLALA 22
5.3 Size of Deductive Rules Between OpenTheory HOL Light and HOLALA . . . 22

6.1 Version Correspondance of OpenTheory, Holide and HOLALA 25
6.2 Size of Article Files and Translation Time . 26
6.3 Size of Dedukti Files and Proof Checking Time 26
6.4 Size and Frequency Analysis of Main Inference Rules of HOL Light and HO-

LALA Proofs . 28
6.5 Comparison of Translation and Proof Checking 30

A.1 Example Proof of (p ∧ (p → q)) → q in Sequent Calculus, Natural Deduction
and HOL Light . 36

A.2 Inference System Comparison . 39

iv

List of Figures

5.1 Dependency of Constants and Connectives Analysis 21

6.1 Workflow of HOLALA, Holide, OpenTheory and ProofCloud 24
6.2 Frequency of Main Inference Rules of OpenTheory Articles 29
6.3 Frequency of Main Inference Rules of HOLALA Articles 29
6.4 The Interface of ProofCloud . 30
6.5 Dependency of Packages of OpenTheory . 31
6.6 A Proof Page of ProofCloud . 32
6.7 A Proof Checking Page of ProofCloud . 32

C.1 Constants and Connectives Dependency Analysis and Design 44

v

Acknowledgement

The author wishes to thank Dr. Gilles Dowek, Mr. Ali Assaf, Mr. Frédéric Gilbert and
Mr. Raphaël Cauderlier, members of Deducteam at INRIA and Dr. Benno van den Berg
(ILLC, UvA) for their help during and after this project. The author would also like to thank
all those who gave advice or comments during the past few months, especially those at the
conferences and workshops (ESSLLI, UITP, AITP): Dr. Sven Linker, Mr. Eric Flaten, Mr.
Letchi Akhmatov, Dr. Cezary Kaliszyk and anonymous reviewers.

This is a revisited version of the original report with many mistakes corrected. This re-
port also includes a detailed description of the latest version of ProofCloud, which was a side
project commered around end of the internship. ProofCloud was later developed as a new
platform after the author left INRIA.

Finally, the reference list was reviewed.

vi

Datasets, Code, and Reproduciblity

For reproducibility, the following datasets and their code and documentation are available.
Unfortunately. They have not been maintained since early 2016.

1. Holide: The description is on GitHub https://airobert.github.io/holide/. The
source code is in the repository https://github.com/airobert/holide.

2. HOLALA: Some description is on this GitHub page: https://airobert.github.io/

holala/. The source code is available at https://github.com/airobert/holala.

3. ProofCloud: The main website is at https://airobert.github.io/proofcloud/ and
the source code is hosted on GitHub at https://github.com/airobert/proofcloud.

The code, intermediate results, design of the interface are all free for use under the licence
CC-BY 4.0 provided that the author recieves credits via citation or acknowledgement.

vii

https://airobert.github.io/holide/
https://github.com/airobert/holide
https://airobert.github.io/holala/
https://airobert.github.io/holala/
https://github.com/airobert/holala
https://airobert.github.io/proofcloud/
https://github.com/airobert/proofcloud

Chapter 1

Introduction

In Logical Framework, proofs are defined using definitions of logical constants, connectives,
quantifiers and axioms. Using a Logical Framework, the theories can be defined explicitly,
making it possible to investigate which part of the theory is needed for each given proof. The
process of reconstructing proofs in a given form is defined “reverse engineering of proofs”. This
work is a first attempt to do such reverse engineering of higher order proofs. More specifically,
this project first analyse which proofs in the HOL-light library are constructive. If so, we at-
tempt to transform them in the weaker constructive system. This internship project aimed at
such automatic analysis for proofs by picking constructive-compatible definitions and trans-
form proofs using those definitions. As a consequence, rework all the chain from HOL-Light
to Dedukti takes these modifications into account for proof checking. Several unsuccessful
attempts have been made to change the kernel of HOL Light. Among them HOLALA ex-
tends the kernel of HOL Light by introducing the universal quantification and implication.
It can classify proofs and perform structural and statistical analysis. The result is that 531
proofs out of 1199 (44%) in the HOL-light standard library are shown to be constructive. The
evaluation results showed that HOLALA is a successful attempt to reduce the size of proof
files, leading to an improvement of 41.81% in translation time and a speed-up of 38.04% in
proof checking. Finally, all structural analysis and proof checking results were presented in a
proof search engine, namely ProofCloud.

This report is organised as follows: Chapter 2 and Chapter 3 are an exposition of the tools
used during this internship: HOL-Light, Dedukti and Holide. To perform double negation
translation as described in Chapter 4, it is required to do some modification of the prim-
itive symbols of OpenTheory HOL Light kernel. Chapter 5 present a modification of the
OpenTheory HOL-Light system, namely HOLALA, which meant to change the definition of
the connectives and quantifiers. Following that was the corresponding modifications of Holide.
Chapter 6 presents some proof analysis results and the evaluation.

1

Chapter 2

Basics

2.1 Higher Order Logic

Higher Order Logic, also known as simple type theory (STT), is an extension of first order
logic [13]. A term is considered either a variable (e.g. x), an abstraction (e.g. λx.x) or an
application (e.g. (λx.x) y) of certain type. A variable following λ is considered an argument
of a function. Such variables are also considered as bound, otherwise free. The rest of the
function is usually referred to as the body. The notation x : ι means that the term x is of
type ι. The type of a term is recursively defined as ι (a type symbol, denoting the type of
individuals) or ι→ ι (a function type, the arrow is known as type constructor), or a boolean
type (bool for short). Propositions are of type bool. Type notions are sometimes omitted
for simplicity of representation. Restricted by typing, application has to agree also on their
types. For example, λx : ι.x which is of type ι→ ι can be applied to w : ι but not z : ι→ ι.
Such functions can be β-reduced through application to another term. Variables bound by λ
are considered only place-holders so terms are considered identical if they only differ for the
names of their bound variables. For example (λx.yx) and (λs.ys). These terms are considered
α-convertible. β-reduction is simply to replace all the occurrences of the bound variable by
the applied term in the “bod” of the function. For example, (λx.x)y would be β-reduced
to y (denoted as (λx.x)y →β y). The notation [y/x]A is used to represent the result of
replacing all the x by y in A. Thus, (λx.yx)z →β [z/x](yx) = yz. The relation =β is the
reflexive, symmetric, transitive closure of →β , which is also referred to as equivalence up to
β. For example, (λx.(λy.y)x)w =β (λy.y)w =β w. λ-calculus can be used as representation
of arithmetic, lists and more.

Higher order logic includes also some additional axioms and inference rules. Since most
mathematical theories can be expressed in STT, it has been well investigated during the past
few decades. As a result, automatic and interactive theorem provers have been developed
for formal mathematics. Among the interactive theorem provers, the HOL family consists of
several interactive theorem provers including HOL4 [33], HOL Light [20], ProofPower [29],
HOL Zero [1], etc. Alongside, many higher order automatic theorem provers have also been
developed [9, 28,34].

2

The following is a brief introduction to the higer order logic system Q0 [2]. Q0 takes two
primitive symbols, = and ι. Other constants and connectives are defined based on it. Table 2.1
illustrates a list of constants and connectives defined in Q0. Note that ∀x.A is an abbreviation
of ∀(λx.A), which is also written as ∀A in some contexts.

Symbol Definition
= primitive
ι primitive
↔ =
> = = =
∀ λp.A = λp.>
⊥ λx.T = λx.x
∧ λxλy(λg.g>> = λg.gxy)
→ λpq.(p = (p ∧ q))
∃ ¬∀x¬A
∨ λxy.¬(¬x ∧ ¬y)
¬ λx.x = ⊥
∃! (∃p) ∧ (∀xy.px ∧ py ⇒ x = y)

Table 2.1: Primitive and Axiomatic Definitions of Connectives and Constants of Q0

The higher order logic inference system Q0 takes a list of axioms but has a single primitive
inference rule, Rule R. The following illustrates a list of axioms of Q0 followed by its only
inference rule [2].

Axiom 1. f> ∧ f⊥ = ∀x.fx

Axiom 2. (x = y) = (fx = fy)

Axiom 3. (f = g) = ∀x.(fx = gx)

Axiom 4. (λx.B)A = B , where B is a primitive constant or variable distinct from x.

Axiom 5. (λx.x)A = A

Axiom 6. (λx.(BC)A = ((λx.B)A)(λx.C)A)

Axiom 7. (λx.(λy.B))A = (λy.((λx.B)A)) , where y is distinct from x and from all variables
in A.

Axiom 8. (λx.(λx.B))A = λx.B

Axiom 9. ι(= y) = y

Rule R. C A = B
R

C ′
, where C’ is C with one occurrence of A replaced by B, provided

that the occurrence of A in C is not (an occurrence of a variable) immediately preceded
by λ. [2].

3

To constuct proofs, it is first required to understand the definition of a sequent. A sequent
is in the form Γ ` A, where Γ is the hypotheses and A the conclusion. Such sequent means
that we can deduce A from Γ. Informally, a proof is a tree of sequents connected by inference
rules. Based on the logic of Q0, we can deduced some more inference rules corresponding to
common logic connectives and constants, making it a usable inference system. One of the
most used inference systems is Natural Deduction. It is commonly used in proof assistants
including HOL Light.

2.2 HOL Light

2.2.1 Introduction to HOL Light

HOL Light is an open source interactive theorem prover and proof checker for higher order
logic [20]. HOL Light is a simplified version of the original HOL [33] system with a small
and reliable kernel. Similar to the HOL system, HOL Light takes advantage of the powerful
functional programming language OCaml [20] and has a special notation system for logical
connectives and constants which is presented in Table 2.2 in case of confusion.

2.2.2 Types and Terms

To understand how HOL Light works, it is necessary to understand how HOL Light defines
types and terms. HOL Light terms are usually represented in backticks. For example, `x:A
`means a variable x of type A. Each HOL Light term has a type defined recursively, which
can be either a type variable, a boolean type or an arrow type. An arrow type is of the form
α → β, which means that the function takes an argument of type α and returns a term of
type β. A HOL Light term is a variable, a constant, an application or an lambda abstrac-
tion. For example, the type of λx : A.> is A→ bool. The syntax of HOL Light is as follows [5]:

type variables α, β
type operators p
types A,B ::= α | p(A1, . . . , An)
term variables x, y
term constants c
terms M,N ::= x |λx : A.M |MN | c

2.2.3 Constants and Connectives

HOL Light’s logic is an extension of Church’s simple type theory (STT) [7]. STT, together
with polymorphic type variables and some axioms and inference rules, makes the logic of HOL
Light. HOL Light has terms of type boolean, individual and function as well as polymorphic

4

HOL
Notation

Meaning Logic
Notation

Definition

= Equivalence = primitive
\ lambda λ built-in symbol
! Universal Quantifier ∀ λp.A = λp.>
? Existential Quantifier ∃ ¬∀x¬A
∼ Negation ¬ λp.p⇒ ⊥
==> Implication ⇒ λpq.(p = (p ∧ q))
<=> Bi-implication ↔ =
\/ Disjunction ∨ λxy.¬(¬x ∧ ¬y)
/\ Conjunction ∧ λxλy(λg.g>> = λg.gxy)
T Truth > λp.p = λp.p
F False ⊥ λx.T = λx.x
@ Hilbert’s Choice Symbol @ Constant
?! Exist Unique ∃ ! (∃p) ∧ (∀xy.px ∧ py ⇒ x = y)

Table 2.2: HOL Light Notations

type variables. There are constants with polymorphic types: equality (=) 1and Hilbert’s
choice symbol (denoted as @) [20]. The choice symbol can be considered a function with
a predicate as input, and return an element satisfying such predicate. It returns a random
element if there is no such element. The choice symbol is used in the axiom of choice, which
is in the center of the proof of the law of excluded middle to be presented in Section B.2.

