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Abstract 

Multi-temperature models are often used as a simplified way to describe nonequilibrium gases. 

These models assume Boltzmann distributions within each energy mode, which is useful for 

reducing the number of parameters in computations. This assumption requires that the energy 

modes are properly separated (which is valid, for instance, for vibration and rotation in low-lying 

rovibrational levels of diatomic molecules). For polyatomic molecules, several limitations arise. 

First, certain energy modes are often grouped together to further reduce the number of 

parameters, which requires additional hypotheses, and sometimes arbitrary grouping schemes. 

Moreover, the rovibrational levels of polyatomic molecules are often strongly coupled, and the 

assignment of the coupling terms to one or another energy mode is arbitrary. In this work, we 

present a method to quantify the influence of assignment or grouping schemes on nonequilibrium 

spectral models by comparing their impact on nonequilibrium partition functions, and we apply it 

to the CO2 molecule. We show that significant differences arise when reducing the nonequilibrium 

model to two temperatures only, as often done in CFD or spectroscopy applications. In particular, 

one should carefully justify whether the vibrational bending mode is in equilibrium with the 

rotational mode or with the other vibrational modes. We then determine the nonequilibrium range 

where a simple Uncoupled Vibrating Rotor model is sufficient, where the coupling term 

assignment scheme becomes important, and where the uncertainty induced by the assignment 

of the coupling terms can no longer be neglected. This approach can be extended to other 

molecules.  
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1 Introduction 

Numerical simulations of molecular spectra require determining the population of the internal 

energy levels of the molecule. Under nonequilibrium conditions, the most accurate way to 

describe them is to use level-specific models, where the population of each level is calculated 

from the kinetic equations resulting from the interaction with other levels. However, these models, 

such as [1]–[5], are often computationally too expensive for applications such as computational 

fluid dynamic calculations (CFD), spectral fitting, or kinetic models of nonequilibrium gases. To 

reduce the cost of the computations, it is often assumed that these populations follow specific 

distributions (e.g., Boltzmann or Treanor) at characteristic temperatures that may differ depending 

on the internal energy modes (e.g., Trot, Tvib for rovibrational levels of diatomic molecules) [6–10]. 

The use of multi-temperature models (Tvib, Trot, etc.) is valid as long as the exchange rates within 

an energy mode are much higher than the exchange rates between different energy modes. For 

polyatomic molecules, however, the rovibrational levels can be coupled by strong interaction 

terms, and the separation of the energy terms is not as straightforward as for diatomic molecules.  

Furthermore, high-performance calculations often require limiting the number of parameters, 

which then requires grouping the energy modes (e.g., define only one vibrational temperature for 

all vibrational modes of a polyatomic molecule). Different grouping schemes are then possible 

and should be compared.  

This paper proposes to assess the uncertainties induced by the reduction of degrees of freedom 

in nonequilibrium spectral models in order to derive a domain of validity for multi-temperature 

models.  

Section 2 presents a simple model, the Uncoupled Vibrating Rotor (UVR) model, to obtain the 

energy of CO2 rovibrational levels. This model will serve for baseline comparisons with more 

detailed models. In Section 3, we present how to assess the uncertainties introduced when 

grouping energy modes in two-temperature models and we apply the method to the CO2 molecule 

for two common temperature groupings. We proceed analogously to Babou et al. [11] by 

comparing extreme cases using the differences in the partition functions. In Section 4, we present 

a method to assess the impact of coupling terms on polyatomic molecule partition functions and 

a general method to separate the rotational, vibrational and coupling energy terms using the 

molecule’s Hamiltonian. We apply these methods to the CO2 molecule in Section 5: first, we 

compute the different energy terms and compare them to the coupling terms, and then evaluate 

the impact of the latter on CO2 partition functions using the two-temperature models compared in 

Section 3. We obtain domains where the simpler UVR model is sufficient to accurately describe 

the CO2 molecule and domains where the coupling terms should be considered. The impact of 

the various assignment and coupling schemes is illustrated in practical examples in Section 6. 

2 The Uncoupled Vibrating Rotor 

model 

To compare multi-temperature models, we use the rovibrational partition function. To simplify, at 

first, we neglect the coupling terms, thus assuming that the various energy modes are uncoupled. 

For the CO2 molecule, for instance, we obtain the following nonequilibrium partition function for a 

four-temperature Boltzmann distribution at the temperatures Tvib1, Tvib2, Tvib3 and Trot: 
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Qrovib(Tvib, Trot) = ∑ [gvib1e
−

Evib1(v)
kTvib1 gvib2e

−
Evib2(v)

kTvib2 gvib3e
−

Evib3(v)
kTvib3 (∑ grot(J)e

−
Erot(v,J)

kTrot

J

)] 

v

 
(2.1)   

with g  the degeneracy and k  the Boltzmann constant. Note that such multi-temperature 

Boltzmann distributions may not be valid under all conditions. In that case, state-to-state 

population modeling, such as in Ref. [12], is required. 

The vibrational (symmetric stretching, bending and asymmetric stretching) energies and rotational 

energy can be calculated with the Uncoupled Vibrating Rotor (UVR) model, which is based on the 

Dunham expansion. 

For the CO2 molecule, the UVR model features a first-order correction of the anharmonicity for 

the three vibrational modes (wexe1, wexe2, wexe3 in Eq. (2.2)) and a second-order correction of the 

centrifugal force (De and He in Eq. (2.3)). It does not, however, consider the vibrational-rotational 

couplings or the different interactions between CO2 rovibrational levels (such as the Fermi 

interaction). 

Evib,i =ωe,i (vi +
gi

2
) − ωexe,i (vi +

gi

2
)

2

, i = 1,2,3 (2.2)   

Erot = Be[J(J + 1) − l2
2] − De[J(J + 1) − l2

2]
2

+ He[J(J + 1) − l2
2]

3
 (2.3)   

In the present work, the energies Evib1, Evib2, Evib3, Erot of the UVR model are calculated with the 

spectroscopic constants reviewed in Ref. [7]. 

However, for a two-temperature Boltzmann distribution at Tvib and Trot, the rovibrational partition 

function is calculated as follows: 

Qrovib(Tvib, Trot) = ∑ [gve
−

E̅vib(v)
kTvib (∑ grot(J)e

−
E̅rot(v,J)

kTrot

J

)] 

v

 
(2.4)   

To reduce the 4 energy terms into one vibrational energy E̅vib and one rotational energy E̅rot, 

assumptions must be made on the grouping of the energy modes (i.e., define a temperature 

grouping scheme). For example, one can choose E̅vib = Evib1 + Evib2 + Evib3 and E̅rot = Erot. 

