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Abstract

Score-based generative models (SGMs) aim at estimating a target data distri-
bution by learning score functions using only noise-perturbed samples from the
target. Recent literature has focused extensively on assessing the error between
the target and estimated distributions, gauging the generative quality through
the Kullback-Leibler (KL) divergence and Wasserstein distances. All existing
results have been obtained so far for time-homogeneous speed of the noise schedule.
Under mild assumptions on the data distribution, we establish an upper bound for
the KL divergence between the target and the estimated distributions, explicitly
depending on any time-dependent noise schedule. Assuming that the score is
Lipschitz continuous, we provide an improved error bound in Wasserstein distance,
taking advantage of favourable underlying contraction mechanisms. We also
propose an algorithm to automatically tune the noise schedule using the proposed
upper bound. We illustrate empirically the performance of the noise schedule
optimization in comparison to standard choices in the literature.

1 Introduction

Recent years have seen impressive advances in machine learning and artificial intelligence,
with one of the most notable breakthroughs being the success of diffusion models,
introduced by Sohl-Dickstein et al. (2015). Diffusion models in generative modeling
refer to a class of algorithms that generate new samples given training samples of an
unknown distribution πdata. This method is now recognized for its ability to produce
high-quality images that appear genuine to human observers (see e.g., Ramesh et al.,
2022, for text-to-image generation). Its range of applications is expanding rapidly,
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yielding impressive outcomes in areas such as computer vision Li et al. (2022); Lugmayr
et al. (2022) or natural language generation Gong et al. (2023), among others, see Yang
et al. (2023) for a comprehensive overview of the latest advances in this topic.

Score-based generative models (SGMs). Generative diffusion models aim at
creating synthetic instances of a target distribution when only a genuine sample (e.g.,
a dataset of real-life images) is accessible. It is crucial to note that the complexity of
real data prohibits a thorough depiction of the distribution πdata through a conventional
parametric model, and its estimation via traditional maximum likelihood methods.
Standard strategies based on non-parametric density estimation such as kernel smoothing
are also generally ruled out due to the high dimensionality of the data in play.

Score-based Generative Models (SGMs) are probabilistic models designed to address
this challenge using two main phases. The first phase, the noising phase (also referred
to as the forward phase), involves progressively perturbing the empirical distribution
by adding noise to the training data until its distribution approximately reaches an
easy-to-sample distribution π∞. The second phase involves learning to reverse this
noising dynamics by sequentially removing the noise, which is referred to as the sampling
phase (or backward phase). Reversing the dynamics during the backward phase would
require in principle knowledge of the score function, i.e., the gradient of the logarithm
of the density at each time step of the diffusion. However, knowing the score amounts to
knowing the distribution at time t = 0, i.e., knowing the distribution πdata according to
which we wish to simulate new examples. To circumvent this issue, the score function
is learned based on the evolution of the noised data samples and using a deep neural
network architecture. When applying these learned reverse dynamics to samples from
the distribution π∞, we obtain a generative distribution that approximates πdata.

Related works. Significant attention has been paid to understanding the sources of
errors that affect the quality of data generation associated with SGMs (Chen et al.,
2023a,b; Block et al., 2020; De Bortoli, 2022; Lee et al., 2022, 2023; Benton et al., 2023).
In particular, a key area of interest has been the derivation of upper bounds for distances
or pseudo-distances between the training and generated sample distributions. Note
that all the mathematical theory for diffusion models developed so far covers general
time discretizations of time-homogeneous SGMs (see Song and Ermon, 2019, in the
variance-preserving case), which means that the strength of the noise is prescribed to be
constant during the forward phase. De Bortoli et al. (2021); Chen (2023) provided upper
bounds in terms of total variation, by assuming smoothness properties of the score and
its derivatives. On the other hand, the upper bounds in total variation and Wasserstein
distances provided by Lee et al. (2023) also require smoothness assumptions on the data
distribution and involve non-explicit constants. More recently, Conforti et al. (2023)
established an upper bound in terms of Kullback–Leibler (KL) divergence avoiding
strong assumptions about the score regularity, and relying on mild conditions about
the data distribution assumed to be of finite Fisher information w.r.t. the Gaussian
distribution. Regarding time-inhomogeneous SGMs, the central role of the noise schedule
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has already been exhibited in numerical experiments, see for instance Chen (2023);
Nichol and Dhariwal (2021); Anonymous (2023). However, a rigorous theoretical analysis
of it is still missing.

Contributions. In this paper, we conduct a thorough mathematical analysis of the
role of the noise schedule in score-based generative models.

• We establish an upper bound on the Kullback-Leibler divergence between the data
distribution and the law of the SGM. This bound holds under mild assumptions
and explicitly depends on the noise schedule used to train the SGM.

• We illustrate, through numerical experiments, the upper bound obtained in practice
in regard of the effective empirical KL divergences. These simulations highlights
the relevancy of the upper bound, reflecting in practice the effect of the noise
schedule on the quality of the generative distribution.

• By making an additional assumption on the Lipschitz property of the score function,
we establish a sharper bound of the error due to the mixing time in terms of
Wasserstein distance, by leveraging from the contraction of the drift not only of
the forward, but also of the backward stochastic diffusion.

• Finally, we propose to exploit the theoretical bound obtained to drive and improve
the implementation of SGMs in practice. We indeed suggest a procedure to
jointly optimize the score network and the noise schedule using a loss function
encompassing the proposed upper bound.

2 A theoretical analysis of the noise schedule in

SGMs

In this section, we provide a theoretical analysis of the effect of the noise schedule used
when training an SGM. Its impact is theoretically captured through a bound on the KL
divergence between the data distribution and the generative one.

2.1 Notation and definitions

Forward process. Denote as β : [0, T ] 7→ R>0 the noise schedule, assumed to be
continuous and non decreasing. Although originally developed using a finite number of
noising steps Sohl-Dickstein et al. (2015); Song and Ermon (2019); Ho et al. (2020); Song
et al. (2021b), most recent approaches consider time-continuous noise perturbations
through the use of stochastic differential equations (SDEs) Song et al. (2021b). Consider,
therefore, a forward process given by

d
−→
X t = −

β(t)

2σ2

−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ πdata . (1)

3



We denote by pt the density of
−→
X t at time t ∈ (0, T ]. Note that, up to the time change

t 7→
∫ t

0
β(s)/2ds, this process corresponds to the standard Ornstein–Uhlenbeck (OU)

process, solution to

d
−→
X t = −

1

σ2

−→
X tdt+

√
2dBt,

−→
X 0 ∼ πdata ,

see for instance Karatzas and Shreve (2012, Chapter 3). Due to the linear nature of the
drift with respect to (Xt)t, an exact simulation can be performed for this process. The
stationary distribution of the forward process is the Gaussian distribution with mean 0
and variance σ2Id and is denoted by π∞.

Note that in the literature, when β(t) is constant equal to 2 (meaning that there is
no time change), this diffusion process is referred to as the Variance-Preserving SDE
(VPSDE, De Bortoli et al., 2021; Conforti et al., 2023; Chen et al., 2023b), leading
to the so-called Denoising Diffusion Probabilistic Models (DDPM, Ho et al., 2020).
Understanding the effects of the general diffusion model (1), in particular when reversing
the dynamic, remains a challenging problem, to which we devote the rest of our analysis.

Backward process. The corresponding backward process is initialized at the station-
ary distribution π∞ and can be written as

d
←−
X t = η(t,

←−
X t)dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞ ,

where {
β̄(t) := β(T − t)

η(t,
←−
X t) := β̄(t)

←−
X t/(2σ

2) + β̄(t)∇ log pT−t

(←−
X t

)
.

We denote by QT ∈ P(C([0, T ],Rd)) the path measure associated with the backward
diffusion. We consider the marginal time distribution of the forward process divided by
the density of its stationary distribution, introducing

∀x ∈ Rd, p̃t(x) =
pt(x)

φσ2(x)
, (2)

where φσ2 denote the density function of π∞, a Gaussian distribution with mean 0 and
variance σ2Id. Thus, the backward process can be rewritten as

d
←−
X t = η̄

(
t,
←−
X t

)
dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞ , (3)

where η̄(t,
←−
X t) := − β̄(t)

2σ2

←−
X t+β̄(t)∇ log p̃T−t(

←−
X t). The benefit of using the renormalization

p̃t in our analysis results in considering the backward equation as a perturbation of
an OU process. This trick is crucial to highlight the central role of the relative Fisher
information in the performance of the SGM. It has already been used by Conforti et al.
(2023).
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Score estimation. Simulating the backward process means knowing how to operate
the score. However, the (modified) score function ∇ log p̃t(x) = ∇ log pt(x)+x/σ

2 cannot
be evaluated directly, because it depends on the unknown data distribution. To work
around this problem, the score function ∇ log pt needs to be estimated. In Hyvärinen
and Dayan (2005), the authors proposed to estimate the score function associated with
a distribution by minimizing the expected L2-squared distance between the true score
function and the proposed approximation. In the context of diffusion models, this is
typically done with the use of a deep neural network architecture sθ : [0, T ]× Rd 7→ Rd

parameterized by θ ∈ Θ, and trained to minimize:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2] ,
with τ ∼ U(0, T ) independent of the forward process

(−→
X t

)
t≥0

. However, this estimation

problem still suffers from the fact that the regression target is not explicitly known. A
tractable optimization problem sharing the same optima can be defined though, through
the marginalization over πdata of pτ (see Vincent, 2011; Song et al., 2021a):

Lscore(θ) = E
[
∥sθ(τ,

−→
X τ )−∇ log pτ (

−→
X τ |X0)∥2

]
,

where τ is uniformly distributed on [0, T ], and independent of X0 ∼ πdata and
−→
X τ ∼

pτ (·|X0). This loss function is appealing as it only requires to know the transition kernel
of the forward process. In the classical setting of diffusion models given by (1), this is a
Gaussian kernel with explicit mean and variance.

Discretization. Once the score function is learned, it remains that, in most cases,
the backward dynamics no longer enjoys a linear drift, which makes its exact simulation
challenging. To address this issue, one solution is to discretize the continuous dynamics
of the backward process. In this way, Song et al. (2021b) propose an Euler-Maruyama
(EM) discretization scheme in which both the drift and the diffusion coefficients are
discretized recursively (see 26). In particular, introduce s̃θ(t, x) := sθ(t, x) + x/σ2

and consider the time discretization 0 =: t0 ≤ t1 ≤ · · · ≤ tN := T , the EM scheme
corresponds to

d
←−
XEM

t =

(
− β̄(tk)

2σ2

←−
XEM

tk
+ β̄(t)s̃θ

(
T − tk,

←−
XEM

tk

))
dt+

√
β̄(tk)dBt .