=: α→ α→ o
@ : (α→ o)→ α

Here, the polymorphic type variables α of = would be instantiated to the type of the
term(s) it is applied to. For instance, in the term > = >, = is of type o→ o→ o2.

The constant = plays three roles in HOL Light:

Definition
= is the first connective introduced HOL Light system. Its first use is to define other
logical constants and connectives, as the role of equivalence (≡).

Equality
In most cases, = is used to represent equivalence of two terms, including variables,
constants, λ abstraction and application. Terms are of the same type on both sides of
=.

Bi-implication
In HOL Light, the bi-implication connector ↔ is redefined as equality since such case
can be regarded as equality with type o→ o→ o.

1s = t is a conventional concrete syntax for ((=)st).
2This is also the type of bi-implication. Bi-implication (⇐⇒) can be considered a special case of the

polymorphic =

5

2.2.4 Inference Rules of HOL Light

The definition of the logical symbols and the primitive inferience rules are the very beginning
of the HOL-Light library. This is known as the kernel of HOL-Light. More specifically, the
kernel defines 10 primitive inference rules as in Table 2.33.

Primitive Inference Rules of HOL Light

Structural ASSUME{A} ` A

λ Calulus
Γ ` A = B

ABS
Γ ` λx.A = λx.B

BETA
(λx.A)x = A

Instantiation

Γ[x1, . . . , xn] ` A[x1, . . . , xn]
INST

Γ[t1, . . . , tn] ` A[t1, . . . , tn]

Γ[α1, . . . , αn] ` A[α1, . . . , αn]
INST_TY PE

Γ[γ1, . . . , γn] ` A[γ1, . . . , γn]

Bi-implication
Γ ` A = B ∆ ` A EQ_MP

Γ ∪∆ ` B
Γ ` A ∆ ` B DEDUCT_ANTISYM_RULE

(Γ \ {B}) ∪∆ \ {A}) ` A = B

Equality

REFL` A = A

Γ ` A = B ∆ ` C = D MK_COMB
Γ ∪∆ ` A(C) = B(D)

Γ ` A = B ∆ ` B = C
TRANS

Γ ∪∆ ` A = C

Table 2.3: Primitive Inference Rules of HOL Light [20]

On the bases of the ten primitive inference rules we can deduce inference rules, referred to
as derived inference rules" in contrast with "primitive inference rules" in this report (Table
2.4).

3To keep tables small, types are eliminated.

6

Symbol HOL Light Deduced Inference Rules

> TRUTH
Γ ` >

⊥ Γ ` ⊥
CONTR

Γ ` A

∧
Γ ` A ∧B

CONJUNCT1
Γ ` A

Γ ` A ∧B
CONJUNCT2

Γ ` B

Γ ` A ∆ ` B
CONJ

Γ ∪∆ ` A ∧B

∨

Γ ` A ∨B Γ1, A ` C Γ2, B ` C DISJ_CASES
Γ ∪ (Γ1 \ {A}) ∪ (Γ2 \ {B}) ` C

Γ ` A
DISJ1

Γ ` A ∨B

Γ ` B
DISJ2

Γ ` A ∨B

⇒
Γ ` A→ B ∆ ` A

MP
Γ ∪∆ ` B

Γ ` B
DISCH

Γ \ {A} ` A→ B

∀

Γ ` A[c/x]
GEN if x is not free in Γ

Γ ` ∀xA
Γ ` ∀xA

SPEC
Γ ` A[t/x]

∃

Γ ` A[t/x]
EXISTS

Γ ` ∃xA
Γ ` ∃xA[x] ∆, A ` B

CHOOSE
Γ ∪∆ \ {A[v/x]} ` B

¬

Γ ` ¬A NOT_ELIM
Γ ` A→ ⊥

Γ ` ¬A = ⊥ EQF_ELIM
Γ ` ¬A

Γ ` A→ ⊥ NOT_INTRO
Γ ` ¬A

Γ ` ¬A EQF_INTRO
Γ ` A = ⊥

Table 2.4: HOL Light Deduced Inference Rules

7

Chapter 3

HOL Proof Checking with
OpenTheory, Holide and Dedukti

Higher order inference systems have played an important role in formal mathematics, software
verification and hardware verification. The necessity of proof checking follows from the need
of correctness of such systems and rooted in three reasons: 1) proof systems may have bugs
and may lead to errors in proofs but not apparent within the proof system themselves. 2)
Proofs nowadays can be huge, making impossible to check by hand. For example [18] takes
a team of scientists a few years to complete. 3) since Simple Type Theory is not sound and
complete [13], there is no guarantee for proofs in proof systems to be error free. Cousineau
and Dowek showed that Simple Type Theory can be embedded in the λΠ-calculus Modulo as
well as other Pure Type System (PTS) [10]. This laid the logic foundation of Dedukti [31],
a universal proof checker. On top of Dedukti, Holide [5] was developed to transform proofs
from OpenTheory to Dedukti.

3.1 OpenTheory and OpenTheory HOL Light

It is necessary to have a certain amount of proofs both for testing, transformation and eval-
uation purposes. In this project, some small proofs were written for testing and debug-
ging reasons but most proofs were retrieved from the OpenTheory library [21]. Although
proofs have been developed in HOL Light [20], HOL4 [33] and ProofPower [29], they each
contain significant theory formalizations that are not accessible to each other [5, 21]. HOL
Light has a formalization of complex analysis while HOL4 has a formalization of probabil-
ity theory [20, 21, 33]. In contrast, ProofPower has a formalization of the Z specification
language [21, 29]. Taking advantage of the similarity of the logic between these systems,
OpenTheory has developed a standard article file format for serializing proofs of higher order
logic [21]. Table 3.1 shows the OpenTheory logic kernel which has some small differences
compared with the HOL Light kernel1. The OpenTheory2 is a cross-platform proof package

1Note that AppThm Corresponds to MK_COMB in HOL Light, not AP_THM.
2http://opentheory.gilith.com/

8

http://opentheory.gilith.com/

manager for proofs in theorem provers of HOL family. OpenTheory is organised into packages
by theory. Such theories include lists, natural numbers, functions, etc3. OpenTheory comes
along with the idea of "theory engineering" and has inspired further exploration on theory
management between HOL families [15,23] as well as the development of several projects [5,6]
takes advantage of these packages. OpenTheory HOL-Light4 is a modified version of HOL
Light with the ability to export standard theory library in the OpenTheory standard proof
format (.art). The standard library of OpenTheory can be considered equivalent to the proofs
in OpenTheory HOL Light [21].

refl t` t = t
assumeϕ

{ϕ} ` ϕ
∆ ` ϕ Γ ` ϕ = ψ

eqMp
Γ ∪∆ ` ψ

Γ ` t = u absThm v
Γ ` (λv.t) = (λv.u)

Γ ` f = g ∆ ` x = y
appThm

Γ ∪∆ ` fx = gy

Γ ` ϕ ∆ ` ψ
deductAntisym

(Γ \ {ψ}) ∪ (∆ \ {ϕ}) ` ϕ = ψ

Γ ` ϕ
substσ

Γ[σ] ` ϕ[σ]

betaConv((λv.t)u)
` (λv.t)u = t[u/v]

defineConst c tc = t

` ϕ t
defineTypeOp n abs rep vs

` abs(rep a) = a ` (rep(abs r) = r) = ϕ r

Table 3.1: OpenTheory version 5 Logic Kernel [21]

3.1.1 OpenTheory Version 6

OpenTheory expanded the logic kernel with four inference rules in version 6: proveHyp,
trans, sym and defineTypeOp(as in Table 3.2). This made some software depending on it
out of date. A full comparison table between version 5 and version 6 is adapted from the
announcement5.

Γ ` ϕ ∆ ` ψ
proveHyp

Γ ∪ (∆ \ {ϕ}) ` ψ

Γ ` s = t ∆ ` t = u trans
Γ ∪∆ ` s = u

Γ ` ϕ = ψ sym
Γ ` ψ = ϕ

` ϕ t
defineTypeOp n abs rep vs

` abs(rep a) = a ` λr.ϕ r = (λr.(rep(abs r) = r))

Table 3.2: New and Updated Inference Rules of OpenTheory (version 6)

3http://opentheory.gilith.com/packages/
4http://src.gilith.com/hol-light.html
5The version 6 announcement is here:

http://www.gilith.com/pipermail/opentheory-users/2014-December/000461.html

9

http://opentheory.gilith.com/packages/
http://src.gilith.com/hol-light.html
http://www.gilith.com/pipermail/opentheory-users/2014-December/000461.html

Command
New or
Updated Description

version new Specify the version of article files.
proveHyp
trans
sym

new
These three new commands provide an efficient imple-
mentation of three frequently used derived inference
rules to produce more compact article files.

defineConstList new
The command defineConstList prov with ides a more
abstract principle for constant definition. This sup-
ports recent extensions to HOL4 and ProofPower.

hdTl new

The command hdTl provides a destructor function for
lists (an inverse to the existing cons command). To-
gether with the new command defineConstList, mak-
ing it possible to store constants in thedictionary.

defineTypeOp updated

The command defineTypeOp has been changed so that
the theorems giving the defining properties of the ab-
straction and representation functions have no free
variables.They were:
` (abs (rep a)) = a;
` (rep(absr) = r) = ϕ r
And they are now
` (λ a. abs (rep a)) = λ a. a;
` λr.ϕ r = (λr. rep (abs r) = r)

pragma new
The new command pragma allows a writer to ask for a
reader to takesome implementation-dependent action,
e.g., to produce debug output.

Table 3.3: Differences between version 5 and version 6

3.2 λΠ-calculus and λΠ-calculus Modulo and Dedukti

λΠ-calculus is also known as LF. It is a typed λ-calculus with dependent types. The type
of functions is written Πx : A.B. When x does not appear free in B, it can be denoted as
A → B. An example of dependently typed term is the term λx : int. p : Πx : int. Ax. This
term means that the type of p depends on the integer x. Think of p as a piece of paper of size
Ax. If x is 4 then the paper p is of size A4. If there exist a paper of size A4, then the type
A4 is inhabitable. λΠ-calculus is useful since through the Curry-Howard correspondence, it
can represent a variety of logics [19]. There are several formalizations of simple type theory
in λΠ-calculus such as [3], [30], [5] and [32]. The main idea of this approach is "propositions
as types" and "proofs as terms". For each proposition φ in HOL, we have a type ||φ|| in λΠ-
calculus. φ is provable if and only if the type ||φ|| is inhabitable. A proof of φ is translated as
a term of type ||φ||. Thus, the correctness of the proof is equivalent to the well-typedness of
the term [5]. A signature contains constants while a context is a list of variable declarations.
The syntax of λΠ-calculus is as follows, where · represents empty signature or empty context.:

10

term | typet t = x | Type | Kind | Π x. t t | λ x. t t | t t
contexts Γ ::= · |Γ, x : A
signatures Σ ::= · |Σ, c : A

λΠ-calculus Modulo is λΠ-calculus combined with rewriting technique similar to Deduc-
tion Modulo. As an extension of λΠ-calculus, in λΠ-calculus Modulo, a signature contains
constants as well as rewriting rules:

Σ ::= · |Σ, c : A |Σ, [Γ]M ; N

In the formula above, Σ, [Γ]M ; N means to add the rewriting rule M ; N to the
signature Σ regarding the context Γ. To keep type checking decidable, the free variables on
the right-hand-side must appear on the left-hand-side and the left-hand-side must follow the
higher order pattern fragment [26] in rewrite rules [4, 5]. Deduction Modulo takes advantage
of rewriting techniques. There are several notations to be introduced. Assuming R is a
set of rewriting rules, →R represents induced reduction relation while →+

R means transitive
closure. In addition, →∗R refers to reflexive transitive closure. ≡R is denoted as the reflexive,
symmetric, transitive closure [5]. This thesis follows the notation of [5] and uses βΣ as the
union of the β rule with the rewrite rules of Σ. The reduction relation→βΣ should be confluent
and strongly normalizing. Table 3.4 contains the typing rules for λΠ-calculus Modulo [5].

