
HAL Id: hal-04441653
https://hal.science/hal-04441653

Preprint submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strassen’s algorithm is not optimally accurate
Jean-Guillaume Dumas, Clément Pernet, Alexandre Sedoglavic

To cite this version:
Jean-Guillaume Dumas, Clément Pernet, Alexandre Sedoglavic. Strassen’s algorithm is not optimally
accurate. 2024. �hal-04441653�

https://hal.science/hal-04441653
https://hal.archives-ouvertes.fr


Strassen’s algorithm is not optimally accurate
Jean-Guillaume Dumas

Université Grenoble Alpes

UMR CNRS 5224 LJK

38058 Grenoble, France

Clément Pernet

Univ. Grenoble Alpes, Grenoble INP

UMR CNRS 5224 LJK

38058 Grenoble, France

Alexandre Sedoglavic

Université de Lille

UMR CNRS 9189 CRISTAL

59650 Villeneuve d’Ascq, France

ABSTRACT

We propose a non-commutative algorithm for multiplying 2×2-

matrices using 7 coefficient products. This algorithm reaches si-

multaneously a better accuracy in practice compared to previously

known such fast algorithms, and a time complexity bound with

the best currently known leading term (obtained via alternate basis

sparsification). To build this algorithm, we consider matrix and ten-

sor norms bounds governing the stability and accuracy of numerical

matrix multiplication. First, we reduce those bounds by minimizing

a growth factor along the unique orbit of Strassen’s 2×2-matrix

multiplication tensor decomposition. Second, we develop heuristics

for minimizing the number of operations required to realize a given

bilinear formula, while further improving its accuracy. Third, we

perform an alternate basis sparsification that improves on the time

complexity constant and mostly preserves the overall accuracy.

CCS CONCEPTS

• Computing methodologies→ Linear algebra algorithms.

1 INTRODUCTION

The first non-commutative algorithm for multiplying 2×2-matrices

using 7 coefficient products was discovered by Strassen [20]. It was

subsequently proven that all such algorithms with 7 multiplications

all lie in a single isotropy orbit on Strassen bilinear tensor decompo-

sition [13]. We here study the numerical accuracy of the recursive

application of these 2×2 algorithms.

We first propose a unified accuracy analysis of such recursive

algorithms, generalizing some and improving on other state of the

art bounds [1, 2, 4, 7, 8, 10]. Following the approach of [4], we

then seek to optimize the growth factor, a parameter governing the

accuracy in these bounds, over Strassen’s orbit. Since themax-norm,

producing the sharpest bounds, precludes smooth optimization, we

relax the problem to optimizing a weaker growth factor in the

Frobenius norm, which will later demonstrate to better reflect the

observed practical accuracy.

The most accurate variants are then obtained from these bilin-

ear formulas by minimizing the number of operations required

to realize them. Our heuristics for this, make use of common sub-

expression eliminations with rational coefficients, potential factor-

ization via the kernel of the matrices of the bilinear operators, as

well as the Tellegen’s transposition principle.

While preserving the complexity bound exponent of Strassen’s

algorithm, 𝑛log
2
(7)

, those algorithms require slightly more opera-

tions, thus worsening the constant factor of the leading term. We

therefore finally propose further variants obtained by an alternate

basis sparsification, similar to those introduced in [3, 17]. In fine,

we obtain variants having a time complexity bound with the best

currently known leading term, that simultaneously improve on the

accuracy (i.e. mostly preserving in practice the numerical accuracy

with or without alternate basis sparsification, again thanks to a

minimization of the number of operations required to realize them).

Our c++ tools for the minimization of the number of operations

are gathered in the PLinOpt library [11]. We also forked the Mat-

lab framework of [8] to experiment our implementations of the

resulting fast and accurate matrix multiplication algorithms [12].

Section 2 presents the symmetries of matrix multiplication ten-

sors that we will use. In Section 3 we propose the unified error

bounds on bilinear operators and matrix multiplication algorithms,

highlighting how the the growth factor parameter governs accuracy.

On a relaxed growth factor in norm 2, we apply, in Section 4, a de-

scent algorithm to reach some local minima and show in Section 5

that it lies within at most 2.6% of the optimal. Finally, Section 6

presents our minimization heuristics and the obtained matrix mul-

tiplication algorithms, and their associated accuracy benchmarks.

2 MATRIX PRODUCT SEEN AS TENSOR

We recall there the formalism of tensor decomposition allowing

to present clearly the symmetries, later used to search for more

numerically accurate fast matrix multiplication algorithms in Sec-

tion 4. We start by briefly recalling tensorial representation of

bilinear maps, through the example introduced by Strassen in [20]

of fast 2×2-matrix product and we refer to [18] for this framework.

The product C = A · B of 2×2 matrices could be computed by

Strassen algorithm using the following computations:

𝜌1 ← 𝑎11 (𝑏12 − 𝑏22), 𝜌4 ← (𝑎12 − 𝑎22) (𝑏21 + 𝑏22),
𝜌2 ← (𝑎11 + 𝑎12)𝑏22, 𝜌5 ← (𝑎11 + 𝑎22) (𝑏11 + 𝑏22),
𝜌3 ← (𝑎21 + 𝑎22)𝑏11, 𝜌7 ← (𝑎21 − 𝑎11) (𝑏11 + 𝑏12),
𝜌6 ← 𝑎22 (𝑏21 − 𝑏11),

[
𝑐11 𝑐12

𝑐21 𝑐22

]
=
[ 𝜌5+𝜌4−𝜌2+𝜌6 𝜌6+𝜌3

𝜌2+𝜌1 𝜌5+𝜌7+𝜌1−𝜌3

]
.

(1)

This straight-line program (a.k.a. slp) encodes the following

bilinear map over a field K with𝑚,𝑘, 𝑛 equal to 2:

𝛽MM (𝐴, 𝐵) : K𝑚×𝑘 × K𝑘×𝑛 → K𝑚×𝑛,
(A,B) → A · B.

(2)

Indices𝑚,𝑘, 𝑛 are kept in this section for the sake of clarity in order

to distinguish easily the different spaces involved in the sequel.

Definition 1. The spaces K·×· can be endowed with the classical

Frobenius inner product ⟨M,N⟩ = Trace(M⊺ · N) that establishes
an isomorphism between K·×· and its dual space

(
K·×·

)∗
.

Frobenius inner product combines matrix product (2) and the

trilinear form Trace(C⊺ · A · B) as follow:

S |
3

: K𝑚×𝑘 × K𝑘×𝑛 × (K𝑚×𝑛)∗ → K,
(A,B,C⊺) → ⟨C,A · B⟩.

(3)

As the space of trilinear forms is the canonical dual space of order

three tensor products, Strassen algorithm (1) is encoded as the
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tensor decomposition S of the matrix multiplication tensor in sum

of seven rank-one tensors defined by the following relations:

S =
∑

7

𝑖=1
M𝑖⊗N𝑖⊗O𝑖 =

[
1 0

0 1

]
⊗
[

1 0

0 1

]
⊗
[

1 0

0 1

]
+
[

0 1

0 −1

]
⊗
[

0 0

1 1

]
⊗
[

1 0

0 0

]
+
[ −1 0

1 0

]
⊗
[

1 1

0 0

]
⊗
[

0 0

0 1

]
+
[

1 1

0 0

]
⊗
[

0 0

0 1

]
⊗
[ −1 0

1 0

]
+
[

1 0

0 0

]
⊗
[

0 1

0 −1

]
⊗
[

0 0

1 1

]
+
[

0 0

0 1

]
⊗
[ −1 0

1 0

]
⊗
[

1 1

0 0

]
+
[

0 0

1 1

]
⊗
[

1 0

0 0

]
⊗
[

0 1

0 −1

]
(4)

in (K𝑚×𝑘 )∗ ⊗ (K𝑘×𝑛)∗ ⊗K𝑚×𝑛 with𝑚 = 𝑘 = 𝑛 = 2. In the above

tensor decomposition, each summands is a rank-one tensor and its

tensor rank is the number 𝑟 of such element (7 there). Given Equa-

tion (4), one can retrieve a multiplication formula (2) implemented

by Eq. (1) using the third 2-contraction of the tensor S ⊗ A ⊗ B
which is defined as the following map:(
(K𝑚×𝑘 )∗⊗ (K𝑘×𝑛)∗⊗K𝑚×𝑛