The Euler Exponential Integrator (EI) (see Durmus and Moulines, 2015), as already
used in Conforti et al. (2023), only requires to discretize the part associated with the

modified score function. Let
(←−
X θ

t

)
t∈[0,T ]

be such that, for t ∈ [tk, tk+1],

d
←−
X θ

t = β̄(t)

(
− 1

2σ2

←−
X θ

t + s̃θ

(
T − tk,

←−
X θ

tk

))
dt+

√
β̄(t)dBt .
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This scheme can be seen as a refinement of the classical Euler-Maruyama one as it
handles the linear drift term by integrating it explicitly. We consider therefore such a
scheme in our further theoretical developments.

We denote by Q̄β,θ
N ∈ P(C([0, T ],Rd)) the path measure associated with this dis-

cretized version of the backward diffusion and by π̂
(β,θ)
N the marginal probability density

of
←−
X θ

T under an N -time discretization (recall that
←−
X θ

0 ∼ π∞).

2.2 Main result: nonasymptotic Kullback-Leibler upper bound
depending on the noise schedule

In this section, we present theoretical guarantees on time-inhomogeneous SGMs with an
explicit dependency on the noise schedule t 7→ β(t).

Statement. The data distribution πdata is assumed to be absolutely continuous with
respect to the Gaussian measure π∞. Define the relative Fisher information I(πdata|π∞)
by

I(πdata|π∞) :=

∫ ∥∥∥∥∇ log

(
dπdata
dπ∞

)∥∥∥∥2 dπdata ,

and consider the following assumptions.

H1 The noise schedule is continuous, non decreasing and such that
∫∞
0
β(t)dt =∞.

H2 The data distribution has finite Fisher information w.r.t. the normal distribution,
i.e., I(πdata|π∞) <∞.

H3 The parameter θ ∈ Θ and the schedule β satisfy

E
[
exp

{
1

2

∫ T

0

β̄(t)
∥∥∥(s̃(T − t,←−X t

)
− s̃θ

(
T − tk,

←−
X tk

))∥∥∥2 dt}] <∞ ,

where s̃(t, x) := ∇ log p̃t(x) corresponds to the score function up to the renormal-
ization (2) by the stationary distribution.

Assumption H1 is necessary to ensure that the forward process converges to the
stationary distribution when the diffusion time tends to infinity. Assumption H2 is
inherent to the data distribution, as it involves only the L2-integrability of the score
function. Such a kind of hypothesis has already been considered in the literature, see
Conforti et al. (2023). We stress that we do not require extra assumptions about the
smoothness of the score function. Lastly, Assumption H3 is the guarantor of a good
approximation of the score by the neural network s̃θ, weighted by the level of noise in
play. We are now in position to provide an upper bound for the relative entropy between
the distribution π̂

(β,θ)
N of samples obtained using the discretized reverse-time process,

and the target data distribution πdata. This theoretical guarantee on the quality of the
generated samples explicitly depends on the noise schedule t 7→ β(t).
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Theorem 2.1. Assume that H1, H2 and H3 hold. Then,

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ E1(β) + E2(θ, β) + E3(β) ,

where

E1(β) = KL (πdata||π∞) exp

{
− 1

σ2

∫ T

0

β(s)ds

}
,

E2(θ, β) =
N∑
k=1

E
[∥∥∥∇ log p̃T−tk

(−→
X T−tk

)
− s̃θ

(
T − tk,

−→
X T−tk

)∥∥∥2] ∫ tk+1

tk

β(t)dt ,

E3(β) = 2hβ(T )max

{
hβ(T )

4σ2
; 1

}
I(πdata|π∞) ,

with h := supk∈{1,...,N}(tk − tk−1) and t0 := 0.

The obtained bound is composed of three terms, all depending on the noise schedule
β, through either its integrated version over the diffusion time, or its final value at time T .
Note that if the result is derived for the EI discretization scheme, it could be adapted to
the Euler one up to minor technicalities. Remark also that relying on Pinsker’s inequality,
the obtained bound could be transferred in terms of total variation. To understand the
origin of each term of the upper bound, we propose to give the main ideas of the proof
in what follows. Our approach to establish Theorem 2.1 falls into the category of the
Girsanov-based approach as in De Bortoli et al. (2021); Chen et al. (2023b); Conforti
et al. (2023), adapted to obtain sharp upper bounds in time-inhomogeneous cases.

Elements of proof. We are interested in the relative entropy of the training data
distribution πdata with respect to the generated data distribution π̂

(β,θ)
N . Denoting by

(Qt)t∈[0;T ] the semi-group of
←−
X t (we drop the dependence on the noise schedule β in the

notation for the ease of readability) and leveraging the time-reverse property we have1:

KL
(
πdata

∣∣∣∣∣∣π̂(β,θ)
N

)
= KL

(
pTQT

∣∣∣∣∣∣π̂(β,θ)
N

)
.

By the data processing inequality,

KL
(
pTQT

∣∣∣∣∣∣π̂(β,θ)
N

)
≤ KL

(
pTQT

∣∣∣∣∣∣π∞Q̄β,θ
N

)
.

1For any probability density p and any kernel Q, pQ is the probability density given by pQ : x 7→∫
p(u)Q(u, x)du where Q(u, ·) is the probability density of Q(u,dx).
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Writing the backward time τt = T − t and its discretized version τk = T − tk, we have
(by Lemma B.2) that

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT∥φσ2)

+
1

2

∫ T

0

1

β̄(t)
E

[∥∥∥∥∥−β̄(t)2σ2

←−
X t + β̄(t)∇ log p̃τt

(←−
X t

)
−
(
− β̄(t)

2σ2

←−
X t + β̄(t)s̃θ

(
τk,
←−
X tk

))∥∥∥∥∥
2]
dt .

From there, the KL divergence can be split into the theoretical mixing time of the
forward OU process and the approximation error for the score function made by the
neural network, as follows:

KL
(
πdata∥π̂(β,θ)

N

)
≤ KL (pT∥φσ2) +

1

2

∫ T

0

1

β̄(t)
E

[∥∥∥∥∥β̄(t)(s̃(τt,←−X t

)
− s̃θ(τk,

←−
X tk)

)∥∥∥∥∥
2]
dt .

By discretizing the interval [0, T ] using 0 = t0 < t1 < . . . < tN = T , one can disentangle
the last term as follows:

KL
(
πdata

∥∥∥π̂(β,θ)
N

)
≤ KL (pT∥φσ2) +

1

2

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,←−X t

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2] dt
≤ E1(β) + E2(θ, β) + E3(β) ,

where

E1(β) = KL (pT∥φσ2) , (4)

E2(θ, β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τk,←−X tk

)
− s̃θ

(
τk,
←−
X tk

)∥∥∥2] dt , (5)

E3(β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥s̃(τt,←−X t

)
− s̃

(
τk,
←−
X tk

)∥∥∥2] dt . (6)

Finishing the proof of Theorem 2.1 amounts to obtaining upper bounds for E1(β),
E2(θ, β) and E3(β). This is done in Lemmas A.1,A.2 and A.3, so that E1(β) ≤ E1(β),
E2(θ, β) ≤ E2(θ, β) and E3(β) ≤ E3(β).
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Dissecting the upper bound. The upper bound of Theorem 2.1 involves three
different types of error that affect the training of an SGM. The term E1 (or E1 in the
proof) represents the mixing time of the OU forward process, arising from the practical
limitation of considering the forward process up to a finite time T . Indeed, E1 is shrinked
to 0 when T grows to infinity. Note that the multiplicative term in E1 corresponds to
the KL divergence between πdata and π∞ which is ensured to be finite by Assumption
H2. The second term E2 (or E2 in the proof) corresponds to the approximation error,
which stems from the use of a deep neural network to estimate the score function.
Note that if we assume that the error of the score approximation is uniformly (in time)
bounded byMθ (see De Bortoli et al., 2021, Equation (8)), the term E2 admits as a crude

bound Mθ

∫ T

0
β(t)dt, with the disadvantage of exploding when T → +∞. Otherwise, by

considering Conforti et al. (2023, Assumption H3), one can make this bound finer and
finite, by balancing the quality of the score approximation, the discretization grid and
the final time T . Finally, E3 (or E3 in the proof) is the discretization error of the EI
discretization scheme. This last term vanishes as the discretisation grid is refined (i.e.,
h→ 0).

Comparison with existing bounds. Under perfect score approximation, i.e. (with
τk = T − tk),

N∑
k=1

E
[∥∥∥∇ log p̃τk

(−→
X τk

)
− s̃θ

(
τk,
−→
X τk

)∥∥∥2] = 0 ,

and infinitely precise discretization, i.e., h→ 0, we recover that the Variance Preserving
SDE (VPSDE, De Bortoli et al., 2021; Conforti et al., 2023; Chen et al., 2023b) converge
exponentially fast to the target distribution. Beyond this idealized setting, the bound
established in Theorem 2.1 recovers that of Conforti et al. (2023, Theorem 1) when
choosing a constant noise schedule β(t) = 2, the stationary variance as σ2 = 1/2, fixing
the final time T at 1, and using a discretization step size h ≤ 1.

3 On the tightness of the upper bound

3.1 A refined version

In this section, we focus on the framework of “perfect score approximation” and infinitely
precise discretization, i.e., E2(θ, β) = E3(θ, β) = 0. This allows to assess the sharpness
of the term E1(β) in the upper bound of Theorem 2.1.

When restricting the data distribution to be Gaussian N (µ0,Σ0), one can exploit
the backward contraction assuming that λmax(Σ0) ≤ σ2, where λmax(Σ0) denotes the
largest eigenvalue of Σ0. In this specific case, we can obtain a refined version for E1 (see
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Proposition C.1), given by

KL (πdata∥φσ2QT ) ≤ KL (πdata∥φσ2) exp

(
− 2

σ2

∫ T

0

β(s)ds

)
.

In the literature, much attention is paid to derive upper bounds with other metrics
such as the (sliced)-Wasserstein. In Lee et al. (2023), the authors obtain a control
for the Wasserstein and total variation distances. However, those results rely on
strong smoothness assumptions on the score function as in De Bortoli (2022), and with
additional assumptions on πdata (assumed to have bounded support).