 We present the impact of these assumptions for a two-temperature model in the following 

Section. 

3 Temperature grouping schemes 

and their impact for CO2 

To obtain simplified models, one can group levels that have approximately the same energy 

distribution. We define the temperature grouping scheme as the way we group the energy modes 

together. 

For CO2, levels that differ only by the value of their orbital momentum l2 are usually grouped into 

a g=v2+1 degenerate v2 level. Similarly, the levels of a Fermi-interacting group that shares the 

same v1+2v2 number are often lumped. The description of the rovibrational levels is then reduced 

to a three-temperature model with Tvib12, Tvib3 and Trot, where Tvib12 = Tvib1 = Tvib2.  
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To further reduce the model to a two-temperature model requires assessing which of the 

vibrational-vibrational (VV) relaxation between the ν1,2 and ν3 modes, or the vibrational-rotational 

(VR) relaxation between ν12 and J, is faster.  

Different experimental conditions show different results and thus justify the need for different 

grouping schemes. 

For example, the grouping scheme Trot = Tvib1,2,rot  and Tvib = Tvib3  is often used to analyze 

discharge experiments, such as in Refs. [13], [14]. Indeed, studies of a continuous wave CO2 

laser discharge [13] showed Tvib1,2 ~ Trot ≪ Tvib3 (typically: Tvib1,2, Trot < 500 K, Tvib3 > 1500 K) whereas 

studies of a low-pressure carbon monoxide flame [14] found T12 ~ Trot ≫ T3 (T12 = 2150 K, T3 = 1040 K 

at 76 torr). These two experiments show that Tvib1,2 ~ Trot ≠ Tvib3 . This assumption is also 

supported by recent calculations of vibrational energy exchange cross-sections in CO2 – CO2 

collisions at Trot = 1000 – 3000 K [15], which showed a large interaction between the ν1 and ν2 

modes, but no energy transfer from the ν2 to the ν3 mode.  

On the other hand, the grouping scheme Tvib = Tvib1,2,l2,3, Trot is commonly used [16], [17] to 

analyze shock and expansion-tube experiments [10], [18], [19]. To our knowledge, no 

experimental results support this temperature grouping, but the relatively does not allow a precise 

determination of the vibrational level distributions. 

We can now quantify the impact of the chosen grouping scheme for the simple case where we 

neglect the coupling terms, i.e., where the energies Evib1, Evib2, Evib3, Erot are calculated using the 

uncoupled vibrating rotor (UVR) model described in Section 2. We calculate 12C16O2 

nonequilibrium partition functions with a two-temperature model for the following temperature 

grouping schemes:  

Scheme 1: {Tvib, Trot} = {(Tvib1, Tvib2, Tvib3), (Trot)} 

Scheme 2: {Tvib, Trot} = {(Tvib3), (Tvib1, Tvib2, Trot)} 

The partition functions are given by Eq. (3.1) for the first scheme and Eq. (3.2) for the second 

scheme. 

Q1(Tvib, Trot) = ∑ gv,J exp (−
Evib1 + Evib2 + Evib3

kTvib

−
Erot

kTrot

)  

(v,J)

 
(3.1)   

Q2(Tvib, Trot) = ∑ gv,J exp (−
Evib3

kTvib

−
Evib1 + Evib2 + Erot

kTrot

)  

(v,J)

 
(3.2)   

Figure 1 carries the main message of this paper: it shows that the nonequilibrium partition 

functions calculated with the two grouping schemes can be very different. 

CO2 is highly sensitive to the choice of the temperature grouping scheme, in particular to the 

assignment of Tvib2 in the distribution model, because the vibrational partition function of the 2 

mode is much larger than the partition functions of the other modes owing to the numerous 

sublevels of different orbitals l2. 

We also represented in Figure 1 several experimental data points corresponding to 

measurements in expansion-tubes [10, 17, 18] (crosses), CO2 lasers [13] (dot), CO2 glow 

discharges [7] (squares), and CO2 NRP discharges [20] (triangles). Many of these experimental 

conditions fall into regions with large differences between the nonequilibrium partition functions 
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calculated with the two different grouping schemes, and are thus very sensitive to the rotational 

and vibrational temperature groupings. 

 

Figure 1 Relative differences between nonequilibrium partition functions of CO2 for two-temperature Boltzmann 

distributions using the UVR model, with two grouping schemes: {Tvib, Trot} = {(Tvib1, Tvib2, Tvib3), (Trot)} and {Tvib, 

Trot} = {(Tvib3), (Tvib1, Tvib2, Trot)}. The symbols correspond to experimental data points: expansion-tube [10, 17, 18] 

(crosses), CO2 lasers [13] (dot), CO2 glow discharges [7] (squares) and CO2 NRP discharges [20] (triangles). 

Figure 2 shows the relative difference between the nonequilibrium partition functions calculated 

with the two grouping schemes for a given rotational temperature of 1500 K (along the dash-dot 

line in Figure 1). We also show with a vertical dashed line the point of thermal equilibrium, i.e., 

where the vibrational temperature is equal to the rotational temperature. The partition functions 

are identical at this temperature but rapidly differ by up to 450% when the vibrational temperature 

is lower than the rotational one and by up to 100% in the opposite situation. 

 

Figure 2 Relative differences between nonequilibrium partition functions of CO2 for two-temperature Boltzmann 

distributions using the UVR model for a rotational temperature Trot=1500 K. The vertical dashed line shows the 

equilibrium vibrational temperature (Tvib=1500 K). 

To further illustrate the importance of the temperature grouping scheme on simulated spectra, we 

compare in Figure 3 the transmittance spectra calculated using the two temperature grouping 
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schemes, using the same conditions as Dang et al. [13] (circle in Figure 1). The simulations were 

performed using the UVR model for the computation of the partition functions and level 

populations and the CDSD-4000 database [21] for the line positions and line widths. 

The two simulated spectra (black and red lines) exhibit major differences: while the black line, 

corresponding to Q2 in Eq. (3.2), agrees well with the measurements of Dang et al. [13]1, the red 

line, using a different grouping scheme and corresponding to Q1 in Eq. (3.1), does not fit the 

experimental data at all. 