)
⊗
(
K𝑚×𝑘⊗K𝑘×𝑛

)
→K𝑚×𝑛,(∑

𝑖 M𝑖⊗N𝑖⊗O𝑖
)
⊗(A ⊗ B) → ∑

𝑖 ⟨M𝑖 ,A⟩⟨N𝑖 ,B⟩O𝑖 .
(5)

Matrix product tensor decompositions could be represented using

other formalisms more adapted to the design of algorithm com-

puting efficiently the matrix product (as shown in Section 6). For

example, a nice concise representation was introduced in [16]; it

encodes the sum of rank-one tensors by three matrices as done

for the Strassen tensor decomposition (4) in the following three

matrices LS,RS and PS :
1 0 0 1

0 1 0 −1

−1 0 1 0

1 1 0 0

1 0 0 0

0 0 0 1

0 0 1 1

 ,


1 0 0 1

0 0 1 1

1 1 0 0

0 0 0 1

0 1 0 −1

−1 0 1 0

1 0 0 0

 ,


1 0 0 1

1 0 0 0

0 0 0 1

−1 1 0 0

0 1 0 1

1 0 1 0

0 0 1 −1


⊺

. (6)

Notation 2. Given a 𝑚×𝑘-matrix 𝐴, we denote by 𝐴𝑖 the 𝑖-th

row and by vec𝐴 the row-major vectorization of this matrix, i.e. the

vector 𝑣 inR𝑚𝑘 such that 𝑣𝑖𝑘+𝑗 = 𝑎𝑖, 𝑗 . We also denote by Mat𝑚,𝑘 (𝑣)
the reciprocal operation, building an 𝑚×𝑘 matrix from an 𝑚𝑘-

dimensional vector. Thus, the 𝑖th line LS𝑖 (resp. RS𝑖 ) of matrix LS
(resp. RS ) is the transposition of the row-major vectorization vecM𝑖

of the first (resp. second vecN𝑖 ) component of the 𝑖th triad in Equa-

tion (4) and the 𝑖th column of matrix PS is the column-major vec-

torization vecO𝑖 of its third component.

Definition 3. This encoding of a tensor by three suitable matri-

ces L,R, P is called a hm representation and is denoted by [L;R;P].

Equation (11) presented in Section 3 shows that the hm represen-

tation allows to construct slps for the associated algorithms. We

show in Section 6.2 that this could be done efficiently, e.g., using

the kernel of L (resp. R) and Tellegen transposition applied to P.
Now we turn to symmetries of matrix product tensor decom-

position. Indeed, remark that the matrix product is associated

to Trace(A · B · C) by Equation (3) and that, given invertible matri-

ces U,V,W of suitable sizes and the trace classical properties, this

trace is equal to:

Trace

(
(A · B · C)⊺

)
= Trace(C · A · B) = Trace(B · C · A)

and to Trace

(
U−1 · A · V · V−1 · B ·W ·W−1 · C · U

)
.

(7)

These relations illustrate the next theorem and induce the isotropy

action on matrix product tensor decomposition presented below:

Theorem 4 ([13, § 2.8]). The isotropy group of the𝑚×𝑚 matrix

multiplication tensor is the semidirect product psl
± (K𝑚)×3⋊𝔖3,

where psl stands for the group ofmatrices of determinant±1 and𝔖3

for the symmetric group on 3 elements.

Lemma 5. Let g denotes (U × V ×W) in psl
± (K𝑚)×3

and T a

rank-one tensor A ⊗ B ⊗C; the action g ⋄ T of g on T is the rank-

one tensor (U−⊺ · A · V⊺) ⊗ (V−⊺ · B ·W⊺) ⊗ (W−⊺ · C · U⊺). This
action is extended by additivity on higher tensor rank tensors.

Given two isotropies𝑔1 defined by (u1 × v1 × w1) and𝑔2 defined

by (u2 × v2 × w2) both in psl
± (K𝑚)×3

, the composition 𝑔1 ◦𝑔2 is

given by (u1 · u2 × v1 · v2 × w1 · w2).

The above isotropies action description is based on classical ten-

sor decomposition, the corresponding action on hm representation

is a direct consequence and presented in the following lemma.

Lemma 6. Let g be (U × V ×W) in psl
± (K𝑚)×3

and [L;R;P] be
a hm representation of a matrix product tensor decomposition, the

action g ⋄ [L;R;P] of g on [L;R;P] is another hm representation of

a matrix product tensor decomposition defined by:[
L ·

(
V⊺ ⊗U−1

)
;R ·

(
W⊺ ⊗ V−1

)
;

(
U ⊗W−⊺

)
· P

]
. (8)

Dealing with a tensor decomposition or with the associated hm

representation is not strictly equivalent; In Lemma 5 there is no

need to care about the determinant of matrices (U,V,W) while this
fact is no more true for Equation (8) as (say) U acts on two different

components. The following theorem recalls that in fact all 2×2-

matrix product algorithms with 7 coefficient multiplications are

obtained by this single orbit of the action of isotropies on Strassen

tensor decomposition:

Theorem 7 ([14, § 0.1]). The group psl
± (K𝑚)×3

acts transitively

on the variety of optimal algorithms for the computation of 2×2-

matrix multiplication.

Thus, isotropy action on Strassen tensor decomposition may

define other matrix product algorithm of same tensor rank but with

potentially interesting characteristics as shown in Section 4. We

explicit these properties in the following section.

3 BILINEAR OPERATOR ACCURACY BOUND

We will consider that any real finite-dimensional vector space U, is
equipped with a norm ∥·∥ and denote by ∥·∥∗ the related dual norm;

for 𝜙 : U→ R, its norm ∥𝜙 ∥∗ is sup( |𝜙 (𝑣) | : ∥𝑣 ∥ ≤ 1). For instance
the max-norm ∥·∥∞ and the one-norm ∥·∥

1
are dual one with the

other, while the two-norm ∥·∥
2
is self-dual. We will also denote

the Hamming weight #{𝑖 |𝑥𝑖 ≠ 0} of 𝑥 by ∥𝑥 ∥
0
. We will denote by

(𝑥𝑖 )𝑖 the vector formed by the coefficients 𝑥𝑖 and ∥(𝑥𝑖 )𝑖 ∥ its norm.

By extension, we also use ∥𝑥 ;𝑦∥ = ∥𝑥 ∥ · ∥𝑦∥ and ∥ [L;R;P] ∥ =

∥L∥ ∥R∥ ∥P∥.

Lemma 8. For any vectors 𝑥 and 𝑦 in R𝑘 and a matrix A in R𝑚×𝑘

the following inequalities hold:

|𝑥 · 𝑦 | ≤ ∥𝑥 ∥∗ ∥𝑦∥ , ∥A𝑥 ∥ ≤


(∥A𝑖 ∥∗)𝑖

 ∥𝑥 ∥ , (9)

∥A𝑥 ∥∞ ≤ max

𝑖=1...𝑚

(∑𝑘
𝑗=1
|𝑎𝑖, 𝑗 |

)
∥𝑥 ∥∞ ≤ 𝑘 ∥A∥∞∥𝑥 ∥∞ . (10)
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Given an hm representation [L;R;P] of a matrix multiplication

tensor decomposition, one can retrieve the transpose of the multi-

plication formula (2) implemented by Eq. (1) using the Hadamard

product A ⊙ B of matrices A and B with the following map:

K𝑚×𝑘 × K𝑘×𝑛 → K𝑚𝑛×1

(A,B) → P⊺ · ((L · vecA) ⊙ (R · vecB)) . (11)

Hence, we express there a bilinear operator 𝛽 : R𝑒 × R𝑓 → R𝑔

using its hm representation [L;R;P] in R𝑟×𝑒 × R𝑟×𝑓 × R𝑟×𝑔 as:

𝛽 (𝑢, 𝑣) = ∑𝑟
𝑖=1
(L𝑖 · 𝑢) (R𝑖 · 𝑣) (P⊺)𝑖 . When this operator encodes

an 𝑚×𝑘 by 𝑘×𝑛 matrix multiplication formula, we will thus de-

note it by 𝛽MM and we will have 𝑒 =𝑚𝑘, 𝑓 = 𝑘𝑛,𝑔 =𝑚𝑛. We also

consider recursive applications of such operators defined as:

𝛽 (ℓ ) : R𝑒0𝑒
ℓ × R𝑓0 𝑓 ℓ → R𝑔0𝑔

ℓ

(𝑢, 𝑣) ↦→ ∑𝑟
𝑖=1

𝛽 (ℓ−1) (L𝑖 · 𝑢,R𝑖 · 𝑣) (P⊺)𝑖
(12)

and 𝛽0
: R𝑒0 × R𝑓0 → R𝑔0

, a bilinear operator whichwewill assume

to be bounded: ∥𝛽 (0) (𝑢, 𝑣)∥ ≤ 𝛾0∥𝑢∥∥𝑣 ∥ ∀(𝑢, 𝑣) ∈ R𝑒0 × R𝑓0 . For
convenience, we will define the dimensions𝐺 = 𝑔ℓ𝑔0, and𝐾 = 𝑘ℓ𝑘0.

Recall that (P⊺)𝑖 is the 𝑖-th column of P and remark that L𝑖 · 𝑢 is

an abuse of notation for the operation where each coefficient L𝑖, 𝑗
multiplies a block of 𝑒0𝑒

ℓ−1
contiguous coefficients of 𝑢, namely:

L𝑖 · 𝑢 = (LiMate,e0eℓ−1 (u))
⊺
.

We will consider the floating point arithmetic in the standard

model of [15]: 𝑥 denotes the computed value for an expression 𝑥

such that
�𝑎 op 𝑏 = (𝑎 op 𝑏) (1 + 𝛿) for op = +,−,×, / where |𝛿 | ≤ 𝜀,

the unit round off, except when 𝑎 op 𝑏 is 0 where 𝛿 is −1. We recall

in the following Lemma some classical inequalities:

Lemma 9 (see [8, Eq. (3.5)] and [15, Eq. (4.4)]). For any vectors 𝑢

and 𝑣 in R𝑛 the following inequalities hold:

|𝑢 · 𝑣 − 𝑢 · 𝑣 | ≤ ∥𝑢∥
0
∥𝑢∥∗ ∥𝑣 ∥𝜀 +𝑂 (𝜀2). (13)����∑𝑛𝑖=1

𝑢𝑖 −
∑𝑛
𝑖=1

𝑢𝑖

��� ≤ (𝑛 − 1)
(∑𝑛
𝑖=1
|𝑢𝑖 |

)
𝜀 +𝑂 (𝜀2). (14)

Proof. Since there are 𝑟 = ∥𝑢∥
0
non-zero coefficients in 𝑢, the

scalar product is actually computed between 𝑟 -dimensional vectors.

The result is then as in [8, Eq. (3.5)]. Applying Eq. (13) with 𝑣 =

(1, . . . , 1) and the max-norm gives Eq. (14). □

Definition 10. The growth factor of the formula [L;R;P] comput-

ing the bilinear form 𝛽 is defined by𝛾 = max

𝑗=1...𝑔

∑𝑟
𝑖=1
∥L𝑖 ∥∗ ∥R𝑖 ∥∗ |𝑝𝑖, 𝑗 |.

The growth factor not only bounds the values of bilinear oper-

ators, as show in Lemma 11, but is also central in analyzing their

forward numerical error, which will be the focus of Theorem 12.

Lemma 11. For any𝑢, 𝑣 with adequate dimensions, the following

relations hold: ∥𝛽 (𝑢, 𝑣)∥ ≤ 𝛾 ∥𝑢∥ ∥𝑣 ∥, ∥𝛽 (ℓ ) (𝑢, 𝑣)∥ ≤ 𝛾 ℓ𝛾0 ∥𝑢∥ ∥𝑣 ∥
and ∥𝛽 (ℓ )

MM
(𝑢, 𝑣)∥∞ ≤ 𝑘ℓ𝑘0∥𝑢∥∞∥𝑣 ∥∞.

Proof. Let Dj denotes Diag𝑖=1...𝑟 (𝑝𝑖, 𝑗 ) and 𝑐 𝑗 be the 𝑗-th coeffi-

cient of 𝛽 (𝑢, 𝑣).We have that |𝑐 𝑗 | ≤


u⊺L⊺D𝑗Rv

 ≤ 

u⊺LD𝑗R

∗ ∥𝑣 ∥,

so that |𝑐 𝑗 | ≤


L⊺D𝑗R

∗ ∥𝑢∥ ∥𝑣 ∥ ≤ 

∑𝑟

𝑖=1
(L𝑖 ⊗ R𝑖 )𝑝𝑖, 𝑗




∗ ∥𝑢∥ ∥𝑣 ∥

and |𝑐 𝑗 | ≤
(∑𝑟
𝑖=1
∥L𝑖 ∥∗ ∥R𝑖 ∥∗ |𝑝𝑖, 𝑗 |

)
∥𝑢∥ ∥𝑣 ∥. Finally, the last in-

equality follows from (9). □

Theorem 12. Given any choice of norm ∥·∥, if 𝐺 denotes 𝑔0𝑔
ℓ

and 𝐾 denotes 𝑘0𝑘
ℓ
, the error in computing 𝛽 (ℓ ) is of the form

∥𝛽 (ℓ ) (𝑢, 𝑣) − 𝛽 (ℓ ) (𝑢, 𝑣)∥∞ ≤ 𝜅 ∥𝑢∥ ∥𝑣 ∥ 𝜀 +𝑂 (𝜀2) where either

𝜅 = (𝐾/𝑘0)log𝑘 𝛾

(
𝑘2

0
+𝑄0

𝛾

𝛾 − 𝑘 𝑘0

)
−𝑄0

𝛾

𝛾 − 𝑘 𝐾 (15)

when 𝛽 (ℓ ) is an𝑀 × 𝐾 by 𝐾 × 𝑁 matrix multiplication, or

𝜅 = (𝐺/𝑔0)log𝑔 𝛾 𝛾0

(
1 +𝑄0

(
log𝑔 (𝐺/𝑔0) + 1

))
, (16)

otherwise, and𝑄0 = max𝑗

(

(P⊺) 𝑗 


0
+max𝑖 (∥L𝑖 ∥0 + ∥R𝑖 ∥0)1𝑝𝑖,𝑗≠0

)
as in [1, Definition 1].

Proof. By induction we will prove that the bound is of the form

∥Δ𝛽 (ℓ ) ∥∞ = ∥ �𝛽 (ℓ ) (𝑢, 𝑣) − 𝛽 (ℓ ) (𝑢, 𝑣)∥∞ ≤ 𝑡ℓ ∥𝑢∥ ∥𝑣 ∥ 𝜀 +𝑂 (𝜀2), clar-
ifying in the process the value for 𝑡ℓ . Consider the block 𝑐 𝑗 of𝐺/𝑔 =

𝑔0𝑔
ℓ−1

consecutive coefficients of the output: 𝑐 𝑗 =
∑𝑟
𝑖=1

H𝑖𝑝𝑖, 𝑗 , where

H𝑖 = 𝛽 (ℓ−1) (L𝑖 · 𝑢,R𝑖 · 𝑣). Let 𝑑𝑖, 𝑗 = H𝑖𝑝𝑖, 𝑗 and Δ𝑑𝑖,𝑗 = 𝑑𝑖, 𝑗 − 𝑑𝑖, 𝑗 .
Then, by Eq. (14):

∥𝑐 𝑗 − 𝑐 𝑗 ∥∞ ≤ ∥
�𝑟∑︁
𝑖=1

𝑑𝑖, 𝑗−
𝑟∑︁
𝑖=1

𝑑𝑖, 𝑗 ∥∞ + ∥
𝑟∑︁
𝑖=1

𝑑𝑖, 𝑗 −
𝑟∑︁
𝑖=1

𝑑𝑖, 𝑗 ∥∞ (17)