11

Γ context (x : A) ∈ Γ
V ar

Γ ` x : A

Γ context (c : A) ∈ Σ
Const

Γ ` c : A

Γ context Type
Γ ` Type : Kind

Γ ` A : Type Γ, x : A ` B : s
Prod

Γ ` Πx : A.B : s

Γ ` A : Type Γ, x : A `M : B
Abs

Γ ` λx : A.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A App
Γ `MN : [N/x]B

Γ `M : A Γ ` B : Type A ≡βΣ B
Conv

Γ `M : B

Σ signature
Emptyctx

.context

Γ ` A : Type x /∈ Γ
V arCtx

Γ, x : Acontext

Emptysig
.signature

Σ|· ` A : s c /∈ Σ
ConstSig

Γ, c : Asignature

Σ|Γ `M : A Σ|Γ ` N : A
RewriteSig

Σ[Γ]M ; N signature

Table 3.4: Typing Rules of the λΠ-calculus

Dedukti6 is a type checker based on λΠ-calculus modulo [31]. Being a logical framework,
Dedukti allows the definition of different theories, for instance classical/constructive HOL and
Calculus of Constructions [31]. With the help of Holide, CoqInE, Focalide and Krajono7, it
can perform proof checking on Coq, FoCaLize and Matita proofs8 [6]. It has been evaluated
to be an effecient and reliable proof checker.

3.3 Holide

Holide is translator from HOL proofs to Dedukti [31] developed by Ali Assaf and Guillaume
Burel [5]. It accepts files in the OpenTheory standard proof format (.art) and produces files
(.dk) for the Dedukti proof checker [5]. The first version translated OpenTheory standard

6Avaliable at https://www.rocq.inria.fr/deducteam/Dedukti.
7http://dedukti.gforge.inria.fr/
8https://who.rocq.inria.fr/Ali.Assaf/research/krajono-deducteam-2015-slides.pdf

12

https://www.rocq.inria.fr/deducteam/Dedukti
http://dedukti.gforge.inria.fr/
https://who.rocq.inria.fr/Ali.Assaf/research/krajono-deducteam-2015-slides.pdf

library and performed proof checking [5]. This internship project also includes an upgrade
of Holide following the most recent updates of OpenTheory (version 6). The translation is
presented next.

3.3.1 Translation

A signature contains constants and rewriting rules while a context is a list of variable decla-
rations. The following are the translation of HOL types, HOL terms and HOL proofs.

HOL Types To translate HOL types we need to introduce a Dedukti type: Type as well
as the follows constructors:

• type : Type

• bool : type

• ind : type

• arrow : type → type → type

HOL types could then be translated as Dedukti terms:

• |α| = α

• |bool| = bool

• |ind| = ind

• |A→ B| = arr |A||B|

For an n-ary HOL type operator p, which is of type type→ . . .→ type︸ ︷︷ ︸
n

→ type, an instance

p(A, . . . , An) is then translated to the term p|A1| . . . |An|.

HOL Terms We define a new dependent type called term, which depends on a Dedukti
type. eq and select are also introduced for equality and the choice operator respectively.

• term : type -> Type

• eq: Πα : type.term(arr α(arr α bool))

• select : Πα : type.term(arr (arr α bool)α)

To translate a HOL type A as a term, we have ||A|| = term |A|. For any HOL term M,
we have the translation |M | defined as follows:

13

• |x| = x

• |M N | = |M | |N |

• λx : A.M | = λx : ||A||.|M |

• |(=A)| = eq|A|

• |selectA| = select|A|

Holide has also introduced a rewriting rule to ensure terms are well-typed [5].

[α : type, β : type]term(arr α β) ; termα→ termβ

In addition, for every family of HOL constant c of type A with free variables α1, . . . , αn,
we declare a new constant of type Πα1 : type. . . .Παn : type.||A||. And an instance of the
constant cA1,...,cAn

by c|A1| . . . |An|.

HOL Proofs Similar as terms, we introduce another constant with dependent type: proof :

term bool → Type, indexed by the corresponding HOL proposition. For any context Γ =

φ1 . . . φn, we define ||Γ|| = hφ1 : ||φ1||, . . . hφn : ||φn||, where ||φ|| = proofφ and φ1 . . . φn are
fresh variables [5]. We declare the following constants:

• Refl: Πα : type.Πx : termα.proof(eq α xx)

• FunExt: Πα, β : type.Πf, g : term(arrow αβ).Πx : termα.proof(eq β(f x)(g x))) →
proof(eq(arrow αβ)f g)

• AppThm: Πα, β : type.Πf, g : term(arrow αβ).Πx, y : termα.proof(eq(arrowαβ)f g)→
proof(eq α x y)→ proof(eq β(f x)(g y))

• PropExt :Πp, q : term bool.(proof q → proof p)→ (proof q → proof p)→ proof(eq bool p q)

• EqMp : Πp, q : term bool.proof(eq bool p q)→ proof p→ proof q

The proofs can then be translated as:
The constant FunExt is short for functional extensionality9, which is used for the transla-

tion of both AbsThmas well as the η axiom [5]. Translation of rules are provided as follows,
where i is the index of proof Di.

9Functional extensionality means that if two functions f and g are of type A → B and are equal on all
values x of type A, then f and g are equal.

14

∣∣∣∣ refl t` t = t

∣∣∣∣=Refl |A||M |, whereM : A∣∣∣∣ Γ ` t = u absThm v
Γ ` (λv.t) = (λv.u)

∣∣∣∣=FunExt|A||B||λx : A.M ||λx : A.N |(λx : |A|.|D|)∣∣∣∣ Γ ` f = g ∆ ` x = y
appThm

Γ ∪∆ ` fx = gy

∣∣∣∣=AppThm|A||B||F ||G||M ||N ||D1||D2|∣∣∣∣ betaConv((λv.t)u)
` (λv.t)u = t[u/v]

∣∣∣∣=Refl|B||M|,where M is of type B∣∣∣∣ assumeϕ
{ϕ} ` ϕ

∣∣∣∣=hφ, where hφ is a fresh variable∣∣∣∣ Γ ` ϕ ∆ ` ψ
deductAntisym

(Γ \ {ψ}) ∪ (∆ \ {ϕ}) ` ϕ = ψ

∣∣∣∣=ProfExt|φ||ψ|(λhψ : ||ψ||.|D1|)(λhφ : ||φ||.|D2|)∣∣∣∣ ∆ ` ϕ Γ ` ϕ = ψ
eqMp

Γ ∪∆ ` ψ

∣∣∣∣=EqMp|φ||ψ||D1||D2|∣∣∣∣ Γ ` φ
TypeSubst

Γ[θ] ` φ[θ]

∣∣∣∣=(λα1 : type . . . λαm : type.|D|)|A1| . . . |Am|∣∣∣∣ Γ ` φ
TermSubst

Γ[σ] ` φ[σ]

∣∣∣∣=(λx1 : ||B|| . . . λxn : ||Bn||.|D|)|M1| . . . |Mn|

3.3.2 Correctness

Completeness is to guarantee that the translated HOL terms have correct types. While
soundness states that if a proof term is well-typed in Dedukti, the proofs must be correct in
HOL Light. The completeness and soundness gives the correctness of a translation and was
proved in [5].

3.3.3 Holide2

Recent updates of the OpenTheory format as shown in Table 3.3 requires an update of the
Holide program (although users can still use the old version of Holide by limiting the output
of OpenTheory to version 5). Holide uses a modular translation of higher order logic to
Dedukti which makes the translation possible to extend [5]. The following shows an extension
of Holide’s translation. In addition, the following constants were added to Holide2 for to
translate proofs using sym, trans and proveHyp.

• Sym : Πα : type.Πx, y : α.proof(eq bool x y)→ proof(eq bool y x)

• Trans : Πα : type.Πx, y, z : termαproof(eq α x y)→ proof(eq α y z)→ proof(eq α x z)

• ProveHyp : Πx, y : term bool.proof x→ proof y→ proof y∣∣∣∣ Γ ` ϕ = ψ sym
Γ ` ψ = ϕ

∣∣∣∣ = Sym|A||t1||t2|∣∣∣∣ Γ ` s = t ∆ ` t = u trans
Γ ∪∆ ` s = u

∣∣∣∣=Trans|A||x||y||z||D1||D2|

15

∣∣∣∣ Γ ` ϕ ∆ ` ψ
proveHyp

Γ ∪ (∆ \ {ϕ}) ` ψ

∣∣∣∣=ProveHyp|x||y||D1|λx : ||t1||.|D2|

Similar as Holide, Holide2 takes HOL proofs in the OpenTheory article format (.art) of
version 6 as input and outputs a Dedukti file (.dk). A comparison of Holide1 and Holide2 is
shown in Table 6.2 and Table 6.3 in Chapter6

16

Chapter 4

Reverse Engineering of HOL Proofs

The relationship between classical inference systems and constructive (a.k.a intuitionistic)
inference systems has been a longstanding field of research. The concept of intuitionism
dates back to the discovery by Brouwer that classical mathematics do not correspond to the
intuition we have of the mathematical objects. The discussion of classical and constructive
reasoning continues after the discovery of some paradoxes and inconsistencies [14], especially
Gödel’s incompleteness theorem. Proving by contradiction in classical inference systems was
also considered to be one of the sources of problems. In addition, classical reasoning would
also lead to the lose of the witness property [12]. This showed the limitations of classical
inference systems. Some thought classical reasoning should be allowed as long as it was
finitistically justified while others insist to avoid non-constructive proofs [14]. In the middle
the debate of intuitionism and classifcism lies the law of excluded middle (LEM). Depending
on whether there is a proof for P ∨ ¬P for any P or not, inference systems are classified in
classical logic (if there is such a proof) or constructive logic. A proof is regarded constructive
when it is not using the law of excluded middle. Constructive proofs can also be considered
classical proofs without using the law of excluded middle rule. Logical Framework provides
a means to present a logic as a signature in such a way that provability of a formula in the
original logic reduces to a type inhabitation problem in the framework type theory. In Logical
Framework, proofs are defined using definitions of logical constants, connectives, quantifiers
and axioms. Using a Logical Framework, the theories are made explicit, making it possible
to investigate which part of the theory is needed for each given proof. This analysis is called
"reverse engineering proofs". For instance, it is possible to investigate which proofs do not use
the excluded middle. If so, these proofs can be expressed in the weaker constructive system.
This internship project aimed at such automatic analysis for higher order logic by picking
constructive-compatible definitions and transform proofs using those definitions.

An alternative view of this is to consider classical proofs as constructive proofs by em-
bedding classical constants, connectives and quantifiers in constructive logic. Embedding
methods of similar fashion are usually referred to as "double negation translation" or "nega-
tive translation". Double negation translation has a history back to 1925 from Kolmogorov’s

17

translation [24]. Pioneering work also includes Gödel’s translation in 1933 and Gentzen’s
translation in 1936 [17]. In 2013, another translation was provided by Dowek [12]. Most
recently, Gilbert and Hermant provided a minimal translation for First Order Logic Sequent
Calculus as morphism [16]. A morphism is to define a embedding of classical connectives, con-
stants and quantifiers so that formulas that are provable in classical logic has its transformed
formula provable in constructive logic.