 

Figure 3 Comparison of transmittance using the two grouping schemes (black and red lines) under the CO2 

laser [13] experimental conditions (grey dots). 

The choice of the temperature grouping can thus induce large discrepancies in the simulated 

spectra, thus strongly affecting experimental analyses of spectroscopic data. This choice is not 

always reported in the literature. For instance, the NASA NEQAIR Line-By-Line code [9], [16] 

uses a CO2 nonequilibrium model based on the CDSD database by defining the vibrational energy 

as the minimum energy of each polyad2. This grouping scheme is very close to the assumption 

that all three vibrational modes are in equilibrium, and thus that Tvib = Tvib1 = Tvib2 = Tvib3. This 

is a strong assumption, and it should be carefully considered based on the physical system being 

studied. 

4 Impact of the coupling terms 

 
1 We used here a two-temperature model (Tvib=Tvib3=2641 K and Trot=Tvib1=Tvib2=491 K) instead 

of a three-temperature model with small differences between the rotational temperature and the 

temperature of the first two vibrational modes (Trot=491K, Tvib1=Tvib2=514 K and Tvib3=2641 K) as 

did Klarenaar et al. [7]. This does not induce significant discrepancies. 
2  For CO2, the polyad p  groups all vibrational levels such as 𝑝 = 2𝑣1 + 𝑣2 + 3𝑣3 . For other 

molecules, the definition of the polyad can be obtained using [33]. 
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4.1 Nonequilibrium partition functions with coupling terms in a 

two-temperature model 

We now consider the more general case including the coupling energy terms. In a two-

temperature model using Boltzmann distributions at Tvib  and Trot , the rovibrational partition 

function is usually calculated as follows:  

 Qrovib(Tvib, Trot) = ∑ [gve
−

Evib(v)
kTvib (∑ grot(J)e

−
Erot(v,J)

kTrot

J

)] 

v

 
(4.1)   

where Evib and Erot are the vibrational and rotational energies, and gv, grot are the vibrational and 

rotational degeneracies, respectively. 

The rovibrational energies can be written as the sum of the uncoupled energies of each energy 

mode (Ēvib, Ērot) and of the coupling terms (Ecoupling): 

 E(v, J) = E̅vib(v) + E̅rot(J) + Ecoupling(v, J) 
(4.2)   

Vibrational-rotational coupling terms appear as diagonal terms in the Hamiltonian and produce 

the αe and βe terms in the usual Dunham expansions. The rotational energy Erot usually includes 

the correction to the rigid rotor rotational energy, but this correction can also be assigned to the 

vibrational energy [22]. The choice derives from the construction of the Dunham development, 

which results from a polynomial expansion of the electronic potential energy V(r), where r is the 

bond length. The rovibrational energy is expressed as: 

 E(v, J) = G(v) + F𝑣(J) 
(4.3)  

where G is the vibrational energy and Fv the rotational energy for a given vibrational level v. Hence 

the rotational-vibrational coupling terms, which depend on both the vibrational and rotational 

quanta v and J, are naturally assigned to Fv(J).  

Other models, such as the Liu & Vinokur model [23], use instead a polynomial expansion of the 

total potential energy UJ(r) = V(r) + h2/(8π2μ) J(J+1)/r2, which includes the rotational energy, with 

μ  the reduced mass of the molecule and r  the interatomic distance. In such a model, the 

rovibrational energy is expressed as: 

 E(v, J) = F(J) + GJ(v) 
(4.4)  

where F is the rotational energy and GJ is the vibrational energy for a given rotational level J. In 

the Liu & Vinokur model (Appendix A of Ref. [22]), the vibrational-rotational coupling terms are 

naturally included in the vibrational energy term GJ. 

The other coupling terms do not appear explicitly in Dunham expansions and are non-diagonal in 

the molecule’s Hamiltonian. For CO2, the levels are affected by the Fermi interaction (or Fermi 

resonance) (e.g., between levels (1,0,0) and (0,2,0) with the (v1,v2,v3) notation for CO2), by the l-

doubling interaction (between two levels whose l2 quantum numbers slightly differ (Δ𝑙2 = ±2)), 

and by the Coriolis interaction.  

The coupling terms are far smaller than the sum of the vibrational and rotational terms (Ecoupling ≪

E̅vib + E̅rot). Hence, under equilibrium conditions (Tvib = Trot), they have little impact on the partition 

functions: 
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E̅vib + E̅rot + Ecoupling

𝑇
≈

E̅vib + E̅rot

𝑇
 (4.5)  

In a two-temperature model (Tvib ≠ Trot), the coupling terms are assigned (fully or partly) to either 

the vibrational term or the rotational term. This assignment is arbitrary. For certain levels, Ecoupling  

may be comparable to E̅vib or E̅rot. Depending on the chosen assignment, this will lead to different 

populations for energy levels under nonequilibrium conditions, hence different nonequilibrium 

spectra. Babou et al. [11] investigated the effect of the coupling terms on nonequilibrium partition 

functions for diatomic molecules. They found that the coupling terms made a quantitative 

difference for temperatures above 10,000 K.  

Following Babou et al. [11], we consider two extreme cases. In case 1, we fully assign the 

coupling terms in Eqn. (4.2) to the vibrational energy: 

Evib =   E̅vib + Ecoupling 
(4.6)   

Erot =   E̅rot (4.7)   

Qrovib(Tvib, Trot) = ∑ [(∑ gve
−

E̅vib(v)+Ecoupling(𝑣,𝐽)

kTvib grot(J)e
−

E̅rot(J)
kTrot

J

)] 

v

 
(4.8)   

In case 2, we assign the coupling terms to the rotational energy: 

Evib =   E̅vib 
(4.9)   

Erot =   E̅rot + Ecoupling 
(4.10)   

Qrovib(Tvib, Trot) = ∑ [(∑ gve
−

E̅vib(v)
kTvib grot(J)e

−
E̅rot(J)+Ecoupling(𝑣,𝐽)

kTrot

J

)] 

v

 
(4.11)   

To use these assignment schemes, we need to determine Evib , Erot  and Ecoupling  for each 

rovibrational level. This contribution is rarely explicitly given: only the total energy of the 

rovibrational level or the non-diagonalized Hamiltonian of the molecule are known. We thus use 

the method described in Section 4.2. 