≤
𝑟∑︁
𝑖=1

∥�H𝑖𝑝𝑖, 𝑗 ∥∞ (

(P⊺) 𝑗 


0
− 1

)
𝜀 +

𝑟∑︁
𝑖=1

∥Δ𝑑𝑖,𝑗 ∥∞ +𝑂 (𝜀
2) (18)

Similarly,

∥Δ𝑑𝑖,𝑗 ∥∞ ≤ ∥
�
𝑝𝑖, 𝑗 Ĥi − 𝑝𝑖, 𝑗 Ĥ𝑖 ∥∞ + ∥𝑝𝑖, 𝑗 Ĥ𝑖 − 𝑝𝑖, 𝑗H𝑖 ∥∞ (19)

≤ |𝑝𝑖, 𝑗 |∥H𝑖 ∥∞𝜀 + |𝑝𝑖, 𝑗 |∥ΔH𝑖
∥∞ +𝑂 (𝜀2), (20)

and again by bilinearity of 𝛽 (ℓ−1)
, the following equality holds:

∥ΔH𝑖
∥∞ = ∥�𝛽 (ℓ−1) (�L𝑖 · 𝑢,�R𝑖 · 𝑣) − 𝛽 (ℓ−1) (L𝑖 ·𝑢, R𝑖 · 𝑣)∥∞, and this

quantity is bounded by:

∥Δ𝛽 (ℓ−1) ∥∞ + ∥𝛽 (ℓ−1) (Δ𝐿,R𝑖 · 𝑣)∥∞ + ∥𝛽 (ℓ−1) (L𝑖 · 𝑢,Δ𝑅)∥∞ (21)

By Eq. (13) and the induction hypothesis we have

∥ΔM∥∞ ≤ ∥M𝑖 ∥0 ∥M𝑖 ∥∗ ∥𝑢∥ 𝜀 +𝑂 (𝜀2) with M ∈ {L,R}, (22)

∥Δ𝛽 (ℓ−1) ∥∞ ≤ 𝑡ℓ−1 ∥L𝑖 · 𝑢 + ΔL∥ ∥R𝑖 · 𝑣 + ΔR∥ 𝜀 +𝑂 (𝜀2), (23)

≤ 𝑐ℓ−1 ∥L𝑖 ∥∗ ∥𝑢∥ ∥R𝑖 ∥∗ ∥𝑣 ∥ 𝜀 +𝑂 (𝜀2) . (24)

By Lemma 11, the following inequality holds

∥𝛽 (ℓ−1) (ΔL,R𝑖 · 𝑣)∥∞ ≤ Θℓ−1Θ0∥ΔL∥∞ ∥R𝑖 ∥∗ ∥𝑣 ∥ (25)

for (Θ,Θ0) = (𝑘, 𝑘0) if 𝛽 = 𝛽MM or (𝛾,𝛾0) otherwise (whereΘ0 = 𝛾0

comes from the current proof with ℓ = 1 and 𝑔0 = 1). Similarly,

∥𝛽 (ℓ−1) (L𝑖 · 𝑢,ΔR)∥∞ ≤ Θℓ−1Θ0∥ΔR∥∞ ∥L𝑖 ∥∗ ∥𝑢∥ . (26)

Gathering Eqs. (18), (20) to (22) and (24) to (26) we deduce that

∥𝑐 𝑗 − 𝑐 𝑗 ∥∞ ≤
∑𝑟
𝑖=1
(Θℓ−1Θ0 (∥L𝑖 ∥0 + ∥R𝑖 ∥0 +



(P⊺) 𝑗 


0
) + 𝑡ℓ−1)

× ∥L𝑖 ∥∗ ∥R𝑖 ∥∗ |𝑝𝑖, 𝑗 | ∥𝑢∥ ∥𝑣 ∥ 𝜀 +𝑂 (𝜀2),

and thus that ∥𝑐 𝑗 − 𝑐 𝑗 ∥∞ ≤ (Θℓ−1Θ0𝑄0 + 𝑡ℓ−1)𝛾 ∥𝑢∥ ∥𝑣 ∥ 𝜀 +𝑂 (𝜀2) .
As in [15], we deduce that 𝑡ℓ must then satisfy:

𝑡ℓ = (Θℓ−1Θ0𝑄0 + 𝑡ℓ−1)𝛾 for ℓ > 0,

𝑡0 = 𝑘2

0
for matrix product,

𝑡0 = (1 +𝑄0)𝛾0 otherwise.

(27)
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Formula Applies to norm Winograd Strassen Equation (35) Equation (34)

𝑄 𝛾 𝑄 𝛾 𝑄 𝛾 𝑄 𝛾 𝑄 𝛾

Brent [7] (15) Strassen only ∞ NA 𝛾1,1,∞ 3.67 12

BL [4] DDHK [10] (16) any MM alg. ∞ 𝑄 ′
0

1 𝛾0,1,∞2
9 18 7 12 9.59 40 9.81 98.54

Higham [15] (15) S. & W. only ∞ NA 𝛾1,1,∞ 4.94 18 3.83 12

Ballard et al. [1] (16) any MM alg. ∞ 𝑄0 𝛾1,1,∞ 10 18 8 12 12 13 15 17.48

Dai, Lim [8] [8, Th 3.3] ℓ = 1, any alg.

2 𝑚 + 𝑛 + 𝑟 𝛾2,1 15 17.86 15 14.83 15 12.21 15 12.07

∞ 𝑚 + 𝑛 + 𝑟 𝛾1,∞,1 15 27 15 20 15 22 15 25.14

Here (15) any MM alg.

2 𝑄0 𝛾2,1,∞ 10 8 8 6.83 12 6.05 15 5.97

∞ 𝑄0 𝛾1,1,∞ 10 18 8 12 12 13 15 17.48

Here (16) any alg. ∞ 𝑄0 𝛾1,1,∞ 10 18 8 12 12 13 15 17.48

Table 1: Comparing accuracy formulas for recursive bilinear matrix multiplication operators in the form of Theorem 12.

This recurrence relation solves into 𝑡ℓ = 𝛾
ℓ𝑡0 +𝑄0Θ0Θ

ℓ ∑ℓ
𝑖=1
(𝛾/Θ)𝑖 .

In the case of a matrix multiplication operator, 𝑡ℓ is equal to: 𝛾
ℓ𝑘2

0
+

𝑄0𝑘0𝛾
𝛾 ℓ−𝑘ℓ
𝛾−𝑘 =

(
𝐾
𝑘0

)
log𝑘 𝛾

(
𝑘2

0
+ 𝑄0𝛾

𝛾−𝑘 𝑘0

)
− 𝑄0𝛾

𝛾−𝑘𝐾 . In the general

case, the value of 𝑡ℓ becomes: 𝛾 ℓ𝛾0 (1 + 𝑄0) + 𝑄0𝛾0𝛾
ℓ ℓ , that is:

(𝐺/𝑔0)log𝑔 𝛾𝛾0

(
1 +𝑄0

(
log𝑔𝐺/𝑔0 + 1

))
. □

Theorem 12 generalizes or improves on previous similar results

in [1, 7, 8, 10, 15]. In particular, [8] only considers one recursive level

with no base case; [7, 15] have tight bounds but only for Strassen

and Winograd’s algorithms in max-norm; and lastly [1, 10] has an

additional logarithmic factor likely due to a loser bound on each

∥𝛽 (ℓ−1) ∥∞, not exploiting the fact that they are matrix products.

Eventhough the choice of the max-norm produces the tightest

bounds in Theorem 12, as in most of previous works, the bounds are

stated for any choice of norm, as in [8], for alternative norms, such

as the 2-norm, may give growth factor expressions more amenable

to optimizations, as detailed in the following section.