Hereafter, we also propose a control in Wasserstein distance under the following
assumption.

H4 For any t, there exists Ct ≥ 0 such that ∀x, y ∈ Rd,

(∇ log p̃t(x)−∇ log p̃t(y))
⊤(x− y) ≤−Ct ∥x− y∥2 .

Assumption H4 includes a notion of smoothness for the score accounting for its
sign, which plays a crucial role in terms of contraction of the backward SDE. This is
a key element that has already been identified in OU processes for instance for which
contraction is indeed well-established and serves as the foundation for the convergence
of SGMs.

Proposition 3.1. Suppose that x 7→ ∇ log p̃t(x) is Lt-Lipschitz, for t ∈ (0, T ]. Then,

W2 (πdata, φσ2QT )
2 ≤ W2 (pT , φσ2)2 exp

(
−
∫ T

0

β(t)

σ2

(
1− 2Ltσ

2
)
dt

)
. (7)

Moreover, under Assumption H4, we have

W2 (πdata, φσ2QT )
2 ≤ W2 (pT , φσ2)2 exp

(
−
∫ T

0

β(t)

σ2

(
1 + 2Ctσ

2
)
dt

)
. (8)

Remark that Assumption H4 is a more restrictive hypothesis compared to the
Lipschitz continuity of the score, as the former implies the latter. This stringency is
reflected in the upper bound, as the contraction strength is always improved under
Assumption H4 by involving the term 1 + 2Ctσ

2 instead of 1− 2Ltσ
2 when the score

is only assumed to be Lipschitz. Note that Ct could take negative values to a certain
extent, and still preserving the contraction property.

Note also that Assumption H4 or the Lipschitz property of the score are both satisfied
when the target distribution is assumed to be Gaussian and provided some conditions
on its covariance structure. Indeed, when πdata is a Gaussian distribution N (µ0,Σ0),
the score can be expressed by a closed-form formula, leading to a fine evaluation of the
constant Ct (and Lt).
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Lemma 3.2. Assume that πdata is a Gaussian distribution N (µ0,Σ0), satisfying that
λmax(Σ0) ≤ σ2. Then, the error bound (8) holds with a contraction dictated by the
following constant

Ct :=
m2

t (σ
2 − λmax(Σ0))

m2
tλmax(Σ0) + σ2 (1−m2

t )
.

This result, restricted to the Gaussian case, sets the focus on the importance
of calibrating the parameter σ2 depending on the covariance structure of the data
distribution, in order to accelerate the convergence speed of the algorithm.

3.2 Numerical illustration

To illustrate the upper bound, we consider the setting where the true distribution is
Gaussian in dimension d = 50 with mean 1d and different choices of covariance structure.

1. (Isotropic) Σ(iso) = 0.5Id.

2. (Heteroscedastic) Σ(heterosc) ∈ Rd×d is a diagonal matrix such that Σ
(heterosc)
jj = 10

for 1 ≤ j ≤ 5, and Σ
(heterosc)
jj = 0.1 otherwise.

3. (Correlated) Σ(corr) ∈ Rd×d is a full matrix whose diagonal entries are equal to one

and the off-diagonal terms are Σ
(corr)
jj′ = 1/

√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

The resulting data distributions are respectively denoted by π
(iso)
data, π

(heterosc)
data and π

(corr)
data .

Theorem 2.1 provides a generic Kullback-Leibler upper-bound:

Lsched(θ, β) = E1(β) + E2(θ, β) + E3(β) . (9)

We propose to evaluate (9) for the different data distributions above, and for a noise
schedule of the form

βa(t) ∝ (eat − 1)/(eaT − 1) , (10)

with a ∈ R ranging from −10 to 10, see Figure 1. To do so, for each value of a, and
each data distribution, we train with n = 10000 Gaussian samples an SGM with 200
discretization steps of the time interval [0, 1]. In all our numerical experiments, we use
an Euler-Maruyama scheme, as being the most encountered in practice. The score is
learned using a dense neural network with 3 hidden layers of width 256 over 100 epochs,
see Figure 7. We compare the obtained value of (9) with empirical KL divergence

between samples from the data distribution and samples from the trained model π̂
(βa,θ)
N .

Note that in a Gaussian setting, the evaluation of the bound or the KL divergence relies
on closed-form formulas; see Appendix D.1.
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Figure 1: Evolution of noise schedules βa w.r.t. time, for different values of parameter
between −10 to 10. The original choice of noise schedule in the VPSDE case (Ho et al.,
2020) is shown as a dashed line, corresponding to a linear noising function.

When the parameter a ranges from −10 to 10 with a unit step size, i.e.,a ∈
{−10,−9, . . . , 9, 10}, the results are displayed in Figure 2. They highlight in all the sce-

narios that the noise schedule involved in the SGM impacts the value of KL(πdata∥π̂(β,θ)
N ),

and thereby the quality of the learned distribution.
In the isotropic case (Figure 2 (a)), the behavior of the upper bound of Theorem

2.1 does not exactly match the one of KL(πdata∥π̂(βa,θ)
N ) suggesting that the refinement

relying on contraction arguments specific to the Gaussian setting (see Lemma 3.2) is
indeed more informative in such a case.

When considering data distributions less naive such as π
(heterosc)
data and π

(corr)
data (Figure

2 (b) and (c)), the upper bound of Theorem 2.1 remains clearly relevant to assess the
efficiency of the noise schedule used during training. Note that in all these experiments
(Figure 2 and 3), the generic upper bound provided by Theorem 2.1 indicates a window of
possible values for a improving over the classical linear noise schedule. This suggests that
optimizing this upper bound with respect to the noise schedule through the parameter
a could enable us to lower the discrepancy between πdata and the estimated one π̂

(βa,θ)
N ,

and thus improving the quality of the generated samples.
For all the settings (isotropic, heteroscedastic and correlated), we also verify these

findings by making the dimension of the inputs vary in {5, 10, 25, 50}, and we compare
the empirical KL obtained by (i) classical VPSDE (Song and Ermon, 2019), with a linear
noise schedule (i.e.,a = 0), (ii) a time-inhomogeneous SGM involving a cosine schedule
as in Nichol and Dhariwal (2021), and (iii) the one obtained by our time-inhomogeneous
SGM. For the latter, we adopt the noise schedule to be β⋆ = βa⋆ where the parameter
a⋆ ∈ {−10,−9, . . . , 9, 10} corresponds to the minimizer of the estimated upper bound
(9). In Figure 4, we observe that whatever the dimension is, π̂β⋆θ

N always outperforms
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the state-of-the-art diffusion models in terms of KL divergence, see Table 1 in the
appendix for precise KL values. It appears to produce more stable generative models,
as its variance in terms of KL over the different runs is clearly reduced compared to
competitors when the dimension increases.

(a) Isotropic setting (b) Heteroscedastic setting

(c) Correlated setting

Figure 2: Comparison of the empirical KL divergence (mean value ± std over 10

runs) between πdata and π̂
(β,θ)
N (in orange) and the upper bound (9) (in blue) w.r.t. the

parameter a used in the definition of the noise schedule βa, for d = 50. We also represent
the KL divergence obtained with the VPSDE model (dashed line) and the one obtained
with our model (dotted line) when the score is not approximated but exactly evaluated.

The data distribution πdata is chosen Gaussian, corresponding to (a) π
(iso)
data , (b) π

(heterosc)
data

and (c) π
(corr)
data . The parameter a ranges from −10 to 10 by a unit step size.

4 Noise schedule optimization

Algorithm. Building on the previous numerical experiments, we propose to exploit
the theoretical upper bound (9) to tune the choice of the noise schedule. To this aim, we
design an iterative method to jointly optimize the weights θ of the NN score estimator
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(c) Correlated setting

Figure 3: Zoom of Figure 2 by refining the grid for a: the parameter a ranges from 0.8
to 5.8 with a step size of 0.1.

and the noise schedule β, see Algorithm 1. The admissible functions βa for the noise
schedule are given in (10). For fair comparisons, we train both the VPSDE network and
the adaptive scheduling network with 10000 samples over 100 epochs using the same
learning rate. For the latter, the noise schedule, through the parameter a, is initialized
at a = 0 and updated every 10 epochs.

Results. We assess the performance of Algorithm 1 by considering a Gaussian data
distribution π

(corr)
data . On Figure 5, along the epochs, we display the empirical KL

divergences w.r.t. the generated distribution via Algorithm 1, vs. the regular VPSDE
generator. From the very first epochs, Algorithm 1 produces better samples than the
standard VPSDE model. As expected, the value of a selected by Algorithm 1 tends
to be shifted to positive values with some stabilization around optimal values already
observed in Figure 2.
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Figure 4: Comparison of the empirical KL divergence (mean value ± std over 10 runs)
between πdata and the generative distribution π̂ for different values of the dimension.
The generative distributions considered are π̂

(β,θ)
N (blue plain) obtained by the time-

inhomogeneous SGM for βa⋆ , the one obtained by a standard VPSDE model (yellow
dashed), and the one obtained using a cosine schedule (orange dotted). The data

distribution πdata is chosen Gaussian, corresponding to (a) π
(iso)
data, (b) π

(heterosc)
data and (c)

π
(corr)
data .
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Algorithm 1 Iterative optimization of the noise schedule and the score function

Input: N training samples, initial schedule βa with a = a(0), initial parameter θ(0).
Set a⋆ = a(0)

for e = 0 to number of epochs do
Compute θ(e+1) using score matching with noise schedule βa⋆ and initial estimate
θ(e).
if e mod10 = 0 then
Update a⋆ ∈ argmina Lsched(θ

(e+1), βa).
end if

end for

50 100 150 200
0.10

0.15

0.20

0.25

0.30

0.35
Optimized schedule
VPSDE

Figure 5: Empirical KL divergences (median and quartiles over 10 runs) between πdata
and the distributions obtained by Algorithm 1 (blue) and the VPSDE model (yellow).