4.2 Contribution of the energy modes to the total energy of the 

rovibrational levels 

As for diatomic molecules, certain coupling terms (such as vibrational-rotational coupling) appear 

as diagonal terms in the Hamiltonian and produce the αe and βe terms in the Dunham expansions. 

Additional coupling terms result from the non-diagonal terms of the Hamiltonian (such as the 

Fermi coupling, or the l-doubling coupling for the CO2 molecule). As far as we know, their 

contribution to the levels’ energy is usually not explicitly given. 

To determine the contributions of the non-diagonal coupling terms, we use the following 

procedure: we write 𝑃 = (𝑥𝑖𝑗)  the transfer matrix that diagonalizes the Hamiltonian H. 
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𝐷 =  𝑃−1𝐻𝑃 
(4.1)   

We define the contribution of energy mode m to the energy of level i as: 

𝐶𝑖
(𝑚)

= (𝑃−1𝐻(𝑚)𝑃)
𝑖𝑖

= ∑ 𝑥𝑙𝑖 ∑ ℎ𝑙𝑘
(𝑚)

𝑥𝑘𝑖

𝑘𝑙

 
(4.2)   

𝐶𝑖
(𝑚)

 is the diagonal coefficient of the partial Hamiltonian 𝐻(𝑚), corresponding to the energy mode 

𝑚 , transferred into the diagonal basis of 𝐻 . We can write H as a sum of sub-Hamiltonians 

corresponding to the contributions of all the energy modes m as follows: 

𝐻 =  ∑ 𝐻(𝑚)

𝑚∈{energy modes}

 
(4.3)   

The decomposition of the total Hamiltonian into different modes is arbitrary. For example, for the 

CO2 molecule, one could split the total Hamiltonian into three vibrational modes, one rotational 

mode and the coupling mode such as in Eq. (4.4), or into only one vibrational mode, one rotational 

mode, one sub-Hamiltonian for the Fermi interaction, one for the Coriolis-interaction and one for 

the other couplings such as in Eq. (4.16): 

𝐻 =  ∑ 𝐻vib,𝑖

𝑖

+ 𝐻rot + 𝐻coupling 
(4.4)   

𝐻 =  𝐻vib + 𝐻rot + 𝐻Fermi + 𝐻Coriolis + 𝐻other couplings 
(4.5)  

Note that 𝑃−1𝐻 (𝑚)𝑃, corresponding to energy modes m, are generally not diagonal. 

For the CO2 molecule, using the decomposition proposed in Eq. (4.4), we can write the total 

energy of level i as follows: 

𝐸i = ∑ 𝐶𝑖
(𝑚)

𝑚

=  ∑ Ēvib,𝑗
𝑖

𝑗

 +  Ērot
i  +  Ecoupling

i  
(4.6)   

If the levels are not coupled, i.e., 𝐻 is diagonal3 and 𝑃 = 1 (identity), therefore 𝐶𝑖
(𝑚)

= (𝐻(𝑚))
𝑖𝑖
.  

If the levels i inside a polyad are perfectly mixed, i.e., if they cannot be differentiated (for example, 

the levels of the polyad 𝑝 = 1  of the CO2 molecule are perfectly mixed through the Fermi 

interaction), each (perturbed) level receives the same contribution from each energy mode, 

meaning that the eigenvectors Xi have the same coefficients (𝑥𝑗 =
1

𝑁
 if j is inside the polyad, 𝑥𝑗 =

0 otherwise, and N is the number of levels inside the polyad). For non-perfectly mixed levels, it 

should then be possible to quantify the character of the levels (in a similar manner as done by 

[24] to quantify the electronic character of vibronic levels of the N2 molecule) using a metric based 

on the coefficients of the eigenvectors for the corresponding polyad4.  

Depending on the number of temperatures used, it is then possible to group the modes following 

Section 3 and then use the method described in Section 4.1, or to use its generalized form 

described in Section Erreur ! Source du renvoi introuvable. to determine the uncertainties on 

 
3 There is no inter-level interaction, such as the Fermi interaction. 
4 This will not be discussed further in this paper, but could be the purpose of future work. 
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the nonequilibrium partition functions. We can thus obtain, for each rovibrational level, a 

vibrational energy Evib, a rotational energy Erot and the coupling terms energy Ecoupling. 

5 Impact of the coupling terms: 

application to CO2 

5.1 Coupling terms of CO2  

The rovibrational energies of CO2(X) are computed by using the effective Hamiltonian of Tashkun 

et al. [25]. The effective Hamiltonian is block-diagonalized for polyad numbers p ≤ 40, and 

rotational numbers J ≤ 300. Levels above the dissociation threshold of 44600 cm-1 are not 

considered. A description of the levels within a polyad for CO2 is given in Appendix A. The total 

rovibrational energies obtained after diagonalization, E, are found to match the rovibrational 

energies calculated by Tashkun [26] within the rounding error.  

In these calculations, the zero-point-energy (ZPE) is subtracted, with ZPE = 2531.827 cm-1. 

Figure 4 shows the contributions of the different energy terms (symmetric stretching, bending and 

asymmetric stretching vibrational modes, rotational terms and coupling terms: the vibrational 

coupling terms are noted Evib123, and the vibrational-rotational coupling terms as Evibrot, and Fermi, 

Coriolis and l-doubling interactions). For the sake of clarity, the contribution of each energy term 

in Figure 4 is binned over nearby levels with a window of size from 20 to 3,000 cm-1. In our 

calculations, the exact energy partitioning of every level is used. For energies above 600 cm-1 

and below 30,000 cm-1, the contribution of the vibrational energy of the bending mode (2) is 

dominant. Above 30,000 cm-1, rotational energies Ērot corresponding to high J levels are the main 

contributors to the total energy.  

 

Figure 4 Contribution of each energy term (in absolute value) to the total energy of rovibrational levels 

(smoothed over adjacent levels). 

Figure 5 shows the contributions of the coupling terms to the total rovibrational energy calculated 

for all rovibrational levels of 12C16O2(X1Σg
+), sorted by total energy from 0 cm-1 to the dissociation 

energy, 44,600 cm-1. Each term is shown in absolute values, as some of these terms can be 

negative. Fermi coupling, EFermi, and mixed vibrational terms, Evib123, are dominant. For energies 

above 30,000 cm-1, the rovibrational coupling terms Evibrot of high J levels become important. 