Table 1 compares the various existing bounds on numerical

accuracy of matrix multiplication algorithms. These bounds depend

on the following choices made on the norms to define the growth

factor 𝛾 :

𝛾0,1,∞ =




(

(∥L𝑖 ;R𝑖 ∥0 |𝑝𝑖,𝑘 |)𝑖

1

)
𝑘





∞
∥L∥∞∥R∥∞∥P∥∞

=

(
max

𝑘∈{1...𝑚𝑛}

∑𝑟
𝑖=1
∥L𝑖 ∥0∥R𝑖 ∥0 |𝑝𝑖,𝑘 |

)
∥L∥∞∥R∥∞∥P∥∞

(28)

𝛾2,1 =


(∥L𝑖 ;R𝑖 ;P𝑖 ∥2)𝑖

1

=
∑𝑟
𝑖=1
∥L𝑖 ∥2∥R𝑖 ∥2∥P𝑖 ∥2 (29)

𝛾𝑞,1,∞ =





(


(∥L𝑖 ;R𝑖 ∥𝑞 |𝑝𝑖,𝑘 |)𝑖


1

)
𝑘






∞

= max

𝑘∈{1...𝑚𝑛}

∑𝑟
𝑖=1
∥L𝑖 ∥𝑞 ∥R𝑖 ∥𝑞 |𝑝𝑖,𝑘 | with 𝑞 ∈ {1, 2}.

(30)

4 GROWTH FACTOR ALONG ORBITS

In the footstep of [4], we aim to find alternative 2×2 matrix prod-

uct tensor decomposition, in the orbit of Strassen’s one, with im-

proved accuracy, hence minimizing the Growth factor. The use of

the maxnorm induces an expression Eq. (30) for 𝛾1,1,∞ poorly suited

1
[4, 10] reach an improved value of 𝑄0 by assuming all additions are performed

following a balanced tree, instead of a worst case estimate as done in all other formulas.

2
We applied the same 𝛾0,1,∞ for [4], as it seems to be missing a dependency in the

magnitude of the coefficients in L,R, P, which was fixed in [10].

for optimizations. We will instead make two relaxations: first, using

the 2-norm, and second, as in [8] bounding 𝛾2,1,∞ by 𝛾2,1:

max

𝑘∈{1...𝑚𝑛}

𝑟∑︁
𝑖=1

∥L𝑖 ∥2 ∥R𝑖 ∥2 |𝑝𝑖,𝑘 | ≤
𝑟∑︁
𝑖=1

∥L𝑖 ∥2 ∥R𝑖 ∥2 ∥P𝑖 ∥2 (31)

Theorem 7 shows that all fast 2×2 matrix product algorithms are

in the same orbit under isotropies action introduced in Lemma 5.

While the tensor rank is invariant under this action, growth factor

is—generally—not. As its definition is based on Frobenius norm,

some isotropies leave it invariant as stated next:

Lemma 13. The growth factor 𝛾2,1 is invariant under the action

of the semidirect product so
± (K𝑛)×3⋊𝔖3 induced by the special

orthogonal group and the permutation group𝔖3.

Proof. By Definition 1, Frobenius norms are invariant under

orthogonal transformations and so is 𝛾2,1 by Eq. (29). Lemma 13 is

then derived from Equations (7) and (8). □

As it is useless to consider isotropies leaving the growth factor

invariant, we limit our search to isotropies of the following form:

Lemma 14. The action of (h × p)×3
determines the growth factor

𝛾2,1 for h = {H𝜌 =

[
𝜌 0

0 1/𝜌

]
| 𝜌 > 0} and p = {P𝜉 =

[
1 𝜉
0 1

]
| 𝜉 ∈ R}.

Proof. Considering Eq. (8), we see that the product of any ac-

tion, say U, by a non-zero scalar will affect the growth factor ex-

actly twice: once in U and once, inverted, in U−1
, as norms are

absolutely homogeneous. It is therefore sufficient to consider ma-

trices with determinant 1. Then, Lemma 13 states that orthogonal

matrices also do not have any effect. From the qr decomposition of

any invertible matrices there remains thus just the (h × p) part of
the Iwasawa decomposition, for each of the three transformations

in Theorem 7. □

We should study the action of (h × p)×3
on Strassen tensor de-

composition in order to find variants with the smaller possible 𝛾2,1.

Unfortunately, a direct definitive result for this question seems to be

out of reach and we present several ersatz. First, we perform numer-

ical minimization on 𝛾 (g ⋄ S) with a completely generic isotropy g
in psl

± (R2)×3

(involving 6 indeterminates by Lemma 14); this ex-

periment suggests that a suitable isotropy to reach a fast matrix

product tensor decomposition with minimal 𝛾2,1 could be of the

form (𝑢 × 𝑢 × 𝑢) (involving only 2 indeterminates). The following
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proposition states precisely this possibility (its proof is a simple

computation presented in Appendix A.1).

Proposition 15. Consider the matrices 𝑢 (𝜌, 𝜉) = H𝜌 · P𝜉 and the

isotropies g𝜌,𝜉 defined by 𝑢 (𝜌, 𝜉)×3
. The minimal value on the

orbit g𝜌,𝜉 ⋄ S of the growth factor 𝛾2,1

(
g𝜌,𝜉 ⋄ S

)
is reached at the

point (𝜌, 𝜉) =
(

4

√︁
4/3,−1/2

)
and equal to 4/

√
2 + 16/

√
3 > 12.06603.

The algorithm corresponding to the point (𝜌, 𝜉) with minimal

𝛾2,1 on this restricted orbit is given in Eq. (34). We gather in Ta-

ble 2 values for 𝛾2,1 of some matrix product tensor decompositions

together with the result obtained in Proposition 15. In Section 6,

we compare the implementation of algorithms associated to these

tensor decompositions in order to confirm that their numerical

accuracy is correlated to their respective 𝛾2,1 growth factor.

5 UPPER AND LOWER BOUNDS

We explore in this section some bounds on the norm of each compo-

nent of a hm representation. By the multiplicativity of 𝐿𝑝,𝑞 norms

(even generalized to negative Hölder conjugates), this will always

give alternate bounds on the error, a priori less accurate, but poten-

tially easier to apprehend.

Lemma 16. For any hm representationH , with matrices L,R, P
in K𝑟×𝑛 , let 𝛾H = 𝛾2,1 (H) be its 𝛾2,1 growth factor, as in Eq. (29).

Then for any strictly positive 𝑦 and 𝑧, we have both:

𝛾H ≤ ∥H∥2,3 ≤ ∥H∥𝐹 and (32)

max

{
𝑟1+3𝑧 ∥H ∥

2,− 1

𝑧
; ∥L∥

2,− 1

𝑦
· ∥R∥

2,− 1

𝑧
· ∥P∥

2, 1

1+𝑦+𝑧

}
≤ 𝛾H (33)

Proof. Let 𝑎𝑖 = ∥L𝑖 ∥2, 𝑏𝑖 = ∥R𝑖 ∥2 and 𝑐𝑖 = ∥P𝑖 ∥2. The first

right hand side inequality is Hölder’s inequality on 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 ,

with the Hölder conjugates
1

3
+ 1

3
+ 1

3
= 1, that is: ∥(𝑎𝑖 ·𝑏𝑖 ·𝑐𝑖 )𝑖 ∥1 ≤

∥(𝑎𝑖 )𝑖 ∥3 · ∥ (𝑏𝑖 )𝑖 ∥3 · ∥ (𝑐𝑖 )𝑖 ∥3 = ∥H ∥
2,3 The second right hand side

inequality is a direct application of the monotonicity of norms.

Then, the left hand side inequality is obtained by a reverse Hölder’s

inequality on the vectors 𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 and 1, with the Hölder con-

jugates
1

−1/𝑧 +
1

−1/𝑧 +
1

−1/𝑧 + (1 + 3𝑧) = 1. We have indeed that

the (1 + 3𝑧)-norm ∥(1)𝑖 ∥1/(1+3𝑧 ) is
(∑𝑟
𝑖=1

1
1/(1+3𝑧 ) )1+3𝑧

. Combined

with: ∥H ∥
2,− 1

𝑧
= ∥(𝑎𝑖 )𝑖 ∥− 1

𝑧
· ∥ (𝑏𝑖 )𝑖 ∥− 1

𝑧
· ∥ (𝑐𝑖 )𝑖 ∥− 1

𝑧
, this shows that

𝑟1+3𝑧 ∥H ∥
2,− 1

𝑧
≤ ∥(𝑎𝑖 ·𝑏𝑖 ·𝑐𝑖 ·1)𝑖 ∥1. Finally, for the other lhs, we also

use Hölder’s inequality on 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 , now with Hölder conju-

gates (1/−1/𝑦) + (1/−1/𝑧) + (1/1/(1 + 𝑦 + 𝑧)) = 1. □

Table 2 gives the Frobenius and (2, 3)-norms of each of three ma-

trices defining the hm representation of a matrix product algorithm,

as well as their 𝛾2,1 growth factor. In the following proposition, we

show that—up to orthogonal transformations—the minimum of the

Frobenius norm of the hm representation defining a fast 2×2-matrix

multiplication algorithms is

√
10 and subsequent results.