5 Discussion

In this paper, under mild assumptions, we have established an upper bound on the
Kullback-Leibler divergence between the data distribution and that of score-based
generative models with an explicit dependency on the noise schedule. We have also
proposed a new procedure to jointly optimize the score network and the noise schedule.
The tightness of the upper bound as long as the performance of the optimization
procedure were illustrated empirically in Gaussian settings to allow fair comparisons
with existing approaches and sampling methods based on exact score functions. Many
extensions can be considered to exploit such upper bounds in order to improve the
sampling performance of these models. Obtaining explicit and generic upper bounds
for (sliced)-Wasserstein distances, when the data distribution is assumed to have only
finite Fisher information would be useful as these metrics are highly valuable in practice.
Extending our theoretical results to multi-dimensional noise schedules would also be of
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particular interest to be able to deal with target distribution with complex covariance
structures. Last but not least, establishing lower bounds either for Kullback-Leibler
divergences or Wasserstein distances remains an exciting open problem, which would
shed light on the performances and limitations of score-based generative models.
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Notations and assumptions. Consider the following notations, used throughout
the appendices. For all d ≥ 1, µ ∈ Rd and definite positive matrices Σ ∈ Rd×d, let
φµ,Σ be the probability density function of a Gaussian random variable with mean µ
and variance Σ. We also use the notation φσ2 = φ0,σ2Id . For all twice-differentiable
real-valued function f , let ∆f be the Laplacian of f . For all matrix A ∈ Rm×n, ∥A∥Fr
is the Frobenius norm of A, i.e., ∥A∥Fr = (

∑m
i=1

∑n
j=1 |Ai,j|2)1/2.

Let π0 be a probability density function with respect to the Lebesgue measure on
Rd and α : R→ R and g : R→ R be two continuous and increasing functions. Consider
the general forward process

d
−→
X t = −α(t)

−→
X tdt+ g(t)dBt,

−→
X 0 ∼ π0 , (11)

and introduce p̃t : x 7→ pt(x)/φσ2(x), where pt is the probability density function of
−→
X t.

The backward process associated with (11) is referred to as (
←−
X t)t∈[0,T ] and given by

d
←−
X t =

{(
ᾱ(t)− ḡ2(t)

σ2

)
−
←−
X t + ḡ2(t)∇ log p̃T−t

(←−
X t

)}
dt+ ḡ(t)dB̄t

←−
X 0 ∼ pT ,

(12)

with ᾱ(t) := α(T − t) and ḡ(t) := g(T − t) and B̄ a standard Brownian motion in Rd.
Moreover, consider

σ2
t := exp

(
−2
∫ t

0

α(s)ds

)∫ t

0

g2(s) exp

(
2

∫ s

0

α(u)du

)
ds . (13)

A Proof of Theorem 2.1

Lemma A.1. For any noise schedule β,

E1(β) = KL (pT∥φσ2) ≤ KL (πdata∥φσ2) exp

(
− 1

σ2

∫ T

0

β(s)ds

)
.

Proof. The proof follows the same lines as Franzese et al. (2023, Lemma 1). The
Fokker-Planck equation associated with (1) is

∂tpt(x) =
β(t)

2σ2
div (xpt(x)) +

β(t)

2
∆pt(x) =

β(t)

2
div

(
1

σ2
xpt(x) +∇pt(x)

)
,

for t ∈ [0, T ], x ∈ Rd. Combing this with the derivation under the integral theorem, we
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get

∂

∂t
KL (pt∥φσ2) =

∂

∂t

∫
Rd

log
pt(x)

φσ2(x)
pt(x)dx

=

∫
Rd

∂

∂t
pt(x) log

pt(x)

φσ2(x)
dx+

pt(x)∂tpt(x)

pt(x)
dx

=

∫
Rd

∂

∂t
pt(x) log

pt(x)

φσ2(x)
dx+

∫
∂

∂t
pt(x)dx

=

∫
Rd

β(t)

2
div
( x
σ2
pt(x) +∇pt(x)

)
log

pt(x)

φσ2(x)
dx

=
β(t)

2

∫
Rd

div (−∇ logφσ2(x) pt(x) +∇pt(x)) log
pt(x)

φσ2(x)
dx

= −β(t)
2

∫
Rd

(−∇ logφσ2(x) pt(x) +∇pt(x))⊤∇ log
pt(x)

φσ2(x)
dx

= −β(t)
2

∫
Rd

pt(x) (−∇ logφσ2(x) +∇ log pt(x))
⊤∇ log

pt(x)

φσ2(x)
sdx

= −β(t)
2

∫
Rd

pt(x)

∥∥∥∥∇ log
pt(x)

φσ2(x)

∥∥∥∥2 dx .
Using the Stam-Gross logarithmic Sobolev inequality given in Proposition B.3, we get

∂

∂t
KL (pt∥φσ2) ≤ −β(t)

σ2
KL (pt∥φσ2) .

Applying Grönwall’s inequality, we obtain

KL (pT∥φσ2) ≤ KL (p0∥φσ2) exp

{
− 1

σ2

∫ T

0

β(s)ds

}
,

which concludes the proof.

Lemma A.2. For all θ and all β,

E2(θ, β) =
N∑
k=1

E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2] ∫ tk+1

tk

β(t)dt ,

where E2(θ, β) is defined by (5).

Proof. By definition of E2(θ, β),

E2(θ, β) =
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2] dt
=

N−1∑
k=0

E
[∥∥∥∇ log p̃T−tk

(←−
X tk

)
− s̃θ

(
T − tk,

←−
X tk

)∥∥∥2] ∫ tk+1

tk

β̄(t)dt

=
N∑
k=1

E
[∥∥∥∇ log p̃tk

(−→
X tk

)
− s̃θ

(
tk,
−→
X tk

)∥∥∥2] ∫ tk+1

tk

β(t)dt ,
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where the last equality comes from the fact that the forward and backward processes

have same marginals since
−→
X T ∼ pT .

Lemma A.3. Assume that H1 holds. For all T, σ > 0, θ and all β,

E3(β) ≤ 2hβ(T )max

{
hβ(T )

4σ2
; 1

}
I(pdata|π∞) ,

where E3(β) is defined by (6).

Proof. By Lemma B.4,

dYt =
β̄(t)

2σ2
Ytdt+

√
β̄(t)ZtdBt .

By applying Itô’s lemma to the function x 7→ ∥x∥2, we obtain

d∥Yt∥2 =
(
β̄(t)

σ2
∥Yt∥2 + β̄(t)∥Zt∥2Fr

)
dt+

√
β̄(t)Y ⊤

t ZtdBt .

Fix δ > 0. From Baldi (2017, Theorem 7.3), we have that (
∫ t

0
g(s)Y T

s ZsdBs)t∈[0,T−δ]

is a square integrable martingale if

E
[∫ T−δ

0

g2(s)
∥∥Y T

s Zs

∥∥2 ds] <∞ .

From Cauchy-Schwarz inequality, we get that

E
[∥∥Y T

s Zs

∥∥2
2

]
≤ E

[
∥Ys∥22 ∥Zs∥2Fr

]
≤ E

[
∥Ys∥42

]1/2 E [∥Zs∥4Fr
]1/2

.

Applying Lemma B.5 and B.6, we get that both E[∥Ys∥42] and E[∥Zs∥42] are bounded by
a quantity depending on σ−8

T−t. As the term σ−8
T−t is uniformly bounded in [0, T − δ] and

by Fubini’s theorem, we get

E
[∫ T

0

g2(s)
∥∥Y T

s Zs

∥∥2 ds] = ∫ T

0

g2(s)E
[∥∥Y T

s Zs

∥∥2] ds <∞ .

Therefore,
(∫ t

0
g(s)Y T

s ZsdBs

)
t∈[0,T−δ]

is a square integrable martingale. This means

that, on one hand, we have

E
[
∥Yt∥2

]
− E

[
∥Ytk∥2

]
= E

[∫ t

tk

β̄(s)

σ2
∥Ys∥2ds+

∫ t

tk

β̄(s)∥Zs∥2Frds
]
,
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and, on the other hand,

E
[
∥Yt − Ytk∥

2] = E

[∥∥∥∥∫ t

tk

β̄(s)

2σ2
Ysds+

∫ t

tk

√
β̄(s)ZsdBs

∥∥∥∥2
]

≤ 2E

[∥∥∥∥∫ t

tk

β̄(s)

2σ2
Ysds

∥∥∥∥2
]
+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 2E

∥∥∥∥∥ 1

2σ

∫ t

tk

√
β̄(s)

√
β̄(s)

σ
Ysds

∥∥∥∥∥
2
+ 2E

[∫ t

tk

∥∥∥∥√β̄(s)ZsdBs

∥∥∥∥2
]

≤ 1

2σ2

∫ tk+1

tk

β̄(s)dsE
[∫ tk+1

tk

β̄(s)

σ2
∥Ys∥2 ds

]
+ 2E

[∫ tk+1

tk

β̄(s) ∥Zs∥2Fr ds
]

≤ 2max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

])
.

Without loss of generality, we have that tN−1 = Tδ. Then, the discretization error can
be bounded as follows

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

)∥∥∥2] dt
=

N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[
∥Yt − Ytk∥

2] dt
≤ 2

N−1∑
k=0

∫ tk+1

tk

β̄(t)max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

])
dt

≤ 2
N−1∑
k=0

max

{∫ tk+1

tk
β̄(s)ds

4σ2
, 1

}(
E
[
∥Ytk+1

∥2
]
− E

[
∥Ytk∥2

]) ∫ tk+1

tk

β̄(t)dt

≤ 2
N−1∑
k=0

max


(∫ tk+1

tk
β̄(s)ds

)2
4σ2

,

∫ tk+1

tk

β̄(s)ds

(E [∥Ytk+1
∥2
]
− E

[
∥Ytk∥2

])

≤ 2 max
0≤k≤N−1

max


(∫ tk+1

tk
β̄(s)ds

)2
4σ2

,

∫ tk+1

tk

β̄(s)ds




E
[∥∥∥∇ log p̃T−tN−1

(←−
X tN−1

)∥∥∥2] .
By H1, t 7→ β(t) is increasing, so that t 7→ β̄(t) is decreasing. Therefore, defining
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δk := tk+1 − tk,
N−1∑
k=0

∫ tk+1

tk

β̄(t)E
[∥∥∥∇ log p̃T−t

(←−
X t

)
−∇ log p̃T−tk

(←−
X tk

)∥∥∥2] dt
≤ 2 max

0≤k≤N−1

{
max

{(
δkβ̄(tk)

)2
4σ2

, δkβ̄(tk)

}}
E
[∥∥∥∇ log p̃T−tN−1

(←−
X tN−1

)∥∥∥2]
≤ 2 max

0≤k≤N−1

{
max

{
h2β̄2(tk)

4σ2
, hβ̄(tk)

}}
I(pdataQT−δ|π∞)

≤ 2hβ̄(0)max

{
hβ̄(0)

4σ2
, 1

}
I(pdataQT−δ|π∞)

≤ 2hβ(T )max

{
hβ(T )

4σ2
, 1

}
I(pdataQT−δ|π∞) .