Nonetheless, the coupling terms represent less than 6% of the total energy of the rovibrational 
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levels. This confirms that, under equilibrium conditions, the influence of the coupling terms on the 

partition function is negligible (Eq. (4.5)). 

  

Figure 5 Contribution of the coupling terms (in absolute value) to the total energy of rovibrational levels 

(smoothed over adjacent levels) 

The contribution of the coupling terms is of the same order of magnitude as the contribution of 

the rotational term or of the asymmetric stretching () term: for example, at 25,000 cm-1, 

Ecoupling ≈ Erot/2 ≈ Evib3/3. The coupling terms can no longer be neglected compared to the 

rotational term or the asymmetric stretching term. Their impact on nonequilibrium partition 

functions will be discussed in Section 5.2. 

5.2 Impact of the coupling terms 

In Section 3, we examined the influence of the temperature grouping schemes for the CO2 

molecule for the simple case of the UVR model in which the coupling terms are neglected. In this 

section, we perform the same study, this time incorporating the effect of the coupling terms. 

5.2.1  First temperature grouping scheme: all vibrational modes have the 

same temperature (𝐓𝐯𝐢𝐛 = 𝐓𝐯𝐢𝐛𝟏 = 𝐓𝐯𝐢𝐛𝟐 = 𝐓𝐯𝐢𝐛𝟑, 𝐓𝐫𝐨𝐭) 

For this first temperature grouping scheme, we compare in Figure 6 the partition functions 

computed with the two assignment schemes presented in Section 4.1 and the partition function 

computed with the UVR model. The temperatures Tvib, Trot range from 300 to 10,000 K.  

a) b)  

Figure 6 Relative differences between nonequilibrium partition functions calculated using the UVR model and 

nonequilibrium partition functions computed with the coupling terms assigned to the vibrational energy (a) or 
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to the rotational energy (b) for {Tvib,Trot}={(Tvib1=Tvib2=Tvib3),Trot}. Experiments (circles): expansion-tube [10, 17, 

18]. 

When the coupling terms are assigned to the vibrational energy (Figure 6a), the differences with 

the UVR model are less than 10% in most of the temperature range considered. This is expected 

since, with this grouping scheme, the vibrational energy (sum of the energies of the three 

vibrational modes) is far larger than the coupling term, which can therefore be neglected. 

The differences with the UVR model are larger when the coupling terms are assigned to the 

rotational energy, especially for Tvib > 2,000 K and Trot< 2,000 K (Figure 6b).  Indeed, as seen in 

Section 5.1, the coupling terms and the rotational terms are of the same order of magnitude for 

high rovibrational levels. For example, at 25,000 cm-1, the coupling term is approximately 50% of 

the rotational term. This means that the coupling terms have a strong impact on the partition 

functions at low rotational temperatures, when  Erot + E
coupling

≈ kBTrot, and when the vibrational 

temperature is high enough for high rovibrational levels to be populated, as can be seen in Figure 

6. 

We now compare in Figure 7 the nonequilibrium rovibrational partition function calculated with the 

two assignment schemes described in Section 4.1. Near equilibrium (Tvib ≈ Trot), the two schemes 

give similar results, as expected. This means that the coupling terms can be applied to either the 

vibrational term or the rotational term without significant changes to the partition functions. When 

Tvib is 2-4 times larger than Trot, however, the partition functions differ drastically. The choice of 

the assignment scheme strongly impacts the partition functions.  

The temperature conditions of the expansion-tube experiments reported in Refs. [10, 17, 18] are 

represented by the circles on the figures. For these experiments, the partition functions calculated 

with the two assignment schemes do not differ by more than 25%, and therefore the assignment 

choice is not crucial for the analysis of these spectra. 

 

Figure 7 Relative differences between nonequilibrium partition functions calculated with the total coupling 

terms (inter-vibrational, vibrational-rotational, Fermi, Coriolis, l-doubling) assigned to the vibrational energy or 

to the rotational energy for {Tvib,Trot}={(Tvib1,Tvib2,Tvib3),Trot}. Experiments (circles): expansion-tube [10, 17, 18]. 

Using Figure 6 and Figure 7, it is possible to obtain the domains where the UVR model is sufficient 

(i.e. where the partition functions differ by less than 25%) to accurately describe the CO2 molecule. 

These domains are shown in Figure 8. The white area corresponds to the domain where the UVR 

model is sufficient, meaning that complete models, independently of their assignment schemes, 

give partition functions within 25% of the UVR partition function. In the grey area, the UVR model 

and the models with the coupling terms differ, but both coupling assignment schemes give similar 

results (the partition functions differ by 15 to 25%). In this area, one should take the coupling 

terms into account but can assign them indifferently to either the vibrational or rotational term. 
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 In the dashed area, all models and assignment schemes give different results, and thus the 

predicted partition functions and derived quantities (spectra, …) are highly sensitive to the chosen 

model. Their results are subject to caution. In this case, it is very important to state explicitly which 

assignment scheme is chosen to analyze the spectra. 

 

Figure 8 Validity domain of the UVR model, for {Tvib,Trot}={(Tvib1,Tvib2,Tvib3),Trot}. Coupling terms should not be 

neglected in the grey area but the assignment schemes give similar results. All models and assignment 

schemes give different results (more than 25% differences) in the dashed area. Experiments: expansion-tube 

[10, 17, 18] (circles). 

5.2.2 Second temperature grouping scheme: the asymmetric stretching mode 

has a different temperature (𝐓𝐯𝐢𝐛 = 𝐓𝐯𝐢𝐛𝟑, 𝐓𝐫𝐨𝐭 = 𝐓𝐯𝐢𝐛𝟏 = 𝐓𝐯𝐢𝐛𝟐) 

For this second temperature grouping scheme, we have Tvib = Tvib3 and Trot = Tvib12. We compare 

in Figure 9 the partition functions computed with the two assignment schemes presented in 

Section 4.1 with the UVR model. The coupling terms are either assigned to the vibrational term 

(a) or to the rotational term (b).  

The temperature conditions of experiments with a CO2 laser [13] (circles), CO2 glow discharges 

[7] (squares) and CO2 Nanosecond Repetitive Pulse (NRP) discharges [20] (triangles) are shown 

in the figures. 

a) b)  

Figure 9 Relative differences between nonequilibrium partition functions calculated using the UVR model and 

nonequilibrium partition functions computed with the coupling terms assigned to the vibrational energy (a) or 

to the rotational energy (b) for {Tvib,Trot}={Tvib3,(Trot=Tvib1=Tvib2)}. Experiments: CO2 laser [13] (circles), CO2 glow 

discharges [7] (squares), CO2 NRP discharges [20] (triangles). 