4.1 Double Negation Translation

Negative translation has a history back to Kolmogorov’s translation [24], following that was
Gödel’s translation in 1933 [17]and Gentzen’s translation in 1936. Most recently, Gilbert and
Hermant provided a minimal translation for First Order Logic Sequent Calculus [16].

The first double negation translation was proposed by Kolmogorov by putting a double
negation in front of every subformula [14]. Following Kolmogorov, a similar translation was
presented by Gödel and Gentzen [14, 17, 22]1. Later in 1950s, Kuroda proposed another
translation [25]. Most recently, Gilbert and Hermant presented a minimal translation [16].
The translation has been proved to be minimal for formulas that are not in the form of
A0 ∧ A0 ∧ . . . ∧ An, namely barred formulas [16]. Barred formulas are those not in the form
of A0 ∧ A0 ∧ . . . ∧ An. A translation which depends on the subformulas of the formula to be
translated is proof-dependent. Althought the translation varies, the development of double
negation translation aims at simpler and more effecient translation without losing properties.
Table 4.1 sums up some properties. The entry “Morphism” refers to whether a translation is a
connective to connective translation making it a morphism2. However all of the translations
requires universal quantifier and implication to be primitively defined. This lead to the change
of the kernel of OpenTheory HOL for the sake of double negation translation.

1Note that Gödel’s original translation also puts double negation in front of the translated terms of impli-
cation.

2Kuroda’s translation has an additional double negation in front of the whole proposition, making it not a
morphism.

18

Property Gödel-Gentzen Kuroda Gilbert-Hermant

Translation

⊥gg = ⊥
>gg = >
P gg = ¬¬P , for P atomic
A ∧gg B = Agg ∧Bgg

A ∨gg B = ¬¬(Agg ∨Bg)
A⇒gg B = (Agg ⇒ Bgg)
¬ggA = ¬Agg
∀ggxA = ∀xAgg
∃ggxA = ¬¬∃xAgg

⊥ku = ⊥
>ku = >
P ku = P , for P atomic
A ∧ku B = Aku ∧Bku

A ∨ku B = (Aku ∨Bg)
A⇒ku B = (Aku ⇒ Bku)
¬kuA = ¬Aku
∀kuxA = ∀x¬¬Aku
∃kuxA = ∃xAku

⊥m = ⊥
>m = >
P ku = P , for P atomic
A ∧m B = Am ∧Bm

A ∨m B = ¬¬(Am ∨Bm)
A⇒m B = Am ⇒ ¬¬Bm

¬mA = ¬Am
∀mxA = ∀x¬¬Am
∃mxA = ¬¬∃xAm

Proof-dependent No No Yes
`c |A| −→`i |A| Yes Yes Yes
Γ `c |A| −→ Γ `i |A| Yes Yes only if A is barred
Morphism No No Yes
Minimal Translation No No Yes

Table 4.1: Properties of Translation Compared

4.2 Kernel Hacking for Reverse Engineering of HOL Proofs

There are several reason for removing equality as primitive symbols. The first and the most
important being that all theoretical results of double negation translation so far are based
on universal and implication. Having universal quantifier and implication would also make
the system fundamentally more similar as other proof assistants which would make it easier
to transport proofs between each other. In addition, such change would bring the system
of HOL Light and Dedukti closer for further optimisation of proof checking since Dedukti’s
logic foundation is based on universal quantifier and implication. Several attempts have been
made to modify he kernel but none of them lead to a successful result by the deadline of the
project. Among them HOLALA is to be presented in Chapter 5 and the rest are attached in
Appendix C.

19

Chapter 5

HOLALA

As introduced in Chapter 2, HOL Light has a reliable kernel where equality and related prim-
itive inference rules are defined. Based on the logic kernel, other connectives and constants
were introduced as axioms followed byderived inference rules. HOLALA is a modified version
of OpenTheory HOL Light where the kernel consists of three primitive logic symbols and
their corresponding inference rules with some modification of OpenTheory HOL Light’s proof
logging methods.

5.1 Kernel Hacking

5.1.1 Logic Kernel

Q0 OpenTheory HOL Light HOLALA
= primitive primitive primitive
⇒ λpq.(p = (p ∧ q)) λpq.p ∧ q = p primitive
∀ λp.A = λp.> λp.p = λx.> primitive
∃ ¬∀x¬A λp∀q.(∀x.px⇒ q)⇒ q λp∀q.(∀x.px⇒ q)⇒ q
> = = = λp.p = λp.p ∀x.(x⇒ x)
⊥ λx.T = λx.x ∀p.p ∀p.p
∧ λxλy(λg.g>> = λg.gxy) λpq.(λf.fpq) = λf.f>> λpq.(∀x.(p⇒ ((q ⇒ x)⇒ x)))
∨ λxy.¬(¬x ∧ ¬y) λpq.∀.(p⇒ r)⇒ ((q ⇒ r)⇒ r) λpq.∀.(p⇒ r)⇒ ((q ⇒ r)⇒ r)
¬ λx.> = λx.x λp.p⇒ ⊥ λp.p⇒ ⊥
∃ ¬∀x¬A λp.∀q.(∀x.px⇒ q)⇒ q λp.∀q.(∀x.px⇒ q)⇒ q
⇔ = = =
∃! (∃p) ∧ (∀xy.px ∧ py ⇒ x = y) (∃p) ∧ (∀xy.px ∧ py ⇒ x = y) (∃p) ∧ (∀xy.px ∧ py ⇒ x = y)

Table 5.1: Primitive and Axiomatic Definitions of Connectives and Constants Comparison

The Logic kernel of OpenTheory HOL Light has some modification from HOL Light. HO-
LALA can be considered a modified version of OpenTheory HOL Light. HOLALA does
not only take equality as primitive symbol but also implication and universal quantification.
The logic kernel consists of three primitive logic symbols defined based on implication and
universal quantifier, together with their corresponding inference rules. Table 5.1 presents the

20

=

>

∧

→∀

⊥

∨ ∃

¬

=

>∧

→∀

⊥

∨

∃

¬

OpenTheory HOL Light HOLALA

Figure 5.1: Dependency of Constants and Connectives Analysis

constants of the logic kernel of HOLALA in comparison with Q0 and OpenTheory HOL Light.
Compared with OpenTheory HOL Light, HOLALA also changed the definition of >, and ∧,
making as many definitions of logic symbol as possible dependent on universal quantification
and implication instead.

To summarise, Table 5.1 presents a comparison with Q0, OpenTheory HOL Light and HO-
LALA. Figure 6.5 shows the dependency analysis of OpenTheory HOL Light and HOLALA.
Note that the graph omits equality as the definition symbol ≡ for the sake of simplicity. In
practice, the equality plays the role of ≡ in every single axiom in HOLALA.

New primitive rules corresponding to implication and universal quantifier are therefore
transported in the kernel as in Table 5.2. An immediate benefit of such change is that
deduction rules directly related to ∀ and→ got shortened. Deductive rules defined in bool.ml
would therefore need to be reproved. Table 5.3 shows the smallest proof1 using the four
basic rules which are outside of the kernel in OpenTheory but primitive (within the kernel)
in HOLALA. Following that are some examples of derived rules as well as a comparison of
the size of a proof of the Law of Excluded Middle. It is clear that smallest proofs using MP,
DISCH, GEN and SPEC has reduced a dramatic amount of steps each. Deduced rules such
as CONJ, IMP_ANTISYM_RULE and DISJ1 also reduced a significant amount of steps.
However for rules not dependent on such changes, for example TRUTH2, the size stays the
same. It is also noted that proving the law of excluded middle takes a significant number of
steps instead of just one. More evaluation will be presented in the next section.

Although such change lead to reduction of size in most cases, users would lose the original
definition of the ∀ and → . Proofs using these two definitions directly would therefore report
errors. To fix it, these two definitions were proved as theorems after the introduction of the
axiom of extensionality in HOLALA.

1Such proofs takes branches obtained by only one step of the axiom rule and directly followed by the
inference rule.

2In both systems, TRUTH is taken as a proof using EQ_MP, SYM, T_DEF and REFL. None of these
rules are directly related to the changes made by HOLALA.

21

Γ ` A→ B ∆ ` A
MP

Γ ∪∆ ` B

Γ ` A[c/x]
GEN if x is not free in Γ

Γ ` ∀xA

Γ ` B
DISCH

Γ \ {A} ` A→ B

Γ ` ∀xA
SPEC

Γ ` A[t/x]

Table 5.2: Additional Primitive Inference Rules of HOLALA

OpenTheory HOL Light HOLALA
MP 113 3
DISCH 106 2
GEN 23 2
SPEC 140 2
CONJ 57 33
DISJ1 158 23
IMP_ANTISYM_RULE 156 7
TAUT (∀p.(p ∨ ¬p)) 341 165

Table 5.3: Size of Deductive Rules Between OpenTheory HOL Light and HOLALA

5.1.2 Proof Logging

OpenTheory HOL Light modified the kernel of HOL Light and made it possible to export
proofs by introducing a proof type. Instead of recording only the hypothesis and conclusion of
proofs as in HOL Light, OpenTheory HOL Light records each step of HOL Light and deletes
them after exporting to articles. HOLALA takes a similar approach but replaces the proof
of the theorem Law of Excluded Middle (LEM) by a LEM_proof as record of classicism.
HOLALA therefore considers a proof being classical when it uses LEM. Instead of simply
replacing the record of proofs by axiom proofs after exporting, HOLALA performs structural
and statistical analysis and then takes the proof as a term of Lemma with corresponding
results of analysis. Such analysis includes, detection of LEM, i.e. a sign of classical proof or
constructive proof, size of proof, axioms used in a proof as well as classical and constructive
lemmas used. Such improved proof logging and exporting technique leads to a search engine
to be presented at the end of next chapter, namely ProofCloud.

5.2 Holide2x

HOLALA extends the logic kernel of HOL Light. Thus, a translation the following four
inference rules is necessary. This is captured in another variant of Holide, namely Holide2x.
The following is the modification of translation of types, terms and proofs. The translation

22

of HOL types remains the same but, to deal with universal quantifier and implication and
their rules, Holide2x declares the imp and forall together with MP, DISCH, GEN and SPEC
as constants.

5.2.1 HOL Terms

Similar to equality, universal quantification is also of polymorphic type. The translation of
terms using universal quantification and existential quantification would therefore then be:
|!(M : A)| = forall|A||M | and |M =⇒ N | = imp|M ||N |.

• imp: term bool→ term bool → term bool

• forall : Πα : type→ term(arr α bool)→ term bool

• | → | = imp

• |(!A)| = forall|A|

5.2.2 HOL Proofs

There are only four new inference rules introduced. The translation of proofs using these rules
are in the same style as [5].∣∣∣∣ Γ ` A→ B ∆ ` A MP

Γ ∪∆ ` B

∣∣∣∣ = MP|A||B||D1||D2|, where D1 and D2 are the proofs

of A→ B and A respectively.∣∣∣∣ Γ ` A[c/x]
GEN, if x is not free in Γ

Γ ` ∀xA

∣∣∣∣ = GEN|A||c′||D′|, where c′ = λx : ||A||.|c|,

D is a proof of A[c/x] and D′ = λx : ||A||.|D|∣∣∣∣ Γ ` B DISCH
Γ \ {A} ` A→ B

∣∣∣∣ = DISCH|A||B||D′||D|, where D′ is a proof of A and D

is a proof of B∣∣∣∣ Γ ` ∀xA SPEC
Γ ` A[t/x]

∣∣∣∣ = SPEC |A|t′|u||D|, where t′ = λx : ||A||.|t| and D is a proof of

B respectively.

The four constants MP, DISCH, GEN and SPEC introduced are as below.