Finally, following the steps of the proof of Conforti et al. (2023, Lemma 2), we can
take the limit for δ that goes to zero, under Assumption H2, concluding the proof.

B Technical results

Lemma B.1. Assume that H1 and H2 hold. Let
(−→
X t

)
t≥0

be a weak solution to the

forward process (1). Then, the stationary distribution of
(−→
X t

)
t≥0

is Gaussian with

mean 0 and variance σ2Id.

Proof. Consider the process

X̄t = exp

(
1

2σ2

∫ t

0

β(s)ds

)
−→
X t .

Itô’s formula yields

−→
X t = exp

(
− 1

2σ2

∫ t

0

β(s)ds

)(
−→
X 0 +

∫ t

0

√
β(s) exp

(∫ s

0

β(u)/(2σ2)du

)
dBs

)
. (14)

First, we have that

lim
t→∞

exp

(
− 1

2σ2

∫ t

0

β(s)ds

)
−→
X 0 = 0 .

Secondly, we have that the second term in the r.h.s. of (14), by property of the Wiener
integral, is Gaussian with mean 0 and variance σ2

t Id, where

σ2
t = exp

(
− 1

σ2

∫ t

0

β(s)ds

)∫ t

0

β(s)e
∫ s
0 β(u)/σ2duds = σ2

(
1− exp

(
− 1

σ2

∫ t

0

β(s)ds

))
.

By H1, limt→∞ σ2
t = σ2, which concludes the proof.
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Lemma B.2. Let T > 0 and b1, b2 : [0, T ]×C([0, T ],Rd)→ Rd be measurable functions
such that for i ∈ {1, 2},

dX
(i)
t = bi

(
t, (X(i)

s )s∈[0,T ]

)
dt+

√
β(T − t)dBt (15)

admits a unique strong solution with X
(i)
0 ∼ π

(i)
0 . Suppose that (bi(t, (X

(i)
s )s∈[0,t]))t∈[0,T ]

is progressively measurable, with Markov semi-group (P
(i)
t )t≥0. In addition, assume that

E
[
exp

{
1

2

∫ T

0

1

β(T − s)

∥∥∥b1 (s, (X(1)
u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥2 ds}] <∞ .

(16)

Then,

KL
(
π
(1)
0 P

(1)
T ∥π

(2)
0 P

(2)
T

)
≤ KL

(
π
(1)
0 ∥π

(2)
0

)
+

1

2

∫ T

0

1

β(T − t)
E
[∥∥∥b1 (s, (X(1)

u

)
u∈[0,s]

)
− b2

(
s,
(
X(1)

u

)
u∈[0,s]

)∥∥∥2] dt .
Proof. For i ∈ {1, 2}, let µ(i) be the distribution of (X

(i)
t )t∈[0,T ] on the Wiener space

(C([0, T ];Rd),B(C([0, T ];Rd))) with X
(i)
0 ∼ π

(i)
0 . Define u(t, ω) as

u(t, ω) := β(T − t)−1/2
(
b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
− b2

(
t,
(
X(1)

u

)
u∈[0,t]

))
,

and define dQ/dP(ω) =MT (ω) where, for t ∈ [0, T ],

Mt(ω) = exp

{
−
∫ t

0

u(s, ω)⊤dBs −
1

2

∫ t

0

∥u(s, ω)∥2ds
}
.

From (16), the Novikov’s condition is satisfied (Karatzas and Shreve, 2012, Chapter
3.5.D), thus the process M is a martingale. We can then define an equivalent probability
measure, denoted by Q, such that dQ/dP :=MT . Applying Girsanov theorem, dB̄t =

dBt + u(t, (X
(1)
s )s∈[0,t])dt is a Brownian motion under the measure Q. Therefore,

dX
(1)
t = b1

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dBt

= b2

(
t,
(
X(1)

u

)
u∈[0,t]

)
dt+

√
β(T − t)dB̄t .

Using the uniqueness in law of (15), the law of X(1) under P is the same as the one of

X̄(2) under Q, with X̄(2) solution of (15) with i = 2 and X̄
(2)
0 = π

(1)
0 . Denote by µ̄(2) the

law of X̄(2). Therefore,

µ(1)(A) = P(X(1) ∈ A) = Q(X̄(2) ∈ A) =
∫
1A(X̄

(2)(ω))Q(dω) =

∫
A

Mtµ
(2)(dy) ,
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which implies that

dµ(2)

dµ̄(1)
=MT .

Hence, we obtain that

KL
(
µ(1)
∥∥µ(2)

)
= KL

(
π
(1)
0

∥∥∥π(2)
0

)
+ E

[
log

(
dµ

(1)
π

dµ̄
(2)
π

)]

= KL
(
π
(1)
0

∥∥∥π(2)
0

)
+

1

2
E
[∫ t

0

u(s, ω)⊤dBs +
1

2

∫ t

0

∥u(s, ω)∥2ds
]

= KL
(
π
(1)
0

∥∥∥π(2)
0

)
+

1

2

∫ T

0

1

β(T − t)
E
[∥∥b1(t, (X(1)

s )s∈[0,t])− b2(t, (X(1)
s )s∈[0,t])

∥∥2] dt ,
which concludes the proof.

Lemma B.3. Let p be a probability density function on Rd. For all σ2 > 0,

KL (p(x)∥φσ2(x)) =

∫
p(x) log

p(x)

φσ2(x)
dx ≤ σ2

2

∫ ∥∥∥∥∇ log
p(x)

φσ2(x)

∥∥∥∥2 p(x) dx .
Proof. Define fσ2 : x 7→ p(x)/φσ2(x). Since ∇2 logφσ2(x) = −σ−2Id, the Bakry-Emery
criterion is satisfied with constant σ2−1

, see Bakry et al. (2014); Villani (2021); Talagrand
(1996). By the classical logarithmic Sobolev inequality,∫

fσ2(x) log fσ2(x)φσ2(x)dx ≤ σ2

2

∫
∥∇fσ2(x)∥2

fσ2(x)
φσ2(x)dx ,

which concludes the proof.

Lemma B.4. Define Yt := ∇ log p̃T−t(
←−
X t) and Zt := ∇2 log p̃T−t(

←−
X t), where {

←−
X t}t≥0

is a weak solution to (11). Then,

dYt =

(
ḡ2(t)

σ2
− ᾱ(t)

)
Ytdt−

2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
←−
X tdt+ ḡ(t)ZtdB̄t . (17)

Proof. The Fokker-Planck equation associated with the forward process (11) is

∂tpt(x) = α(t)div (xpt(x)) +
g2(t)

2
∆pt(x) , (18)

for x ∈ Rd. First, we prove that p̃t satisfies the following PDE

∂t log p̃t(x) = d

(
ᾱ(t)− ḡ2(t)

2σ2

)
+ ⟨∇ log p̃t(x), x⟩

(
ᾱ(t)− ḡ2(t)

σ2

)
+
∥x∥2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
+
ḡ2(t)

2

∆p̃t(x)

p̃t(x)
. (19)
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Using that ∇ logφσ2(x) = −x/σ2, we have

div(xpt(x)) = d pt(x) + pt(x) x
⊤∇ log pt(x)

= φσ2(x)

(
d p̃t(x) + p̃t(x)∇ log p̃t(x)

⊤x− ∥x∥
σ2

)
= φσ2(x)

(
d p̃t(x) +∇p̃t(x)⊤x−

∥x∥
σ2

p̃t(x)

)
.

Then, since ∆φσ2(x) = (φσ2(x)/σ2) (∥x∥2/σ2 − d), we get

∆pt(x) = p̃t(x)∆φσ2(x) + 2∇p̃t(x)⊤∇φσ2(x) + φσ2(x)∆p̃t(x)

= φσ2(x)

(
p̃t(x)

σ2

(
∥x∥2

σ2
− d
)
− 2

σ2
∇p̃t(x)⊤x+∆p̃t(x)

)
.

Combining these results with (18), we obtain

∂tp̃t(x) = d p̃t(x)

(
α(t)− g2(t)

2σ2

)
+∇p̃t(x)⊤x

(
α(t)− g2(t)

σ2

)
+ p̃t(x)

∥x∥2

σ2

(
g2(t)

2σ2
− α(t)

)
+
g2(t)

2
∆p̃t(x) .

Hence, diving by p̃t yields (19).
The previous computation, together with the fact that ∆p̃t/p̃t = ∆ log p̃t+∥∇ log p̃t∥2,

yields that the function ϕt(x) := log p̃T−t(x) is a solution to the following PDE

∂tϕt(x) = −d
(
ᾱ(t)− ḡ2(t)

2σ2

)
−∇ϕt(x)

⊤x

(
ᾱ(t)− ḡ2(t)

σ2

)
(20)

− ∥x∥
2

σ2

(
ḡ2(t)

2σ2
− ᾱ(t)

)
− ḡ2(t)

2

(
∆ϕt(x) + ∥∇ϕt(x)∥2

)
. (21)

Following the lines of the Conforti et al. (2023, Proposition 1), we get that, since
α and g are continuous and non-increasing, the map pt, solution to (18), belongs to
C1,2((0, T ]× Rd). Moreover, (12) can be rewritten as follows, with respect to p̃t

d
←−
X t =

{(
ᾱ(t)− ḡ2(t)

σ2

)
←−
X t + ḡ2(t)∇ log pT−t

(←−
X t

)}
dt+ ḡ(t)dB̄t ,

←−
X 0 ∼ pT ,

This means that, as Yt = ∇ϕt

(←−
X t

)
, we can apply Itô’s formula and obtain

dYt =

[
∂t∇ϕt

(←−
X t

)
+∇2ϕt

(←−
X t

)((
ᾱ(t)− ḡ2(t)

σ2

)
←−
X t + ḡ2(t)∇ϕt

(←−
X t

))
+
ḡ2(t)

2
∆∇ϕt

(←−
X t

)]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=

[
∇
(
∂tϕt

(←−
X t

)
+
ḡ2(t)

2

(
∆ϕt

(←−
X t

)
+
∥∥∥∇ϕt

(←−
X t

)∥∥∥2))
+

(
ᾱ(t)− ḡ2(t)

σ2

)
∇2ϕt

(←−
X t

)←−
X t

]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,
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using that 2∇2ϕt(x)∇ϕt(x) = ∇∥∇ϕt(x)∥2. Using (20), we get

dYt =

[
−
(
ᾱ(t)− ḡ2(t)

σ2

)
∇ψt

(←−
X t

)
+

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

+

(
ᾱ(t)− ḡ2(t)

σ2

)
∇2ϕt

(←−
X t

)←−
X t

]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t ,

with ψt (x) := ∇ϕt(x)
⊤x. With the identity ∇

(
x⊤∇ϕt(x)

)
= ∇ϕt(x) +∇2ϕt(x)x, we

have

dYt =

[(
ḡ2(t)

σ2
− ᾱ(t)

)
∇ϕt

(←−
X t

)
+

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)∇2ϕt

(←−
X t

)
dB̄t

=

[(
ḡ2(t)

σ2
− ᾱ(t)

)
Yt +

2

σ2

(
ᾱ(t)− ḡ2(t)

2σ2

)
←−
X t

]
dt+ ḡ(t)ZtdB̄t ,

which concludes the proof.