When the coupling terms are assigned to the vibrational energy (Figure 9a), the differences with 

the UVR model are less than 5% in the temperature range of the experiments. However, the 

differences are larger when Trot is 2-4 times larger than Tvib.  



 

14 

 

When the coupling terms are assigned to the rotational energy (Figure 9b), the differences with 

the UVR model are less than 50% in the temperature range considered, and even less than 5% 

at the temperatures of the experiments shown here. The highest discrepancies are for Trot about 

4-10 times larger than Tvib.  

This is expected since, here, the rotational term (sum of the rotational energy and the energies of 

the first two vibrational modes) is far larger than the coupling term, which can therefore be 

neglected in most temperature conditions. For vibrational temperatures above 7,000 K, however, 

the high energy levels, which are also the levels with the highest coupling energies, contribute 

more significantly to the partition function, leading to larger discrepancies with the UVR model. 

Yet, these discrepancies are less than 100% in the temperature range considered, which is far 

lower than the 1,000% discrepancies that were found when assigning the coupling terms to Evib3 

(Figure 9a). 

We compare in Figure 10 the nonequilibrium rovibrational partition functions for the two 

assignment schemes presented in Section 4.1. Both assignment schemes yield similar results 

close to equilibrium, but discrepancies appear for strong nonequilibrium conditions when Trot is 

2-4 times larger than Tvib. For the experiments reported, the chosen assignment scheme does 

not change the partition function by more than 5%. 

 

Figure 10 Relative differences between nonequilibrium partition functions calculated with the total coupling 

terms (inter-vibrational, vibrational-rotational, Fermi, Coriolis, l-doubling) to the vibrational energy or to the 

rotational energy for {Tvib,Trot}={Tvib3,(Trot,Tvib1,Tvib2)}. Experiments: CO2 laser [13] (circles), CO2 glow discharges 

[7] (squares), CO2 NRP discharges [20] (triangles). 

Using Figure 9 and Figure 10, we obtain the domains where the UVR model is sufficient to 

accurately describe the CO2 molecule as in Section 5.2.1. These domains are shown in Figure 

11. The white area corresponds to the domain where the UVR model is valid, i.e., where the 

different models give partition functions within 25%. In the dashed area, all models and 

assignment schemes give different results, and thus the predicted partition functions and derived 

quantities are highly sensitive to the chosen model. The results are subject to caution. 
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Figure 11 Validity domain of the UVR model, for {Tvib,Trot}={Tvib3,(Trot,Tvib1,Tvib2)}. In the dashed areas, the various 

models give partition functions that differ by more than 25%. Experiments: CO2 laser [13] (circles), CO2 glow 

discharges [7] (squares), CO2 NRP discharges [20] (triangles). 

All experimental conditions reported here are within the validity of the UVR model. However, one 

should be careful at high vibrational temperatures (above 8,000 K) and low rotational 

temperatures (below 500 K), which is typically the range of nonequilibrium conditions targeted for 

CO2 conversion applications. For these conditions, it is necessary to be explicit about the chosen 

assignment or grouping schemes. 

6 Examples for CO2 

To further emphasize the impact of temperature grouping and assignment schemes, we present 

in Table 1 the numerical values of nonequilibrium partition functions for different temperature 

conditions. The chosen conditions correspond to 3 experimental cases displayed in the previous 

figures: first, the CO2 laser [13] represented by the circle in Figure 11; second, the CO2 shock [10] 

represented by a circle in Figure 8; and finally, the CO2 glow discharges [7] represented by 

squares in Figure 11.  

Table 1 Nonequilibrium partition functions Qrovibe for three different temperature conditions, using the two 

temperature groupings and the presented assignment schemes. 

 First temperature grouping 
Trot ; Tvib = Tvib1 = Tvib2 = Tvib3 

Second temperature 

grouping 

Trot = Tvib1 = Tvib2 ; Tvib = Tvib3 

Case 1 Trot = 491 K ; Tvib = 2 641 K 

UVR Model 11 946 824.8 

Couplings with Erot 28 0356 866.6 

Couplings with Evib 12 850 832.0 

Case 2 Trot = 1700 K ; Tvib = 4000 K 

UVR Model 142,990 20,143 

Couplings with Erot 191,136 21,972 

Couplings with Evib 158,675 20,857 

Case 3 Trot = 650 K ; Tvib = 850 K 

UVR Model 1402 1025 

Couplings with Erot 1450 1046 

Couplings with Evib 1437 1040.5 

 

The first case has a rotational temperature of 491 K and a vibrational temperature of 2641 K. For 

the first temperature grouping scheme, this case is within the domain where the coupling terms 

impact the partition function differently. The partition functions differ by a factor 2.4. The simulated 

spectra differ significantly, as shown in Figure 12, where the transmittance corresponding to the 
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first grouping scheme (in red) differs depending on the assignment of the coupling terms. For the 

second temperature grouping scheme, this case is within the validity domain of the UVR model, 

as shown in Figure 11. The differences between the partition functions are smaller, and the 

simulated transmittances (in black) are almost superposed. 

 

Figure 12 Comparison of transmittances obtained with the two grouping schemes (black and red lines) under 

the CO2 laser [13] experimental conditions, using the UVR model (solid lines), assigning the coupling terms to 

the rotational energy (dashes) or to the vibrational energy (dash-dots). Computed with a pressure of 20 mbar 

and a CO2 mole fraction of 0.0657. 

The second case has a rotational temperature of 1700 K and a vibrational temperature of 4000 

K. It is outside the validity domain of the UVR model for the first temperature grouping scheme, 

and even in the narrow zone where the coupling terms are important but have a similar impact 

regardless of the assignment scheme. The partition functions differ by approximately 20% if the 

coupling terms are assigned to Erot or Evib. Figure 13 shows the simulated spectra. In red, the 

spectra uses the first grouping scheme. The simulated radiances computed with the UVR model 

or by assigning the coupling terms to Erot differ by up to 35% at 4170 nm. The simulated radiances 

obtained with the coupling terms differ by 17% approximately. This case is also within the validity 

domain of the UVR model for the second temperature grouping: the radiances (in black) are within 

10% of each other. 
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Figure 13 Comparison of radiance using the two grouping schemes (black and red lines) under the CO2 shock 

temperatures, using the UVR model (solid lines), assigning the coupling terms to the rotational energy (dashes) 

or to the vibrational energy (dash-dots). Computed with a pressure of 17 mbar, a CO2 mole fraction of 0.606 and 

a slit function of FWHM of 2 nm. 