MP: Πp : term bool.Πq : term bool.proof(imp p q)→ proof p→ proof q

DISCH: Πp : term bool.Πq : term bool.proof p→ proof q → proof(imp p q)

GEN: Πα : type.Πp′ : (termα→ term bool).Πx : termα.proof (p′ x)→ proof(forallλx.p′x)

SPEC: Πα : type.Πt : (termα→ term bool).Πu : termα.proof(forallα t)→ proof(t u)

This extended version of Holide completes the workflow of proof checking of OpenTheory
packages. proofs in HOLALA can be exported to new article files (.artx) and then translated
as Dedukti files. Detailed evaluation and proof checking are to be presented in Chapter 6.

23

Chapter 6

Proof Analysis and Evaluation

In this section, the workflow of this project is first illustrated. Following that are some
structural and statistical analysis of OpenTheory using Holide, HOLALA and Dedukti. In
addition, specification of ProofCloud will be presented at the end of the chapter.

6.1 Workflow

Figure 6.1: Workflow of HOLALA, Holide, OpenTheory and ProofCloud

This project uses many softwares of different versions. Before presenting the evaluation re-
sults, it is necessary to clarify the version correspondence and workflow of this project. On
one hand, both OpenTheory repository and users can provide articles1. These article files
are then converted to Dedukti files by Holide2. Then Dedukti performs proof checking and
checking results goes into ProofCloud. On the other hand, proofs scripts can be loaded by
HOLALA and perform proof analysis, then exported to HOLALA article files. These article
files are then converted to Dedukti files by Holide2x. similarly, Dedukti conduct proof check-

1All articles in evaluation are assumed to be of OpenTheory version 6.

24

ing. Lastly, results from HOLALA and Dedukti get stored in ProofCloud. ProofCloud is not
only a representation of proof analysis and proof checking results but also a search engine for
a modified OpenTheory standard library. More details of ProofCloud will be presented at the
end of this chapter.

Development of software makes correspondence of versions challenging. A significant
amount of time of the project was to update Holide as a result of the changes of OpenTheory
format and the changes of logic kernel of HOLALA. The recent updates of OpenTheory from
version 5 to version 6 lead to the update of Holide from version 1 to version 2. Although
users can still use the old version of Holide by limiting the output of OpenTheory to version
52. Holide2 takes HOL proofs in the OpenTheory article format (.art) of version 6 as input
and outputs a Dedukti file (.dk). After translation, dedukti takes the translated files as input
and perform proof checking. HOLALA can be considered a modified version of OpenTheory
HOL Light and generates articles of its own but can be considered an extended version 6
OpenTheory article. This brought about an alternative of Holide, namely Holide2x. All three
of Holide1, Holide2 and Holide2x have been tested. The subsequent Table 6.1 displays the
version correspondence clearly. Items in grey in the table are currently maintained by the
author. The author has also contributed to the latest version of OpenTheory HOL Light on
the import function making HOL Light import theorems from articles of version 6 correctly.

Article Generator
/ Repository

Article
File Ex-
tension

Translation
Tool and Ver-
sion

Verification
Tool

OpenTheory 5
Repository

.art Holide1

OpenTheory 6
Repository

.art Holide2

HOLALA .artx Holide2x
Dedukti

Table 6.1: Version Correspondance of OpenTheory, Holide and HOLALA

6.2 Proof Checking

The standard library in OpenTheory Repo grouped theorems into packages, including the-
orems of booleans, sets, lists, etc. The standard library (the base package, including 11
subpackages) was first verified in this project followed by all the packages in OpenTheory
Repo. These tests were completed on a 64-bit Intel Core i5-4590 CPU @3.30GHz ×4 machine
with 3.8GB RAM.

Above are two tables with the size of files and the time taken for translation and proof
checking. Table 6.2 and Table 6.3 illustrates a comparison of version 1 and version 2 of

2Holide1 has checked the standard library of OpenTheory (version 5). The first release of Holide2 (in May
2015) could not translate articles in the lazylist package correctly due to a small mistake in translation of type
variables. This has been corrected in most recent release of Holide2.

25

Package Holide 1 Holide 2
Size (KB) Time (s) Size (KB) Time (s)

base 1,436 19.35 1,194 19.42
cl 313 5.77 313 5.56
empty 0 0.20 0 0.00
gfp 136 1.42 112 1.35
lazy-list 1,390 31.43 1,391 31.78
modular 45 1.13 37 0.37
natural-bits 162 1.43 132 1.39
natural-divides 193 2.10 157 1.94
natural-fibonacci 130 1.31 108 1.24
natural-prime 140 1.46 116 1.34
parser 240 3.22 204 3.15
probability 26 0.30 23 0.23
stream 75 0.75 63 0.73
word10 86 0.76 71 0.62
word12 88 0.79 72 0.75
word16 131 1.60 107 0.77
word5 77 0.70 64 1.56
Total 4,668 73.73 4,377 72.21

Table 6.2: Size of Article Files and Translation Time

Package Dedukti (Holide 1) Dedukti (Holide 2)
Size (KB) Time (s) Size (KB) Time (s)

base 4,681 10.63 4,440 9.74
cl 1,219 2.42 1,219 2.46
empty 0 0.00 0 0.00
gfp 400 0.73 375 0.65
lazy-list 5,718 13.31 5,717 13.11
modular 120 0.19 111 0.17
natural-bits 452 0.74 419 0.68
natural-divides 599 1.11 566 0.99
natural-fibonacci 378 0.67 354 0.60
natural-prime 408 0.72 388 0.65
parser 802 1.87 776 1.69
probability 72 0.12 69 0.11
stream 221 0.41 211 0.38
word10 234 0.38 216 0.29
word12 239 0.40 220 0.35
word16 396 0.80 364 0.36
word5 207 0.33 192 0.72
Total 16,146 34.83 15,637 32.95

Table 6.3: Size of Dedukti Files and Proof Checking Time

26

translation by Holide and proof checking by Dedukti. Both article files and Dedukti files are
compressed by gzip to reduce the effect of syntax formatting and whitespace. Translation
and proof checking can be completed within two minutes and are considered to be efficient.
However, there is little difference in terms of efficiency. In addition, the increase of size after
translation is consistent with previous work [5].

For the first time, all OpenTheory packages passed proof checking by Holide2 and Dedukti.
This announced the completion of proof checking of all OpenTheory packages available. The
success of checking of all these packages also provides evidence that OpenTheory being a
reliable platform for higher order proofs as well as the correctness of updates of Holide1 and
Holide2. In addition, this project also provides evidence for the correctness of HOL Light
kernel and proofs from a different perspective compared with [27].

6.3 Proof Analysis

As described in Chapter 1, HOLALA changed the proof logging technique of OpenTheory
HOL Light and made it possible to do structural and statistical analysis before exporting
to article files. HOLALA considers proofs using Law of Excluded Middle as classical proof
and constructive otherwise. HOLALA is a modified version of OpenTheory HOL Light and
integrates the standard library of 1199 proofs. Among them, there are 531 constructive proofs
and 668 classical proofs making 44.29% of them constructive proofs.

Taking axioms and lemmas as one step and all deduction steps as one step, we can calculate
the size of proofs (up to lemma). The size of proofs varies from a few steps to millions of
steps. As illustrated in Table 6.4, compared with OpenTheory HOL Light, there is an overall
reduction of size around 40.87%. This indicates that introducing frequently used inference
rules as primitive inference rules would sharply reduce the size of proofs.

Analysis of OpenTheory proofs (Figure 6.2) shows that two primitive deduction rules
(subst and eqmp) combined makes up to over 45% of all the rules used making it essential
to further investigate the subst and eqmp. One reason is that the kernel of OpenTheory
HOL Light is very small making INST and PINST, EQ_MP and MK_COMB widely used
in bool.ml and equal.ml3. This inspires further work on proof optimisation, especially on the
reduction of the use of the two commands, subst and eqMp, as described in Chapter 6.

In contrast, Figure 6.3 indicates that the introduction of MP, DISCH, GEN and SPEC
has not only reduced total size of article files but also cut the percentage of subst and eqmp
to around 24% resulting more balanced and less dependent deduction system. However, HO-
LALA’s changes have little impact on appthm, trans and sym.

During the project the author also noticed that many common deducted inference rules are
3OpenTheory HOL Light takes β-conversion rule as primitive inferences rules which helps reducing the use

of EQ_MP and INST.

27

OpenTheory HOL Light
Count

HOLALA
Count

subst 93330 27217
eqmp 92264 31234
appthm 52994 49712
proveHyp 47597 12782
betaConv 21370 8152
absThm 15024 9088
trans 26616 25337
refl 26644 25061
deductAntisym 9528 1246
sym 9401 8469
assume 16950 8376
mp 0 9644
disch 0 9455
gen 0 6344
spec 0 11327
Total 411718 243444

Table 6.4: Size and Frequency Analysis of Main Inference Rules of HOL Light and HOLALA
Proofs

dependent on INST and INST_TYPE (mostly used via PINST). Having INST or INST_TYPE
increased the complexity for proof searching automation. Such inference rule should be
thought twice whether to be kept as primitive inference rule.

Since article files are compressed. A more practical way to compare proof size is to consider
the size of the article files. Article files are where proofs are stored. The size of both article
files and Dedukti files scaled down a lot. Article files of HOLALA are only around 23.63%
on average the size of article files of OpenTheory4. Leading to an improvement of 41.81% in
translation time. Size of Dedukti files got reduced to about 64.33% with a speed improvement
of 38.04%.

6.4 ProofCloud

ProofCloud5 is a proof retrieval engine for easy searching of verified higher order logic proofs
6. It consists of a presentation of proofs and proof packages, the results of some statistical and
structural analyses, together with their proof checking results. So far it has been populated
with 1687 proofs from 6 packages of OpenTheory. Information of each proof and package is
presented on seperate webpages. Taking classical proofs as those using the axiom of choice,

4For fair comparison, article files and dedukti files are compressed with gzip separately and then the whole
folder was compressed by as a tar.gz file. All article files are obtained from "/opentheory/article" directory.
To remove the factor of optimisation by opentheory, articles are not combined to packages.

5http://airobert.github.io/proofcloud/
6In this revisited version of internship report, ProofCloud is only about proofs and proof analysis results

of OpenTheory. It has nothing to do with Holide2x and HOLALA anymore.

28

http://airobert.github.io/proofcloud/

Figure 6.2: Frequency of Main Inference Rules of OpenTheory Articles

Figure 6.3: Frequency of Main Inference Rules of HOLALA Articles

29

Size of Proof Files (KB) Translation Time (s)
HOL Light 5,376 55.98
HOLALA 3,460 32.57
Comparison Reduced to 64.36% Improved by 41.81%

Size of Dedukti Files (KB) Proof Checking Time
(s)

HOL Light 16,092 30.75
HOLALA 10,448 19.05
Comparison Reduced to 64.92% Improved by 38.04%

Table 6.5: Comparison of Translation and Proof Checking

ProofCloud can distinguish between classical proofs and constructive proofs. Furthermore, it
tracks the origin of classicism, in other words, which classical lemmas7 were used within the
proof. With this ability, the amount as well as the percentage of classical proofs of a certain
package is calculated and displayed on its (package) page. Users will also find a statistical
analysis on the size of proofs and links to proof checking results. As far as the author knows,
this is the only online proof retrieval engine of its kind.

Figure 6.4: The Interface of ProofCloud

So far ProofCloud includes six OpenTheory packages in total. These packages are base
(the standard library with some subpackages), stream, probability, natural-bits, natural-divides

7To avoid confusion, all theorems used to prove the conclusion are referred to as lemmas when referring to
a specific theorem.