Lemma B.5. Let Yt := ∇ log p̃T−t(
←−
X t), with

←−
X satisfying (12). There exists a constant

C > 0 such that

E
[
∥Yt∥4

]
≤ C

(
σ−4
T−tE

[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4]) , (22)

with N ∼ N (0, Id) and σ
2
t as in (13).

Proof. The transition density qt(y, x) associated with the semi-group of the process (11)
is given by

qt(y, x) =
(
2πσ2

t

)−d/2
exp

−
∥∥∥x− y exp(− ∫ t

0
α(s)ds

)∥∥∥2
2σ2

t

 .

Therefore, we have

∇ log pT−t(x) =
1

pT−t(x)

∫
p0(y)∇xqT−t(y, x)dy

=
1

pT−t(x)

∫
p0(y)

y exp
(
−
∫ T−t

0
α(u)du

)
− x

σ2
T−t

qT−t(y, x)dy .

This, together with the definition of p̃, yields

∇ log p̃T−t

(−→
X T−t

)
= σ−2

T−tE
[−→
X 0e

−
∫ T−t
0 α(u)du −

−→
X T−t

∣∣∣−→X T−t

]
+ σ−2−→X T−t .

29



Using Jensen’s inequality for conditional expectation, there exists a constant C > 0
(which may change from line to line) such that∥∥∥∇ log p̃T−t

(−→
X T−t

)∥∥∥4
≤ C

(
σ−8
T−t

∥∥∥E [−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]∥∥∥4 + σ−8
∥∥∥−→X T−t

∥∥∥4)
≤ C

(
σ−8
T−tE

[∥∥∥−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

∥∥∥4∣∣∣∣−→X T−t

]
+ σ−8

∥∥∥−→X T−t

∥∥∥4) .

Note that
−→
X t has the same law as exp(−

∫ t

0
α(s)ds)

−→
X 0 + σtN , with N ∼ N (0, Id). This

means that we have that

E
[∥∥∥∇ log pT−t

(−→
X T−t

)∥∥∥4] ≤ Cσ−4
T−t

(
E
[
∥N∥4

]
+ E

[∥∥∥−→X 0

∥∥∥4]) .

Finally,

E
[
∥Yt∥4

]
= E

[∥∥∥∇ log p̃T−t

(←−
X t

)∥∥∥2]
= E

[∥∥∥∇ log p̃T−t

(−→
X T−t

)∥∥∥4] ≤ σ−4
T−tE

[
∥N∥4

]
≤ C

(
σ−4
T−tE

[
∥N∥4

]
+ σ−8E

[∥∥∥−→X 0

∥∥∥4]) ,

which concludes the proof.

Lemma B.6. Let Zt := ∇2 log p̃T−t(
←−
X t), where {

←−
X t}t≥0 is a weak solution to (12).

There exists a constant C > 0 such that

E
[
∥Zt∥4

]
≤ C

(
σ−8
T−t + σ−8

) (
E
[
∥N∥82

]
+ d4

)
, (23)

with N ∼ N (0, Id) and σ
2
t as in (13).

Proof. Let qt(y, x) be the transition density associated to the semi-group of the process
(11). Write

∇2 log pT−t(x)

= ∇

(
1

pT−t(x)

∫
p0(y)

ye−
∫ T−t
0 α(s)ds − x
σ2
T−t

qT−t(y, x)dy

)

= −∇pT−t(x)

p2T−t(x)

(∫
p0(y)

ye−
∫ T−t
0 α(s)ds − x
σ2
T−t

qT−t(y, x)dy

)⊤

+
1

pT−t(x)
∇
∫
p0(y)

ye−
∫ T−t
0 α(s)ds − x
σ2
T−t

qT−t(y, x)dy

=
1

σ2
T−t pT−t(x)

(
−
∫ (

∇pT−t(x)

pT−t(x)

)(
ye−

∫ T−t
0 α(s)ds − x
σ2
T−t

)⊤

qT−t(y, x)p0(y)dy
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− Id +

∫
1

σ2
T−t

(
ye−

∫ T−t
0 α(s)ds − x

)(
ye−

∫ T−t
0 α(s)ds − x

)⊤
qT−t(y, x)p0(y)dy

)
.

Therefore,

∇2 log p̃T−t

(−→
X T−t

)
= − 1

σ2
T−t

E

∇pT−t

(−→
X T−t

)
pT−t

(−→
X T−t

)
(−→X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∣∣∣∣∣∣−→X T−t

+ Id


+ σ−4

T−tE
[(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∣∣∣∣−→X T−t

]
+ σ−2Id

= −σ−4
T−t

(
E
[−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

])(
E
[−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

])⊤
+
(
σ−2 − σ−2

T−t

)
Id

+ σ−4
T−tE

[(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∣∣∣∣−→X T−t

]
.

There exists a constant C > 0 (which may change from line to line) such that

E
[∥∥∥∇2 log pT−t

(−→
X T−t

)∥∥∥4
Fr

]
≤ Cσ−16

T−tE

[∥∥∥∥E [−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]
E
[−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]⊤∥∥∥∥4
Fr

]
+ C

(
σ−8
T−t + σ−8

)
d4

+ Cσ−16
T−tE

[∥∥∥∥E [(−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

)(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∣∣∣∣−→X T−t

]∥∥∥∥4
Fr

]
.

As in the previous proof, we note that
−→
X t has the same law as e−

∫ t
0 α(s)ds−→X 0 + σtN ,

with N ∼ N (0, Id). Therefore, using Jensen’s inequality,

E

[∥∥∥∥E [−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]
E
[−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]⊤∥∥∥∥4
Fr

]

≤ E
[∥∥∥E [−→X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]∥∥∥4
2

∥∥∥E [−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

∣∣∣−→X T−t

]∥∥∥4
2

]
≤ E

[
E
[∥∥∥−→X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

∥∥∥8
2

∣∣∣∣−→X T−t

]]
≤ σ8

tE
[
∥N∥82

]
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and

E

[∥∥∥∥E [(−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

)(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∣∣∣∣−→X T−t

]∥∥∥∥4
Fr

]

≤ E

[
E

[∥∥∥∥(−→X 0e
−

∫ T−t
0 α(s)ds −

−→
X T−t

)(−→
X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)⊤∥∥∥∥4
Fr

∣∣∣∣∣−→X T−t

]]

= E
[∥∥∥(−→X 0e

−
∫ T−t
0 α(s)ds −

−→
X T−t

)∥∥∥8
2

]
≤ σ8

tE
[
∥N∥82

]
.

Hence, we can conclude that

E
[
∥Zt∥4Fr

]
= E

[∥∥∥∇2 log p̃T−t

(−→
X T−t

)∥∥∥4
Fr

]
≤ C

(
σ−8
T−t + σ−8

) (
E
[
∥N∥82

]
+ d4

)
.

C Proof of Proposition 3.1

To establish (7), let x ∈ Rd (resp. y ∈ Rd) and denote by
←−
X x (resp.

←−
X y) the solution of

(3), with initial condition
←−
X x

0 = x (resp.
←−
X x

0 = y). Applying Itô’s formula and using
Cauchy-Schwarz inequality, we get∥∥∥←−X x

t −
←−
X y

t

∥∥∥2 = ∥x− y∥2 + 2

∫ t

0

− β̄(s)
2σ2

∥∥∥←−X x
s −
←−
X y

s

∥∥∥2 ds
+ 2

∫ t

0

β̄(s)
(
∇ log p̃T−s

(←−
X x

s

)
−∇ log p̃T−s

(←−
X y

s

))⊤ (←−
X x

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)

σ2

(
1− 2Lsσ

2
) ∥∥∥←−X x

s −
←−
X y

s

∥∥∥2 ds .
Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T ]

∥∥∥←−X x
t −
←−
X y

t

∥∥∥2] ≤ exp

(
−
∫ T

0

β̄(t)

σ2

(
1− 2Lsσ

2
)
dt

)
∥x− y∥2 .

From this, we can show contraction (7) in the 2–Wasserstein distance by taking the
infimum over all couplings.

To establish (8) note that, under Assumption H4, we have∥∥∥←−X x
t −
←−
X y

t

∥∥∥2 = ∥x− y∥2 + 2

∫ t

0

− β̄(s)
2σ2

∥∥∥←−X x
s −
←−
X y

s

∥∥∥2 ds
+ 2

∫ t

0

β̄(s)
(
∇ log p̃T−s

(←−
X x

s

)
−∇ log p̃T−s

(←−
X y

s

))⊤ (←−
X x

s −
←−
X y

s

)
ds

≤ ∥x− y∥2 −
∫ t

0

β̄(s)

σ2

(
1 + 2Csσ

2
) ∥∥∥←−X x

s −
←−
X y

s

∥∥∥2 ds .
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Therefore, applying Grönwall’s lemma, we obtain

E

[
sup

t∈[0,T ]

∥∥∥←−X x
t −
←−
X y

t

∥∥∥2] ≤ exp

(
−
∫ T

0

β̄(t)

σ2

(
1 + 2Csσ

2
)
dt

)
∥x− y∥2 .

From this, we can show contraction (8) in the 2–Wasserstein distance by taking the
infimum over all couplings.

