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Abstract

Score-based generative models (SGMs) aim at estimating a target data distribution by learning
score functions using only noise-perturbed samples from the target. Recent literature has focused
extensively on assessing the error between the target and estimated distributions, gauging the
generative quality through the Kullback-Leibler (KL) divergence and Wasserstein distances. Under
mild assumptions on the data distribution, we establish an upper bound for the KL divergence
between the target and the estimated distributions, explicitly depending on any time-dependent
noise schedule. Under additional regularity assumptions, taking advantage of favorable underlying
contraction mechanisms, we provide a tighter error bound in Wasserstein distance compared to
state-of-the-art results. In addition to being tractable, this upper bound jointly incorporates
properties of the target distribution and SGM hyperparameters that need to be tuned during
training.

1 Introduction

Recent years have seen impressive advances in machine learning and artificial intelligence, with one of
the most notable breakthroughs being the success of diffusion models, introduced by Sohl-Dickstein
et al. (2015). Diffusion models in generative modeling refer to a class of algorithms that generate new
samples given training samples of an unknown distribution πdata. This method is now recognized for its
ability to produce high-quality images that appear genuine to human observers (see e.g., Ramesh et al.,
2022, for text-to-image generation). Its range of applications is expanding rapidly, yielding impressive
outcomes in areas such as computer vision (Li et al., 2022; Lugmayr et al., 2022) or natural language
generation (Gong et al., 2023), among others, see Yang et al. (2023) for a comprehensive overview of
the latest advances in this topic.

Score-based generative models (SGMs). Generative diffusion models aim at creating synthetic
instances of a target distribution when only a genuine sample (e.g., a dataset of real-life images) is
accessible. It is crucial to note that the complexity of real data prohibits a thorough depiction of
the distribution πdata through a conventional parametric model, and its estimation via traditional
maximum likelihood methods. Standard strategies based on non-parametric density estimation such as
kernel smoothing are also generally ruled out due to the high dimensionality of the data in play.

Score-based Generative Models (SGMs) are probabilistic models designed to address this challenge
using two main phases. The first phase, the noising phase (also referred to as the forward phase),
involves progressively perturbing the empirical distribution by adding noise to the training data until
its distribution approximately reaches an easy-to-sample distribution π∞. The second phase involves
learning to reverse this noising dynamics by sequentially removing the noise, which is referred to as the
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sampling phase (or backward phase). Reversing the dynamics during the backward phase would require
in principle knowledge of the score function, i.e., the gradient of the logarithm of the density at each
time step of the diffusion. However, knowing the score amounts to knowing the distribution at time
t = 0, i.e., knowing the distribution πdata according to which we wish to simulate new examples. To
circumvent this issue, the score function is learned based on the evolution of the noised data samples
and using a deep neural network architecture. When applying these learned reverse dynamics to samples
from π∞, we obtain a generative distribution that approximates πdata.

Related works. Significant attention has been paid to understanding the sources of errors that affect
the quality of data generation associated with SGMs (Block et al., 2020; De Bortoli, 2022; Lee et al.,
2022, 2023; Chen et al., 2023a,b). In particular, a key area of interest has been the derivation of upper
bounds for distances or pseudo-distances between the training and generated sample distributions. Note
that all the mathematical theory for diffusion models developed so far covers general time discretizations
of time-homogeneous SGMs (see Song and Ermon, 2019, in the variance-preserving case), which means
that the strength of the noise is prescribed to be constant during the forward phase. De Bortoli
et al. (2021); Chen (2023) provided upper bounds in terms of total variation, by assuming smoothness
properties of the score and its derivatives. On the other hand, the upper bounds in total variation
and Wasserstein distances provided by (Lee et al., 2023; Gao et al., 2023) also require smoothness
assumptions on the data distribution, either involving non-explicit constants, or focusing on iteration
complexity sharpness. More recently, Conforti et al. (2023); Benton et al. (2024) established an upper
bound in terms of Kullback–Leibler (KL) divergence avoiding strong assumptions about the score
regularity, and relying on mild conditions about the data distribution (e.g., assumed to be of finite
Fisher information w.r.t. the Gaussian distribution). Regarding time-inhomogeneous SGMs, the central
role of the noise schedule has already been exhibited in numerical experiments, see for instance Chen
(2023); Nichol and Dhariwal (2021); Guo et al. (2023). However, a rigorous theoretical analysis of it is
still missing.

Contributions. In this paper, we conduct a thorough mathematical analysis of the role of the noise
schedule in score-based generative models. We propose a unified framework for time-inhomogeneous
SGMs, to conduct joint theoretical analyses in KL and Wasserstein metrics, with state-of-the-art set of
assumptions, using exponential integration of the backward process. In our opinion, these upper-bounds
provide numerical insights into proper SGM training.

• We establish an upper bound on the Kullback-Leibler divergence between the data distribution
and the law of the SGM. This bound holds under the mildest assumptions used in the SGM
literature and explicitly depends on the noise schedule used to train the SGM.

• By making additional assumptions on the Lipschitz and strong log-concavity properties of the
score function, we establish a bound in terms of Wasserstein distance explicitly depending on
the noise schedule. In the latter, the mixing time error is improved by an exponential factor, by
leveraging the contraction of the drift not only of the forward, but also of the backward stochastic
diffusion.

• We illustrate, through numerical experiments, the upper bounds obtained in practice in regard of
the effective empirical KL divergences and Wassertein metrics. These simulations highlights the
relevancy of the upper bound, reflecting in practice the effect of the noise schedule on the quality of
the generative distribution. Additionally, the simulations conducted provide theoretically-inspired
guidelines for improving SGM training.

2 Mathematical framework for SGMs

Forward process. Denote as β : [0, T ] 7→ R>0 the noise schedule, assumed to be continuous and
non decreasing. Although originally developed using a finite number of noising steps (Sohl-Dickstein
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et al., 2015; Song and Ermon, 2019; Ho et al., 2020; Song et al., 2021), most recent approaches consider
time-continuous noise perturbations through the use of stochastic differential equations (SDEs) (Song
et al., 2021). Consider, therefore, a forward process given by

d
−→
X t = −

β(t)

2σ2

−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ πdata . (1)

We denote by pt the density of
−→
X t at time t ∈ (0, T ]. Note that, up to the time change t 7→

∫ t

0
β(s)/2ds,

this process corresponds to the standard Ornstein–Uhlenbeck (OU) process, solution to

d
−→
X t = −

1

σ2

−→
X tdt+

√
2dBt,

−→
X 0 ∼ πdata ,

see, e.g., Karatzas and Shreve (2012, Chapter 3). Due to the linear nature of the drift with respect to
(Xt)t, an exact simulation can be performed for this process (Section E.1.2). The stationary distribution
π∞ of the forward process is the Gaussian distribution with mean 0 and variance σ2Id. In the literature,
when β(t) is constant equal to 2 (meaning that there is no time change), this diffusion process is referred
to as the Variance-Preserving SDE (VPSDE, De Bortoli et al., 2021; Conforti et al., 2023; Chen et al.,
2023b), leading to the so-called Denoising Diffusion Probabilistic Models (DDPM, Ho et al., 2020).
Understanding the effects of the general diffusion model (1), in particular when reversing the dynamic,
remains a challenging problem, to which we devote the rest of our analysis.

Backward process. The corresponding backward process is given by{
d
←−
X t = η(t,

←−
X t)dt+

√
β̄(t)dBt,←−

X 0 ∼ π∞,
with

{
β̄(t) := β(T − t)
η(t,
←−
X t) :=

β̄(t)
2σ2

←−
X t + β̄(t)∇ log pT−t

(←−
X t

)
.

We consider the marginal time distribution of the forward process divided by the density of its
stationary distribution, introducing

∀x ∈ Rd, p̃t(x) := pt(x)/φσ2(x), (2)

where φσ2 denote the density function of π∞, a Gaussian distribution with mean 0 and variance σ2Id.
Thus, the backward process can be rewritten as

d
←−
X t = η̄

(
t,
←−
X t

)
dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞, (3)

where η̄(t,
←−
X t) := − β̄(t)

2σ2

←−
X t + β̄(t)∇ log p̃T−t(

←−
X t). The benefit of using the renormalization p̃t in our

analysis results in considering the backward equation as a perturbation of an OU process. This trick is
crucial to highlight the central role of the relative Fisher information in the performance of the SGM.
It has already been used by Conforti et al. (2023).

Score estimation. Simulating the backward process means knowing how to operate the score.
However, the (modified) score function ∇ log p̃t(x) = ∇ log pt(x) + x/σ2 cannot be evaluated directly,
because it depends on the unknown data distribution. To work around this problem, the score function
∇ log pt needs to be estimated. In Hyvärinen and Dayan (2005), the authors proposed to estimate the
score function associated with a distribution by minimizing the expected L2-squared distance between
the true score function and the proposed approximation. In the context of diffusion models, this is
typically done with the use of a deep neural network architecture sθ : [0, T ]× Rd 7→ Rd parameterized
by θ ∈ Θ, and trained to minimize:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2] , (4)
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with τ ∼ U(0, T ) independent of the forward process (
−→
X t)t≥0. However, this estimation problem still

suffers from the fact that the regression target is not explicitly known. A tractable optimization problem
sharing the same optima can be defined though, through the marginalization over πdata of pτ (see
Vincent, 2011; Song et al., 2021):

Lscore(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ |X0

)∥∥∥2] (5)

where τ is uniformly distributed on [0, T ], and independent of X0 ∼ πdata and
−→
X τ ∼ pτ (·|X0). This

loss function is appealing as it only requires to know the transition kernel of the forward process. In
(1), this is a Gaussian kernel with explicit mean and variance.

Discretization. Once the score function is learned, it remains that, in most cases, the backward
dynamics no longer enjoys a linear drift, which makes its exact simulation challenging. To address this
issue, one solution is to discretize the continuous dynamics of the backward process. In this way, Song
et al. (2021) propose an Euler-Maruyama (EM) discretization scheme in which both the drift and the
diffusion coefficients are discretized recursively (see (50)). The Euler Exponential Integrator (EI, see
Durmus and Moulines, 2015), as already used in Conforti et al. (2023), only requires to discretize the
part associated with the modified score function. Introduce s̃θ(t, x) := sθ(t, x) + x/σ2 and consider the

regular time discretization 0 = t0 ≤ t1 ≤ · · · ≤ tN = T . Then, (
←−
X θ

t )t∈[0,T ] is such that, for t ∈ [tk, tk+1],

d
←−
X θ

t = β̄(t)

(
− 1

2σ2

←−
X θ

t + s̃θ

(
T − tk,

←−
X θ

tk

))
dt+

√
β̄(t)dBt . (6)

This scheme can be seen as a refinement of the classical EM one as it handles the linear drift term
by integrating it explicitly. In addition, (

←−
X θ

t )t∈{t0,...,tN} can be sampled exactly, see Appendix A. We
consider therefore such a scheme in our further theoretical developments.

3 Non-asymptotic Kullback-Leibler bound

In this section, we provide a theoretical analysis of the effect of the noise schedule used when training
an SGM. Its impact is scrutinized through a bound on the KL divergence between the data distribution
and the generative one.

Statement. The data distribution πdata is assumed to be absolutely continuous with respect to the
Gaussian measure π∞. Define the relative Fisher information I(πdata|π∞) by

I(πdata|π∞) :=

∫ ∥∥∥∥∇ log

(
dπdata
dπ∞

)∥∥∥∥2 dπdata ,

and consider the following assumptions.

H1 The noise schedule β is continuous, positive, non decreasing and such that
∫∞
0
β(t)dt =∞.

H2 The data distribution is such that I(πdata|π∞) <∞.

H3 The NN parameter θ ∈ Θ and the schedule β satisfy

E

[
exp

{
1

2

∫ T

0

β̄(t)
∥∥∥(s̃(T − t,←−X t

)
− s̃θ

(
T − tk,

←−
X tk

))∥∥∥2 dt}] <∞ ,

with s̃(t, x) :=∇ log p̃t(x) and p̃t defined in (2).
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Assumption H1 is necessary to ensure that the forward process converges to the stationary distribu-
tion when the diffusion time tends to infinity. Assumption H2 is inherent to the data distribution, as it
involves only the L2-integrability of the score function. Such a kind of hypothesis has already been
considered in the literature, see Conforti et al. (2023). We stress that, in this section, we do not require
extra assumptions about the smoothness of the score function. Lastly, Assumption H3 is the guarantor
of a good approximation of the score by the neural network s̃θ, weighted by the level of noise in play.
We are now in position to provide an upper bound for the relative entropy between the distribution

π̂
(β,θ)
N of samples obtained from (6), and the target data distribution πdata.

Theorem 3.1. Assume that H1, H2 and H3 hold. Then,

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ EKL

1 (β) + EKL
2 (θ, β) + EKL

3 (β) ,

where

EKL
1 (β) = KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0

β(s)ds
}
,

EKL
2 (θ, β) =

N−1∑
k=0

E
[∥∥∥∇ log p̃T−tk

(−→
XT−tk

)
− s̃θ

(
T − tk,

−→
XT−tk

)∥∥∥2] ∫ T−tk

T−tk+1

β(t)dt ,

EKL
3 (β) = 2hβ(T )I(πdata|π∞) ,

with h := supk∈{1,...,N}(tk − tk−1) small enough and t0 := 0.

The obtained bound is composed of three terms, all depending on the noise schedule, through either
its integrated version over the diffusion time, or its final value at time T . If the result was derived for
the EI discretization scheme, it could be adapted to the Euler one up to minor technicalities. Remark
also that using Pinsker’s inequality, the obtained bound could be transferred in terms of total variation.

Dissecting the upper bound. The upper bound of Theorem 3.1 involves three different types of
error that affect the training of an SGM. The term EKL

1 represents the mixing time of the OU forward
process, arising from the practical limitation of considering the forward process up to a finite time
T . Indeed, EKL

1 is shrinked to 0 when T grows to infinity. Note that the multiplicative term in EKL
1

corresponds to the KL divergence between πdata and π∞ which is ensured to be finite by Assumption
H2. The second term EKL

2 corresponds to the approximation error, which stems from the use of a
deep neural network to estimate the score function. Note that if we assume that the error of the score
approximation is uniformly (in time) bounded by Mθ (see De Bortoli et al., 2021, Equation (8)), the

term EKL
2 admits as a crude bound Mθ

∫ T

0
β(t)dt, with the disadvantage of exploding when T → +∞.

Otherwise, by considering Conforti et al. (2023, Assumption H3), one can make this bound finer and
finite, by balancing the quality of the score approximation, the discretization grid and the final time T .
Finally, EKL

3 is the discretization error of the EI discretization scheme. This last term vanishes as the
discretization grid is refined (i.e., h→ 0).

Comparison with existing bounds. Under perfect score approximation,
and infinitely precise discretization (i.e., when EKL

2 (θ, β) = EKL
3 (β) = 0), we recover that the Variance

Preserving SDE (VPSDE, De Bortoli et al., 2021; Conforti et al., 2023; Chen et al., 2023b) converge
exponentially fast to the target distribution. Beyond this idealized setting, the bound established in
Theorem 3.1 recovers that of Conforti et al. (2023, Theorem 1) when choosing β(t) = 2, σ2 = 1, T = 1,
and using a discretization step size h ≤ 1.

Refined analysis of the mixing time error Still assuming “perfect score approximation” and
infinitely precise discretization (i.e., EKL

2 (θ, β) = EKL
3 (β) = 0), one can assess the sharpness of the term
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EKL
1 (β) in the upper bound of Theorem 3.1. In particular, when restricting the data distribution to be

Gaussian N (µ0,Σ0), one can exploit the backward contraction assuming that λmax(Σ0) ≤ σ2, where
λmax(Σ0) denotes the largest eigenvalue of Σ0. In this specific case, we can obtain a refined version for
EKL
1 (see Proposition C.1), given by

KL (πdata∥π∞QT ) ≤ KL (πdata∥π∞) exp
(
− 2

σ2

∫ T

0

β(s)ds
)
, (7)

where (Qt)0≤t≤T is the Markov semi-group associated with the backward SDE. This idea is exploited
in Section 4 to establish Wasserstein bounds for more general data distributions than Gaussian, but
requiring extra regularity of the score.

4 Non-asymptotic Wasserstein bound

In the literature, much attention is paid to derive upper bounds with other metrics such as the W2

distance, which has the advantage to be a distance and to have easier-to-handle and implementable
estimators. In Lee et al. (2023), the authors obtain a control for the 2-Wasserstein and total variation
distances. However, those results rely on additional assumptions on πdata (which is assumed to have
bounded support for instance in De Bortoli (2022)).

Regularity assumptions. We consider extra regularity assumptions about the modified marginal
density p̃t at any time of the diffusion.

H4 (i) For all t ≥ 0, there exists Ct ≥ 0 such that for all x, y ∈ Rd,

(∇ log p̃t(y)−∇ log p̃t(x))
⊤
(x− y) ≥ Ct ∥x− y∥2 .

(ii) For all t ≥ 0, there exists Lt ≥ 0 such that ∇ log p̃t is Lt-Lipschitz continuous.

The strong log-concavity (i) (see, e.g., Saumard and Wellner, 2014) plays a crucial role in terms
of contraction of the backward SDE. Classical distributions satisfying H4(i) include logistic densities
restricted to a compact, or Gaussian laws with a positive definite covariance matrix, see Saumard and
Wellner (2014) for other examples. We observe, notably, that when the density of the data distribution
is log-concave, this property propagates within the probability flow (p̃t)0≤t≤T (see Proposition D.1).
Similar conclusions can be drawn regarding the Lipschitz continuity of the score (Proposition D.2).
This property is formalized in the Lemma 4.1 for Gaussian distributions.