30

and natural-prime. Other packages will be added in the near future. An analysis of the
dependency of packages of OpenTheory is as shown in Figure 6.5. To load a package, it is
required to load all the packages it depends on primarily. In addition, the package modular is a
parametric theory and requires the modular-witness theory which defines a suitable signature.
Similarly gfp is another parametric theory. These packages are being updated and therefore
not included for now. The package modular and gfp and packages depending on them will be
added to ProofCloud in the near future.

base (the standard library)

stream natural-divides

natural-prime

natural-fibonacci modular

probability

gfp

natural-list

Figure 6.5: Dependency of Packages of OpenTheory

ProofCloud includes also the proof checking results for all packages of OpenTheory. The
standard library of OpenTheory grouped theorems into packages, including theorems of
booleans, sets, lists, etc. The standard library (the base package, including 11 subpackages)
was first verified in this project, followed by all the packages in the OpenTheory repository.
For the first time, Holide and Dedukti successfully translated and checked all packages in
OpenTheory. Table 6.2 illustrates the size of OpenTheory proof article files and the time
taken for translation. Table 6.3 represents the size of translated files and the time taken for
proof checking by Dedukti. We name the translators as Holide 1 and Holide 2 respectively
corresponding to OpenTheory version 5 and 6 respectively in Table 6.2 and Table 6.3. Both
article files and Dedukti files are compressed by gzip to reduce the effect of syntax format-
ting and whitespace. These benchmarks were generated on a 64-bit Intel Core i5-4590 CPU
@3.30GHz ×4 PC with 3.8GB RAM. However, there is little difference in terms of the size
of article files and the efficiency between OpenTheory 5 and 6 for proof checking. The size
of proof articles were reduced by around 7% while the proof checking time was reduced by
around 5%. Figure 6.7 gives an example of the proof checking page of the stream package. In
addition, Appendix D presents the specification of ProofCloud for further contribution.

31

Figure 6.6: A Proof Page of ProofCloud

Figure 6.7: A Proof Checking Page of ProofCloud

32

Chapter 7

Conclusion and Future Work

7.1 Conclusion and Contribution

In this report, Chapter 2 and Chapter 3 are an exposition of the tools used during this
internship: HOL-Light, Dedukti and Holide. To perform double negation translation, it is
required to replace the primitive symbols of OpenTheory HOL Light kernel by implication and
universal quantifier. Chapter 4 and Chapter 5 present a modification of the OpenTheory HOL-
Light system, namely HOLALA, which meant to change the definition of the connectives and
quantifiers, follwed by the corresponding modifications of Holide. Chapter 6 presents proof
analysis and the evaluation: statistical analysis shows that, 44% of the proofs are constructive.
Structural analysis shows that introducing more symbols to the kernel leads to the reduction
of proof size to around 64%, which result in an improvement of 41% in translation time and
38% in proof checking time. In addition, ProofCloud was developed as a representation of the
analysis of HOL proofs. It is the only proof search engine of its kind.

7.2 Optimisation of proofs

Table 6.4 suggested that many common derived inference rules are dependent on INST and
INST_TYPE. Having INST or INST_TYPE might increased the complexity for proof search-
ing automation. It would also be necessary to analyze inference Rules and their dependency
of all deduction rules for further optimisation. Another inference rule which worth exam-
ing is the BETA_CONV rule. This rule built based on INST and BETA in (OpenTheory)
HOL Light. While in OpenTheory, BETA_CONV is taken as primitive inference rule. Hav-
ing BETA_CONV as primitive rule would not only reduce the size of proof but also reduce
complexity for proof search. As a direct contribution, it can be expected that introducing
techniques other than the combination of BETA, INST and EQ_MP to deal with beta reduc-
tion would not only reduce the size of proof tree but also make inference clearer and easier.
A solution for this is to introduce Deduction Modulo. Having Deduction Modulo would
also allow introducing of constants and connectives independent of systems making defining
equality based on universal quantifier and implication possible. This lead to the design of

33

HOL-Modulo.

7.3 HOL-Modulo

Although HOLALA is a reasonable attempt at removing equality as primitive rule, it lead
to a more interesting question: why not transform HOL Light to a theorem prover taking
advantage of Deduction Modulo. In theory, this would be one solution of replacing the
equality in HOL Light. Instead of having beta reduction, defining equality up to β (instead
of up to α) would also make proof shorter and more portable to Dedukti. There are also a
small amount of code sharable between HOL-Modulo and Dedukti, making the integration of
HOL-Modulo and Dedukti possible. Further than the analysis in Section 6.2, having equality
up to β would replace the use of BETA_CONV and reduce a significant amount of INST and
INST_TYPE and may provide a solution for removing INST and INST_TYPE in proofs,
which would benefit proof searching. A first step is to re-implement term comparison function.
Following that it is required to introduce rewrite rules as well some rewriting algorithms
for term conversion and proof construction. In addition, proof searching methods could be
optimized. Further than that, it would be an possible to integrate HOL-Modulo with Dedukti
making Dedukti not only a proof checker but also a theorem prover. Since Simple Type Theory
can be expressed in Deduction Modulo [10], it is promising that HOL-Modulo be a step
towards replacing the current kernels of HOL families and make ProofCloud a representation
of rewriting rules for theorem proving.

7.4 HOL-Tableaux

Proof automation in interactive theorem proving is important since it reduces interaction
and human labour and increase efficiency and usability of theorem provers. However, au-
tomated theorem proving methods in HOL Light such as ITAUT, TAUT, MESON_TAC,
ASM_MESON_TAC do not always produce effecient proofs. And sometimes proofs can be
really huge, for example TAUT in Table 5.3. In some cases, proof searching can go really
deep and time-consuming. Having noticed also that Sequent Calculus is equivalent to Natu-
ral Deduction [11] (See Table A.2) and Sequent Calculus has a lot similarity compared with
Tableuax Methods, this project aims at taking advantage of Tableaux methods for better
proof search and convert current proofs from HOL Light to better and simpler proofs. Some
data analysis in this project gave a good hint that some proofs are too large and have to be
simplified. Thus HOL-Tableaux would give these proofs a chance to get shorter in a smart
way.

34

7.5 ProofCloud

The ProofCloud described in this revisited internship report differs from that of the original
report. Originally ProofCloud was developed as a platform to represent some proof anaylysis
results which were too big to be included as tables in the report. ProofCloud is now a complete
and stand-alone platform that has nothing to do with HOLALA. Future work includes adding
the remaining packages of OpenTheory to ProofCloud. Most recent updates of OpenTheory
include also the names of proofs in packages. This would benefit the usability of ProofCloud.
ProofCloud (version 3) is being develped with a new ontological representation using Web
Ontology Language (OWL) for better represenation of proofs and axioms and more.

35

A
pp

en
di

x
A

C
om

pa
ri
so
n
of

Se
qu

en
t
C
al
cu

lu
s,

N
at
ur
al

D
ed

uc
ti
on

an
d

H
O
L
L
ig
ht

Se
qu

en
t
C
al
cu

lu
s,
N
at
ur
al

D
ed

uc
ti
on

ar
e
th
e
tw

o
m
os
t
w
id
el
y
us
ed

st
yl
e
of

in
fe
re
nc

e
sy
st
em

s.
In
tu
it
io
ni
st
ic

N
at
ur
al

D
ed
uc

ti
on

ca
n
be

de
ri
ve
d

in
H
O
L
Li
gh

t.
T
he

fo
llo

w
in
g
is

an
ex
am

pl
e
pr
oo

f
in

Se
qu

en
t
C
al
cu

lu
s,

N
at
ur
al

D
ed

uc
ti
on

an
d
H
O
L
Li
gh

t.

S
eq
u
en
t
C
al
cu

lu
s

N
at
u
ra
l
D
ed

u
ci
to
n
an

d
H
O
L
L
ig
ht

a
x
io
m

p
`
p

a
x
io
m

q
`
q

w
ea
k
L

p
,q
`
q
→
L

p
,p
→
q
`
q

∧ L
(p
∧

(p
→
q)

)
`
q
→
R

`
(p
∧

(p
→
q)

)
→
q

a
x
io
m

p
∧

(p
→
q)
`
p
∧

(p
→
q)
∧e
li
m

2
p
∧

(p
→
q)
`
p
→
q

a
x
io
m

p
∧

(p
→
q)
`
p
∧

(p
→
q)
∧e
li
m

1
p
∧

(p
→
q)
`
p
→
el
im

p
∧

(p
→
q)
`
q

→
in
tr
o

`
(p
∧

(p
→
q)

)
→
q

a
x
io
m

p
∧

(p
→
q)
`
p
∧

(p
→
q)
∧e
li
m

2
p
∧

(p
→
q)
`
p
→
q

a
x
io
m

p
∧

(p
→
q)
`
p
∧

(p
→
q)
∧e
li
m

1
p
∧

(p
→
q)
`
p
→
el
im

p
∧

(p
→
q)
`
q

→
in
tr
o

`
(p
∧

(p
→
q)

)
→
q

T
ab

le
A
.1
:
E
xa

m
pl
e
P
ro
of

of
(p
∧

(p
→
q)

)
→
q
in

Se
qu

en
t
C
al
cu

lu
s,

N
at
ur
al

D
ed

uc
ti
on

an
d
H
O
L
Li
gh

t

36

T
ab

le
A
.2

is
a
co
m
pa

ri
so
n
of

Se
qu

en
t
C
al
cu

lu
s,
N
at
ur
al

D
ed

uc
ti
on

an
d
H
O
L
Li
gh

t’
s
lo
gi
c.

T
he

re
is
on

ly
on

e
H
O
L
Li
gh

t
pr
im

it
iv
e
in
fe
re
nc

e
ru
le

in
th
e
ta
bl
e
(A

SS
U
M
E
).
A
ll
th
e
ot
he

rs
ar
e
de

du
ct
ed

ru
le
s
(d
ed

uc
ed

fr
om

pr
im

it
iv
e
ru
le
s)

as
m
ar
ke
d
in

do
ub

le
ba

r.
N
ot
e
th
at

th
e
A
x
io
m

ru
le
in

N
at
ur
al

D
ed

uc
ti
on

co
rr
es
po

nd
st

o
th
e
A
S
S
U
M
E

ru
le
in

H
O
L
Li
gh

t.
A
sf
or

D
IS
C
H
,A

is
no

tr
eq
ui
re
d
to

be
in

Γ
.
In

ad
di
ti
on

,H
O
L
Li
gh

t
do

es
no

t
al
lo
w

re
pe

at
ed

te
rm

s
in

it
s

Γ
.

T
hu

s
no

co
nt
ra
ct
io
n

ru
le

fo
r

H
O
L

Li
gh

t.