The third case, with a rotational temperature of 650 K and a vibrational temperature of 850 K, is 

within the domain where the UVR model is sufficient for both temperature groupings. The partition 

functions have close values for a given temperature grouping scheme (within 3.5%). For the two 

different temperature grouping schemes, the nonequilibrium conditions induce differences 

between the partition functions and thus the simulated spectra shown in Figure 14. We observe 

that the red and black lines are not perfectly superposed: this illustrates the differences between 

the temperature grouping schemes. However, all three red lines (resp. black lines) are 

superposed as expected. 
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Figure 14 Comparison of radiance using the two grouping schemes (black and red lines) under the CO2 glow 

discharge experimental conditions, using the UVR model (solid lines), assigning the coupling terms to the 

rotational energy (dashes) or to the vibrational energy (dash-dots). Computed with a pressure of 6.7 mbar, a 

CO2 mole fraction of 0.0657 and a slit function of FWHM of 2 nm. 

These examples highlight the importance of the choice of the temperature grouping for 

nonequilibrium conditions and of the assignment schemes since they can lead to significant 

differences in simulated spectra and thus impact the analysis of experimental data. 

7 Conclusions 

Two-temperature models are often used to characterize nonequilibrium plasmas. They are 

obtained by lumping the temperatures of the energy modes into two groups: usually, a vibrational 

temperature and a rotational temperature. In the case of CO2, for example, the three vibrational 

modes are sometimes lumped together, and in this case the plasma is described by a two-

temperature model, (Trot , Tvib), with Tvib = Tvib1 = Tvib2 = Tvib3. For plasma discharges, however, 

several experiments and numerical simulations indicate that a more representative two-

temperature grouping scheme may be Trot = Tvib1 = Tvib2, and Tvib = Tvib3.  

We have shown that the choice of the temperature grouping scheme has a very strong impact on 

the nonequilibrium partition functions of CO2. This is the main message of this article. 

Nonequilibrium partition functions determine the population of internal energy levels, and 

therefore the emission and absorption spectra. The analysis of experimental spectra is thus very 

sensitive to the choice of the temperature grouping scheme.  

Furthermore, the coupling terms between the various energy modes of the Hamiltonian, and the 

way to assign them, can also affect the nonequilibrium partition functions. To assess the impact 

of these coupling terms on two-temperature partition functions, we proceeded in two steps. First, 

we proposed a method to extract the rotational, vibrational, and coupling energy terms in the 

diagonal basis of the molecule’s Hamiltonian. We applied the method to the CO2 molecule and 

showed that although the coupling terms do not represent more than 6% of the total rovibrational 

energy of the levels, they can be comparable with the rotational or the vibrational energy of the 

levels.  

Second, we compared nonequilibrium partition functions of CO2 up to 10,000 K with the coupling 

schemes assigned either to the rotational energy term, or to the vibrational energy term. We then 

derived zones of confidence where these choices have a limited impact, or where they lead to 

important differences. We showed that for high vibrational and low rotational temperatures, the 

coupling assignment strongly affects the partition functions. Furthermore, we compared the 

results with the simpler UVR model, which neglects all coupling terms. We showed that the UVR 

model is sufficient over large domains of nonequilibrium conditions, but these domains are 

extremely dependent on the temperature grouping chosen.  

This work can be generalized to other molecules. It is possible to reduce the number of degrees 

of freedom from 𝑛  to 𝑝 + 𝑚  (with 𝑝 ≥ 1, 𝑚 ≥ 0 ) with physical hypotheses (e.g., assuming a 

Boltzmann distribution of the levels at a temperature T reduces the number of free parameters 

from 𝑛 = # of levels to 𝑝 = 1, 𝑚 = 0). When 𝑚 ≥ 1, one can quantify the impact of grouping these 

𝑚 degrees of freedom to the 𝑝 others by comparing extreme cases. Having a direct impact on the 

absorption and emission spectra, we use nonequilibrium partition functions as a metric to quantify 

the impact of the different grouping cases on the populations of the rovibrational levels. 

In summary, the temperature grouping scheme has a very strong effect on nonequilibrium 

partition functions of CO2. The coupling term assignment scheme has a much weaker impact than 
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the temperature grouping scheme. Unless Trot is low and Tvib is high, the nonequilibrium partition 

functions calculated with the UVR model are generally sufficient. But again, attention must be 

paid to the choice of the grouping scheme, and based on our analysis of the literature, it is 

recommended for CO2 to use a two-temperature model with Trot = Tvib1 = Tvib2, and Tvib = Tvib3.  

We recommend that all analyses of experimental spectra explicitly indicate the choice of 

temperature and coupling terms assignment schemes.   
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Appendix: CO2 nomenclature 

We describe the different CO2 rovibrational level nomenclatures found in literature, recalling the 

interaction selection rules and the alternation of rotational levels that characterize CO2. Figure 15 

shows the first rovibrational levels of ground state 12C16O2, for p ≤ 3 and the J ≤ 4. For the sake 

of clarity, rotational energies are shown on an expanded scale. 

A. Conventions 

The usual (Herzberg) notation uses the 5 quantum numbers v1v2
l2v3[J], where v1, v2, v3 are the 

vibrational quantum numbers of the symmetric mode ν1, bending mode ν2, and asymmetric mode 

ν3; when the bending mode ν2 is excited, rotation around the molecular axis can occur and the l2 

quantum number is introduced to quantify the projection of the resultant vibrational angular 

momentum. l2 can take the values v2, v2 – 2, … 1 or 0. J is the rotational quantum number (J ≥ 

l2).  

The unperturbed symmetric mode has approximately twice the energy (ν1 = 1333.93 cm-1) of the 

unperturbed bending mode (ν2 = 667.47 cm-1), and so the Fermi interaction is particularly strong 

between levels that share the same 2v1+v2 number and the same angular momentum l2. For every 

value of v3, the 100v3 and 120v3 levels interact and form a Fermi dyad; the 200v3, 120v3 and 040v3 

levels form a Fermi triad, and generally speaking the levels with the same 2v1+v2 value form a 

Fermi interacting polyad. The energies of Fermi polyads levels are shifted, and the usual 

nomenclature fails to describe them unambiguously.  