Lemma 4.1. Assume that πdata is a Gaussian distribution N (µ0,Σ0), such that Σ0 is invertible and

λmax(Σ0) < σ2. Let mt := exp(−
∫ t

0
β(s)/2σ2ds). Then, the probability flow p̃t given by (1) initialized

at πdata is Ct-strongly log concave, with

Ct :=
m2

t

(
σ2 − λmax(Σ0)

)
m2

tλmax(Σ0) + σ2 (1−m2
t )
.

In addition, the associated score ∇ log p̃t is Lt-Lipschitz continuous with

Lt := min

{
1

σ2 (1−m2
t )
;

1

λmin(Σ0)m2
t

}
+

1

σ2
.

This result, restricted to the Gaussian case, sets the focus on the importance of calibrating the
parameter σ2 depending on the covariance structure of the data distribution, in order to enhance strong
log concavity of the probability flow through the diffusion.
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Error bound. To establish a 2-Wasserstein bound explicitly depending on the noise schedule, we
consider the following additional assumptions, respectively about uniform approximation of the score,
and Lipschitz continuity in time of the renormalized score.

H5 There exists ε ≥ 0 such that sup
k∈{0,..,N−1}

∥∥s̃ (T − tk, X̄θ
tk

)
− s̃θ

(
T − tk, X̄θ

tk

)∥∥
L2
≤ ε .

H6 For a regular discretization {tk, 0 ≤ k ≤ N} of [0, T ] of constant step size h, there exists M ≥ 0
such that

sup
k∈{0,..,N−1}

sup
tk≤t≤tk+1

∥s̃ (T − t, x)− s̃ (T − tk, x)∥L2
≤Mh(1 + ∥x∥) .

We now have all the ingredients to present our theoretical guarantee in terms of Wasserstein distance.

Theorem 4.2. Assuming H4, H5 and H6 and that the time step h is small enough, it holds that

W2

(
πdata, π̂

(β,θ)
N

)
≤ EW2

1 (β) + EW2
2 (θ, β) (8)

with EW2
1 (β) =W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt

)
,

EW2
2 (θ, β) =

N−1∑
k=0

(∫ tk+1

tk

L̄tβ̄(t)dt

)(√
2hβ(T )

σ
+
hβ(T )

2σ2
+

∫ tk+1

tk

2L̄tβ̄(t)dt

)
B

+ εTβ(T ) +MhTβ(T ) (1 + 2B) ,

B = (E[∥X0∥2] + σ2d)1/2 , and for all t ∈ [0, T ], L̄t = LT−t .

In Theorem 4.2, we exploit the contraction entailed by Assumption H4(i) of the backward diffusion
processes in top of that of the forward phase. To our knowledge, in the state-of-the-art results, this
feature has never been considered. This idea leads to an improvement of all the existing bounds in
Wasserstein metrics, by refining their mixing time term. The previous result can be established when the
target distribution has a Lipschitz continuous score and is strongly log-concave: by propagating these
properties, the constants Lt and Ct can be characterized in function of L0 and C0 (see Propositions
D.1 and D.2).

Corollary 4.3. Assume that ∇ log p̃data is L0-Lipschitz, that log p̃data is C0-strongly concave such that
C0 > 1/σ2. Under Assumption H5 and H6, with a time step h small enough,

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt
)
+ c1
√
h+ c2h+ εTβ(T ) ,

with c1 = L0β(T )T
√

2β(T )/σ and c2 = β(T )T
(
L0

(
1/(2σ2) + 2L0

)
β(T )B +M(1 + 2B)

)
.

This provides an easy-to-handle upper bound in Wasserstein distance, encompassing the three types
of error (e.g., mixing time, score approximation and discretization error), for Lipschitz scores and
strongly-log concave distributions. We remark that it also exhibits an extra term in

√
h compared to

the more general KL bound obtained under milder assumptions. Note however that this term is in line
with what can be found in the literature for Wasserstein bound for SDE approximation (see Alfonsi
et al., 2015).

By considering early stopping techniques (typical in the literature on SGM), we could adapt these
bounds to more general data scenarios (e.g., not strongly log concave) exploiting the regularization
properties of the convolution with a Gaussian kernel.
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5 Evaluation of the theoretical upper bounds

The goal of this section is to numerically illustrate the validity of the theoretical bounds obtained in The-
orem 3.1 and Theorem 4.2. More precisely, we aim at unraveling the contributions of each error term of
the upper bounds. We consider a simulation design where the target distribution is known, and the associ-
ated constants of interest (i.e., the strong log concavity parameter, the Lipschitz constant,W2 (πdata, π∞),
I (πdata|π∞) or KL (πdata||π∞)) can be evaluated.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Figure 1: Noise schedule βa over
time for a ∈ {−10,−9, .., 10} with
the linear schedule a = 0 shown as
a dashed line.

The error bounds are assessed for different choices of noise sched-
ules of the form

βa(t) ∝ (eat − 1)/(eaT − 1), (9)

with a ∈ R ranging from −10 to 10 with a unit step size. We set
T = 1 and adjust schedules so that they all start at β(0) = 0.1
and end at β(1) = 20 (see Figure 1). This choice has been made
so that when a = 0 the schedule is linear and matches exactly
the classical VPSDE implementation (Song and Ermon, 2019;
Song et al., 2021).

5.1 Gaussian setting

Target distributions. We consider the setting where the true distribution πdata is Gaussian in
dimension d = 50 with mean 1d and different choices of covariance structure:

1. (Isotropic, denoted by π
(corr)
data ) Σ(iso) = 0.5Id.

2. (Heteroscedastic, denoted by π
(heterosc)
data ) Σ(heterosc) ∈ Rd×d is a diagonal matrix such that

Σ
(heterosc)
jj = 1 for 1 ≤ j ≤ 5, and Σ

(heterosc)
jj = 0.01 otherwise.

3. (Correlated, denoted by π
(corr)
data ) Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries are equal

to one and the off-diagonal terms are Σ
(corr)
jj′ = 1/

√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

SGM simulations. We simulate π̂
(βa,θ)
N from SGM using the forward process defined in (1) with

t 7→ βa(t) for the noise schedule. The score is learned via a dense neural network with 3 hidden layers
of width 256 over 150 epochs (see Figure 9) trained to optimize Lexplicit (4). This is feasible because
the score is analytically derived when πdata is Gaussian (Lemma E.1). Numerical experiments have
also been run with the commonly used conditional loss Lscore, without changing the nature of the
conclusions, see Appendix F. For backward process simulation, we use an Euler-Maruyama scheme
with 500 steps, as being the most encountered discretization in practice. For each value of a, and each
data distribution, we train the SGM using n = 10000 training samples.

KL bound. In Figure 2 (top), we compare the empirical KL divergence between πdata and samples

from π̂
(βa,θ)
N to the upper bound from Theorem 3.1. We refer the reader to Appendix E.2.1 for

implementation details. For Gaussian distributions, both the bound and KL divergence can be
computed using closed-form expressions (see Lemma E.2 and E.4). In all scenarios the noise schedule

significantly impacts the value of KL(πdata∥π̂(βa,θ)
N ), and thereby the quality of the learned distribution.

In the isotropic case (Figure 2 (a) (top)), the behavior of the upper bound does not exactly match the

one of KL(πdata∥π̂(βa,θ)
N ) suggesting that the refinement relying on contraction arguments specific to

the Gaussian setting (see (7)) is indeed more informative in such a case. When considering π
(heterosc)
data

and π
(corr)
data (Figure 2 (b,c) (top)), the upper bound remains clearly relevant to assess the efficiency

of the noise schedule used during training. In all these experiments, the KL upper bound indicates
possible values for a improving over the classical linear noise schedule.
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Figure 2: Comparison of the empirical KL divergence (top) and W2 distance (bottom) (mean ± std

over 10 runs) between πdata and π̂
(β,θ)
N (orange) and the related upper bounds (blue) from Theorem 3.1

and Theorem 4.2 across parameter a for noise schedule βa, d = 50. We also show the metrics for the
linear VPSDE model (dashed line) and our model (dotted line) with exact score evaluation.

2-Wasserstein bound. In Figure 2 (bottom), we compare the empirical W2 distance between πdata
and samples from π̂

(βa,θ)
N to the upper bound from Theorem 4.2. For Gaussian distributions, both

the bound and the W2 distance can be computed using closed-form expressions (see Lemma 4.1, E.3,
and E.5). For the isotropic case, the proposed W2 upper bound reflects the SGM performances, as

already highlighted by the KL bound. However, in non-isotropic cases, the raw distributions π
(heterosc)
data

and π
(corr)
data do not directly satisfy Assumption 4 (i) when the variance of the stationary distribution

is set to 1. Therefore, scaling the distributions in play becomes crucial for the theoretical W2 upper
bound to hold. That is why we propose the following preprocessing: train an SGM with centered and
standardized samples of covariance Σ(stand) rescaled in turn by a factor 1/(2λmax(Σ

(stand)))1/2. This
choice ensures that λmax

(
Σ(scaled)

)
< σ2 = 1, for Σ(scaled) the resulting covariance matrix, and thus the

strong log-concavity of p̃0 = pdata/φσ2 . We call π̂
(βa,θ)
N,scaled the resulting generative distribution, and the

evaluated metrics is adjusted (see (51)) to ensure a fair numerical comparison. After this preprocessing,
not only the W2 upper bound of Theorem 4.2 aligns with the empirical performances but the SGM
performances can be also boosted (see degraded empirical performances on raw distributions in Appendix
E.2.2). This highlights the importance of properly calibrating the training sample to the stationary
distribution of the SGM. Note that data normalization does not only enforce the strong log-concavity
of the modified score at time 0, but can lower the ratio L0/C0. To see this, consider the heteroscedastic
case, for which λmin(Σ

(heterosc))/λmax(Σ
(heterosc)) = 100, whereas λmin(Σ

(scaled))/λmax(Σ
(scaled)) = 1

after scaling. This Gaussian set-up reveals that data renormalization improves the conditioning of the
covariance matrix, and thereby the conditioning of SGM training. In particular, this is captured in the
upper bound of Theorem 4.2 by limiting the growth of Lt and inducing a more balanced second term.

We now consider a varying dimension in {5, 10, 25, 50}, and we compare the empirical W2 distance
obtained by (i) β0 the classical VPSDE (Song et al., 2021), with a linear noise schedule (i.e., a = 0), (ii)
βcos the SGM with cosine schedule (Nichol and Dhariwal, 2021), and (iii) βa⋆ the SGM with parametric
schedule with a = a⋆ approximately minimizing the upper bound from Theorem 3.1. In Figure 3,
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we observe that the SGMs run with βa⋆ consistently outperforms those run with linear schedule
β0 providing significant improvement in the data generation quality. It displays lower average W2

distances between πdata and the generated sample distribution, but also reduces the standard deviation
of the resulting W2 distances yielding more stable generation (see Table 2). These performances are
comparable to, and often surpass, those achieved with state-of-the-art schedules like the cosine schedule,
particularly in higher dimensions.
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Figure 3: Comparison of the empirical W2 distance (mean value ± std over 10 runs) between πdata
and the generative distribution π̂

(β,θ)
N across various dimensions. The distributions compared include

SGMs with different noise schedules: βa⋆ (blue solid), β0 (yellow dashed), and βcos (orange dotted).

5.2 More general target distributions

Beyond Gaussian distributions, numerical analysis in terms of KL divergence is not tractable as
standard estimators of the KL terms do not scale well with dimension. On the contrary, there exist
computationally-efficient estimators of Wasserstein distances, as for instance the slicedW2 estimate (Fla-
mary et al., 2021). We use the latter to assess the relevancy of Theorem 4.2 when the target distribution
corresponds to a 50-dimensional Funnel distribution defined as:
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Figure 4: Upper bound and sliced
2-Wasserstein distance on a Funnel
dataset in dimension 50.

πdata(x) = φa2(x1)
∏d

j=2 φexp(2bx1)(xj), with a = 1 and b = 0.5
(see Section E.2.3 for more details and additional experiments
on Gaussian mixture model). As previously, the samples are
standardized and rescaled. In Figure 4, empirical results demon-
strate that the minimum of the upper bound closely aligns with
that of the empirical sliced 2-Wasserstein distance between the
simulated and training data. Moreover, implementing SGM with
the optimal parameter a yields consistent improvements of the
data generation quality across different metrics w.r.t. to classical
noise schedule competitors (linear or cosine). These experiments
not only support the relevance of the theoretical upper bound
beyond the assumptions required in Section 4, but also the va-
lidity of theoretically-inspired data preprocessing for improving
SGM training with arbitrary target distributions.

6 Discussion

Perspectives of this work include the study of multi-dimensional noise schedule. Indeed, they could be
of particular interest to deal with target distributions with complex covariance structures, and thereby
an alternative solution to data normalization issues. Last but not least, establishing upper bounds for
Wasserstein distances under milder assumptions remains an exciting open problem, which would shed
light on the performances and limitations of score-based generative models.
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A Notations and assumptions.

Consider the following notations, used throughout the appendices. For all d ≥ 1, µ ∈ Rd and definite
positive matrices Σ ∈ Rd×d, let φµ,Σ be the probability density function of a Gaussian random variable
with mean µ and variance Σ. We also use the notation φσ2 = φ0,σ2Id . When the context is clear, we
may indifferently use the measure and the associated density w.r.t. the reference measure. For all twice-
differentiable real-valued function f , let ∆f be the Laplacian of f . For all matrix A ∈ Rm×n, ∥A∥Fr
is the Frobenius norm of A, i.e., ∥A∥Fr = (

∑m
i=1

∑n
j=1 |Ai,j |2)1/2. For all time-dependent real-valued

functions h : t 7→ ht or f : t 7→ f(t), we write h̄t = hT−t and f̄(t) = f(T − t) for all t ∈ [0, T ].
Let π0 be a probability density function with respect to the Lebesgue measure on Rd and α : R→ R

and g : R→ R be two continuous and increasing functions. Consider the general forward process

d
−→
X t = −α(t)

−→
X tdt+ g(t)dBt,

−→
X 0 ∼ π0 , (10)

and introduce p̃t : x 7→ pt(x)/φσ2(x), where pt is the probability density function of
−→
X t. The backward

process associated with (10) is referred to as (
←−
X t)t∈[0,T ] and given by

d
←−
X t =

{(
ᾱ(t)− ḡ2(t)

σ2

)
←−
X t + ḡ2(t)∇ log p̃T−t

(←−
X t

)}
dt+ ḡ(t)dB̄t

←−
X 0 ∼ pT , (11)

with B̄ a standard Brownian motion in Rd. Moreover, consider

σ2
t := exp

(
−2
∫ t

0

α(s)ds

)∫ t

0

g2(s) exp

(
2

∫ s

0

α(u)du

)
ds. (12)

The approximate EI discretization of (11) considered in this paper is, for tk ≤ t ≤ tk+1, 0 ≤ k ≤ N − 1,

d
←−
X θ

t =
{
ᾱ(t)
←−
X θ

t + ḡ2(t)sθ(T − tk,
←−
X θ

tk
)
}
dt+ ḡ(t)dB̄t .

Sampling from this backward SDE is possible recursively for k ∈ {0, . . . , N − 1}, with (Zk)1≤k≤N
i.i.d∼

N (0, Id). For k ∈ {0, . . . , N − 1}, writing τk = T − tk,

←−
X θ

tk+1
= e−

∫ τk+1
τk

α(s)ds←−X θ
tk

+ sθ(τk,
←−
X θ

tk
)e−

∫ τk+1
τk

α(s)ds

∫ τk+1

τk

g2(t)e
∫ t
τk

α(v)dv
dt

+

(
e−2

∫ τk+1
τk

α(s)ds

∫ τk

τk+1

e
2
∫ t
τk

α(s)ds
g2(t)dt

)1/2

Zk+1 .

We denote by QT ∈ P(C([0, T ],Rd)) the path measure associated with the backward diffusion and

by (Qt)0≤t≤T its Markov semi-group. We also write
←−
X∞

T ∼ π∞QT and, for each time step tk for

0 ≤ k ≤ N ,
←−
X∞

tk
∼ π∞Qtk . For each time step tk for 0 ≤ k ≤ N , the kernel associated with the

backward discretization is denoted by QN,θ
tk

, so that we have X̄θ
tk
∼ π∞QN,θ

tk
.

In Appendix C, these notations are used for the specific case where α : t 7→ β(t)/(2σ2) and
g : t 7→ β(t)1/2 and the associated backward discretization is given in (31).

B Proofs of Section 3

B.1 Proof of Theorem 3.1

We are interested in the relative entropy of the training data distribution πdata with respect to the

generated data distribution π̂
(β,θ)
N . Leveraging the time-reverse property we have:
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KL
(
πdata

∥∥∥π̂(β,θ)
N

)
= KL

(
pTQT

∥∥∥π̂(β,θ)
N

)
.

By the data processing inequality,

KL
(
pTQT

∥∥∥π̂(β,θ)
N

)
≤ KL

(
pTQT

∥∥∥π∞QN,θ
T

)
.

Writing the backward time τt = T − t and its discretized version τk = T − tk, with 0 = t0 < t1 <
. . . < tN = T , we have (by Lemma B.5) that

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT ∥π∞) +

1

2

∫ T

0

1

β̄(t)
E

[∥∥∥∥∥−β̄(t)2σ2

←−
X t + β̄(t)∇ log p̃τt

(←−
X t

)

−
(
− β̄(t)
2σ2

←−
X t + β̄(t)s̃θ

(
τk,
←−
X tk

))∥∥∥∥∥
2]

dt .