Note that a similar assumption as Assumption H4 is used in De Bortoli et al. (2021,

Proposition 10,11,12), in particular to bound the conditional moments of
←−
X 0 given

←−
X t

for t > 0. However, in this paper the authors also require additional assumptions, in
particular that the score of πdata has a linear growth.

C.1 Gaussian case: proof of Lemma 3.2

In the case where πdata is the Gaussian probability density with mean µ0 and variance
Σ0, we have

∇ log p̃t(x) = −
(
m2

tΣ0 + σ2
t Id
)−1

(x−mtµ0) + σ−2x ,

with mt = exp
(
−
∫ t

0
β(s)ds/(2σ2)

)
and σt = σ2(1 −m2

t ). Let
−→
Σ t = m2

tΣ0 + σ2
t Id be

the covariance of the forward process
−→
X t and bt =

−→
Σ−1

t mtµ0 so that

∇ log p̃t(x) = Atx+ bt with At = −
(−→
Σt

−1 − σ−2Id

)
. (24)

Note that, if we denote by λ10 ≤ · · · ≤ λd0 the eigenvalues of Σ0, which are positive as Σ0

is positive definite, we have that the eigenvalues of At are

λit := −
1

m2
tλ

i
0 + σ2

t

+
1

σ2
.

It is straightforward to see that λ1t ≤ · · · ≤ λdt . Moreover, we always have that in this
case

(∇ log p̃t(x)−∇ log p̃t(y))
⊤ (x− y) ≤ λdt ∥x− y∥

2 ,

∥∇ log p̃t(x)−∇ log p̃t(y)∥ ≤ max
{∣∣λ1t ∣∣ , ∣∣λdt ∣∣} ∥x− y∥ ,

which entails that we can define

Lt := max
{∣∣λ1t ∣∣ , ∣∣λdt ∣∣} , Ct := −λdt ,

and apply Proposition 3.1.
The condition λdt ≤ 0, or equivalently σ2 ≥ λmax(Σ0), yields a contraction in 2–

Wasserstein distance in the backward process as well in the forward process from
Proposition 3.1. This shows that, in specific cases, with an appropriate calibration of
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the variance of the stationary law with respect to the initial law, we have a contraction
both in the forward and in the backward flows.

As a consequence, note that

W2 (πdata, φσ2QT )
2 ≤ W2 (pT , φσ2)2 exp

(
− 1

σ2

∫ T

0

β(t)(1 + 2Ctσ
2)dt

)
.

Using Talagrand’s T2 inequality for the Gaussian measureW2 (µ, φσ2)2 ≤ 2σ2KL(µ∥φσ2)
and Lemma A.1 we get

W2 (πdata, φσ2QT )
2 ≤ 2σ2KL (πdata∥φσ2) exp

(
− 2

σ2

∫ T

0

β(t)(1 + 2Ctσ
2)dt

)
.

Proposition C.1. Assume that πdata is a Gaussian distribution N (µ0,Σ0) such that
λmax(Σ0) ≤ σ2 where λmax(Σ0) denotes the largest eigenvalue of Σ0. Then,

KL (πdata∥φσ2QT ) ≤ KL (πdata∥φσ2) exp

(
− 2

σ2

∫ T

0

β(s)ds

)
.

Proof. In this Gaussian case, the backward process is linear (see (24)) and the associated
infinitesimal generator writes, for g ∈ C2,

←−
L tg(x) = ∇g(x)⊤

(
− β̄(t)

2σ2
+ β̄(t)(Ātx+ b̄t)

)
+

1

2
β̄(t)∆g(x) ,

where Āt = AT−t and b̄t = bT−t.
Our objective is to monitor the evolution of the KL divergence, KL(pTQt∥φσ2Qt),

for t ∈ [0, T ]. We follow Del Moral et al. (2003, Section 6) (see also Collet and Malrieu,
2008). Let qt = pTQt and ϕt = φσ2Qt two densities that satisfy the Fokker-Planck

equation, involving the dual operator
←−
L ∗

t of the infinitesimal generator
←−
L

∂tqt =
←−
L ∗

t qt, q0(x) = pT (x)

∂tϕt =
←−
L ∗

tϕt, ϕ0(x) = φσ2(x) .

Let ft = qt/ϕt. By definition of KL(qt∥ϕt) =
∫
ln (ft(x)) qt(x)dx we have

∂tKL (qt∥ϕt) =

∫
ln (ft(x)) ∂tqt(x)dx+

∫
∂t ln (ft(x)) qt(x)dx

=

∫
ln (ft(x)) ∂tqt(x)dx−

∫
ft(x)∂tϕt(x)dx .

By employing the Fokker-Planck equation and the adjoint relation, which states that∫
f(x)
←−
L ∗

t (g)(x)dx =
∫ ←−
L tf(x)g(x)dx we obtain

∂tKL (qt∥ϕt) =

∫ ←−
L ln (ft) (x)qt(x)dx−

∫ ←−
L ft(x)ϕt(x)dx .
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The infinitesimal generator
←−
L satisfies the change of variables formula (see Bakry et al.,

2014) so that

←−
L t(ln(f)) =

1

f

←−
L tf −

1

2f 2

←−
Γ t(f, f) ,

where
←−
Γ t is the “carré du champ” operator associated with

←−
L t defined by

←−
Γ t(f, f)(x) =

β(t)|∇f(x)|2. We then obtain

∂tKL (qt∥ϕt) =

∫ ←−
L ft(x)

qt(x)

ft(x)
dx−

∫
β(t)

2

|∇ft(x)|2

f 2
t (x)

qt(x)dx−
∫ ←−
L ft(x)ϕt(x)dx

= −β(t)
2

∫
|∇ft(x)|2

ft(x)
ϕt(x)dx . (25)

To obtain a control of the Kullback-Leibler divergence we need a logarithmic Sobolev

inequality for the distribution of density ϕt = φσ2Qt. In this Gaussian case, if
←−
X 0 ∼

N (0, σ2) then for all t ∈ [0, T ] the law of
←−
X t is a centered Gaussian with covariance

matrix
←−
Σ t given by

←−
Σ t = σ2 exp

(∫ t

0

− β̄(s)
σ2

+ 2β̄sĀsds

)
+

∫ t

0

β(s) exp

(∫ t

s

− β̄(u)
σ2

+ 2β̄(u)Āudu

)
ds ,

where we use the matrix exponential. As mentioned before, if λmax(Σ0) ≤ σ2, the

eigenvalues of As, for s ∈ [0, T ], are negative. We can easily deduce that λmax(
←−
Σ t) ≤ σ2.

We recall the logarithmic Sobolev inequality for a normal distribution (see Chafai, 2004,
Corollary 9)

KL(qt∥ϕt) ≤
1

2

∫
1

ft(x)
∇ft(x)⊤

←−
Σ t∇ft(x)ϕt(x)dx ≤

λmax(
←−
Σt)

2

∫
|∇ft(x)|2

ft(x)
ϕt(x)dx .

Plugging this into (25) we get

∂tKL(qt∥ϕt) ≤ −
β(t)

σ2
KL(qt∥ϕt) .

Therefore, recalling that q0 = pT and ϕ0 = φσ2

KL (qT∥φσ2QT ) ≤ KL(pT∥φσ2) exp

(
−
∫ T

0

β(s)

σ2
ds

)
.

We conclude using Lemma A.1.
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D Additional experiments

D.1 Exact score and metrics in the Gaussian case

Lemma D.1. Assume that the forward process defined in (1) :

d
−→
X t = −

β(t)

2σ2

−→
X tdt+

√
β(t)dBt,

−→
X 0 ∼ π0 ,

is initialised with π0 the Gaussian probability density function with mean µ0 and variance
Σ0. Then, the score function of (1) is:

∇ log pt(x) = −(m2
tΣ0 + σ2

t Id)
−1(x−mtµ0) ,

where pt is the probability density function of
−→
X t, mt = exp{−

∫ t

0
β(s)ds/(2σ2)} and

σ2
t = σ2(1−m2

t ).

Proof. Note the following equality in law

−→
X t = mtX0 + σtN ,

for N ∼ N (0, Id) independent of X0. Therefore
−→
X t ∼ N (mtµ0,

−→
Σt) with

−→
Σt = m2

tΣ0 +
σ2
t Id which concludes the proof.

Lemma D.2. The relative Fisher information between X0 ∼ N (µ0,Σ0) and X∞ ∼
N (0, σ2Id) is given by:

I (φµ0,Σ0∥φσ2) =
1

σ4

(
Tr (Σ0) + ∥µ0∥2

)
− 2d

σ2
+ Tr

(
Σ−1

0

)
.

Proof. The relative Fisher information between X0 and X∞ is given by

I (φµ0,Σ0∥φσ2) =

∫ ∥∥∥∥∇ log

(
φµ0,Σ0(x)

φσ2(x)

)∥∥∥∥2 φµ0,Σ0(x)dx .

Write

∇ log
φµ0,Σ0(x)

φσ2(x)
=

x

σ2
− Σ−1

0 (x− µ0) ,

so that,∥∥∥∥∇ log
φµ0,Σ0(x)

φσ2(x)

∥∥∥∥2 = ∥∥∥ xσ2
− Σ−1

0 (x− µ0)
∥∥∥2

=
( x
σ2
− Σ−1

0 (x− µ0)
)⊤ ( x

σ2
− Σ−1

0 (x− µ0)
)

=
∥x∥2

σ4
− 2

σ2
x⊤Σ−1

0 (x− µ0) + (x− µ0)
⊤Σ−2

0 (x− µ0) .
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First,

E
[
∥X0∥2

σ4

]
=

1

σ4

(
Tr (Σ0) + ∥µ0∥2

)
.

Then,

E
[
2

σ2
XT

0 Σ
−1
0 (X0 − µ0)

]
=

2

σ2

(
Tr
(
Σ−1

0 E
[
X0X

⊤
0

])
− µ⊤

0 Σ
−1
0 µ0

)
.

Using that E
[
X0X

⊤
0

]
= Σ0 + µ0µ

⊤
0 yields

E
[
2

σ2
X⊤

0 Σ
−1
0 (X0 − µ0)

]
=

2

σ2

(
Tr
(
Σ−1

0

(
Σ0 + µ0µ

⊤
0

))
− µ⊤

0 Σ
−1
0 µ0

)
=

2

σ2

(
d+ Tr

(
Σ−1

0 µ0µ
⊤
0

)
− µ⊤

0 Σ
−1
0 µ0

)
=

2d

σ2
.