Proposition 17. The minimal product ∥H ∥𝐹 of the three Frobe-

nius norms of the hm representation of any bilinear algorithm for

matrix multiplication with 7 multiplications, is

√
10

3

.

Algorithm 𝛾2,1 (H) ∥H ∥
2,3 ∥H ∥𝐹

Winograd 7+ 8√
2

+ 9√
3

≈ 17.853 11+ 8√
2

+ 9√
3

√
14

3

Strassen 12+ 4√
2

≈ 14.828 2+ 20√
2

√
12

3

Eq. (35)
75

8
+ 4√

2

≈ 12.203
125

32
+ 4√

2

+ 25

2

√
5

√︃
162

16

3

Eq. (40)
75

8
+ 4√

2

≈ 12.203
125

32
+ 4√

2

+ 25

2

√
5

√
10

√︃
162

16

810

80

√
10

Eq. (34)
16√

3

+ 4√
2

≈ 12.066
16√

3

+ 4√
2

√
10

3

Conv. 8.000 8

√
8

3

Table 2: Illustration of Eq. (32) onH = [L;R;P]

This proposition’s proof is given in Appendix A.1. Remark that

this lower bound is reached, by the algorithm which hm represen-

tation is given in Equation (34).

√
3

2

1

2

1

2

√
3

6

0 0 1 −
√

3

3

0 1 0

√
3

3

0 0 0 − 2√
3

−
√

3

2
− 1

2

1

2
−
√

3

2

−
√

3

2
− 1

2

1

2

√
3

6

−
√

3

2

1

2

1

2
−
√

3

6


;



0
2√
3

0 0

−1

√
3

3
0 0

0

√
3

3
0 −1

1

2
−
√

3

6

√
3

2
− 1

2

− 1

2

√
3

2
−
√

3

2
− 1

2

1

2

√
3

6

√
3

2

1

2

1

2

√
3

6
−
√

3

2
− 1

2


;



√
3

6

1

2

1

2

√
3

2

−
√

3

3
0 −1 0

√
3

3
−1 0 0

√
3

6
− 1

2
− 1

2

√
3

2√
3

2
− 1

2

1

2

√
3

2

−
√

3

6
− 1

2

1

2

√
3

2

− 2√
3

0 0 0



⊺

(34)

Remark 18. Similarly, the point

(
4
√

3/
√

2,− 4
√

3/
√

6,
4
√

3/
√

2,
4
√

3/
√

6

)
is a minimum of the cube of ∥L · (𝑊 ⊗ 𝑉 )∥

2,3. It turns out that this

value is 16/
√

3 + 4/
√

2, the same as the 𝛾2,1 growth factor at this

point, proving that our upper bound is reached.

We now turn to potential lower bounds.

Lemma 19. For 𝑊 =
[ 𝑟 𝑥

0 𝑟 −1

]
and 𝑉 =

[
𝑠 𝑦

0 𝑠−1

]
, and L the first

component of Strassen’s hm representation given in Equation (6),

and any 𝑧 ≥ 0.5171, the point

(
4
√

3/
√

2,− 4
√

3/
√

6,
4
√

3/
√

2,
4
√

3/
√

6

)
is

a local minimum of ∥L · (𝑊 ⊗ 𝑉 )∥
2,−1/𝑧 as a function of 𝑟, 𝑥, 𝑠 and𝑦.

Proof. Alike the proof of Proposition 17, we give the explicit

expression of ∥L · (𝑊 ⊗ 𝑉 )∥
2,−1/𝑧 as the function:

𝑓𝑧 (𝑟, 𝑥, 𝑠,𝑦) =
(
(𝑟2𝑠2 + 𝑟2𝑦2 + 𝑥2𝑠2 + (𝑥𝑦 + 1/𝑟𝑠)2)−1/2𝑧 + (𝑠2/𝑟2 +

(𝑦/𝑟 −1/𝑟𝑠)2)−1/2𝑧 + (𝑟2𝑠2 +𝑟2𝑦2 + (𝑥𝑠 +𝑠/𝑟 )2 + (𝑥𝑦 +𝑦/𝑟 )2)−1/2𝑧 +
(𝑟2𝑠2 + 𝑟2𝑦2 + 𝑠2𝑥2 + 𝑥2𝑦2)−1/2𝑧 + (1/𝑟2𝑠2)−1/2𝑧 + (𝑟2/𝑠2 + (𝑥/𝑠 +
1/𝑟𝑠)2)−1/2𝑧 +(𝑟2𝑠2 + (𝑟/𝑠 − 𝑟𝑦)2 + 𝑥2𝑠2 + (𝑥/𝑠 − 𝑥𝑦)2)−1/2𝑧

)−𝑧
.

Then the evaluation of its partial derivatives at the given point is

zero, by inspection, for any 𝑧 in R. Now, the roots of the character-
istic polynomial of the Hessian of 𝑓𝑧 at this point are 3

𝑛
𝑑

(
𝑏1 ±
√
𝛿1

)
and

√
3
𝑛
𝑑

(
𝑏2 ±
√
𝛿2

)
for 𝛿1 = −16𝑧 (24𝑧 − 1)𝜏 + 13443

1

𝑧 (𝑧2 − 2/7𝑧 +
13/448)2−

1

𝑧 + 48𝑧2
, 𝛿2 = 24𝑧 (272𝑧 − 237)𝜏 + 40323

1

𝑧 (𝑧2 − 12/7𝑧 +
333/448)2−

1

𝑧 +2704𝑧2
,𝑛 = (2

−1

2𝑧 +63

1

2𝑧 2
− 1

𝑧 )−𝑧 ,𝑑 = 216𝑧𝜏+36𝑧,𝑏1 =

((32𝑧 − 11)𝜏 + 4𝑧)
√

3, and 𝑏2 = (96𝑧 − 63)𝜏 + 52𝑧 with 𝜏 = 3

1

2𝑧 2

−1

2𝑧 .

First, 𝛿1 and 𝛿2 are never negative, so that the roots are always

real. Second, both expressions 𝑏𝑖
2 − 𝛿𝑖 have the same two roots,

the lowest one is 1/4 and the second one is strictly less than 0.5171.
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Third, all four roots are positive for 𝑧 equal to this 0.5171, and, by

continuity, so are they for 𝑧 ≥ 0.5171. □

Corollary 20. 11.7554696 < 28

9
2

11

14 3

5

7 is a lower bound for the𝛾2,1

growth factor of an hm formula using 7 products.

Proof. Following the proof of Lemma 19, we have that equal-

ity 𝑓𝑧

(
4
√

3√
2

,
− 4
√

3√
6

,
4
√

3√
2

,
4
√

3√
6

)
= (2

−1

2𝑧 + 63

1

2𝑧 2
− 1

𝑧 )−𝑧 hold. Denoting this
quantity by 𝜁𝑧 we thus have that 7

1+3𝑧𝜁 3

𝑧 ≤ 7
1+3𝑧 ∥H ∥

2,− 1

𝑧
. Which

lhs limit at 𝑧 = ∞ is
28

9
2

11

14 3

5

7 . By Eq. (33), this show that
28

9
2

11

14 3

5

7 is

less or equal to 𝛾𝐹 as announced. Similarly, the limit of 𝜁 2

𝑧 𝜁−1−2𝑧 ≤
∥L∥

2,− 1

𝑧
· ∥R∥

2,− 1

𝑧
· ∥P∥

2, 1

1+𝑧+𝑧
, at 𝑧 = ∞, is also 28

9
2

11

14 3

5

7 . □

Corollary 20 for instance also shows that the 𝛾2,1 growth factor

of the conventional algorithm (8) can not be attained by such fast

algorithms. Let see now how this bound behave in our experiments.