Se
qu

en
t
C
al
cu
lu
s
(L

J)
N
at
ur
al

D
ed

uc
ti
on

(N
J)

H
O
L
Li
gh

t

A
xi
om

a
x
io
m

Γ
,A
`
A

a
x
io
m

Γ
,A
`
A

A
S
S
U
M
E

{A
}
`
A

>
>
R

Γ
`
>

>
in
tr
o

Γ
`
>

T
R
U
T
H

Γ
`
>

⊥ W
ea
k

Γ
`

w
ea
k R

Γ
`
A

Γ
`
⊥
⊥
el
im

Γ
`
A

Γ
`
⊥

C
O
N
T
R

Γ
`
A

Γ
`

∆
w
ea
k L

Γ
,A
`

∆
Γ
`
B

A
D
D
_
A
S
S
U
M

Γ
,A
`
B

⊥
L

Γ
,⊥
`

∆

∧

Γ
`
A
∧
B
∧e
li
m

1
Γ
`
A

Γ
`
A
∧
B
∧e
li
m

2
Γ
`
B

Γ
`
A
∧
B

C
O
N
J
U
N
C
T

1
Γ
`
A

Γ
`
A
∧
B

C
O
N
J
U
N
C
T

2
Γ
`
B

Γ
,A
,B
`

∆
∧ L

Γ
,A
∧
B
`

∆

Γ
`
A

Γ
`
B
∧ R

Γ
`
A
∧
B

Γ
`
A

Γ
`
B
∧i
n
tr
o

Γ
`
A
∧
B

Γ
`
A

∆
`
B

C
O
N
J

Γ
∪

∆
`
A
∧
B

∨

Γ
,A
`

∆
Γ
,B
`

∆
∨ L

Γ
,A
∨
B
`

∆

37

Γ
`
A
∨
B

Γ
,A
`
C

Γ
,B
`
C
∨e
li
m

Γ
`
C

Γ
`
A
∨
B

Γ
1
,A
`
C

Γ
2
,B
`
C

D
I
S
J
_
C
A
S
E
S

Γ
∪

(Γ
1
\
{A
})
∪

(Γ
2
\
{B
})
`
C

Γ
`
A

∨ R
1

Γ
`
A
∨
B

Γ
`
B

∨ R
2

Γ
`
A
∨
B

Γ
`
A

∨i
n
tr
o1

Γ
`
A
∨
B

Γ
`
B

∨i
n
tr
o2

Γ
`
A
∨
B

Γ
`
A

D
I
S
J

1
Γ
`
A
∨
B

Γ
`
B

D
I
S
J

2
Γ
`
A
∨
B

→

Γ
`
A

Γ
,B
`

∆
→
L

Γ
,A
→
B
`

∆

Γ
`
A
→
B

Γ
`
A
→
el
im

Γ
`
B

Γ
`
A
→
B

∆
`
A

M
P

Γ
∪

∆
`
B

Γ
,A
`
B

→
R

Γ
`
A
→
B

Γ
,A
`
B

→
in
tr
o

Γ
`
A
→
B

Γ
`
B

D
I
S
C
H

Γ
\
{A
}
`
A
→
B

¬
Γ
`
A
¬ L

Γ
,¬
A
`

Γ
`
¬A

¬e
li
m

Γ
,A
`

Γ
`
¬A

N
O
T
_
E
L
I
M

Γ
`
A
→
⊥

Γ
`
¬A

=
⊥

E
Q
F
_
E
L
I
M

Γ
`
¬A

Γ
,A
`
¬ R

Γ
`
¬A

Γ
,A
`
¬i
n
tr
o

Γ
`
¬A

Γ
`
A
→
⊥

N
O
T
_
I
N
T
R
O

Γ
`
¬A

Γ
`
¬A

E
Q
F
_
I
N
T
R
O

Γ
`
A

=
⊥

∀

Γ
,A

[t
/x

]
`

∆
∀ L

Γ
,∀
x
A
`

∆

Γ
`
A

[c
/
x

]
∀ R

Γ
`
∀x
A

Γ
`
A

[c
/x

]
∀i
n
tr
o
if
x
is

no
t
fr
ee

in
Γ

Γ
`
∀x
A

Γ
`
A

[c
/
x

]
G
E
N

if
x
is

no
t
fr
ee

in
Γ

Γ
`
∀x
A

Γ
`
∀x
A
∀e
li
m

Γ
`
A

[t
/x

]
Γ
`
∀x
A

S
P
E
C

Γ
`
A

[t
/x

]

38

∃

Γ
,A

[c
/
x

]
`

∆
∃ L

Γ
,∃
x
A
`

∆

Γ
`
A

[c
/
x

]
∃ R

Γ
`
∃x
A

Γ
`
A

[t
/x

]
∃i
n
tr
o

Γ
`
∃x
A

Γ
`
A

[t
/
x

]
E
X
I
S
T
S

Γ
`
∃x
A

Γ
`
∃x
A

Γ
,A
`
B
∃e
li
m

Γ
`
B

if
x
is

no
t
fr
ee

in
Γ
an

d
B

Γ
`
∃x
A

[x
]

∆
,A
`
B

C
H
O
O
S
E

Γ
∪

∆
\
{A

[v
/x

]}
`
B

if
v
is

no
t
fr
ee

in
∆
\
{A

[v
/
x

]}
,A

or
B
)

C
ut

Γ
`
A

Γ
,A
`

∆
cu
t

Γ
`

∆

C
on

tr
Γ
,A
,A
`

∆
co
nt
r L

Γ
,A
`

∆

T
ab

le
A
.2
:
In
fe
re
nc

e
Sy

st
em

C
om

pa
ri
so
n

39

Appendix B

Proof of Law of Excluded Middle

B.1 Law of Excluded Middle

Generally speaking, classical Logic has the law of excluded middle (LEM) as an axiom while
the conclusion of LEM is not provable in constructive logic. LEM states that a proposition is
either true or false. In other words, the statement P ∨ ¬P is a tautology:

Axiom 10 (Law of Excluded Middle (LEM)). ∀p.p ∨ ¬p

In OpenTheory HOL Light, LEM is derived from functional extensionality and the axiom
of choice.

B.2 Diaconescu’s Proof of Law of Excluded Middle

It has been proved in [8] that the axiom of choice implies the law of excluded middle usig
separation and extensionality. The choice symbol is as introduced in Section 2.2.3.

Axiom 11 (Axiom of Choice). ∀P∀x : A.Px⇒ P ((@)P)

Axiom 12 (Axiom of Extensionality). ∀f : (A→ B)∀f : (A→ B).(∀x.fx = gx)⇒ f = g

The proof idea can be summarized as follows. Taking A = {n ∈ N : n = 0 ∨ (n = 1 ∧ φ)}
and B = {n ∈ N : n = 1∨ (n = 0∧φ)}. When φ is true, A = { 0, 1} and B = {0, 1} but when
φ is false, A = {0} and B = {1}. Thus, in either case, neither of A nor B would be empty.
Suppose f is a choice function so that f(A) ∈ and A and f(B) ∈ B. There are two cases, A =
B or A 6= B. On one hand, if A = ¬ B, then φ. On the other hand, when A 6= B, suppose φ,
using extensionality, we can get f A = f B. However this would give us contradiction with the
hypothesis. Therefore, ¬φ. Since the two cases infers φ and ¬φ respectively, we can conclude
that φ ∨ ¬φ. This proof was implemented by Mark Adams in HOL Zero and there is an
adapted version in HOL Light. A shorter proof is to be released in the most recent verion of
HOL Zero1.

1This shorter proof was in an email with Mark on 31st May 2015.

40

B.3 A New Proof of Law of Excluded Middle

Diaconescu’s proof is closely related to set theory. Here we introduce a new proof without
concepts of set theory 2. This proof is longer than the proofs in HOL Light and HOL Zero.
To prove it, we first introduce three predicates:

P0 = λb : bool.((> ∧ (b = >)) ∨ (b = ⊥))

P1 = λb : bool.((t ∧ (b = >)) ∨ (b = ⊥))

P2 = λb : bool.((> ∧ (b = >)) ∨ (t ∧ (b = ⊥)))

, where t is a boolean variable. It is easy to prove that P0>=>, P1⊥=> and P2>=>. Using
the inference rule EXISTS, we can prove ∃P0, ∃P1 and ∃P2. The proof idea is to assume @P0

as true first and prove t∨¬t in both cases of @P1 and ¬@P1. Similarly, we assume ¬@P0 for
both cases of @P2 and ¬@P2.

EXISTS
∃P0

Axiomof Choice
` @P0 ∨ ¬@P0

Π1

@P0 ` t ∨ ¬t
Π2

¬@P0 ` t ∨ ¬t DISJ_CASES
` t ∨ ¬t

where Π1 is as follows:

EXISTS
∃P1

Axiomof Choice
` @P1 ∨ ¬@P1

Π1.1

@P1 ` t ∨ ¬t
Π1.2

@P0,¬@P1 ` t ∨ ¬t
DISJ_CASES

@P0 ` t ∨ ¬t

where Π2 is as follows:

EXISTS
∃P2

Axiomof Choice
` @P2 ∨ ¬@P2

Π2.1

¬@P0,@P2 ` t ∨ ¬t
Π2.2

¬@P0,¬@P2 ` t ∨ ¬t
DISJ_CASES

¬@P0 ` t ∨ ¬t

Π1.2 is as follows. Π1.1, Π2.1 are Π2.2 are similar.

t ` (λb.> ∧ (b = >) lor(b = ⊥)) = (λb.t ∧ (b = >) ∨ (b = ⊥))

t, (@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` (λb.> ∧ (b = >) ∨ (b = ⊥)) = (λb.t ∧ (b = >) ∨ (b = ⊥))

t, (@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` (@b.> ∧ (b = >) ∨ (b = ⊥)) = (@b.t ∧ (b = >) ∨ (b = ⊥))

t, (@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` T = F

(@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` t⇒ T = F

(@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` ¬t
(@b.((> ∧ (b = >)) ∨ ((b = ⊥)))) = >, (@b.((t ∧ (b = >)) ∨ ((b = ⊥)))) = ⊥ ` t ∨ ¬t

@P0,¬@P1 ` t ∨ ¬t
2This proof is a joint work with Mr. Frédéric Gilbert and Mr. Raphaël Cauderlier and has been formalized

in HOL Light.

41

B.4 Proof of ¬¬LEM
Most double negation translation translate LEM to ¬¬LEM or similar form, which is provable
in constructive logic as presented follows:

¬(p ∨ ¬p) ` ¬(p ∨ ¬p)
¬(p ∨ ¬p),¬p ` ¬(p ∨ ¬p)
¬(p ∨ ¬p),¬p ` (p ∨ ¬p)→ ⊥

¬p ` ¬p
¬(p ∨ ¬p),¬p ` ¬p
¬(p ∨ ¬p),¬p ` p ∨ ¬p

¬(p ∨ ¬p),¬p ` ⊥
¬(p ∨ ¬p) ` ¬p→ ⊥

p ` p
¬(p ∨ ¬p), p ` p

¬(p ∨ ¬p), p ` p ∨ ¬p

¬(p ∨ ¬p) ` ¬(p ∨ ¬p)
¬(p ∨ ¬p), p ` ¬(p ∨ ¬p)
¬(p ∨ ¬p), p ` (p ∨ ¬p)→ ⊥

¬(p ∨ ¬p), p ` ⊥
¬(p ∨ ¬p) ` ¬p

¬(p ∨ ¬p) ` ⊥
` ¬¬(p ∨ ¬p)

Having ¬¬LEM proved, we are able to replace the LEM in the original proofs.

42

Appendix C

Attempts of reverse engineering of
HOL Light Proofs

In this chapter, several attempts are presented to change the kernel. There are several reason
for removing equality as primitive symbols. The first and the most important reason being
all theoretical results of double negation translation so far are for first order logic and are
based on universal and implication. Having universal quantifier and implication would also
make the system fundamentally more similar as other proof assistants which would make
it easier to transport proofs between each other. In addition, such change would bring the
system of HOL Light and Dedukti closer for further optimisation of proof checking since
Dedukti’s logic foundation is based on universal quantifier and implication. We will present
the design of HOL-intermediate, HOLIU and HOLbot. Among them, HOL-intermediate is a
premier attempt of making as many symbols depending on implication and universal quan-
tifier as possible. HOLIU has universal quantifier and implication as primitive connectives
as well as the equivalent symbol (≡) but this experiment was not proved to be success-
ful. HOLbot is a another view of the logic kernel with all common logic symbols taken as
primitive. Both HOLIU and HOLbot inspired the proposal of HOL-Modulo. Figure C.1
illustrates the dependency of constants and connectives of OpenTheory HOL Light, HOL-
intermediate and HOLIU. In contrast, not aiming at removing equality, HOLbot takes all con-
stants and connectives as primitive symbols for reduction of proof size and proof automation.

Although none of them is able to remove equality from the kernel and introduce universal
and implication as the only primitive quantifiers, these attempts are good exercises for kernel
hacking of (OpenTheory) HOL Light. Also these attempts result in deeper understanding
of the kernel and implementation details as well as the analysis of dependency of constants,
connectives and inference rules and inspire further development of this project.