From there, the KL divergence can be split into the theoretical mixing time of the forward OU process
and the approximation error for the score function made by the neural network, as follows:

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT ∥π∞) +

1

2

∫ T

0

1

β̄(t)
E

[∥∥∥∥∥β̄(t)(s̃(τt,←−X t

)
− s̃θ(τk,

←−
X tk)

)∥∥∥∥∥
2]

dt .

By using the regular discretization of the interval [0, T ], one can disentangle the last term as follows:

KL
(
πdata

∥∥∥π̂(β,θ)
N

)
≤ KL (pT ∥π∞) +

1

2

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,←−X t

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2] dt
≤ E1(β) + E2(θ, β) + E3(β) ,

where

E1(β) = KL (pT ∥φσ2) , (13)

E2(θ, β) =

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τk,←−X tk

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2]dt , (14)

E3(β) =

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,←−X t

)
− s̃

(
τk,
←−
X tk

)∥∥∥2] dt . (15)

Finishing the proof of Theorem 3.1 amounts to obtaining upper bounds for E1(β), E2(θ, β) and
E3(β). This is done in Lemmas B.1, B.2 and B.3, so that E1(β) ≤ E1(β), E2(θ, β) ≤ E2(θ, β) and
E3(β) ≤ E3(β).

Lemma B.1. For any noise schedule β,

E1(β) = KL (pT ∥π∞) ≤ KL (πdata∥π∞) exp

(
− 1

σ2

∫ T

0

β(s)ds

)
.

Proof. The proof follows the same lines as Franzese et al. (2023, Lemma 1). The Fokker-Planck equation
associated with (1) is

∂tpt(x) =
β(t)

2σ2
div (xpt(x)) +

β(t)

2
∆pt(x) =

β(t)

2
div

(
1

σ2
xpt(x) +∇pt(x)

)
,

15



for t ∈ [0, T ], x ∈ Rd. Combing this with the derivation under the integral theorem, we get

∂

∂t
KL (pt∥φσ2) =

∂

∂t

∫
Rd

log
pt(x)

φσ2(x)
pt(x)dx

=

∫
Rd

∂

∂t
pt(x) log

pt(x)

φσ2(x)
dx+

∫
Rd

pt(x)∂tpt(x)

pt(x)
dx

=

∫
Rd

∂

∂t
pt(x) log

pt(x)

φσ2(x)
dx+

∫
Rd

∂

∂t
pt(x)dx

=

∫
Rd

β(t)

2
div
( x
σ2
pt(x) +∇pt(x)

)
log

pt(x)

φσ2(x)
dx

=
β(t)

2

∫
Rd

div (−∇ logφσ2(x) pt(x) +∇pt(x)) log
pt(x)

φσ2(x)
dx

= −β(t)
2

∫
Rd

(−∇ logφσ2(x) pt(x) +∇pt(x))⊤∇ log
pt(x)

φσ2(x)
dx

= −β(t)
2

∫
Rd

pt(x) (−∇ logφσ2(x) +∇ log pt(x))
⊤∇ log

pt(x)

φσ2(x)
dx

= −β(t)
2

∫
Rd

pt(x)

∥∥∥∥∇ log
pt(x)

φσ2(x)

∥∥∥∥2 dx .
Using the Stam-Gross logarithmic Sobolev inequality given in Proposition B.6, we get

∂

∂t
KL (pt∥φσ2) ≤ −β(t)

σ2
KL (pt∥φσ2) .

Applying Grönwall’s inequality, we obtain

KL (pT ∥φσ2) ≤ KL (p0∥φσ2) exp

{
− 1

σ2

∫ T

0

β(s)ds

}
,

which concludes the proof.

Lemma B.2. For all θ and all β,

E2(θ, β) =

N∑
k=1

E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2] ∫ tk+1

tk

β̄(t)dt ,

where E2(θ, β) is defined by (14).

Proof. By definition of E2(θ, β),

E2(θ, β) =

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2] dt
=

N−1∑
k=0

E
[∥∥∥∇ log p̃T−tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2] ∫ tk+1

tk

β̄(t)dt

=

N−1∑
k=0

E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2] ∫ tk+1

tk

β̄(t)dt ,

where the last equality comes from the fact that the forward and backward processes have same

marginals since
−→
XT ∼ pT .
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Lemma B.3. Assume that H1 holds. For all T, σ > 0, θ and all β,

E3(β) ≤ 2hβ(T )max

{
hβ(T )

4σ2
; 1

}
I(πdata|π∞) ,

where E3(β) is defined by (15).

Proof. By Lemma B.7, with Yt := ∇ log p̃T−t(
←−
X t),

dYt =
β̄(t)

2σ2
Ytdt+

√
β̄(t)ZtdBt .

By applying Itô’s lemma to the function x 7→ ∥x∥2, we obtain

d∥Yt∥2 =

(
β̄(t)

σ2
∥Yt∥2 + β̄(t)∥Zt∥2Fr

)
dt+

√
β̄(t)Y ⊤

t ZtdBt .

Fix δ > 0. From Baldi (2017, Theorem 7.3, p.193), we have that
(∫ t

0
g(s)Y ⊤

s ZsdBs

)
t∈[0,T−δ]

is a

square integrable martingale if

E

[∫ T−δ

0

g2(s)
∥∥Y ⊤

s Zs

∥∥2 ds] <∞ .

From the Cauchy-Schwarz inequality, we get that

E
[∥∥Y ⊤

s Zs

∥∥2
2

]
≤ E

[
∥Ys∥22 ∥Zs∥2Fr

]
≤ E

[
∥Ys∥42

]1/2
E
[
∥Zs∥4Fr

]1/2
.

Applying Lemma B.8 and B.9, we get that both E[∥Ys∥42] and E[∥Zs∥42] are bounded by a quantity
depending on σ−8

T−t. As the term σ−8
T−t is uniformly bounded in [0, T − δ] and by Fubini’s theorem, we

get

E

[∫ T

0

g2(s)
∥∥Y ⊤

s Zs

∥∥2 ds] =

∫ T

0

g2(s)E
[∥∥Y ⊤

s Zs

∥∥2] ds <∞ .

Therefore, (
∫ t

0
g(s)Y ⊤

s ZsdBs)t∈[0,T−δ] is a square integrable martingale. This means that, on one hand,
we have

E
[
∥Yt∥2

]
− E

[
∥Ytk∥2

]
= E

[∫ t

tk

β̄(s)

σ2
∥Ys∥2ds+

∫ t

tk

β̄(s)∥Zs∥2Frds
]
,

and, on the other hand,

E
[
∥Yt − Ytk∥

2
]
= E

[∥∥∥∥∫ t

tk

β̄(s)

2σ2
Ysds+

∫ t

tk

√
β̄(s)ZsdBs

∥∥∥∥2
]

≤ 2E

[∥∥∥∥∫ t

tk

β̄(s)

2σ2
Ysds

∥∥∥∥2
]
+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 2E

∥∥∥∥∥ 1

2σ

∫ t

tk

√
β̄(s)

√
β̄(s)

σ
Ysds

∥∥∥∥∥
2
+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 1

2σ2

∫ tk+1

tk

β̄(s)dsE
[∫ tk+1

tk

β̄(s)

σ2
∥Ys∥2 ds

]
+ 2E

[∫ tk+1

tk

β̄(s) ∥Zs∥2Fr ds
]

≤ 2max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

])
. (16)
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Without loss of generality, we have that tN−1 = T − δ. Then, the discretization error can be bounded
as follows

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

)∥∥∥2]dt
=

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[
∥Yt − Ytk∥

2
]
dt

≤ 2

N−1∑
k=0

∫ tk+1

tk

β̄(t)max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

])
dt

≤ 2

N−1∑
k=0

max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

]) ∫ tk+1

tk

β̄(t)dt

≤ 2

N−1∑
k=0

max


(∫ tk+1

tk
β̄(s)ds

)2
4σ2

,

∫ tk+1

tk

β̄(s)ds

(E [∥Ytk+1
∥2
]
− E

[
∥Ytk∥2

])

≤ 2 max
0≤k≤N−1

max


(∫ tk+1

tk
β̄(s)ds

)2
4σ2

,

∫ tk+1

tk

β̄(s)ds


E

[∥∥∥∇ log p̃T−tN−1

(←−
X tN−1

)∥∥∥2] .
By H1, t 7→ β(t) is increasing, so that t 7→ β̄(t) is decreasing. Therefore, using that since

←−
X 0 ∼ pT ,←−

XT−δ and
−→
X δ have the same distribution, yields,

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

)∥∥∥2] dt
≤ 2 max

0≤k≤N−1

{
max

{(
(tk+1 − tk)β̄(tk)

)2
4σ2

, (tk+1 − tk)β̄(tk)

}}

× E
[∥∥∥∇ log p̃T−tN−1

(←−
X tN−1

)∥∥∥2]
≤ 2 max

0≤k≤N−1

{
max

{
h2β̄2(tk)

4σ2
, hβ̄(tk)

}}
I(pTQT−δ|π∞)

≤ 2hβ̄(0)max

{
hβ̄(0)

4σ2
, 1

}
I(pTQT−δ|π∞)

≤ 2hβ(T )max

{
hβ(T )

4σ2
, 1

}
I(pTQT−δ|π∞) .

Finally, following the steps of the proof of Conforti et al. (2023, Lemma 2), we can consider the limit
when δ goes to zero, under Assumption H2, concluding the proof.

B.2 Technical results

Lemma B.4. Assume that H1 and H2 hold. Let (
−→
X t)t≥0 be a weak solution to the forward process (1).

Then, the stationary distribution of (
−→
X t)t≥0 is Gaussian with mean 0 and variance σ2Id.

Proof. Consider the process

X̄t = exp

(
1

2σ2

∫ t

0

β(s)ds

)
−→
X t .
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Itô’s formula yields

−→
X t = exp

(
− 1

2σ2

∫ t

0

β(s)ds

)(
−→
X 0 +

∫ t

0

√
β(s) exp

(∫ s

0

β(u)/(2σ2)du

)
dBs

)
. (17)

First, we have that

lim
t→∞

exp

(
− 1

2σ2

∫ t

0

β(s)ds

)
−→
X 0 = 0 .

Secondly, we have that the second term in the r.h.s. of (17), by property of the Wiener integral, is
Gaussian with mean 0 and variance σ2

t Id, where

σ2
t = exp

(
− 1

σ2

∫ t

0

β(s)ds

)∫ t

0

β(s)e
∫ s
0
β(u)/σ2duds = σ2

(
1− exp

(
− 1

σ2

∫ t

0

β(s)ds

))
.

By H1, limt→∞ σ2
t = σ2, which concludes the proof.

Lemma B.5. Let T > 0 and b1, b2 : [0, T ]× C([0, T ],Rd)→ Rd be measurable functions such that for
i ∈ {1, 2},

dX
(i)
t = bi

(
t, (X(i)

s )s∈[0,T ]

)
dt+

√
β(T − t)dBt (18)

admits a unique strong solution with X
(i)
0 ∼ π

(i)
0 . Suppose that (bi(t, (X

(i)
s )s∈[0,t]))t∈[0,T ] is progressively

measurable, with Markov semi-group (P
(i)
t )t≥0. In addition, assume that

E

[
exp

{
1

2

∫ T

0

1

β(T − s)

∥∥∥∥b1(s,(X(1)
u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥∥2 ds
}]

<∞ . (19)

Then,

KL
(
π
(1)
0 P

(1)
T ∥π

(2)
0 P

(2)
T

)
≤ KL

(
π
(1)
0 ∥π

(2)
0

)
+

1

2

∫ T

0

1

β(T − t)
E

[∥∥∥∥b1(s,(X(1)
u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥∥2
]
dt . (20)

Proof. Consider the probability space (Ω, (Ft)0≤t≤T ,P) and for i ∈ {1, 2}, let µ(i) be the distribution

of (X
(i)
t )t∈[0,T ] on the Wiener space (C([0, T ];Rd),B(C([0, T ];Rd))) with X

(i)
0 ∼ π

(i)
0 . Define u(t, ω) as

u(t, ω) := β(T − t)−1/2

(
b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
− b2

(
t,
(
X(1)

u

)
u∈[0,t]

))
,

and define dQ/dP(ω) =MT (ω) where, for t ∈ [0, T ],

Mt(ω) = exp

{
−
∫ t

0

u(s, ω)⊤dBs −
1

2

∫ t

0

∥u(s, ω)∥2ds
}
.

From (19), the Novikov’s condition is satisfied (Karatzas and Shreve, 2012, Chapter 3.5.D), thus the

process (Mt)0≤t≤T is a martingale. Applying Girsanov theorem, dB̄t = dBt + u(t, (X
(1)
s )s∈[0,t])dt is a

Brownian motion under the measure Q. Therefore,

dX
(1)
t = b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dBt = b2

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dB̄t .
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Using the uniqueness in law of (18), the law of X(1) under P is the same as the one of X̄(2) under Q,

with X̄(2) solution of (18) with i = 2 and X̄
(2)
0 = π

(1)
0 . Denote by µ̄(2) the law of X̄(2). Therefore,

µ(1)(A) = P(X(1) ∈ A) = Q(X̄(2) ∈ A) =
∫

⊮A(X̄
(2)(ω))Q(dω) ,

which implies that

dµ̄(2)

dµ(1)
=MT .

Hence, we obtain that

KL
(
µ(1)

∥∥∥µ(2)
)
= KL

(
π
(1)
0

∥∥∥π(2)
0

)
+ E

[
log

(
dµ(1)

dµ̄(2)

)]
= KL

(
π
(1)
0

∥∥∥π(2)
0

)
+ E

[∫ t

0

u(s, ω)⊤dBs +
1

2

∫ t

0

∥u(s, ω)∥2ds
]

= KL
(
π
(1)
0

∥∥∥π(2)
0

)
+

1

2

∫ T

0

1

β(T − t)
E
[∥∥∥b1(t, (X(1)

s )s∈[0,t])− b2(t, (X(1)
s )s∈[0,t])

∥∥∥2]dt ,
which concludes the proof.

Lemma B.6. Let p be a probability density function on Rd. For all σ2 > 0,

KL (p∥φσ2) =

∫
p(x) log

p(x)

φσ2(x)
dx ≤ σ2

2

∫ ∥∥∥∥∇ log
p(x)

φσ2(x)

∥∥∥∥2 p(x) dx.
Proof. Define fσ2 : x 7→ p(x)/φσ2(x). Since ∇2 logφσ2(x) = −σ−2Id, the Bakry-Emery criterion is

satisfied with constant σ2−1
, see Bakry et al. (2014); Villani (2021); Talagrand (1996). By the classical

logarithmic Sobolev inequality,∫
fσ2(x) log fσ2(x)φσ2(x)dx ≤ σ2

2

∫
∥∇fσ2(x)∥2

fσ2(x)
φσ2(x)dx ,

which concludes the proof.

Lemma B.7. Define Yt := ∇ log p̃T−t(
←−
X t) and Zt := ∇2 log p̃T−t(

←−
X t), where {

←−
X t}t≥0 is a weak

solution to (10). Then,

dYt =

(
ḡ2(t)

σ2
− ᾱ(t)

)
Ytdt−

2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
←−
X tdt+ ḡ(t)ZtdB̄t . (21)

Proof. The Fokker-Planck equation associated with the forward process (10) is

∂tpt(x) = α(t)div (xpt(x)) +
g2(t)

2
∆pt(x) , (22)

for x ∈ Rd. First, we prove that p̃t satisfies the following PDE

∂t log p̃t(x) = d

(
ᾱ(t)− ḡ2(t)

2σ2

)
+ ⟨∇ log p̃t(x), x⟩

(
ᾱ(t)− ḡ2(t)

σ2

)
+
∥x∥2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
+
ḡ2(t)

2

∆p̃t(x)

p̃t(x)
.

(23)
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Using that ∇ logφσ2(x) = −x/σ2, we have

div(xpt(x)) = d pt(x) + pt(x) x
⊤∇ log pt(x)

= φσ2(x)

(
d p̃t(x) + p̃t(x)∇ log p̃t(x)

⊤x− ∥x∥
σ2

)
= φσ2(x)

(
d p̃t(x) +∇p̃t(x)⊤x−

∥x∥
σ2

p̃t(x)

)
.

Then, since ∆φσ2(x) = (φσ2(x)/σ2)
(
∥x∥2/σ2 − d

)
, we get

∆pt(x) = p̃t(x)∆φσ2(x) + 2∇p̃t(x)⊤∇φσ2(x) + φσ2(x)∆p̃t(x)

= φσ2(x)

(
p̃t(x)

σ2

(
∥x∥2

σ2
− d
)
− 2

σ2
∇p̃t(x)⊤x+∆p̃t(x)

)
.

Combining these results with (22), we obtain

∂tp̃t(x) = d p̃t(x)

(
α(t)− g2(t)

2σ2

)
+∇p̃t(x)⊤x

(
α(t)− g2(t)

σ2

)
+ p̃t(x)

∥x∥2

σ2

(
g2(t)

2σ2
− α(t)

)
+
g2(t)

2
∆p̃t(x) .