Finally,

E
[
(X0 − µ0)

⊤Σ−2
0 (X0 − µ0)

]
= E

[
Tr
(
(X0 − µ0)

⊤Σ−2
0 (X0 − µ0)

)]
= E

[
Tr
(
Σ−2

0 (X0 − µ0)(X0 − µ0)
⊤)]

= Tr
(
Σ−2

0 E
[
(X0 − µ0)(X0 − µ0)

⊤])
= Tr

(
Σ−2

0 Σ0

)
= Tr

(
Σ−1

0

)
,

which concludes the proof.

D.2 Stochastic differential equation exact simulation

In certain cases, exact simulation of stochastic differential equations is possible. In
particular, due to the linear nature of the drift the forward process (1) can be simulated
exactly. Indeed, the marginal distribution of (1) at time t writes as

−→
X t = mtX0 + σtZ ,

with Z ∼ N (0, Id) independent of X0, X0 ∼ π0, mt = exp{−
∫ t

0
β(s)ds/(2σ2)} and

σ2
t = σ2(1− exp{−

∫ t

0
β(s)/σ2ds}). Therefore, sampling from the forward process only

necessitates access to samples from π0 and N (0, Id).
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Figure 6: Evolution of mt and σt over time, depending on the noise schedule βa used
(see Section 3.2 for the definition of βa). The values for a range from -10 to 10. The
dashed line corresponds to the case of a diffusion with a linear schedule, as proposed in
VPSDE models (Song et al., 2021b).

D.3 Discretization details of the diffusion SDE

In contrast to the forward process, described in Equation (1), which is simulated exactly,
the backward process needs to be discretized. Recall that the backward process of (1) is
given by:

d
←−
X t = −

β̄(t)

2σ2

←−
X t + β̄(t)∇ log pT−t(

←−
X t)dt+

√
β̄(t)dBt,

←−
X 0 ∼ π∞ .

Our numerical study explores two distinct discretization approaches for the backward
process, as detailed below. Consider time intervals 0 ≤ tk ≤ t ≤ tk+1 ≤ T , with
tk =

∑k
ℓ=1 γℓ and T =

∑N
k=1 γk.

• The Euler-Maruyama discretization is defined recursively for t ∈ [tk, tk+1] by

d
←−
XEM

t = − β̄(tk)
2σ2

←−
XEM

tk
+ β̄(tk)∇ log pT−tk(

←−
XEM

tk
)dt+

√
β̄(tk)dBt,

←−
XEM

0 ∼ π∞ .

• The Exponential Integrator discretization is defined recursively for t ∈ [tk, tk+1] by

d
←−
XEI

t = β̄(t)

(
− 1

2σ2

←−
XEI

t +∇ log pT−tk

(
T − tk,

←−
XEI

tk

))
dt+

√
β̄(t)dBt , (26)

for
←−
XEI

0 ∼ π∞.

D.4 Implementation of the score approximation

Although the score function is explicit when πdata is Gaussian, see Lemma D.1, we
implement SGMs as done in applications, i.e., we train a deep neural network to witness
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the effect of the noising function on the approximation error. We train a neural network
architecture sθ(t, x) ∈ [0, T ]× Rd 7→ Rd using the actual score function as a target:

Lexplicit(θ) = E
[∥∥∥sθ (τ,−→X τ

)
−∇ log pτ

(−→
X τ

)∥∥∥2]
= E

[∥∥∥sθ (τ,−→X τ

)
− (m2

τΣ0 + σ2
τ Id)

−1(
−→
X τ +mτµ0)

∥∥∥2] ,
where t→ mt and t→ σt are defined in Lemma D.1 and τ ∼ U(0, T ) is independent of
−→
X . The neural network architecture chosen for this task is described in Figure 7. The
width of each dense layer mid features is set to 256 throughout the experiments.
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Figure 7: Neural network architecture. The input layer is composed of a vector x in
dimension d and the time t. Both are respectively embedded using a linear transformation
or a sine/cosine transformation Nichol and Dhariwal (2021) of width mid features.
Then, 3 dense layers of constant width mid features followed by ReLu activations and
skip connections regarding the time embedding. The output layer is linear resulting in
a vector of dimension d.

D.5 Additional numerical results

We investigate the expressivity of the upperbound from Theorem (2.1) in the Gaussian
setting. We use as a training sample 104 samples with distribution N (1d,Σ) for
d ∈ {5, 10, 25, 50} with different choices of covariance structure.

1. (Isotropic) Σiso = 0.5Id.
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2. (Heteroscedastic) Σheterosc ∈ Rd×d is a diagonal matrix such that Σheterosc
jj = 10 for

1 ≤ j ≤ d, and Σheterosc
jj = 0.1 otherwise.

3. (Correlated) Σcorr ∈ Rd×d is a full matrix whose diagonal entries are equal to one
and the off-diagonal terms are given by Σcorr

jj′ = 1/
√
|j − j′| for 1 ≤ j ̸= j′ ≤ d.

When first introduced, Song et al. (2021b) originally proposed a linear schedule
t→ βlin(t), for t ∈ [0, 1] setting βlin(0) = 0.1 and βlin(1) = 20. We study a parametric
family of schedules of the form βa(t) ∝ (eat − 1)/(eaT − 1) sharing the same starting
and ending values as the linear schedule (see Figure 1). Our goal is to assess the impact
of the noising function on both the data distribution generation and the upper bound.

For the upper bound, we leverage the Gaussianity of the target distribution to
compute explicitly both the relative entropy and the Fisher information in the upper
bound. On the one hand, the relative entropy in E1, KL (πdata∥π∞) is computed using
the analytical formula for KL-divergence between two random Gaussian variable. On
the other, the relative Fisher information in E3, I(πdata|π∞), is computed using Lemma
(D.2). Moreover, as the noising function and its primitive are analytically known, every
occurrences of either of them are explicitly computed. Finally, it remains to estimate
the expectations in E2(θ, β). This is done via Monte Carlo estimation on 500 samples
from the forward process for every discretization step.

For the data generation, we either use the exact score function from Lemma D.1 or
use the deep neural network architecture discussed in section D.4 to generate 10 000
samples. The batch size is set to 64 and Adam otpimizer was used for the learning
phase. In Figures 2 and 3 we represent on the same graph, for different values of a:

• in blue the upper bound from Theorem 2.1.

• in orange (plain line) the KL divergence between the target data πdata and the
empirical mean and covariance of the data generated using the neural network
architecture described above to approximate the score function.

• in orange (dotted line) the KL divergence between the target data πdata and the
empirical mean and covariance of the data generated using the true score function.

• in orange (dashed line) the KL divergence between the target data πdata and the
empirical mean and covariance of the data generated by the VPSDE presented in
Song and Ermon (2019).

Due to the stochastic nature of our experiments, each was repeated ten times to
improve statistical reliability. In our graphs, we have plotted the mean value of these
results and we employed a ‘fill-between’ plot to illustrate the range between the mean
plus or minus the standard deviation over the ten runs.
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Dimension 5 10 25 50

Isotropic

Upper bound min a⋆ 1.3 1.6 2.2 2.5
Generation value in a⋆ 0.00177 ± 0.00067 0.00535 ± 0.00067 0.03286 ± 0.00624 0.10551 ± 0.00563

VPSDE 0.00239 ± 0.00061 0.00785 ± 0.00206 0.04150 ± 0.01206 0.13084 ± 0.03173
Cosine schedule 0.00226 ± 0.00099 0.00709 ± 0.00191 0.04193 ± 0.01305 0.11165 ± 0.01577

% gain (vs VPSDE) +25.95 % +31.83 % +20.81 % +19.36 %
% gain (vs Cosine) +21.68 % +24.54 % +21.63 % +5.50 %

Heterosc.

Upper bound min a⋆ 1.5 1.2 1.3 2.0
Generation value in a⋆ 0.00424 ± 0.00163 0.01162 ± 0.00154 0.07845 ± 0.01778 0.22621 ± 0.04355

VPSDE 0.00660 ± 0.00164 0.01577 ± 0.00394 0.09295 ± 0.02180 0.27483 ± 0.03355
Cosine schedule 0.00931 ± 0.00331 0.01983 ± 0.00539 0.19442 ± 0.09075 0.35763 ± 0.07769

% gain (vs VPSDE) +35.76 % +26.32 % +15.60 % +17.69 %
% gain (vs Cosine) +54.46% +41.40 % +59.65 % +36.75 %

Correlated

Upper bound min a⋆ 1.5 1.2 2.1 2.1
Generation value in a⋆ 0.00171 ± 0.00056 0.00632 ± 0.00201 0.03877 ± 0.00602 0.12750 ± 0.013361

VPSDE 0.00198 ± 0.00069 0.00684 ± 0.00233 0.04163 ± 0.01055 0.15132 ± 0.02597
Cosine schedule 0.00261 ± 0.00079 0.00701 ± 0.00109 0.04926 ± 0.01002 0.15051 ± 0.02178

% gain (vs VPSDE) +13.63 % +7.60 % +6.87 % +15.74 %
% gain (vs Cosine) +34.48 % +9.84 % +21.29 % +15.29 %

Parameters
Learning rate 1e-4 1e-4 1e-3 1e-3

Epochs 20 30 50 100

Table 1: Comparison of the KL divergence between the target value and the generated
value at a⋆ (the minimum value of the upper bound (9)) with the KL divergence
between the generated value by VPSDE and the target distribution. The target
distributions are chosen to be Gaussian with different covariance structures: isotropic
(π

(iso)
data), heteroscedastic (π

(heterosc)
data ) and correlated (π

(corr)
data ).

D.6 Analysis of the discretization error

While Theorem 2.1 does not explicit exhibit dependency on the choice of the noising
function βa, our numerical experiments suggest otherwise. Indeed, our derivation
of E3(βa) depends on βa only through its terminal value βa(T ), which we set in all
experiments to βa(T ) = 20. Figure 8 shows the KL divergence between πdata and
sample from the data generated using the exact score function for different numbers
discretization steps. It clearly appears that, the KL divergence is non constant with
respect to the noising function tested.
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Figure 8: Empirical KL divergence between πdata and the generated distribution using
the exact score function for different values of a in the noising function βa, with either
Euler-Maruyama discretization (left) or Exponential Integration discretization (right)
and num steps discretization steps.
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Figure 9: Empirical KL divergences (mean ± std over 10 runs) between πdata and the
distributions obtained by Algorithm 1 (blue) and the VPSDE model (yellow).
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