OpenTheory HOL Light has the same logic foundation (a.k.a logic kernel) as HOL Light
but with a proof logging method in its kernel. It takes equality as the only primitive symbol
and defines all the other logic connectives and constants based on it. The kernel includes also
some primitive inference rules (as in Table 2.3) where all the other inference rules (as in Table
2.4) are based on.

43

=

>

∧

→∀

⊥

∨ ∃

¬

=

>′

∧′

→∀

⊥

∨ ∃

¬

∧

>

≡

∀ →

=

>,∧, . . .

OpenTheory HOL Light HOL-intermediate HOLIU

Figure C.1: Constants and Connectives Dependency Analysis and Design

C.1 HOL-intermediate

HOL-intermediate was the premier experiment in this project. As a very first attempt to
change the kernel, HOL-intermediate kept equality as primitive rule but tries to build all the
rest on top of the universal quantifier and implication. Instead of having the two connectives,
> and ∧, depending on equality. These symbols were introduced on top of → and ∀ after
changing > and ∧ to >′ and ∧′. This way, there are as symbols as possible depending on →
and ∀. All thederived inference rules corresponding to > and ∧ were then proved again. The
implementation of HOL-intermediate requires knowledge of the kernel of HOL Light, especially
the understanding of introducing new symbols, proving deduction rules as well as dependency
analysis. The successful load of HOL libraries marked the completion of this attempt. With
the experience of HOL-intermediate, we then tried to introducing universal quantifier and
implication, which lead the design and implementation of HOLALA as presented in Chapter
5.

C.2 HOLIU

HOLIU is another attempt to have universal quantifier and implication as primitive symbol.
However, after realising that it is hard to remove equality from the kernel, in this attempt,
≡ was introduced instead of =, making it possible to define new symbols without using =
as primitive symbol. This way, ∀ and → depend only on equiv and were successfully in-
troduced as primitive symbol. Following that, we define equality as the Leibniz’s equality:

Definition 1. =≡ λxy.∀P.Px→ Py

Correspondingly, this leads to the introduction of the EQUIV rule:

Γ ` A ≡ B EQUIV
Γ ` A = B

As a result, we lose almost all primitive inference rules including the η reduction, which
is key to β-conversion. This also results in the failure of the introduction of the rest of all
inference rules. Thus, this approach was proved unsuccessful. Although it would not be

44

working, if terms are equivalent to beta and we take rewrite rules instead of ≡ for the use of
definition, there might be a way to remove equality from the kernel. This attempt leads to
the design of HOL-Modulo.

C.3 HOLbot

It was noticed in Table 5.3 and Table 6.2 that proofs in HOL-Light can be really big in size.
One of the reasons is that the size of the kernel is really small, resulting in many derived
inference rules. During this project, it was noticed that a small kernel benefits proof checking
and verification but can make proofs big. Table 5.3 shows that introducing universal quantifier
and implication can reduce the size of derived inference rules. Having more primitive rules
would enlarge the kernel but shorter proofs can be expected. HOLbot follows from this
idea. It has been also noticed during discussions that Sequent Calculus has some similarities
as Tableaux Method. Since Tableaux Method provides a fully automated proof searching
approach, it would be interesting to know if extending the kernel would reduce the size of
proofs discovered automatically. HOLbot will be further explored as HOL-Tableaux.

45

Appendix D

The Specification of ProofCloud

The following attributes are included in the webpages of each package:

D.1 The Specification of ProofCloud

The following attributes are included in the webpages of each package:

• Package name

• Author of package

• Subpackages

• Date retrieved

• Total number of proofs

• Number of constructive proofs

• Number of classical proofs

• Percentage of constructive proofs

• Size of constructive proofs on average

• Size of classical proofs on average

• List of proofs (names and conclusions)

• Comments

For each package, there is also a page for verification (proof checking) information with
the following entries:

• Software engineer for verification

• Software for verification

• Translation time

• Verification time

• PC Specification

• Comments

Each proof has its own page for structural, statistical and proof checking results with the
attributs as follows:

• Theorem name

• Theorem conclusion

• Packagename

• Constructive proof (or not)

• Axioms

• Constructive lemmas (if any)

• Classical lemmas (if any)

• Package

• Comments

46

Bibliography

[1] Mark Adams. Introducing HOL zero. In Mathematical Software–ICMS 2010, pages 142–
143. Springer, 2010.

[2] Peter B Andrews. An introduction to mathematical logic and type theory: To truth
through proof. 1986.

[3] Andrew W Appel. Foundational proof-carrying code. In Logic in Computer Science,
2001. Proceedings. 16th Annual IEEE Symposium on, pages 247–256. IEEE, 2001.

[4] Ali Assaf. A framework for defining computational higher-order logics. PhD thesis, École
Polytechnique, 2015.

[5] Ali Assaf and Guillaume Burel. Translating HOL to Dedukti. In Proceedings Fourth
Workshop on Proof eXchange for Theorem Proving, PxTP 2015, Berlin, Germany, Au-
gust 2-3, 2015., pages 74–88, 2015.

[6] Ali Assaf and Raphaël Cauderlier. Mixing HOL and Coq in Dedukti (Extended Abstract).
In Proceedings Fourth Workshop on Proof eXchange for Theorem Proving, PxTP 2015,
Berlin, Germany, August 2-3, 2015., pages 89–96, 2015.

[7] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda calculus with types. Cam-
bridge University Press, 2013.

[8] Michael J Beeson. Constructive set theories. In Foundations of Constructive Mathemat-
ics, pages 162–201. Springer, 1985.

[9] Chad E. Brown. Satallax: An automatic higher-order prover. In Automated Reasoning
- 6th International Joint Conference, IJCAR 2012, Manchester, UK, June 26-29, 2012.
Proceedings, pages 111–117, 2012.

[10] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-pi-
calculus modulo. In Typed Lambda Calculi and Applications, 8th International Confer-
ence, TLCA 2007, Paris, France, June 26-28, 2007, Proceedings, pages 102–117, 2007.

[11] Gilles Dowek. Proofs and algorithms: an introduction to logic and computability. Springer
Science & Business Media, 2011.

[12] Gilles Dowek. On the definition of the classical connectives and quantifiers. Why is this
a Proof?, Festschrift for Luiz Carlos Pereira, 2015.

[13] William M Farmer. The seven virtues of simple type theory. Journal of Applied Logic,
6(3):267–286, 2008.

47

[14] Gilda Ferreira and Paulo Oliva. On the relation between various negative translations.
Logic, Construction, Computation, Ontos-Verlag Mathematical Logic Series, 3(23):227–
258, 2012.

[15] Thibault Gauthier and Cezary Kaliszyk. Matching concepts across HOL libraries. In
Intelligent Computer Mathematics, pages 267–281. Springer, 2014.

[16] Frédéric Gilbert. A lightweight double-negation translation. In LPAR-20. 20th Inter-
national Conference on Logic for Programming, Artificial Intelligence and Reasoning,
2015.

[17] Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines math-
ematischen Kolloquiums, 4(1933):34–38, 1933.

[18] Thomas C Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and
Roland Zumkeller. A revision of the proof of the Kepler conjecture. In The Kepler
Conjecture, pages 341–376. Springer, 2011.

[19] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
Journal of the ACM (JACM), 40(1):143–184, 1993.

[20] John Harrison. HOL light: An overview. In Theorem Proving in Higher Order Logics,
22nd International Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009.
Proceedings, pages 60–66, 2009.

[21] Joe Hurd. The opentheory standard theory library. In NASA Formal Methods - Third
International Symposium, NFM 2011, Pasadena, CA, USA, April 18-20, 2011. Proceed-
ings, pages 177–191, 2011.

[22] Hajime Ishihara. A note on the Gödel-Gentzen translation. Mathematical Logic Quar-
terly, 46(1):135–137, 2000.

[23] Cezary Kaliszyk and Alexander Krauss. Scalable lcf-style proof translation. In Interactive
Theorem Proving - 4th International Conference, ITP 2013, Rennes, France, July 22-26,
2013. Proceedings, pages 51–66, 2013.

[24] Andrei Nikolaevich Kolmogorov. On the principle of excluded middle. Mat. Sb, 32(646-
667):24, 1925.

[25] Sigekatu Kuroda et al. Intuitionistische untersuchungen der formalistischen logik. Nagoya
Mathematical Journal, 2:35–47, 1951.

[26] Dale Miller. Unification of simply typed lambda-terms as logic programming. 1991.

[27] Magnus O Myreen, Scott Owens, and Ramana Kumar. Steps towards verified imple-
mentations of HOL Light. In Interactive Theorem Proving, pages 490–495. Springer,
2013.

[28] Tobias Nipkow, Lawrence C Paulson, and MarkusWenzel. Isabelle/HOL: a proof assistant
for higher-order logic, volume 2283. Springer Science & Business Media, 2002.

[29] Marcel Oliveira, Ana Cavalcanti, and Jim Woodcock. Unifying Theories in ProofPower-
Z, pages 123–140. Springer, 2006.

48

[30] Florian Rabe. Representing isabelle in LF. In Karl Crary and Marino Miculan, edi-
tors, Proceedings 5th International Workshop on Logical Frameworks and Meta-languages:
Theory and Practice, LFMTP 2010, Edinburgh, UK, 14th July 2010, volume 34 of
EPTCS, pages 85–99, 2010.

[31] Ronan Saillard. Dedukti: a universal proof checker. In Foundation of Mathematics for
Computer-Aided Formalization Workshop, January 9-11 2013, Padova, Italy, 2013.

[32] Carsten Schürmann and Mark-Oliver Stehr. An executable formalization of the
HOL/Nuprl connection in the metalogical framework Twelf. In Logic for Programming,
Artificial Intelligence, and Reasoning, pages 150–166. Springer, 2006.

[33] Konrad Slind and Michael Norrish. A brief overview of HOL4. In Theorem Proving in
Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal, Canada,
August 18-21, 2008. Proceedings, pages 28–32, 2008.

[34] Nik Sultana, Jasmin Christian Blanchette, and Lawrence C Paulson. LEO-II and Satallax
on the Sledgehammer test bench. Journal of Applied Logic, 11(1):91–102, 2013.

49

	Contents
	List of Figures
	Acknowledgement
	Datasets, Code, and Reproduciblity
	Nomenclature
	Introduction
	Basics
	Higher Order Logic
	HOL Light
	Introduction to HOL Light
	Types and Terms
	Constants and Connectives
	Inference Rules of HOL Light

	HOL Proof Checking with OpenTheory, Holide and Dedukti
	OpenTheory and OpenTheory HOL Light
	OpenTheory Version 6

	-calculus and -calculus Modulo and Dedukti
	Holide
	Translation
	Correctness
	Holide2

	Reverse Engineering of HOL Proofs
	Double Negation Translation
	Kernel Hacking for Reverse Engineering of HOL Proofs

	HOLALA
	Kernel Hacking
	Logic Kernel
	Proof Logging

	Holide2x
	HOL Terms
	HOL Proofs

	Proof Analysis and Evaluation
	Workflow
	Proof Checking
	Proof Analysis
	ProofCloud

	Conclusion and Future Work
	Conclusion and Contribution
	Optimisation of proofs
	HOL-Modulo
	HOL-Tableaux
	ProofCloud

	Comparison of Sequent Calculus, Natural Deduction and HOL Light
	Proof of Law of Excluded Middle
	Law of Excluded Middle
	Diaconescu's Proof of Law of Excluded Middle
	A New Proof of Law of Excluded Middle
	Proof of LEM

	Attempts of reverse engineering of HOL Light Proofs
	HOL-intermediate
	HOLIU
	HOLbot

	The Specification of ProofCloud
	The Specification of ProofCloud

	Index