Hence, diving by p̃t yields (23).
The previous computation, together with the fact that ∆p̃t/p̃t = ∆ log p̃t + ∥∇ log p̃t∥2, yields that

the function ϕt(x) := log p̃T−t(x) is a solution to the following PDE

∂tϕt(x) = −d
(
ᾱ(t)− ḡ2(t)

2σ2

)
−∇ϕt(x)⊤x

(
ᾱ(t)− ḡ2(t)

σ2

)
(24)

− ∥x∥
2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
− ḡ2(t)

2

(
∆ϕt(x) + ∥∇ϕt(x)∥2

)
. (25)

Following the lines of Conforti et al. (2023, Proposition 1), we get that, since α and g are continuous and

non-increasing, the map pt, solution to (22), belongs to C1,2((0, T ]× Rd). By (11), as Yt = ∇ϕt(
←−
X t),

we can apply Itô’s formula and obtain, writing γ̄(t) = ᾱ(t)− ḡ(t)2/σ2,

dYt =

[
∂t∇ϕt

(←−
X t

)
+∇2ϕt

(←−
X t

)(
γ̄(t)
←−
X t + ḡ2(t)∇ϕt

(←−
X t

))
+
ḡ2(t)

2
∆∇ϕt

(←−
X t

)]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=

[
∇
(
∂tϕt

(←−
X t

)
+
ḡ2(t)

2

(
∆ϕt

(←−
X t

)
+
∥∥∥∇ϕt (←−X t

)∥∥∥2))+ γ̄(t)∇2ϕt

(←−
X t

)←−
X t

]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,

using that 2∇2ϕt(x)∇ϕt(x) = ∇∥∇ϕt(x)∥2. Using (24), we get

dYt =

[
−γ̄(t)∇ψt

(←−
X t

)
+

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t + γ̄(t)∇2ϕt

(←−
X t

)←−
X t

]
dt

+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,

with ψt (x) := ∇ϕt(x)⊤x. With the identity ∇
(
x⊤∇ϕt(x)

)
= ∇ϕt(x) +∇2ϕt(x)x, we have

dYt =

[(
ḡ2(t)

σ2
− ᾱ(t)

)
∇ϕt

(←−
X t

)
+

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=

[(
ḡ2(t)

σ2
− ᾱ(t)

)
Yt +

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)ZtdB̄t ,
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which concludes the proof.

Lemma B.8. Let Yt := ∇ log p̃T−t(
←−
X t), with

←−
X satisfying (11). There exists a constant C > 0 such

that

E
[
∥Yt∥4

]
≤ C

(
σ−4
T−tE

[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4]) , (26)

with N ∼ N (0, Id) and σ
2
t as in (12).

Proof. The transition density qt(y, x) associated with the semi-group of the process (10) is given by

qt(y, x) =
(
2πσ2

t

)−d/2
exp

−
∥∥∥x− y exp(− ∫ t

0
α(s)ds

)∥∥∥2
2σ2

t

 .

Therefore, we have

∇ log pT−t(x) =
1

pT−t(x)

∫
p0(y)∇xqT−t(y, x)dy

=
1

pT−t(x)

∫
p0(y)

y exp
(
−
∫ T−t

0
α(u)du

)
− x

σ2
T−t

qT−t(y, x)dy .

This, together with the definition of p̃, yields

∇ log p̃T−t

(−→
XT−t

)
= σ−2

T−tE
[−→
X 0e

−
∫ T−t
0

α(u)du −
−→
XT−t

∣∣∣−→XT−t

]
+ σ−2−→XT−t .

Using Jensen’s inequality for conditional expectation, there exists a constant C > 0 (which may change
from line to line) such that∥∥∥∇ log p̃T−t

(−→
XT−t

)∥∥∥4 ≤ C (σ−8
T−t

∥∥∥E [−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]∥∥∥4 + σ−8
∥∥∥−→XT−t

∥∥∥4)
≤ C

(
σ−8
T−tE

[∥∥∥−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

∥∥∥4∣∣∣∣−→XT−t

]
+ σ−8

∥∥∥−→XT−t

∥∥∥4) .

Note that
−→
X t has the same law as exp(−

∫ t

0
α(s)ds)

−→
X 0 + σtN , with N ∼ N (0, Id). This means that we

have that

E
[∥∥∥∇ log pT−t

(−→
XT−t

)∥∥∥4] ≤ Cσ−4
T−t

(
E
[
∥N∥4

]
+ E

[∥∥∥−→X 0

∥∥∥4]) .

Finally,

E
[
∥Yt∥4

]
= E

[∥∥∥∇ log p̃T−t

(←−
X t

)∥∥∥2] = E
[∥∥∥∇ log p̃T−t

(−→
XT−t

)∥∥∥4]
≤ σ−4

T−tE
[
∥N∥4

]
≤ C

(
σ−4
T−tE

[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4]) ,

which concludes the proof.
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Lemma B.9. Let Zt := ∇2 log p̃T−t(
←−
X t), where {

←−
X t}t≥0 is a weak solution to (11). There exists a

constant C > 0 such that

E
[
∥Zt∥4

]
≤ C

(
σ−8
T−t + σ−8

) (
E
[
∥Z∥82

]
+ d4

)
, (27)

with Z ∼ N (0, Id) and σ
2
t as in (12).

Proof. Let qt(y, x) be the transition density associated to the semi-group of the process (10). Write

∇2 log pT−t(x)

= ∇

(
1

pT−t(x)

∫
p0(y)

ye−
∫ T−t
0

α(s)ds − x
σ2
T−t

qT−t(y, x)dy

)

= −∇pT−t(x)

p2T−t(x)

(∫
p0(y)

ye−
∫ T−t
0

α(s)ds − x
σ2
T−t

qT−t(y, x)dy

)⊤

+
1

pT−t(x)
∇
∫
p0(y)

ye−
∫ T−t
0

α(s)ds − x
σ2
T−t

qT−t(y, x)dy

=
1

σ2
T−t pT−t(x)

(
−
∫ (

∇pT−t(x)

pT−t(x)

)(
ye−

∫ T−t
0

α(s)ds − x
σ2
T−t

)⊤

qT−t(y, x)p0(y)dy

− Id +

∫
1

σ2
T−t

(
ye−

∫ T−t
0

α(s)ds − x
)(

ye−
∫ T−t
0

α(s)ds − x
)⊤

qT−t(y, x)p0(y)dy

)
.

Therefore,

∇2 log p̃T−t

(−→
XT−t

)
= − 1

σ2
T−t

E

∇pT−t

(−→
XT−t

)
pT−t

(−→
XT−t

)
(−→X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∣∣∣∣∣∣−→XT−t

+ Id


+ σ−4

T−tE
[(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∣∣∣∣−→XT−t

]
+ σ−2Id

= −σ−4
T−t

(
E
[−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

])(
E
[−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

])⊤
+
(
σ−2 − σ−2

T−t

)
Id

+ σ−4
T−tE

[(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∣∣∣∣−→XT−t

]
.

There exists a constant C > 0 (which may change from line to line) such that

E
[∥∥∥∇2 log pT−t

(−→
XT−t

)∥∥∥4
Fr

]
≤ C

σ16
T−t

E

[∥∥∥∥E [−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]
E
[−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]⊤∥∥∥∥4
Fr

]
+ C

(
σ−8
T−t + σ−8

)
d4

+
C

σ16
T−t

E

[∥∥∥∥E [(−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

)(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∣∣∣∣−→XT−t

]∥∥∥∥4
Fr

]
.
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As in the previous proof, we note that
−→
X t has the same law as e−

∫ t
0
α(s)ds−→X 0+σtZ, with Z ∼ N (0, Id)

independent of
−→
X 0. Therefore, using Jensen’s inequality,

E

[∥∥∥∥E [−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]
E
[−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]⊤∥∥∥∥4
Fr

]

≤ E
[∥∥∥E [−→X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]∥∥∥4
2

∥∥∥E [−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

∣∣∣−→XT−t

]∥∥∥4
2

]
≤ E

[
E
[∥∥∥−→X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

∥∥∥8
2

∣∣∣∣−→XT−t

]]
≤ σ8

tE
[
∥Z∥82

]
and

E

[∥∥∥∥E [(−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

)(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∣∣∣∣−→XT−t

]∥∥∥∥4
Fr

]

≤ E

[
E

[∥∥∥∥(−→X 0e
−

∫ T−t
0

α(s)ds −
−→
XT−t

)(−→
X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)⊤∥∥∥∥4
Fr

∣∣∣∣∣−→XT−t

]]

= E
[∥∥∥(−→X 0e

−
∫ T−t
0

α(s)ds −
−→
XT−t

)∥∥∥8
2

]
≤ σ8

tE
[
∥Z∥82

]
.

Hence, we can conclude that

E
[
∥Zt∥4Fr

]
= E

[∥∥∥∇2 log p̃T−t

(−→
XT−t

)∥∥∥4
Fr

]
≤ C

(
σ−8
T−t + σ−8

) (
E
[
∥Z∥82

]
+ d4

)
.

C Proofs of Section 4

C.1 Gaussian case: proof of Lemma 4.1

In the case where πdata is the Gaussian probability density with mean µ0 and variance Σ0, we have

∇ log p̃t(x) = −
(
m2

tΣ0 + σ2
t Id
)−1

(x−mtµ0) + σ−2x ,

with mt = exp
(
−
∫ t

0
β(s)ds/(2σ2)

)
and σt = σ2(1−m2

t ). Let
−→
Σ t = m2

tΣ0 + σ2
t Id be the covariance of

the forward process
−→
X t and bt =

−→
Σ−1

t mtµ0 so that

∇ log p̃t(x) = Atx+ bt with At = −
(−→
Σt

−1 − σ−2Id

)
. (28)

Note that, if we denote by λ10 ≤ · · · ≤ λd0 the eigenvalues of Σ0, which are positive as Σ0 is positive
definite, we have that the eigenvalues of At are

λit := −
1

m2
tλ

i
0 + σ2

t

+
1

σ2
.

It is straightforward to see that λ1t ≤ · · · ≤ λdt . Moreover, we always have that in this case

(∇ log p̃t(x)−∇ log p̃t(y))
⊤
(x− y) ≤ λdt ∥x− y∥

2
,

∥∇ log p̃t(x)−∇ log p̃t(y)∥ ≤ max
{∣∣λ1t ∣∣ , ∣∣λdt ∣∣} ∥x− y∥ ,
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which entails that we can define

Lt := max
{∣∣λ1t ∣∣ , ∣∣λdt ∣∣} , Ct := −λdt ,

and apply Proposition C.2.
The condition λdt ≤ 0, or equivalently σ2 ≥ λmax(Σ0), yields a contraction in 2–Wasserstein distance

in the backward process as well in the forward process from Proposition C.2. This shows that, in
specific cases, with an appropriate calibration of the variance of the stationary law with respect to the
initial law, we have a contraction both in the forward and in the backward flows.

As a consequence, note that

W2 (πdata, π∞QT )
2 ≤ W2 (pT , π∞)

2
exp

(
− 1

σ2

∫ T

0

β(t)(1 + 2Ctσ
2)dt

)
.

Using Talagrand’s T2 inequality for the Gaussian measureW2 (µ, π∞)
2 ≤ 2σ2KL(µ∥π∞) and Lemma B.1

we get

W2 (πdata, π∞QT )
2 ≤ 2σ2KL (πdata∥π∞) exp

(
− 2

σ2

∫ T

0

β(t)(1 + 2Ctσ
2)dt

)
.

Proposition C.1. Assume that πdata is a Gaussian distribution N (µ0,Σ0) such that λmax(Σ0) ≤ σ2

where λmax(Σ0) denotes the largest eigenvalue of Σ0. Then,

KL (πdata∥π∞QT ) ≤ KL (πdata∥φσ2) exp

(
− 2

σ2

∫ T

0

β(s)ds

)
.

Proof. In this Gaussian case, the backward process is linear (see (28)) and the associated infinitesimal
generator writes, for g ∈ C2,

←−
L tg(x) = ∇g(x)⊤

(
− β̄(t)
2σ2

+ β̄(t)(Ātx+ b̄t)

)
+

1

2
β̄(t)∆g(x),

where Āt = AT−t and b̄t = bT−t.
Our objective is to monitor the evolution of the Kullback-Leibler divergence, KL(pTQt∥φσ2Qt),

for t ∈ [0, T ]. We follow Del Moral et al. (2003, Section 6) (see also Collet and Malrieu, 2008). Let
qt = pTQt and ϕt = φσ2Qt two densities that satisfy the Fokker-Planck equation, involving the dual

operator
←−
L ∗

t of the infinitesimal generator
←−
L

∂tqt =
←−
L ∗

t qt, q0(x) = pT (x)

∂tϕt =
←−
L ∗

tϕt, ϕ0(x) = φσ2(x).

Let ft = qt/ϕt. By definition of KL(qt∥ϕt) =
∫
ln (ft(x)) qt(x)dx we have

∂tKL (qt∥ϕt) =
∫

ln (ft(x)) ∂tqt(x)dx+

∫
∂t ln (ft(x)) qt(x)dx

=

∫
ln (ft(x)) ∂tqt(x)dx−

∫
ft(x)∂tϕt(x)dx .

By employing the Fokker-Planck equation and the adjoint relation, which states that
∫
f(x)
←−
L ∗

t (g)(x)dx =∫ ←−
L tf(x)g(x)dx we obtain

∂tKL (qt∥ϕt) =
∫ ←−
L ln (ft) (x)qt(x)dx−

∫ ←−
L ft(x)ϕt(x)dx .
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The infinitesimal generator
←−
L satisfies the change of variables formula (see Bakry et al., 2014) so that

←−
L t(ln(f)) =

1

f

←−
L tf −

1

2f2
←−
Γ t(f, f) ,

where
←−
Γ t is the “carré du champ” operator associated with

←−
L t defined by

←−
Γ t(f, f)(x) = β(t)|∇f(x)|2.

We then obtain

∂tKL (qt∥ϕt) =
∫ ←−
L ft(x)

qt(x)

ft(x)
dx−

∫
β(t)

2

|∇ft(x)|2

f2t (x)
qt(x)dx−

∫ ←−
L ft(x)ϕt(x)dx

= −β(t)
2

∫
|∇ft(x)|2

ft(x)
ϕt(x)dx . (29)

To obtain a control of the Kullback-Leibler divergence we need a logarithmic Sobolev inequality for

the distribution of density ϕt = φσ2Qt. In this Gaussian case, if
←−
X 0 ∼ N (0, σ2) then for all t ∈ [0, T ]

the law of
←−
X t is a centered Gaussian with covariance matrix

←−
Σ t given by

←−
Σ t = σ2 exp

(∫ t

0

− β̄(s)
σ2

+ 2β̄sĀsds

)
+

∫ t

0

β(s) exp

(∫ t

s

− β̄(u)
σ2

+ 2β̄(u)Āudu

)
ds ,

where we use the matrix exponential. As mentioned before, if λmax(Σ0) ≤ σ2, the eigenvalues of As, for

s ∈ [0, T ], are negative. We can easily deduce that λmax(
←−
Σ t) ≤ σ2. We recall the logarithmic Sobolev

inequality for a normal distribution (see Chafai, 2004, Corollary 9)

KL(qt∥ϕt) ≤
1

2

∫
1

ft(x)
∇ft(x)⊤

←−
Σ t∇ft(x)ϕt(x)dx ≤

λmax(
←−
Σt)

2

∫
|∇ft(x)|2

ft(x)
ϕt(x)dx .

Plugging this into (29) we get

∂tKL(qt∥ϕt) ≤ −
β(t)

σ2
KL(qt∥ϕt) .

Therefore, recalling that q0 = pT and ϕ0 = φσ2

KL (qT ∥φσ2QT ) ≤ KL(pT ∥φσ2) exp

(
−
∫ T

0

β(s)

σ2
ds

)
.

We conclude using Lemma B.1.

C.2 Proof of Theorem 4.2

EI scheme. Using the fact that∫ t

tk

e−
∫ t
s
β̄(v)/(2σ2)dvβ̄(s)ds = 2σ2

(
1− e

−
∫ t
tk

β̄(v)/(2σ2)dv
)
,

the Exponential Integrator scheme that we consider consists in the following discretization, recursively
given with respect to the index k,

←−
X t = e

−
∫ t
tk

β̄(s)/(2σ2)ds
X̄tk + 2σ2

(
1− e

−
∫ t
tk

β̄(s)/(2σ2)ds
)
∇ log p̃T−tk

(
X̄tk

)
+ σ

√(
1− e

−
∫ t
tk

β̄(s)/σ2ds
)
Zk , (30)
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where Zk are i.i.d. Gaussian random vectors N (0, Id). In particular, we have that

X̄θ
t = e

−
∫ t
tk

β̄(s)/(2σ2)ds
X̄θ

tk
+ 2σ2

(
1− e

−
∫ t
tk

β̄(s)/(2σ2)ds
)
sθ
(
T − tk, X̄θ

tk

)
+ σ

√(
1− e

−
∫ t
tk

β̄(s)/σ2ds
)
Zk , (31)

and X̄θ
0 ∼ N

(
0, σ2Id

)
. Note that

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞QT ) +W2

(
π∞QT , π∞Q

N,θ
T

)
, (32)

where
W2 (πdata, π∞QT ) =W2 (pTQT , π∞QT ) ,

which corresponds to the discrepancy between the same process (3) with two different initializations.
The first term of (32) is upper bounded by Proposition C.2.

Proposition C.2. Assume that W2 (πdata, π∞)
2
< +∞. The marginal distribution at the end of the

forward phase satisfies

W2 (pT , π∞)
2 ≤ W2 (πdata, π∞)

2
exp

(
−
∫ T

0

β(t)

σ2
dt

)
. (33)

Assume that H4(ii) holds. Then,

W2 (πdata, π∞QT )
2 ≤ W2 (pT , π∞)

2
exp

(
−
∫ T

0

β(t)

σ2

(
1− 2Ltσ

2
)
dt

)

≤ W2 (πdata, π∞)
2
exp

(
−
∫ T

0

β(t)

σ2

(
2− 2Ltσ

2
)
dt

)
. (34)

Moreover, under Assumption H4(i), we have

W2 (πdata, π∞QT )
2 ≤ W2 (pT , π∞)

2
exp

(
−
∫ T

0

β(t)

σ2

(
1 + 2Ctσ

2
)
dt

)

≤ W2 (πdata, π∞)
2
exp

(
−
∫ T

0

β(t)

σ2

(
2 + 2Ctσ

2
)
dt

)
. (35)

Proof of Proposition C.2. Let x ∈ Rd (resp. y ∈ Rd) and denote by
−→
Xx (resp.