6 ALGORITHMS INTO PRACTICE

In this section, we present several techniques to lower the number

of operations used in our algorithms and thus, lower complexity

bounds and potentially obtain a better accuracy.

Determining actual complexity bounds requires to estimate the

number of operations required to implement a given formula. Con-

sidering a hm representation, a direct upper bound can be obtained

by first count the number of coefficients different from −1, 0, 1 to

get an upper bound on the number of multiplications/divisions, sec-

ond count the number of non-zero coefficients, minus the number of

rows, to get an upper bound on the number of additions/subtractions.

To obtain lower operation counts, we use the following tech-

niques: first, we select among equivalently accurate algorithms;

this is presented in Section 6.1; second, we factor as much as possi-

ble the computations between rows of the hm representations, as

in Section 6.2; third, we use dependent rows as more opportunities

for factorization, as in Section 6.3. We then present some good

candidates (as well as in Appendix A.4) and we eventually look at

some potential sparse change of basis in Section 6.4.

6.1 Sparsifying via rotations

We have seen in Lemma 13 that orthogonal transformations leave

the Frobenius norm invariant and thus, the𝛾2,1 growth factor. There-

fore, one can apply 4×4 generic Kronecker products of orthogo-

nal 2×2 (rotation) matrices using Lemma 6 and try to optimize con-

sidered hm representation for several possible goals: (1) a smaller

number of non-zero coefficients in hm representation components;

(2) a non-zero pattern better suited to factorization (see the tech-

nique of Section 6.2); (3) a triangular (sparse) subset of independent

rows (see the technique of Section 6.3).

For instance, to obtain Eq. (34), we solve for the minimal values of

the Frobenius norms as in Proposition 17, and then for orthogonal

transformations that produce as many vectors of the canonical basis

as possible. Doing so, we found that with 𝛾2,1 set to 16/
√

3 + 4/
√

2

and hm representation component Frobenius norms set to

√
10, the

maximal possible number of canonical vectors was 1. Equation (34)

is one of those. Similarly, Eq. (40) is an orthogonal optimization

of Eq. (35), with one canonical vector in each of components of the

hm representation. A c++ implementation of these tools is available

in the PLinOpt library [11].

6.2 Factoring heuristics

For the implementation of a given linear operator (one of the ma-

trices in the hm representation) one can try to find the shortest

straight-line program for its computation. The problem is np-hard

in general (see e.g. [6]); but for small matrices, and over the field

with 2 elements, [6] and references therein, propose several heuris-

tics that potentially reduce the number of operations.

Not all of them are applicable to fields with more elements

but we use a kind of common sub-expression eliminations, the

“cancellation-free” search, described in Algorithm 6 and imple-

mented in plinopt/optimizer -D [11].

6.3 Kernel computation and transposition

If the rank of the linear operator is lower than its number of rows,

then an additional strategy has proven useful: compute first some

independent rows, then express the dependent ones by their lin-

ear relationsFor this, Algorithm 1 computes a left Kernel of the

linear operator and uses it to compute the dependent rows via

linear combinations of the independent ones. This is sometimes

faster than directly computing the dependent rows. Of course, if

the matrix’s rank is lower than the number of columns, one can
apply Algorithm 1 to the transposed matrix, and then apply the

Tellegen transposition principle to recover the transposed linear

dependencies (see, e.g., [5] and references therein).

Algorithm 1 Kernel decomposition of a linear operator

Input: 𝑀 in K𝑚×𝑛 such that 𝑟 = Rank𝑀 .

Output: A straight line program computing 𝑥 ↩→ 𝑀 ·𝑥 .
1: By Gaussian elimination, compute 𝑀 = 𝑃 · 𝐿 ·𝑈 ·𝑄 with 𝑃 a

permutation matrix, 𝐿 in K𝑚×𝑟 be
[
𝐿1

𝐿2

]
unit upper triangular

and 𝐿1 in K𝑟×𝑟 ; choosing 𝑃 so that (1) the first 𝑟 rows of 𝑃−1𝑀

are sparsest; (2) 𝐿1 is the sparsest; (3) 𝐿2 is the sparsest;

2: Let 𝜎 be the permutation represented by 𝑃 ;

3: Apply Alg. 6 to [ 𝑟𝜎 (1) ...𝑟𝜎 (𝑟 ) ]⊺ → [ 𝐼𝑟 0 ] · 𝑃 ·𝑀 · ®𝑥 ;
⊲ [ −𝐿2 ·𝐿1

−1 𝐼𝑚−𝑟 ] is a (sparse) left kernel of𝑀 and provides

the linear dependencies of the remaining rows

4: Apply Alg. 6 to [ 𝑟𝜎 (𝑟+1) ...𝑟𝜎 (𝑚) ]⊺ → 𝐿2 · 𝐿1

−1 [ 𝑟𝜎 (1) ...𝑟𝜎 (𝑟 ) ]⊺ .

Algorithm 1 is implemented in plinopt/optimizer -K. The
transposition principle applied to such straight-line programs is

implemented in plinopt/transpozer [11]. These routines have

produced the implementations given in the following, for our differ-

ent hm formulas (for instance the implementation Table 3 of Eq. (34)

with only 24 additions and 12 multiplications/divisions).

Remark 21. The accuracy obtained with our different fast vari-

ants is given in Figure 1 using the Matlab framework of [8], which

we forked in [12] and where we have just added the implementa-

tions of the variants presented here. Thus, in Figures 1, 2, 3 and 4 we

present the error as the infinite norm of the difference between the

result of our implementations and the exact matrix multiplication.

https://github.com/jgdumas/plinopt
https://github.com/jgdumas/plinopt/blob/main/optimizer.cpp
https://github.com/jgdumas/plinopt/blob/main/optimizer.cpp
https://github.com/jgdumas/plinopt/blob/main/transpozer.cpp


Strassen’s algorithm is not optimally accurate

𝑡1 =

√
3

3
𝑎22 𝑡2 = 𝑎21 + 𝑡1 𝑠1 =

√
3

3
𝑏21 𝑠2 = 𝑠1 − 𝑏11

𝑡3 = 𝑎12 + 𝑡2 𝑙1 =

√
3

2
𝑎11 + 1

2
𝑡3 𝑠3 = 𝑠2 + 𝑏22 𝑟1 = 2𝑠1

𝑙2 = 𝑎12 − 𝑡1 𝑙3 = 𝑡2 𝑟2 = 𝑠2 𝑟3 = 𝑠1 − 𝑏22

𝑙4 = 2𝑡1 𝑙5 = 𝑙2 − 𝑙1 𝑟4 = 1

2
𝑠3−
√

3

2
𝑏12 𝑟5 = 𝑟3 + 𝑟4

𝑙6 = 𝑙5 + 𝑙4 𝑙7 = 𝑙5 + 𝑙3 𝑟6 = 𝑟1 − 𝑟5 𝑟7 = 𝑟5 − 𝑟2
𝑝1 = 𝑙1·𝑟1 𝑝2 = 𝑙2·𝑟2 𝑝3 = 𝑙3·𝑟3 𝑝4 = 𝑙4·𝑟4
𝑝5 = 𝑙5·𝑟5 𝑝6 = 𝑙6·𝑟6 𝑝7 = 𝑙7·𝑟7

𝑤2 = 𝑝5 + 𝑝1 + 𝑝6 𝑤1 = 𝑝7 + 𝑝6 𝑤5 =
𝑝4+𝑤2

2
𝑤3 = 𝑤2 − 𝑝2

𝑐12 = 𝑝1 − 𝑝3 −𝑤5 𝑐21 = 𝑤3 −𝑤5 𝑐22 =
√

3𝑤5

𝑐11 =

√
3

3
(𝑤3 − 𝑐12 − 2𝑤1)

Table 3: slp of Eq. (34) with 24 add. and 12 mul./div.