To remove this ambiguity, HITRAN [27] introduced the spectroscopic notation with 6 quantum 

numbers v1v2
l2v3r[J]: levels are first grouped in generalized polyads (which may contains several 

Fermi polyads), defined as all levels that share the same polyad number p=2v1+v2+3v3. Within a 

polyad p, a Fermi polyad is defined for all combinations of l2 and v3. It can be shown that a Fermi 

polyad (function of p, v3 and l2) contains (p-l2-3v3)/2+1 interacting states if l2 has the same parity 

as p-3v3, and none otherwise. Within each Fermi polyad, the values of v1 and v2 are arbitrarily 

fixed, and the sixth quantum number r is introduced to label the levels unambiguously. The rules 

chosen to set v1, v2 and r are as follow: 

- 2v1=p-3v3-l2 

- v2=l2 

- 1≤r≤v1+1 where levels are ranked by decreasing energy 

The HITRAN labelling scheme is based on the proper assignment of the l2 quantum number. For 

high rotational numbers, when additional interaction terms become significant (l-doubling and 

Coriolis coupling), the l2 number cannot be defined unambiguously and the HITRAN notation itself 

becomes ambiguous [25]: the CDSD-1000 [28] and CDSD-4000 [21] database introduced the 

generalized denomination (p, c, J, N), where p=2v1+v2+3v3 is the polyad number, c is the Wang 

symmetry type, J is the rotational quantum number, and N is a ranking number for levels of a (p, 

c, J) block sorted by increasing energy. The Wang symmetry results from the choice of a proper 

basis to further reduce the Hamiltonian in two non-interacting blocks (e and f). More details on 

the choice of the Wang basis can be found in [18–20]. 
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On Figure 15, the rovibrational levels are given in usual notation (black). The corresponding 

HITRAN notation (green) and CDSD notation (red) are also given for rovibrational levels with 

p ≤ 2. As explained above, because of the Fermi coupling shift (blue), the labelling of the levels 

in a Fermi polyad (for instance, 1000 – 0200, or 1100 – 0300) become ambiguous. They have been 

arbitrary labelled here but could as well have been inverted (0200 – 1000, and 0300 – 1100, 

respectively). The HITRAN and CDSD notations, however, remain unambiguous by construction.  

B. Symmetry types 

Vibrational levels of CO2 have different symmetry types Σ, Π, Δ, etc., which correspond to values 

of the orbital angular momentum l2 = 0, 1, 2, etc. respectively. Symmetry type is also called 

species in Herzberg [32]. For l2 > 0, the vibrational levels are doublets, with their degeneracy 

removed by l-doubling for high rotational numbers.  

For instance, in the usual convention, the polyad p=2 corresponds to the vibrational levels 

v1v2v3=100, 020, with degeneracies 1 and 3. The second harmonic of the bending mode, 020, 

has two sublevels 0220 and 0200 of Δ and Σ symmetry, respectively. 0220 is a doublet (l>0), 0200 

is a singlet, hence the g=3 degeneracy for 020. Eventually, the p=2 polyad contains four 

vibrational states: 1000, 0220(Δ+), 0220(Δ-), 0200. Doublets appear on Figure 15 although for the 

CO2 626 isotope, only one level exist within every doublet for spin-symmetry reasons detailed in 

the next paragraph. 

C. Parity and symmetry 

Figure 15 shows the g/u symmetry of vibrational levels, which alternates with the vibrational 

number for the bending and asymmetric modes; and the +/- parity of rotational level, which 

alternates with J. The rotational symmetry (s/a) of the rotational level is inferred from both the 

vibrational symmetry and the rotational parity: for a gerade (g) vibrational level, +/- rotational levels 

have s/a symmetry, for ungerade (u) vibrational levels +/- rotational levels have a/s symmetry.  

The statistical weight of the symmetric and asymmetric rotational levels is determined by the spins 

of pairs of identical nuclei. For the symmetric isotopes of CO2, such as the main 12C16O2 isotope, 

the ratio of symmetric over asymmetric statistical weights is 1:0, i.e., asymmetric rotational levels 

are missing. In Figure 15, missing rotational levels appear with dashed lines. In RADIS, the spin-

dependency of the statistical weight is included in the state-independent degeneracy gi. Values 

for the HITRAN molecules can be found in Ref [32]. 
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Figure 15 First rovibrational levels of ground-state CO2, up to polyad number p=3, described in the usual 

notation with +/- parity, a/s symmetry, and e-f parity (black). Corresponding labels in HITRAN (green) and CDSD 

(red) notation are given. Solid lines: existing states. Fermi, Coriolis, l-doubling interaction terms are shown for 

p=2, J=4 and p=3, J=3 levels. Dotted lines: missing states in spin-symmetric isotopes (as 12C16O2, 
13C6O2 ). 

Rotational levels are shown on a different scale from vibrational levels. Refer to text for more details.   

D. Perturbation selection rules 

Rovibrational energy levels can interact if they share the same J number, and the same 

rovibrational parity (+, or -) [32]. The interaction can be without rotation (Fermi coupling), or 

induced by rotation (Coriolis coupling). Fermi coupling terms are usually stronger (typically 50 cm-

1 for CO2, compared to about 1 cm-1 for Coriolis coupling), but they require, on top of the previously 

mentioned selection rules, that both levels share the same symmetry types. In CO2, Fermi 

coupling only happens between the ν1 vibration states, all of which are Σ states, and the Σ states 

of the v2 vibration mode. Figure 15 summarizes the different interaction terms for the p=2, J=4 

and p=3, J=3 levels. 

In the usual notation, the rotational states are also given an e/f parity, which has been introduced 

for linear polyatomic molecules in Ref. [31] to extend the notation used in diatomic molecules. It 

is used to rewrite perturbation selection rules as follows [12,31]: levels can interact (↔) if they 

have the same rotational number (J ↔ J), the same parity (e ↔ e, f ↔ f), and, for rotationless 

perturbations (Fermi coupling), the same orbital momentum: l2 ↔ l2. In the CDSD notation, the e/f 

parity corresponds to the Wang number c used. The e, f parity appears on Figure 15 for all levels 

of low-lying polyads p≤3.  

 

 

 

 
 
 

 

 

 

 

 

 

 

 

 

 

 