−→
X y) the solution of

(1), with initial condition
−→
Xx

0 = x (resp.
−→
Xx

0 = y). Applying Itô’s formula and using Cauchy-Schwarz
inequality, we get ∥∥∥−→Xx

t −
−→
X y

t

∥∥∥2 = ∥x− y∥2 + 2

∫ t

0

− β̄(s)
2σ2

∥∥∥−→Xx
s −
−→
X y

s

∥∥∥2 ds .
Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T ]

∥∥∥−→Xx
t −
−→
X y

t

∥∥∥2] ≤ exp

(
−
∫ T

0

β̄(t)

σ2
dt

)
∥x− y∥2 .

From this, we can show contraction (33) in 2–Wasserstein distance by taking the infimum over all
couplings.
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Now, let x ∈ Rd (resp. y ∈ Rd) and denote by
←−
Xx (resp.

←−
X y) the solution of (3), with initial

condition
←−
Xx

0 = x (resp.
←−
Xx

0 = y). Applying Itô’s formula and using Cauchy-Schwarz inequality, we get∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2 = ∥x− y∥2 + 2

∫ t

0

− β̄(s)
2σ2

∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2 ds
+ 2

∫ t

0

β̄(s)
(
∇ log p̃T−s

(←−
Xx

s

)
−∇ log p̃T−s

(←−
X y

s

))⊤ (←−
Xx

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)

σ2

(
1− 2L̄sσ

2
) ∥∥∥←−Xx

s −
←−
X y

s

∥∥∥2 ds .
Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T ]

∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2] ≤ exp

(
−
∫ T

0

β̄(t)

σ2

(
1− 2L̄tσ

2
)
dt

)
∥x− y∥2 .

From this, we can show contraction (34) in 2–Wasserstein distance by taking the infimum over all
couplings.

To establish (35) note that, under Assumption H4(i), we have∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2 = ∥x− y∥2 + 2

∫ t

0

− β̄(s)
2σ2

∥∥∥←−Xx
s −
←−
X y

s

∥∥∥2 ds
+ 2

∫ t

0

β̄(s)
(
∇ log p̃T−s

(←−
Xx

s

)
−∇ log p̃T−s

(←−
X y

s

))⊤ (←−
Xx

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)

σ2

(
1 + 2C̄sσ

2
) ∥∥∥←−Xx

s −
←−
X y

s

∥∥∥2 ds .
Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T ]

∥∥∥←−Xx
t −
←−
X y

t

∥∥∥2] ≤ exp

(
−
∫ T

0

β̄(t)

σ2

(
1 + 2C̄tσ

2
)
dt

)
∥x− y∥2 .

From this, we can show contraction (35) in the 2–Wasserstein distance by taking the infimum over all
couplings.

Note that a similar assumption as Assumption H4(i) is used in De Bortoli et al. (2021, Proposition

10,11,12), in particular to bound the conditional moments of
←−
X 0 given

←−
X t for t > 0. However, in this

paper the authors also require additional assumptions, in particular that the score of πdata has a linear
growth.

Second term. The second term of (36) can be handled as follows

W2

(
π∞QT , π∞Q

N,θ
T

)
≤
∥∥∥←−X∞

T − X̄θ
T

∥∥∥
L2

.

To upper bound ∥
←−
X∞

T − X̄θ
T ∥L2 , we aim at controlling ∥

←−
X∞

tk+1
− X̄θ

tk+1
∥L2 by ∥

←−
X∞

tk
− X̄θ

tk
∥L2 to resort

subsequently to a telescopic sum.

Proposition C.3. Assume that H4, H5 and H6 hold. Consider the regular discretization {tk, 0 ≤ k ≤
N} of [0, T ] of constant step size h such that for all tk with 0 ≤ k ≤ N − 1,

h <
2C̄t

β̄(tk)
(
maxtk≤s≤tk+1

L̄s

)
L̄t

m̃tk+1

m̃tk

,
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where m̃t := exp(−
∫ t

0
β̄(s)ds/(2σ2)), mt := exp(−

∫ t

0
β(s)ds/(2σ2)). Then,∥∥∥←−X∞

T − X̄θ
T

∥∥∥
L2

≤ εTβ(T ) +MhTβ(T ) (1 + 2B)

+

N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(√
2hβ(T )

σ
+mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B ,

where M is defined in H6 and B := (E[∥X0∥2] + σ2d)1/2.

Proof. Using (31) and the triangular inequality, we have∥∥∥←−X∞
tk+1
− X̄θ

tk+1

∥∥∥
L2

=

∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+

∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

t

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt

∥∥∥∥
L2

≤
∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+

∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

tk

)
−∇ log p̃T−t

(
X̄θ

tk

))
dt

∥∥∥∥
L2

+

∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

t

)
−∇ log p̃T−t

(←−
X∞

tk

))
dt

∥∥∥∥
L2

(36)

+

∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt

∥∥∥∥
L2

.

Using the strong concavity and Lipschitz properties of the modified score function, we have that the
first term of r.h.s. of (36) can be bounded as follows∥∥∥∥m̃tk+1

m̃tk

←−
X∞

tk
−
m̃tk+1

m̃tk

X̄θ
tk

+

∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

tk

)
−∇ log p̃T−t

(
X̄θ

tk

))
dt

∥∥∥∥2
=
m̃2

tk+1

m̃2
tk

∥∥∥←−X∞
tk
− X̄θ

tk

∥∥∥2 + ∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

tk

)
−∇ log p̃T−t

(
X̄θ

tk

))
dt

∥∥∥∥2
+
m̃tk+1

m̃tk

2

∫ tk+1

tk

m̃t

m̃tk

β̄(t)
[←−
X∞

tk
− X̄θ

tk

]⊤ [
∇ log p̃T−t

(←−
X∞

tk

)
−∇ log p̃T−t

(
X̄θ

tk

)
dt
]

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥2(m̃2
tk+1

m̃2
tk

+

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk+1

m̃tk

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

)
.

Using the Lipschitz property of the modified score and Proposition C.6, the second term of the r.h.s. of
(36) can be controlled as follows∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(←−
X∞

t

)
−∇ log p̃T−t

(←−
X∞

tk

))
dt

∥∥∥∥
L2

≤
(∫ tk+1

tk

LT−t
m̃t

m̃tk

β̄(t)dt

)
sup

tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X∞

tk

∥∥∥
L2

≤
(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)
2

(
1

σ

√
hβ(T ) + exp

(
−
∫ tk

0

β̄(s)

σ2

(
1 + C̄sσ

2
)
ds

))
B .
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Using Assumption H5, we can control the third term of the r.h.s. of (36) as follows∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt

∥∥∥∥
L2

≤
∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−tk

(
X̄θ

tk

)
− s̃θ

(
T − tk, X̄θ

tk

))
dt

∥∥∥∥
L2

+

∥∥∥∥∫ tk+1

tk

m̃t

m̃tk

β̄(t)
(
∇ log p̃T−t

(
X̄θ

tk

)
−∇ log p̃T−tk

(
X̄θ

tk

))
dt

∥∥∥∥
L2

≤ ε
∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+

∫ tk+1

tk

m̃t

m̃tk

β̄(t)
∥∥∇ log p̃T−t

(
X̄θ

tk

)
−∇ log p̃T−tk

(
X̄θ

tk

)∥∥dt
≤ ε

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM
(
1 +

∥∥X̄θ
tk

∥∥
L2

)∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

Note that
−→
X t has the same law as mtX0+σ

√
(1−m2

t )G, with G a standard Gaussian random variable

independent of X0. We have that
←−
X∞

0 ∼ N (0, σ2Id). Define (
←−
X t)t∈[0,T ] satisfying (3) but initialized at

←−
X 0 = mTX0 +

√
(1−m2

T )
←−
X∞

0 ,

with X0 ∼ πdata. Employing Proposition C.5 and (42), we obtain∥∥X̄θ
tk

∥∥
L2
≤
∥∥∥X̄θ

tk
−
←−
X∞

tk

∥∥∥
L2

+
∥∥∥←−X∞

tk
−
←−
X tk

∥∥∥
L2

+
∥∥∥←−X tk

∥∥∥
L2

≤
∥∥∥X̄θ

tk
−
←−
X∞

tk

∥∥∥
L2

+ 2B .

Therefore, combining the previous bounds, together with (36), we obtain∥∥∥←−X∞
tk+1
− X̄θ

tk+1

∥∥∥
L2

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥(m̃2
tk+1

m̃2
tk

+

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk+1

m̃tk

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

)1/2

+

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B

+ ε

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM

(
1 +

∥∥∥X̄θ
tk
−
←−
X∞

tk

∥∥∥
L2

+ 2B

)∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

By the assumption on h and Proposition C.4,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 ,
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and, using that
√
1− x ≤ 1− x/2 for x ∈ [0, 1], we conclude that∥∥∥←−X∞

tk+1
− X̄θ

tk+1

∥∥∥
L2

≤
∥∥∥←−X∞

tk
− X̄θ

tk

∥∥∥ m̃2
tk+1

m̃2
tk

×

(
1 +

1

2

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt+

m̃2
tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt

)

+

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B

+ ε

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt+ hM (1 + 2B)

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt .

Define

δk :=
m̃2

tk+1

m̃2
tk

(
1 +

1

2

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt

)

≤

(
1 +

1

2

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt

)
.

By Proposition C.4, δk ≤ 1 for any 0 ≤ k ≤ N − 1 , which yields∥∥∥←−X∞
T − X̄θ

T

∥∥∥
L2

≤
N−1∏
k=0

δk

∥∥∥←−X∞
0 − X̄θ

0

∥∥∥
L2

+
(
εhβ(T ) +Mh2β(T ) (1 + 2B)

)N−1∑
k=0

N−1∏
ℓ=k

δℓ

+

N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B

N−1∏
ℓ=k

δℓ

≤ εTβ(T ) +MhTβ(T ) (1 + 2B)

+

N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B .

Final bound. Finally, combining the results of Proposition C.2 and Proposition C.3, we conclude
that

W2

(
πdata, π̂

(β,θ)
N

)
≤ W2 (πdata, π∞) exp

(
−
∫ T

0

β(t)

σ2

(
1 + Ctσ

2
)
dt

)

+

N−1∑
k=0

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B

+ εTβ(T ) +MhTβ(T ) (1 + 2B) .
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C.3 Technical results for Wasserstein upper bound

Proposition C.4. Assume that H4 and H6 hold. Consider the regular discretization {tk, 0 ≤ k ≤ N}
of [0, T ] of constant step size h. Assume that h > 0 is such that for all tk with 0 ≤ k ≤ N − 1,

h <
2C̄t

β̄(tk)
(
maxtk≤s≤tk+1

L̄s

)
L̄t

m̃tk+1

m̃tk

, (37)

where m̃t := exp(−
∫ t

0
β̄(s)ds/(2σ2)), mt := exp(−

∫ t

0
β(s)ds/(2σ2)). Then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 .

In addition, if

h <
2C̄t

M + β̄(tk)
(
maxtk≤s≤tk+1

L̄s

)
L̄t

m̃tk+1

m̃tk

, (38)

then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
1

2

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt < 1 .

Proof. Denote ϵ1 and ϵ2 the following quantities

ϵ1 = 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt , (39)

ϵ2 = 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt . (40)

First, we prove that ϵ1 is positive. Completing the square, we obtain

ϵ1 =

(
1− m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

+ 2
m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

=

(
1− m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

+ 2
m̃tk

m̃tk+1

∫ tk+1

tk

(
L̄t − C̄t

) m̃t

m̃tk

β̄(t)dt.

The first term if the r.h.s. of the previous equality is a square, therefore always positive. The second
term is always positive as well, as L̄t ≥ C̄t for any t, as the Lipschitz constant and the log-concavity
coefficient of the score function respectively. Moreover, the previous is always strictly positive as

m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt > 0 .
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Secondly, proving that the previous quantity is smaller than 1 is equivalent to show that

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 0 .

As β̄(t) is a decreasing function, we obtain the following bound

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

≤
(
m̃tk

m̃tk+1

max
tk≤s≤tk+1

L̄sβ̄(tk)h

)
m̃tk

m̃tk+1

∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

=
m̃tk

m̃tk+1

∫ tk+1

tk

((
m̃tk

m̃tk+1

max
tk≤s≤tk+1

L̄sβ̄(tk)h

)
L̄t − 2C̄t

)
m̃t

m̃tk

β̄(t)dt .

This means that, if we have

m̃tk

m̃tk+1

(
max

tk≤s≤tk+1

L̄s

)
β̄(tk)hL̄t − 2C̄t < 0

for tk ≤ t ≤ tk+1, we have ϵ1 < 1. Isolating h in the previous inequality, we obtain that it is equivalent
to the condition (37).

Now we focus on ϵ2. This quantity is clearly positive as the ϵ2 ≥ ϵ1. Moreover, following the same
lines as to prove that ϵ1 < 1, we have

ϵ2 − 1 ≤ m̃tk

m̃tk+1

∫ tk+1

tk

(
m̃tk

m̃tk+1

(
max

tk≤s≤tk+1

L̄s

)
β̄(tk)hL̄t +

m̃tk

m̃tk+1

Mh− 2C̄t

)
m̃t

m̃tk

β̄(t)dt .

This means that, if we have

m̃tk

m̃tk+1

(
max

tk≤s≤tk+1

L̄s

)
β̄(tk)hL̄t +

m̃tk

m̃tk+1

Mh− 2C̄t < 0

for tk ≤ t ≤ tk+1, we have ϵ2 < 1. Isolating h in the previous inequality, we obtain that it is equivalent
to the condition (38).

Proposition C.5. Assume that H2 holds. For all t ≥ 0,

sup
0≤t≤T

∥∥∥←−X t

∥∥∥
L2

≤ sup
0≤t≤T

(
m2

tE
[
∥X0∥2

]
+ (1−m2

t )σ
2d
)1/2

≤
(
E
[
∥X0∥2

]
+ σ2d

)1/2
,

where mt = exp(−
∫ t

0
β(s)ds/2σ2).

Proof. Recall the following equality in law

−→
X t = mtX0 + σ

√
(1−m2

t )G .

with X0 ∼ πdata and G ∼ N (0, Id).
Therefore, for any t ∈ [0, T ]

E
[∥∥∥←−XT−t

∥∥∥2] = E
[∥∥∥−→X t

∥∥∥2] ≤ m2
tE
[
∥X0∥2

]
+ σ2

(
1−m2

t

)
E
[
∥G∥2

]
≤ m2

tE
[
∥X0∥2

]
+ σ2

(
1−m2

t

)
d .
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Proposition C.6. Assume that H2 holds. For all tk ≤ t ≤ tk+1,

sup
tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X∞

tk

∥∥∥
L2

≤
(
1

σ

√
2hβ(T ) +mT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

)
B , (41)

sup
0≤t≤T

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2

≤
([
∥X0∥2

]
+ σ2d

)1/2
exp

(
−
∫ T

0

β̄(s)

2σ2
ds

)
, (42)

where mt = exp(−
∫ t

0
β(s)ds/2σ2) and B = (E[∥X0∥2] + σ2d)1/2.

Proof. Note that
−→
X t has the same distribution as mtX0 + σ

√
(1−m2

t )G where G ∼ N (0, Id) is

independent of X0. We have that
←−
X∞

0 = G ∼ N (0, σ2Id). Define (
←−
X t)t∈[0,T ] satisfying (3) but

initialized at

←−
X 0 = mTY +

√
(1−m2

T )G , (43)

with Y ∼ πdata independent of G (G being shared by
←−
X 0 and

←−
X∞

0 ).
On the one hand, following the same proof as in Proposition C.2, we have that∥∥∥←−X∞

t −
←−
X t

∥∥∥
L2

≤
∥∥∥←−X∞

0 −
←−
X 0

∥∥∥
L2

exp

(
−
∫ t

0

β̄(s)

2σ2

(
1 + 2C̄sσ

2
)
ds

)
≤
([
∥Y ∥2

]
+ σ2d

)1/2
mT ,

where we have used (43) as well as the fact that

∥X0 −G∥L2
=
([
∥Y ∥2

]
+
[
∥G∥2

])1/2
= B .

Therefore,

sup
0≤t≤T

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2

≤
([
∥Y ∥2

]
+ σ2d

)1/2
exp

(
−
∫ T

0

β̄(s)

2σ2
ds

)
,

corresponding to (42).
On the other hand, we have that∥∥∥←−X∞

t −
←−
X∞

tk

∥∥∥
L2

≤
∥∥∥←−X t −

←−
X tk

∥∥∥
L2

+
∥∥∥(←−X∞

t −
←−
X t

)
−
(←−
X∞

tk
−
←−
X tk

)∥∥∥
L2

.

The process (
←−
X∞

t −
←−
X t)t≥0 is determined by the following ODE:

d
(←−
X∞

t −
←−
X t

)
=

(
− β̄(t)
2σ2

(←−
X∞

t −
←−
X t

)
+ 2β̄(t)

(
∇ log p̃T−t

(←−
X∞

t

)
−∇ log p̃T−t

(←−
X t

)))
dt .

Then, ∥∥∥(←−X∞
t −

←−
X t

)
−
(←−
X∞

tk
−
←−
X tk

)∥∥∥
L2

=

∥∥∥∥∫ t

tk

(
− β̄(s)

2σ2

(←−
X∞

s −
←−
X s

)
+ 2β̄(s)

(
∇ log p̃T−s

(←−
X∞

s

)
−∇ log p̃T−s

(←−
X s

)))
ds

∥∥∥∥
L2

≤ sup
tk≤t≤tk+1

∥∥∥←−X∞
t −

←−
X t

∥∥∥
L2

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt

≤ BmT

∫ tk+1

tk

(
1

2σ2
+ 2L̄t

)
β̄(t)dt .
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Write (
−→
X t)t∈[0,T ] the time reversal of (

←−
X t)t∈[0,T ], which clearly satisfies (1). Using the following

equality in law

−→
XT−tk =

mT−tk

mT−t

−→
XT−t +

(
1−

(
mT−tk

mT−t

)2
)1/2

σG ,

with G ∼ N (0, Id), we get

∥∥∥←−X t −
←−
X tk

∥∥∥
L2

=
∥∥∥−→XT−tk −

−→
XT−t

∥∥∥
L2

=

(
1−

(
mT−tk

mT−t

)2
)1/2([∥∥∥−→XT−t

∥∥∥2]+ σ2d

)1/2

≤

(
1−

(
mT−tk

mT−t

)2
)1/2√

2B ,

where we have applied Proposition C.5 in the last inequality. Since

1−
(
mT−tk

mT−t

)2

= 1− exp

(
− 1

σ2

∫ T−tk

T−t

β(s)ds

)

=
1

σ2

∫ T−tk

T−t

exp

(
− 1

σ2

∫ T−u

T−t

β(s)ds

)
β(u)du

≤ 1

σ2
hβ(T ) ,

which concludes the proof of (41).

D Discussion on the hypotheses

Proposition D.1. Assume that log πdata is C∗-strongly concave and that C∗ > 1/σ2. Then, the
modified score function log p̃t(x) is, for any t ∈ (0, T ], Ct-strongly concave, with

mt = exp

(
− 1

2σ2

∫ t

0

β(s)ds

)
,

Ct =
1

m2
t/C∗ + σ2 (1−m2

t )
− 1

σ2
.

Moreover, we have that Ct ≤ C∗ − 1/σ2 for any t ≥ 0.

Proof. For all 1 ≤ t ≤ T ,
−→
X t has the same law has mtX0 + σ

√
1−m2

tZ where X0 ∼ πdata and
Z ∼ N (0, Id) are independent. Therefore, writing p0 = πdata,

pt(y) =

∫
Rd

(2πσ2
(
1−m2

t

)
)−d/2 exp

{
−∥y − x0mt∥2

2σ2 (1−m2
t )

}
p0(x0)dx0 . (44)

This implies that

log pt(y) = −
d

2
log
(
2πσ2

(
1−m2

t

))
+ log

(∫
Rd

exp

{
−∥y − x0mt∥2

2σ2 (1−m2
t )

}
p0(x0)dx0

)

= −d
2
log
(
2πσ2

(
1−m2

t

))
+ log

(∫
Rd

exp

{
− ∥y − u∥2

2σ2 (1−m2
t )

}
p0

(
u

mt

)
du

)

+
d

2σ2

∫ t

0

β(s)ds .
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Since log p0 is C∗-strongly concave, the function x 7→ p0 (u/mt) is C∗/m
2
t -strongly log-concave. More-

over, we have that the function y 7→ exp{−∥y∥2/(2σ2(1−m2
t ))} is (σ2(1−m2

t )
−1-strongly log-concave.

Applying Saumard and Wellner (Proposition 7.1 2014), since pt is a convolution of the previous two

functions up to terms independent in space, we have that log pt is
(
m2

t/C∗ + σ2
(
1−m2

t

))−1
-strongly

concave. Note that if C∗ ≥ 1/σ2,

C∗

m2
t + σ2C∗ (1−m2

t )
≥ 1

σ2
.

This entails that log p̃t is Ct-strongly concave, with

Ct =
1

m2
t/C∗ + σ2 (1−m2

t )
− 1

σ2
.

Finally, finding the maximum t 7→ Ct, is equivalent to find the maximum of the following function on
[0, 1]:

ψ : z 7→ C∗

z + σ2C∗(1− z)
− 1

σ2
.

We have that ψ(0) = C∗ − 1/σ2, ψ(1) = 0 and for all z ∈ [0, 1],

ψ′(z) =
σ2 − 1/C∗

(z/C∗ + σ2(1− z))2
,

which is negative since C∗ ≥ 1 ≤ 1/σ2. Therefore, we get 0 ≤ Ct ≤ C∗ − 1/σ2.

Proposition D.2. If log πdata is L∗-smooth, then for all 0 ≤ t ≤ T , ∇ log p̃t is Lt-Lipschitz in the
space variable with

Lt = min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
+

1

σ2
.

Moreover, if L∗ > 1/σ2, we can choose Lt as follows:

Lt = min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
− 1

σ2
.

Moreover, in this case, we have that Lt ≤ L∗ for any t ≥ 0.

Proof. In the proof of Proposition D.1, we proved that, if log πdata is C∗-strongly concave, log pt is(
m2

t/C∗ + σ2
(
1−m2

t

))−1
-strongly concave i.e.,

∇2 (− log pt) (x) ≽
1

m2
t/C∗ + σ2 (1−m2

t )
Id .

For p0 := πdata, we have that pt is given by (44). This means that pt is the density of the sum of two
independent random variables X1 +X0 of density respectively q0 and q1, such that

q0(x) :=
1

md
t

p0

(
u

md
t

)
= e−ϕ0(x) ,

q1(x) :=
1

(2πσ2 (1−m2
t ))

d/2
exp

{
− ∥y∥2

2σ2 (1−m2
t )

}
= e−ϕ1(x) ,
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for two functions ϕ0 and ϕ1. Therefore, as in the proof of Saumard and Wellner (Proposition 7.1 2014),
we get

∇2 (− log pt) (x) = −Var(∇ϕ0(X0)|X0 +X1 = x) + E[∇2ϕ0(X0)|X0 +X1 = x]

= −Var(∇ϕ1(X1)|X0 +X1 = x) + E[∇2ϕ1(X1)|X0 +X1 = x] .

Since ∇ log p0 is L∗-Lipschitz and from the definition of q1,

∇2ϕ0 ≼
L∗

m2
t

Id , ∇2ϕ1 ≼
1

σ2 (1−m2
t )
Id .

Hence,

∇2 (− log pt) (x) ≼ min

{
1

σ2 (1−m2
t )
;
L0

m2
t

}
Id .

Therefore, since the difference between ∇ log pt and ∇ log p̃t is a linear function, we can choose Lt as
follows:

Lt = min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
+

1

σ2
.

Clearly we have that 0 ≤ m2
t ≤ 1, therefore 1/m2

t ≥ 1 and 1/
(
1−m2

t

)
≥ 1. This means that, if

L∗ ≥ 1/σ2,

min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
≥ 1

σ2
.

Thus, we can choose Lt to be

Lt = min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
− 1

σ2
.

Finally, since m0 = 1, we have that L0 = L∗ − 1/σ2. This function increases up to the point where
L∗/m

2
t = (σ2(1−m2

t )
−1, achieved for m2

t∗ = (σ2L∗)/(σ
2L∗ + 1). At this point, we have that Lt∗ = L∗.

After this point the Lipschitz constant decreases to 0, as mt → 0 for t→∞. This means that for any t,
Lt is bounded by L∗.

Proposition D.3. Assume that log πdata is L∗-smooth and C∗-strongly concave. Consider the regular
discretization {tk, 0 ≤ k ≤ N} of [0, T ] of constant step size h. By choosing h > 0 such that for all tk
with 0 ≤ k ≤ N − 1,

h ≤ min

{
log(2)2σ2

β(T )
;

σ2C∗ − 1

σ2C∗ (σ2L∗ + 1)L∗β(T )
;

σ2C∗ − 1

(σ2L∗ − 1)L∗β(T )

}
, (45)

then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
m̃2

tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− 2
m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt < 1 .

In addition, if

h ≤ min

{
log(2)2σ2

β(T )
;

σ2C∗ − 1

σ2M + β(T )L∗ (σ2L∗ − 1)
;

σ2C∗ − 1

σ2C∗

m2
T

(
1−m2

T

)
σ2M (1−m2

T ) + β(T )L∗m2
T

;

(
σ2C∗ − 1

)
L∗

σ2C∗ (σ2L∗ + 1) (M + β(T )L2
∗)

}
, (46)
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then, for all 0 ≤ k ≤ N − 1,

0 < 1 +
1

2

m̃2
tk

m̃2
tk+1

(∫ tk+1

tk

L̄t
m̃t

m̃tk

β̄(t)dt

)2

− m̃tk

m̃tk+1

∫ tk+1

tk

C̄t
m̃t

m̃tk

β̄(t)dt

+
m̃2

tk

m̃2
tk+1

Mh

∫ tk+1

tk

m̃t

m̃tk

β̄(t)dt < 1 .

Proof. Define ϵ1 and ϵ2 as in (39)-(40). From Proposition C.4, we have that ϵi ∈ (0, 1), for i = 1, 2, if
we have (37)-(38).

First, we prove that (45) implies (37). From Proposition D.2, we have that Lt is bounded by L∗

everywhere. Moreover, since m̃tk+1
/m̃tk = exp

(
−
∫ tk+1

tk
β̄(s)/2σ2ds

)
, we can find h small enough such

that 2m̃tk/m̃tk+1
≥ 1. This is equivalent to

∫ tk+1

tk
β̄(s)/2σ2ds ≤ log(2) and it is implied by

h ≤ log(2)2σ2

β(T )
.

Now, we study the function t 7→ Ct/Lt. From the proof of the Proposition D.1, we have that

Ct =
1

m2
t/C∗ + σ2 (1 +m2

t )
− 1

σ2
,

which is a decreasing function. Moreover, from the proof of the Proposition D.2, we have that

Lt = min

{
1

σ2 (1−m2
t )
;
L∗

m2
t

}
− 1

σ2
,

which is an increasing function from 0 up to t∗, such that m2
t∗ = σ2L∗

σ2L∗+1 and decreasing for t ≥ t∗. On
the one hand, this means that for t ∈ [0, t∗], the function t 7→ Ct/Lt is decreasing, therefore reaching
its minimum

(
σ2C∗ − 1

)
/
(
σ2L∗ − 1

)
in 0, which is a positive quantity. On the other hand, for t ≥ t∗,

we have that

Ct

Lt
=

1

m2
t/C∗ + σ2 (1 +m2

t )

1

σ2

(
σ2C∗ − 1

)
m2

t

C∗

σ2
(
1−m2

t

)
m2

t

≥ 1

σ2

σ2C∗ − 1

C∗

(
1−m2

t

)
≥ 1

σ2

σ2C∗ − 1

C∗

(
1−m2

t∗
)
=

σ2C∗ − 1

σ2C∗ (σ2L∗ + 1)
.

Therefore, combining the previous inequalities, we have that condition (45) implies (37).
Secondly, we prove (46) implies (38). Take h to satisfy

h ≤ log(2)2σ2

β(T )
.

We now need to study the function t 7→ Ct

M+β(T )L∗L̄t
. On the one hand, this function is decreasing

for t ∈ [0, t∗], therefore reaching its minimum σ2C∗−1
σ2M+β(T )L∗(σ2L∗−1) in 0, which is a positive quantity.

On the other hand, for t ≥ t∗, we have that

Ct

M + β(T )L∗Lt
=

1

m2
t/C∗ + σ2 (1 +m2

t )

1

σ2

(
σ2C∗ − 1

)
m2

t

C∗

σ2
(
1−m2

t

)
σ2M (1−m2

t ) + β(T )L∗m2
t

≥ 1

σ2

σ2C∗ − 1

C∗

m2
t

(
1−m2

t

)
σ2M (1−m2

t ) + β(T )L∗m2
t

.
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Controlling from below the previous quantity, boils down to control from below the function ψ(y) =
y(1−y)

σ2M(1−y)+β(T )L∗y
for y ∈ [m2

t∗ ,m
2
T ]. We see that ψ in this interval can be bounded by min{ψ

(
m2

t∗
)
, ψ
(
m2

T

)
}.

Therefore, we get

Ct

M + β(T )L∗Lt
≥ σ2C∗ − 1

σ2C∗
min

{
m2

T

(
1−m2

T

)
σ2M (1−m2

T ) + β(T )L∗m2
T

;
L∗

(σ2L0 + 1) (M + β(T )L2
∗)

}
.

Therefore, combining the previous inequalities, we have that condition (46) implies (38).

E Details on numerical experiments

This section is divided into two parts. The first part is dedicated to providing detailed implementation
choices for the numerical experiments presented in Section 5. The second part displays additional
experiments and more details about the experiments of Section 5. All experiments were conducted on
a local computer CPU equipped with an Apple M3 processor (8GB of unified memory). This setup is
sufficient to replicate the experiments of this paper.

E.1 Implementation choices

E.1.1 Exact score and metrics in the Gaussian case

Lemma E.1. Assume that the forward process defined in (1) :

d
−→
X t = −

β(t)

2σ2

−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ π0,

is initialised with π0 the Gaussian probability density function with mean µ0 and variance Σ0. Then,
the score function of (1) is:

∇ log pt : x 7→ −(m2
tΣ0 + σ2

t Id)
−1(x−mtµ0) ,

where pt is the probability density function of
−→
X t, mt = exp{−

∫ t

0
β(s)ds/(2σ2)} and σ2

t = σ2(1−m2
t ).

Proof. Note that
−→
X t has the same law as mtX0 + σtZ where Z ∼ N (0, Id) is independent of X0.

Therefore
−→
X t ∼ N (mtµ0,

−→
Σt) with

−→
Σt = m2

tΣ0 + σ2
t Id which concludes the proof.

Lemma E.2. Let µ1, µ2 in Rd and Σ1 and Σ2 be two definite positive matrices in Rd×d. Then,

KL(φµ1,Σ1∥φµ2,Σ2) =
1

2

(
log
|Σ2|
|Σ1|

− d+Tr
(
Σ−1

2 Σ1

)
+ (µ2 − µ1)

⊤
Σ−1

2 (µ2 − µ1)

)
. (47)

Lemma E.3. Let µ1, µ2 in Rd and Σ1 and Σ2 be two definite positive matrices in Rd×d. Then,

W2(φµ1,Σ1
, φµ2,Σ2

) = ∥µ2 − µ1∥2 +Tr

(
Σ1 +Σ2 − 2

(
Σ

1/2
2 Σ2Σ

1/2
1

)1/2)
. (48)

Lemma E.4. The relative Fisher information between X0 ∼ N (µ0,Σ0) and X∞ ∼ N (0, σ2Id) is given
by:

I (φµ0,Σ0
∥φσ2) =

1

σ4

(
Tr (Σ0) + ∥µ0∥2

)
− 2d

σ2
+Tr

(
Σ−1

0

)
.
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Proof. The relative Fisher information between X0 and X∞ is given by

I (φµ0,Σ0
∥φσ2) =

∫ ∥∥∥∥∇ log

(
φµ0,Σ0(x)

φσ2(x)

)∥∥∥∥2 φµ0,Σ0
(x)dx .

Write

∇ log
φµ0,Σ0

(x)

φσ2(x)
=

x

σ2
− Σ−1

0 (x− µ0) ,

so that, ∥∥∥∥∇ log
φµ0,Σ0(x)

φσ2(x)

∥∥∥∥2 =
∥∥∥ x
σ2
− Σ−1

0 (x− µ0)
∥∥∥2

=
( x
σ2
− Σ−1

0 (x− µ0)
)⊤ ( x

σ2
− Σ−1

0 (x− µ0)
)

=
∥x∥2

σ4
− 2

σ2
x⊤Σ−1

0 (x− µ0) + (x− µ0)
⊤Σ−2

0 (x− µ0) .

First,

E
[
∥X0∥2

σ4

]
=

1

σ4

(
Tr (Σ0) + ∥µ0∥2

)
.

Then,

E
[
2

σ2
XT

0 Σ
−1
0 (X0 − µ0)

]
=

2

σ2

(
Tr
(
Σ−1

0 E
[
X0X

⊤
0

])
− µ⊤

0 Σ
−1
0 µ0

)
.

Using that E
[
X0X

⊤
0

]
= Σ0 + µ0µ

⊤
0 yields

E
[
2

σ2
X⊤

0 Σ−1
0 (X0 − µ0)

]
=

2

σ2

(
Tr
(
Σ−1

0

(
Σ0 + µ0µ

⊤
0

))
− µ⊤

0 Σ
−1
0 µ0

)
=

2

σ2

(
d+Tr

(
Σ−1

0 µ0µ
⊤
0

)
− µ⊤

0 Σ
−1
0 µ0

)
=

2d

σ2
.

Finally,

E
[
(X0 − µ0)

⊤Σ−2
0 (X0 − µ0)

]
= E

[
Tr
(
(X0 − µ0)

⊤Σ−2
0 (X0 − µ0)

)]
= E

[
Tr
(
Σ−2

0 (X0 − µ0)(X0 − µ0)
⊤)]

= Tr
(
Σ−2

0 E
[
(X0 − µ0)(X0 − µ0)

⊤])
= Tr

(
Σ−2

0 Σ0

)
= Tr

(
Σ−1

0

)
,

which concludes the proof.

Proposition E.5. Under the same assumptions as in Lemma E.1, the Euclidean norm of the score
function admits the following upper bound for t1 ≤ t2:

sup
t1≤t≤t2

∥∇ log pt1(x)−∇ log pt(x)∥ ≤ (t2 − t1)max {∥µ0∥κ2;κ1} (1 + ∥x∥) ,

with
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κ1 :=
m2

t1
β(t2)
σ2

∣∣λmin − σ2
∣∣∣∣(σ2 +m2

t1 (λmin − σ2)
) (
σ2 +m2

t2 (λmin − σ2)
)∣∣ ,

and

κ2 :=
mt1

β(t2)
2σ2

∣∣mt1mt2

(
λmin − σ2

)
− σ2

∣∣∣∣(σ2 +m2
t1 (λmin − σ2)

) (
σ2 +m2

t2 (λmin − σ2)
)∣∣ ,

where λmin is the smallest eigenvalue of Σ0.

Proof. Let t1 ≤ t2,

∥∇ log pt1(x)−∇ log pt2(x)∥ =
∥∥−(m2

t1Σ0 + σ2
t1Id)

−1(x−mt1µ0) + (m2
t2Σ0 + σ2

t2Id)
−1(x−mt2µ0)

∥∥
≤
∥∥∥(mt1

(
m2

t1Σ0 + σ2
t1Id
)−1 −mt2

(
m2

t2Σ0 + σ2
t2Id
)−1
)
µ0

∥∥∥
+
∥∥∥((m2

t1Σ0 + σ2
t1Id
)−1 −

(
m2

t2Σ0 + σ2
t2Id
)−1
)
x
∥∥∥ .

Writing Mt =
(
m2

tΣ0 + σ2
t Id
)−1

we have, for t1 ≤ t2,

∥Mt1 −Mt2∥ ≤
∣∣∣∣ 1

m2
t1λmin + σ2

t1

− 1

m2
t2λmin + σ2

t2

∣∣∣∣
≤

∣∣∣∣∣
(
m2

t2 −m
2
t1

) (
λmin − σ2

)(
σ2 +m2

t1 (λmin − σ2)
) (
σ2 +m2

t2 (λmin − σ2)
) ∣∣∣∣∣

≤ (t2 − t1)
m2

t1
β(t2)
σ2

∣∣λmin − σ2
∣∣∣∣(σ2 +m2

t1 (λmin − σ2)
) (
σ2 +m2

t2 (λmin − σ2)
)∣∣︸ ︷︷ ︸

κ1

.

Moreover, for t1 ≤ t2,

∥mt1Mt1 −mt2Mt2∥ ≤
∣∣∣∣ mt1

m2
t1λmin + σ2

t1

− mt2

m2
t2λmin + σ2

t2

∣∣∣∣
≤

∣∣∣∣∣
(
mt1m

2
t2 −mt2m

2
t1

) (
λmin − σ2

)
+ σ2 (mt1 −mt2)(

σ2 +m2
t1 (λmin − σ2)

) (
σ2 +m2

t2 (λmin − σ2)
) ∣∣∣∣∣

≤
|mt2 −mt1 |

∣∣mt1mt2 (λmin − σ2)− σ2
∣∣∣∣(σ2 +m2

t1 (λmin − σ2)
) (
σ2 +m2

t2 (λmin − σ2)
)∣∣

≤ (t2 − t1)
mt1

β(t2)
2σ2

∣∣mt1mt2

(
λmin − σ2

)
− σ2

∣∣∣∣(σ2 +m2
t1 (λmin − σ2)

) (
σ2 +m2

t2 (λmin − σ2)
)∣∣︸ ︷︷ ︸

κ2

.

Finally,

∥∇ log pt1(x)−∇ log pt2(x)∥ ≤ (t2 − t1) ∥µ0∥κ2 + (t2 − t1)κ1 ∥x∥
≤ (t2 − t1)max {∥µ0∥κ2;κ1} (1 + ∥x∥) .
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E.1.2 Stochastic differential equation exact simulation

In certain cases, exact simulation of stochastic differential equations is possible. In particular, due to
the linear nature of the drift the forward process (1) can be simulated exactly. Indeed, the marginal
distribution of (1) at time t writes as

−→
X t = mtX0 + σtZ ,

with Z ∼ N (0, Id) independent of X0, X0 ∼ π0, mt = exp{−
∫ t

0
β(s)ds/(2σ2)} and σ2

t = σ2(1 −
exp{−

∫ t

0
β(s)/σ2ds}). Therefore, sampling from the forward process only necessitates access to samples

from π0 and N (0, Id).

E.1.3 Noise schedules

Linear and parametric noise schedules. In Section 5, we introduced parametric noise schedules
of the form

βa(t) ∝ (eat − 1)/(eaT − 1) ,

with a ∈ R ranging from −10 to 10 (see Figure 5). For all a, with a time horizon of T = 1, the initial
and final values have been set to match exactly the schedule prescribed by Song et al. (2021) (i.e.
βa(0) = 0.1 and βa(1) = 20) when a = 0 (linear schedule).
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Figure 5: Evolution of noise schedules βa w.r.t. time, for different values of parameter between −10 to
10. The linear case a = 0 (Song and Ermon, 2019; Song et al., 2021) is dashed.

As shown in Section E.1.2 mt and σt are the two quantities of interest in the calibration of the
noising procedure of the forward proces. Their values for different choices of a are displayed in Figure 6.

Cosine noise schedule. We consider the cosine schedule introduced in Nichol and Dhariwal (2021)
for which the forward process is defined for t ∈ {1, ..., T} as

Xt :=
√
ᾱtX0 +

√
1− ᾱtZ ,

with X0 ∼ πdata, Z ∼ N (0, Id) and with

ᾱt =
f(t)

f(0)
; f(t) = cos

(
t/T + s

1 + s

π

2

)2

.
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Figure 6: Evolution of mt and σt over time, for different choices of a in the noise schedule βa used
in see Section 5. The stationary distribution of the forward process σ2 is set to 1. The range for a
spans from -10 to 10, with the dashed line representing the linear schedule as proposed originally in the
VPSDE models (Song et al., 2021).

To use this noise schedule in the SDE setting we notice that the forward process writes, for t ∈ [0, T ],

−→
X t = mtX0 + σtZ ,

with mt = exp{−
∫ t

0
β(s)ds/(2σ2)}, σ2

t = σ2(1 −m2
t ) and Z ∼ N (0, Id). Therefore, we can simply

identify βcos by solving

−
∫ t

0

βcos(s)

2σ2
ds = log (ᾱt) ,

which yields the following noising function:

βcos(t) := σ2 π

T (s+ 1)
tan

(
π (s+ t/T )

2 (s+ 1)

)
. (49)

Finally, to ensure fair comparison with the linear schedule and the parametric schedules defined in
Section 5, we set in all our experiments s = 0.021122 so that βcos(0) ≈ βa(0) = 0.1 for any a.

E.1.4 Discretization details of the diffusion SDE

In contrast to the forward process, described in Equation (1), which is simulated exactly, the backward
process needs to be discretized. Recall that the backward process of (1) is given by:

d
←−
X t = −

β̄(t)

2σ2

←−
X t + β̄(t)∇ log pT−t

(←−
X t

)
dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞.

Consider time intervals 0 ≤ tk ≤ t ≤ tk+1 ≤ T , with tk =
∑k

ℓ=1 γℓ and T =
∑N

k=1 γk.
In our theoretical analysis, we have considered the Exponential Integrator discretization, defined

recursively for t ∈ [tk, tk+1] by

d
←−
XEI

t = β̄(t)

(
− 1

2σ2

←−
XEI

t +∇ log pT−tk

(
T − tk,

←−
XEI

tk

))
dt+

√
β̄(t)dBt,

←−
XEI

0 ∼ π∞ .

In the numerical experiments, we have given priority to the Euler-Maruyama discretization, which
is widely used, and defined recursively for t ∈ [tk, tk+1] by

d
←−
XEM

t = − β̄(tk)
2σ2

←−
XEM

tk
+ β̄(tk)∇ log pT−tk

(←−
XEM

tk

)
dt+

√
β̄(tk)dBt,

←−
XEM

0 ∼ π∞ . (50)
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Figure 7: Evolution of noising functions under the cosine schedule (orange, βcos) compared to the
linear schedule (β0, blue) over time with σ2 = 1 and s = 0.021122. Additionally, since β0 increases
unboundedly near T , we clip its value to 200 for better visualization.

E.1.5 Implementation of the score approximation in the Gaussian setting

Although the score function is explicit when πdata is Gaussian (see Lemma E.1), we implement SGMs
as done in applications, i.e., we train a deep neural network to witness the effect of the noising function
on the approximation error. We train a neural network architecture sθ(t, x) ∈ [0, T ]× Rd 7→ Rd using
the actual score function as a target:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2]
= E

[∥∥∥sθ (τ,−→X τ

)
− (m2

τΣ0 + σ2
τ Id)

−1(
−→
X τ +mτµ0)

∥∥∥2] ,
where t→ mt and t→ σt are defined in Lemma E.1 and τ ∼ U(0, T ) is independent of

−→
X . The neural

network architecture chosen for this task is described in Figure 9. The width of each dense layer
mid features is set to 256 throughout the experiments.

E.2 Details on the experiments and additional results

E.2.1 Illustration of the KL bound in the Gaussian setting

Target distributions. We investigate the relevancy of the upper bound from Theorem 3.1 for
different noise schedules in the Gaussian setting. We use as a training sample 104 samples with
distribution N (1d,Σ) for d the dimension of the target distribution with different choices of covariance
structure.

1. (Isotropic) Σiso = 0.5Id.

2. (Heteroscedastic) Σheterosc ∈ Rd×d is a diagonal matrix such that Σheterosc
jj = 1 for 1 ≤ j ≤ d, and

Σheterosc
jj = 0.01 otherwise.

3. (Correlated) Σcorr ∈ Rd×d is a full matrix whose diagonal entries are equal to one and the
off-diagonal terms are given by Σcorr

jj′ = 1/
√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.
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Figure 8: Evolution of mt and σt for both the cosine schedule (orange) and the linear schedule (blue)
w.r.t. time, with s = 0.021122 and σ2 = 1. We clip the value of βcos by 200 for better visualization.

The resulting data distributions are respectively denoted by π
(iso)
data , π

(heterosc)
data and π

(corr)
data .

Upper bound evaluation. We leverage the Gaussian nature of the target distribution to compute
explicitly all the terms in the bound. On the one hand, the relative entropy in EKL

1 , KL (πdata∥π∞)
is computed using the analytical formula for KL-divergence between two random Gaussian variable
(Lemma E.2). On the other, the relative Fisher information in EKL

3 , I(πdata|π∞), is computed using
Lemma (E.4). Moreover, as the noise schedule function βa and its primitive are analytically known,
every occurrences of either of them are explicitly computed. Finally, it remains to estimate the
expectation in EKL

2 (θ, β). This is done via Monte Carlo estimation on 500 samples from the forward
process (see Section E.1.2) for every step forward:

1

500

N−1∑
k=0

500∑
i=1

∥∥∥∇ log p̃T−tk

(−→
X

(i)
T−tk

)
− s̃θ

(
T − tk,

−→
X

(i)
T−tk

)∥∥∥2 ∫ T−tk

T−tk+1

βa(t)dt .

SGM data generation in dimension 50. In Figures 2 (top) of the main paper, we represent the
following quantities in the same graph, in dimension d = 50, for different values of a.

• In blue the upper bound from Theorem 3.1.

• In orange (dotted line) the KL divergence between the target distribution πdata and the empirical
mean and covariance of the data generated using the true score function from Lemma E.1.

• In orange (plain line) we represent KL(πdata∥π̂(βa,θ)
N ) for a ∈ {−10,−9,−8, .., 10}. That is, the

KL divergence between the target distribution πdata and the empirical mean and covariance of
the data generated using the neural network architecture described in Figure 9 to approximate
the score function.

• In orange (dashed line) we represent KL(πdata∥π̂(β0,θ)
N ). That is, the KL divergence between the

target data πdata and the empirical mean and covariance of the data generated by the linear
schedule VPSDE presented in Song et al. (2021) with the neural network architecture described
in Figure 9.

We generate 10 000 samples. The batch size is set to 64 and neural networks are optimized with
Adam. All the KL divergences written above are computed using Lemma E.2. Due to the stochastic
nature of our experiments, they are repeated ten times so that the corresponding mean value and
standard deviations of these results are respectively depicted using plain and fill-in-between plots.
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Figure 9: Neural network architecture. The input layer is composed of a vector x in dimension
d and the time t. Both are respectively embedded using a linear transformation or a sine/cosine
transformation (Nichol and Dhariwal, 2021) of width mid features. Then, 3 dense layers of constant
width mid features followed by ReLu activations and skip connections regarding the time embedding.
The output layer is linear resulting in a vector of dimension d.

Optimal schedule versus classical choices. We investigate the gain from using the parametric
schedule with a⋆ minimising the upper bound from Theorem 3.1 for d ∈ {5, 10, 25, 50} compared to
using the linear and cosine schedules (see Appendix E.1.3) in the isotropic and correlated settings (as
mentioned in Section 5.1, up to rescaling the heteroscedastic setting boils down to an isotropic setting).

To determine the optimal value a⋆, upper bounds were initially calculated across various dimensions
for a range of a values from {−10,−9, . . . , 10}. This initial calculation aimed to identify a preliminary
minimum value. Subsequently, the search was refined around these preliminary values using finer
step-sizes of 0.25 to more precisely locate a⋆.

Results are given in tabular form in Table 1 and in Figure 10. The parametric schedule optimized
to minimize the upper bound βa⋆ consistently surpasses the linear schedule, delivering significant
improvements. This enhanced performance is shown by lower average Kullback-Leibler divergence
between πdata and the generated sample distribution, as well as a reduction in the standard deviation
of these divergences, which contributes to more stable generation. These results are competitive with
or even exceed those obtained with state-of-the-art schedules such as the cosine schedule, particularly
in higher dimensions d = 25 and d = 50. However, one should note that this comparison may not be
entirely fair, as the cosine schedule increases unboundedly near T , whereas we capped the parametric
schedule at β(T ) = 20 to align with the linear schedule described in Song et al. (2021).

E.2.2 Illustration of the Wasserstein bound in the Gaussian setting

Target distributions. The target distributions are Gaussian and are the same as for the the

Kullback-Leibler bound: π
(iso)
data , π

(heterosc)
data and π

(corr)
data .

Upper bound evaluation. We leverage the Gaussian nature of the target distribution to compute
explicitly all the terms in the bound from Theroem 4.2. For the mixing time EW2

1 , the strong log-
concavity constant C̄t is derived using Lemma 4.1 and W2(πdata, π∞) is derived using Lemma E.3. For
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Dimension 5 10 25 50

Isotropic

Upper bound min a⋆ 1.75 1.00 1.50 2.00
Generation value in a⋆ 0.001607 ± 0.000462 0.005343 ± 0.001155 0.026724 ± 0.004046 0.095981 ± 0.005485
VPSDE (linear sched.) 0.001935 ± 0.000405 0.005594 ± 0.001377 0.031748 ± 0.006158 0.105592 ± 0.019529

Cosine schedule 0.001390 ± 0.000296 0.005097 ± 0.001064 0.026900 ± 0.001859 0.099917 ± 0.004375
% gain (vs VPSDE) +16.93 % +4.48 % +15.80 % +9.10 %
% gain (vs Cosine) -15.61 % -4.83 % +0.66 % +3.94 %

Correlated

Upper bound min a⋆ 2.25 1.75 1.75 2.25
Generation value in a⋆ 0.001861 ± 0.000880 0.005871 ± 0.001165 0.033156 ± 0.003785 0.109649 ± 0.008056
VPSDE (linear sched.) 0.002568 ± 0.002708 0.006210 ± 0.001816 0.038434 ± 0.010313 0.134716 ± 0.016541

Cosine schedule 0.001197 ± 0.000332 0.005515 ± 0.000775 0.040430 ± 0.003475 0.110515 ± 0.004646
% gain (vs VPSDE) +27.53 % +5.46 % +13.74 % +18.63 %
% gain (vs Cosine) -55.47 % -6.46 % +17.98 % +0.78 %

Parameters
Learning rate 1e-4 1e-4 1e-3 1e-3

Epochs 20 30 75 150

Table 1: Comparison of the KL divergence between the target value and the generated value at a⋆ (the
minimum value of the upper bound from Theorem 3.1) with the KL divergence between the generated
value by VPSDE with linear schedule and the target distribution. We display average KL divergences
plus or minus standard deviations over 10 runs. The target distributions are chosen to be Gaussian with

different covariance structures: isotropic (π
(iso)
data), heteroscedastic (π

(heterosc)
data ) and correlated (π

(corr)
data ).
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Figure 10: Comparison of the empirical KL divergence (mean value ± std over 10 runs) between πdata
and the generative distribution π̂ for different values of the dimension. The generative distributions

considered are π̂
(βa⋆ ,θ)
N ) obtained by the time-inhomogeneous SGM for βa⋆ (blue plain), π̂

(β0,θ)
N obtained

by a standard linear VPSDE model (yellow dashed) and π̂
(βcos,θ)
N obtained by using a cosine schedule

(orange dotted).

EW2
2 , the analytical expressions for L̄t is given in Lemma 4.1 and an upper bound to M is derived in

Proposition E.5. All non analytically solvable integrals estimated numerically using the trapezoidal rule,
implemented with the built-in PyTorch function torch.trapezoid. To estimate ε, we use Monte-Carlo
simulations with 500 samples (in the same manner as for the Kullback-Leibler bound):

sup
k∈{0,...,N−1}

√√√√ 1

500

500∑
i=1

∥∥∥∇ log p̃T−tk

(−→
X

(i)
T−tk

)
− s̃θ

(
T − tk,

−→
X

(i)
T−tk

)∥∥∥2 .
SGM data generation dimension 50. In Figures 11 (and Figures 2 (bottom) of the main paper)
we represent on the same graph, in dimension d = 50, for different values of a:
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• in blue the upper bound from Theorem 4.2.

• in orange (dotted line) the W2 distance between the target distribution πdata and the empirical
mean and covariance of the data generated using the true score function from Lemma E.1.

• in orange (plain line) we represent W2(πdata, π̂
(βa,θ)
N ) for a ∈ {−10,−9,−8, .., 10}. That is, the

W2 distance between the target distribution πdata and the empirical mean and covariance of the
data generated using the neural network architecture described in Figure 9 to approximate the
score function

• in orange (dashed line) we reprensent W2(πdata, π̂
(β0,θ)
N ). That is, the W2 distance between the

target data πdata and the empirical mean and covariance of the data generated by the linear
schedule VPSDE presented in Song et al. (2021) with the neural network architecture described
in Figure 9.

First results. We generate 10 000 samples. The batch size is set to 64 and neural networks are
optimized with Adam. All the W2 distances written above are computed using Lemma E.3. Due to the
stochastic nature of our experiments, they are repeated ten times so that the corresponding mean value
and standard deviations of these results are respectively depicted using plain and fill-in-between plots.
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Figure 11: Comparison of the empirical 2-Wasserstein distance (mean value ± std over 10 runs) between

πdata and π̂
(βa,θ)
N (in orange) and the upper bound from Theorem 4.2 (in blue) w.r.t. the parameter a

used in the definition of the noise schedule βa, for d = 50. We also represent the 2-Wasserstein distances
obtained with the linear VPSDE model (dashed line) and the one obtained with the parametric model
(dotted line) when the score is not approximated but exactly evaluated. The data distribution πdata is

chosen Gaussian, corresponding to (a) π
(iso)
data , (b) π

(heterosc)
data and (c) π

(corr)
data .

Performances obtained from raw distributions for π
(iso)
data , π

(heterosc)
data and π

(corr)
data are displayed in Figure

11. In the isotropic case (Figure 11 (a)) the curve for the upper bound (blue line) points a global

minimum near the minimal values obtain by W2(πdata, π̂
(βa,θ)
N ) (plain orange line), which underlines

that the upper bound is indeed informative in such a case. However, the upper bounds obtained for
the heteroscedastic and correlated settings (Figure 11 (b,c)) are not in line with the generation results.

These observed discrepancies can be linked to the conditioning of the covariance matrices. In both
heteroscedastic and correlated cases, the largest eigenvalue of the covariance matrices is not smaller
than the variance stationary distribution of the forward process (set to σ2 = 1 in those experiments)
violating the requirements of Lemma 4.1 (λmax

(
Σ(heterosc)

)
= 1 and λmax

(
Σ(corr)

)
≈ 15). This induces

the default of strong log-concavity of the renormalized densities p̃t. In this way, the Gaussian scenario
highlights the critical influence of the covariance matrix conditioning on SGMs. Additionally, a smaller
λmin (Σ) would increase Lt and M , which in turn would increase the bound from Theorem 4.2.

Data preprocessing. As frequently done in practice, we expect better conditioning by running
SGMs on a standardized distribution. In this way, note that if X0 ∼ πdata we consider the centered
standardized distribution Xstand = D (X0 − µ) with D = diag(σ1, . . . , σd) ∈ Rd×d a diagonal matrix
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with diagonal entries σj corresponding to the standard deviation of the j-th component of X0 and with

µ = [E [X0,1] , ...,E [X0,d]]
⊤
. A last transformation shrinks the data into a rescaled version of Xstand

defined as Xscale = κD (X0 − µ) with κ := 1/(2λmax

(
Σ(stand)

)
)1/2, where λmax

(
Σ(stand)

)
is the largest

eigenvalue of the covariance matrix of Xstand. We then train SGMs to approximate the distribution of
Xscale. By doing so we ensure the applicability of Lemma 4.1 (with σ2 = 1), as the largest eigenvalue
of the covariance matrix of Xscale is no larger than 0.5.

Adapted upper bound. We can finally adapt the upper bound from Theorem 4.2 to a rescaled
setting by noting that

W2 (πdata, π̃) ≤
1

κ

(
max
1≤j≤d

σj

)
W2

(
πscale, π̂

(βa,θ)
N,scale

)
, (51)

where

• πscale is the distribution of scaled sample Xscale

• π̂
(βa,θ)
N,scale corresponds to the distribution of SGM trained on Xscale

• π̃ is the distribution of the descaled generated samples, i.e., the distribution of 1
κD

−1X + µ with

X ∼ π̂(βa,θ)
N,scale.

Therefore, we can evaluate the upper bound of Theorem 4.2 for scaled samples (r.h.s. of (51)), and
transfer it up to a constant to descaled generated samples (l.h.s. of (51)).

Results with scaled data preprocessing. The results are detailed in Figure 12 for the heteroscedastic

case (e) π
(heterosc)
scale and the correlated case (f) π

(corr)
scale , and are discussed extensively in Section 5.1 of

the main paper. Note that the minima of the evaluated bounds now align closely with the empirical
metrics. However, the upper bound profile for the correlated case has been shifted up. This increase
was anticipated due to the effect of rescaling by the largest eigenvalue of Σcorr

(stand), approximately 15,

which reduces the magnitude of the values in π
(corr)
scale . This tends to increase the values of Lt and M

through the effect on λmin(Σ
(corr)
(stand)) as explained above. Despite this effect, these experiments confirm

the overall utility of the bound for selecting the appropriate noise schedule.
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Figure 12: Comparison of the empirical 2-Wasserstein distance on rescaled datasets for (d) π
(heterosc)
scale ,

(e) π
(corr)
scale .
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Optimal schedule versus classical choices. We investigate the gain from using SGM with the
schedule a⋆ minimising the upper bound from Theorem 4.2 for d ∈ {5, 10, 25, 50} compared to the
linear and cosine schedules (see Appendix E.1.3). To determine the optimal value a⋆, upper bounds
were initially calculated across various dimensions for a range of a values from {−10,−9, . . . , 10}. This
initial calculation aimed to identify a preliminary minimum value. Subsequently, the search was refined
around these preliminary values using finer step-sizes of 0.25 to more precisely locate a⋆.

Results for the isotropic, heteroscedastic, and correlated cases are presented in both tabular form in
Table 2 and visually in Figure 3 within the main paper. These findings are discussed in Section 5.1 of
the main paper.

Dimension 5 10 25 50

Isotropic

Upper bound min a⋆ 4.5 4.25 3.75 4.25
Generation value in a⋆ 0.039241 ± 0.012572 0.059274 ± 0.009438 0.130829 ± 0.014245 0.233812 ± 0.010584
VPSDE (linear sched.) 0.036995 ± 0.004663 0.063939 ± 0.010876 0.141601 ± 0.020447 0.256384 ± 0.032709

Cosine schedule 0.030996 ± 0.003254 0.060649 ± 0.007117 0.131234 ± 0.004794 0.251959 ± 0.005588
% gain (vs VPSDE) -6.07 % +7.30 % +7.61 % +8.79 %
% gain (vs Cosine) -26.60 % +2.26 % +0.31 % +7.20 %

Heterosc.
(with rescaling)

Upper bound min a⋆ 4.00 3.25 2.00 2.75
Generation value in a⋆ 0.096592 ± 0.003062 0.143224 ± 0.004899 0.242493 ± 0.004769 0.372292 ± 0.004694
VPSDE (linear sched.) 0.098889 ± 0.003604 0.147478 ± 0.009638 0.249144 ± 0.011394 0.385612 ± 0.009333

Cosine schedule 0.096437 ± 0.002380 0.143701 ± 0.002460 0.250520 ± 0.004448 0.374868 ± 0.003243
% gain (vs VPSDE) +2.32 % +2.89 % +2.67 % +3.46 %
% gain (vs Cosine) -0.16 % +0.33 % +3.20 % +0.69 %

Correlated
(with rescaling)

Upper bound min a⋆ 8.00 8.75 10.50 11.00
Generation value in a⋆ 0.066548 ± 0.013873 0.107291 ± 0.028454 0.261075 ± 0.029533 0.676151 ± 0.123277
VPSDE (linear sched.) 0.072068 ± 0.019861 0.138240 ± 0.031119 0.302986 ± 0.045539 0.897584 ± 0.079860

Cosine schedule 0.048276 ± 0.008605 0.112898 ± 0.011284 0.391753 ± 0.030112 0.765524 ± 0.022376
% gain (vs VPSDE) +7.65 % +22.36 % +13.81 % +24.68 %
% gain (vs Cosine) -37.77 % +4.96 % +33.31 % +11.67 %

Parameters
Learning rate 1e-4 1e-4

1e-3
(1e-4 for Corr.)

1e-3
(1e-4 for Corr.)

Epochs 20 30 75 150

Table 2: Comparison of the W2 distance between the target value and the generated value at a⋆ (the
minimum value of the upper bound from Theorem 4.2) with the W2 distance between the generated
value by VPSDE and the target distribution. We display averages plus or minus standard deviations
over 10 runs. The target distributions are chosen to be Gaussian with different covariance structures:
isotropic, heteroscedastic (with rescaling applied), and correlated (with rescaling applied).

E.2.3 Numerical experiments with more complex synthetic data

In the context of complex data distributions, the Kullback-Leibler bound (Theorem 3.1) appears
to be of limited practical applicability. Specifically, EKL

2 (θ, β) implies that for each noise schedule
tested, a distinct score approximation s̃θ(t, x) must be trained. This requirement renders the bound
computationally intensive and therefore not realistically usable. Additionally, EKL

3 (β) is independent of
the schedule choice over (0, T ), as it depends solely on its final value β(T ) which is set constant in our
empirical setting (for all a, βa(T ) = 20). As a consequence, the last remaining error term to analyse
the bound through the lens of noise schedules is the mixing time EKL

1 (β). However, relying exclusively

on EKL
1 (β) would suggest selecting a schedule t 7→ β(t) that maximises

∫ T

0
β(t)dt. As demonstrated in

Section 5.1, this approach clearly fails to yield the schedule choices near the optimal solution.
Therefore, a more reliable choice would be to use the W2 bound of Theorem 4.2 for which most of

the terms can be computed explicitly with reasonable computational cost in the Gaussian setting. In
particular, we leverage the Gaussian framework to estimate the constant terms and apply the rescaling
defined in Appendix E.2.2 to ensure that Ct is non negative for t ∈ (0, T ]. More precisely,

• Lt and Ct are given in Lemma 4.1 and are computed using the empirical covariance matrix
associated with πscale (and using when applicable the refinements in Propositions D.1 and D.2),
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• M is derived with Proposition E.5 with appropriate empirical estimators,

• W2(πdata, π∞) is computed using closed-form formulas for Gaussian distributions, involving
empirical estimators of the mean and covariance of πscale,

• the term ε is deliberately omitted to avoid the prohibitively high computational costs associated
with training distinct models for different noise schedules.

The experiments are run using the same neural network architecture as in the Gaussian illustrations
of Appendices E.2.1 and E.2.2 (i.e., a dense neural network with 3 hidden layers of width 256). The
network was trained over 200 epochs for a ∈ {−10,−9, . . . , 19, 20}. Contrary to the Gaussian case,
conditional score matching Lscore(θ) (5) is used, as being closer to what is done in practice (explicit
scores are now out of reach). To assess the quality of the data generation three metrics are used:

(a) an estimator of the KL-divergence based on k-nearest neighbors (Wang et al., 2009) with ⌈
√
d⌉

neighbors,

(b) the sliced 2-Wasserstein distance (Flamary et al., 2021) with 2000 projections,

(c) the negative log likelihood computed on 1000 samples defined as − 1
1000

∑1000
i=1 log πdata(xi) with

(xi)1≤i≤1000 samples from the generated distribution and πdata the probability density function to
be estimated.

Funnel distribution. The first distribution considered is the Funnel distribution (Thin et al., 2021)
in dimension 50, defined as

πdata(x) = φa2(x1)

d∏
j=2

φexp(2bx1)(xj) ,

with a = 1 and b = 0.5. To ensure the applicability of Theorem 4.2 and Lemma 4.1 the samples are
standardized and rescaled according to the method described in Appendix E.2.2. The results, illustrated
in Figures 4 and 13, show that the upper bounds effectively mirror the generation outcomes across the
three metrics considered. Moreover, the generation results for the parametric schedule a⋆ (the one that
minimizes the upper bound) outperforms in all three metrics both the linear and cosine schedules (see
Table 3).
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Figure 13: Upper bound and empirical distances between the data distribution and the generated
samples for different metrics on a Funnel dataset in dimension 50.
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Gaussian mixture models. The second distribution considered is a Gaussian mixture model with
25 modes in dimension 50, defined as

πdata(x) =
1

25

∑
(j,k)∈{−2,...,2}2

φµjk,Σd
(x)

with φµjk,Σd
denoting the probability density function of the Gaussian distribution with covariance

matrix Σd = diag (0.01, 0.01, 0.1, ..., 0.1) and mean vector µjk = [j, k, 0, 0, 0..., 0]⊤. The results shown
in Figure 14 and Table 3 confirm the relevance of the upper bound even for non-Gaussian datasets.
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Figure 14: Upper bound and empirical distances between the data distribution and the generated
samples for different metrics on a mixture of 25 Gaussian variables dataset in dimension 50.

Metric Sliced-Wasserstein k-nn (Kullback-Leibler) NLL

Funnel distribution

Generation value in a⋆ 0.218498 ± 0.049882 4.242455 ± 0.450224 82.25179 ± 3.12809
VPSDE (linear sched.) 0.240664 ± 0.036578 6.048403 ± 0.726221 87.02893 ± 3.40642

Cosine schedule 0.221851 ± 0.054309 4.927209 ± 0.510968 83.73294 ± 3.53262
% gain (vs VPSDE) +9.21 % +29.88 % +5.49 %
% gain (vs Cosine) +1.51 % +13.91 % +1.77 %

Gaussian mixture models

Generation value in a⋆ 0.043388 ± 0.005222 2.433759 ± 0.180652 35.033176 ± 1.97863
VPSDE (linear sched.) 0.057763 ± 0.004450 3.063054 ± 0.126697 40.49867 ± 3.13705

Cosine schedule 0.046816 ± 0.008402 2.541213 ± 0.158563 34.76353 ± 2.20980
% gain (vs VPSDE) +24.91 % +20.55 % +13.49 %
% gain (vs Cosine) +7.32 % +4.23 % -0.77 %

Parameters
Learning rate 1e-3 1e-3 1e-3

Epochs 200 200 200

Table 3: Comparison of the sliced-W2 distance, KL divergence coupled with k-nearest neighbors
estimate and negative log-likelihood between the target distribution and the SGM-generated one. For
the latter, the SGM is either trained with linear, cosine and βa⋆ schedules. We display averages plus or
minus standard deviations over 10 runs. The target distributions are chosen are Funnel and Gaussian
mixture models.

F Conditional training in the Gaussian setting

Section 5.1 of this paper is dedicated to the illustration of the theoretical upper bounds and their
relevance in the Gaussian setting (i.e., when πdata is Gaussian). This choice has been motivated by the
fact that, under this setting, all constants in the upper bounds from Theorem 3.1 and Theorem 4.2 are
either analytically available or could be precisely estimated (see Appendices E.2.1 and E.2.2).

In particular, both upper bounds display error terms proportional to Lexplicit(θ) (4), which has
motivated the use of explicit score matching during the training. To do so, we used a deep neural
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architecture (see Figure 9) trained to minimize Lexplicit(θ) (4) using as a target the true score function.
This is possible because in the Gaussian setting, the true score function is analytically known (Lemma
E.1). However, in most applications the score function is not available, because the data distribution
is not known and has to be learned. This is the reason why, in practice we rely on conditional
score matching (i.e., the minimization of Lscore(θ) (5)). This approach is particularly relevant given
the relationship between the explicit and conditional score functions: Lexplicit (θ) = Lscore (θ) −
E
[
∥∇ log pτ (

−→
X τ )−∇ log pτ (

−→
X τ |X0)∥2

]
.

Consequently, all the theoretical upper bounds discussed in Sections 3 and 4 can be adjusted by a
constant (with respect to θ) to account for discrepancies between the score function learned through
Lscore or Lexplicit.

The rest of this section demonstrates the numerical effects of employing conditional score matching
instead of explicit score matching, following the numerical set-up of Appendices E.2.1 and E.2.2. In
Figure 15, the Kullback-Leibler upper bound from Theorem 3.1 is depicted in varying shades of blue,

while the empirical KL(πdata||π̂(βa,θ)
N ) across parameters a ∈ {−10,−9,−8, ..., 10} is shown in varying

shades of orange.
In Figure 15, three learning scenarios are presented: one using explicit score matching (which exactly

matches the results of Figure 2 (top)), another with conditional score matching over 150 epochs, and a
third with 300 epochs. Both the generation results and the upper bounds show diminished performance
as the curves are shifted upwards. Nonetheless, the overall curve shapes are similar, and the optimal
points remain closely aligned. Interestingly, both the upper bounds and the generation outcomes in the
conditional scenarios demonstrate more pronounced peaks near the minimum values. This suggests
that precise noise schedule selection may yield even better performance gain when SGMs are trained
using conditional score matching.

Additionally, Figure 16 demonstrates that increasing the number of training iterations when using
conditional score matching provides results more and more similar to that obtained with explicit score
matching. This effect is noticeable in both the KL divergence and the W2 distance.
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Figure 15: Comparison of the empirical KL divergence (mean value ± std over 10 runs) between πdata
and π̂

(βa,θ)
N (in orange) and the upper bound of Theorem 3.1 (in blue) w.r.t. the parameter a used in

the definition of the noise schedule βa, for d = 50.
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Figure 16: Comparison of the empirical KL divergence (top) and the W2 distance (bottom) (mean

value ± std over 10 runs) between πdata = π
(iso)
data and π̂

(βa,θ)
N (in orange) and the upper bound of

Theorem 3.1 (top) and of Theorem 4.2 (bottom) (in blue) w.r.t. the parameter a used in the definition
of the noise schedule βa, for d = 50.
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