In Figure 1, all our variants, Tables 3, 4 and 6 and Eqs. (41) and (42)

with decreasing 𝛾2,1, are mostly more and more accurate. Our best

algorithm presents an order of magnitude advantage over Strassen’s

and two orders of magnitude advantage over Winograd’s. It is then

quite close to the conventional algorithm’s accuracy. Figure 1 uses

normal distribution, but the same behavior is obtained, e.g., with a

uniform distribution in Figure 4.

Figure 1: Numerical accuracy vs size (normal distribution)
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Winograd [21]

Strassen [20]

Table 4 and Eq. (35)

Table 6 and Eq. (40)

Eq. (41)

Eq. (42)

Table 3 and Eq. (34)

Conventional

Remark 22. In [4] the authors consider all bilinear algorithms

using 7 multiplications with constants of the form ±2
𝑖
; they shown

that Strassen’s original method [20] reaches in this class the min-

imum value 12 of their 𝛾0,1∞ factor error bound (while for in-

stance that of Winograd [21] is 18, see also Table 1). In Eq. (35)

and Table 4 we propose an algorithm in this class that has a worse

𝛾0,1∞ of 40, but a 𝛾2,1 of 4/
√

2 + 75/8 ≈ 12.2034, better than those

of Strassen 14.8284 or Winograd 17.8530 (see Table 2). Figure 1

shows that this algorithm is also more accurate in practice than

both Strassen’s and Winograd’s variants.


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1
1
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0 0 1
1

2

1 − 1

2

1

2
− 1

4

0 1 0
1

2


;



1 0 0 −1

1
1

2
0 0

0
1

2
0 −1

1

2

1

4
−1 − 1

2

0
1

2
0 1

1 − 1

2
0 0

1

2
− 1

4
1 − 1

2


;



0 1 1 0

1

2
1 0 0

1

4
− 1

2
− 1

2
1

− 1

2
0 1 0

1

4

1

2

1

2
1

1

2
−1 0 0

1

2
0 1 0



⊺

(35)

𝑟1 = 1

2
𝑎22 𝑡2 = 𝑎21 − 𝑟1 𝑢1 = 1

2
𝑏12 𝑠1 = 𝑏11 + 𝑢1

𝑡3 = 𝑎12 + 𝑟1 𝑡0 = 𝑡2 − 𝑡3 𝑠2 = 𝑢1 − 𝑏22 𝑢2 = 𝑠1 − 𝑏22

𝑡4 = 𝑎21 + 𝑟1 𝑟2 = 𝑡2 − 𝑎12 𝑠4 = 𝑏22 + 𝑢1 𝑠0 = 𝑠1 − 𝑠4
𝑡5 = 𝑎11 + 1

2
𝑟2 𝑡1 = 𝑡5 − 𝑡0 𝑠3 = 1

2
𝑢2 − 𝑏21 𝑠5 = 𝑠0 − 𝑠2

𝑝1 = 𝑡0·𝑠0 𝑝2 = 𝑡1·𝑠1 𝑝3 = 𝑡2·𝑠2 𝑝4 = 𝑡3·𝑠3
𝑝5 = 𝑡4·𝑠4 𝑝6 = 𝑡5·𝑠5 𝑝7 = (𝑡4−𝑡0)·(𝑠0−𝑠3)

𝑣1=𝑝5−𝑝3 𝑣2=𝑝1+ 1

2
𝑣1 𝑣3=𝑝7+𝑝6−𝑝4+𝑝2

𝑐22=𝑝5+𝑝3 𝑐12=𝑝2−𝑝6+𝑣2 𝑐11=
1

2
(𝑣3+ 1

2
𝑐22) 𝑐21=𝑝4+𝑝7+𝑣2

Table 4: slp of Eq. (35) with 27 add., 7 div. by 2 and𝛾𝐹 ≈ 12.2034

Remark 23. Eq. (35) was obtained by approximating the minimal

point of the 𝛾2,1 growth factor taken from Proposition 15 with the

smallest powers of 2. Further rational higher-order approximations

are obtained in the same vein, giving for instance Eqs. (40) to (42)

and Table 6, as shown in Appendix A.2.

6.4 Alternate basis sparsification

The technique of [3, 17] reduces the number of operations by fac-

toring each matrix in the hm decomposition into a sparser one via

a 4×4 change of basis (CoB). In a recursive version, the left and right

hand sides (resp. result) CoB can be recursively precomputed (resp.

post-computed), for a total cost in𝑂
(
𝑛2

log𝑛
)
. In the meantime the

sparsest 7×4matrices are applied reducing the dominant term of the

computation. The optimal decomposition of Winograd’s algorithm

in [17, § 3.3] reduces the number of intermediate additions from 15

to 12. For a fully recursive version, this gives a constant factor

reduction of the complexity bound from 6𝑛log
2
(7)

to 5𝑛log
2
(7)

.

This is also the case for the algorithm of Eq. (34), for instance,

that can use the CoB of Eq. (36) to obtain the sparse recursion

of Eq. (37). There the constant factor reduction of complexity bound

is from 13𝑛log
2
(7)

for Table 3 to 5𝑛log
2
(7)

. To obtain this sparse

CoB, the generic technique of [3] can be used. In our case, for 4×4

CoB, the following heuristic was sufficient to obtain optimal (12-

additions) sparse −1, 0, 1 intermediate matrices: (1) Find indepen-

dent columns of each CoB one at a time; (2) For this, alternatively

factor-out common coefficients in the resulting columns and find a

linear combination minimizing the density of the resulting column,

using as coefficients of the combination only −1, 0, 1 and some of

the values of the coefficients of the input; (3) Until this alterna-

tion does not sparsify anymore. This heuristic is implemented in

plinopt/sparsifier [11] and resulting sparse implementation is

shown in Algorithms 2 to 5 and Table 5.

https://github.com/jgdumas/plinopt/blob/main/sparsifier.cpp
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√
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3
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3
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√
3
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2
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√
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(36)


0 0 1 −1

0 0 1 0

0 1 0 0

−1 0 0 0

0 0 0 1

1 0 0 1

0 1 0 1

 ;


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 1 −1

0 0 0 1

1 0 0 −1

0 1 0 1

 ;


0 −1 0 1

0 0 1 0

0 1 0 0

0 0 1 1

0 0 0 1

1 0 0 1

1 0 0 0
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(37)

Algorithm 2 LCoB(𝐴, ℓ) left change-of-basis of Eq. (36)
1: if ℓ ≤ 0 then return 𝐴. end if

2: 𝑚1 = LCoB(𝑎11, ℓ−1);𝑚2 = LCoB(𝑎21, ℓ−1);
3: 𝑚3 = LCoB(𝑎12, ℓ−1);𝑚4 = LCoB(𝑎22, ℓ−1);
4: 𝑡1 = (𝑚3 −𝑚2)/2; 𝑡2 =𝑚4

√
3/3; 𝑡3 = 𝑡1 +𝑚1

√
3/2;

5: return [𝑚4

√
3/2 + 𝑡3,𝑚2 − 𝑡2,𝑚3 + 𝑡2,𝑚4

√
3/6 − 𝑡3].

Algorithm 3 RCoB(𝐴, ℓ) right change-of-basis of Eq. (36)
1: if ℓ ≤ 0 then return 𝐴. end if

2: 𝑚1 = RCoB(𝑎11, ℓ−1);𝑚2 = RCoB(𝑎21, ℓ−1);
3: 𝑚3 = RCoB(𝑎12, ℓ−1);𝑚4 = RCoB(𝑎22, ℓ−1);
4: 𝑡1 = (𝑚1 −𝑚4)/2; 𝑡2 =𝑚3

√
3/6 −𝑚2

√
3/2;

5: return [𝑡1 + 𝑡2, (𝑚1 +𝑚4)/2+ (𝑚2 −𝑚3)
√

3/2,𝑚3

√
3/3, 𝑡2 − 𝑡1].

𝑠1 = 𝑎11 + 𝑎12 𝑠2 = 𝑎11 + 𝑎22 𝑠3 = 𝑎11 − 𝑎21

𝑡1 = 𝑏12 + 𝑏22 𝑡2 = 𝑏11 + 𝑏12 𝑡3 = 𝑏12 + 𝑏21

𝑝1 = 𝑎11·𝑏12 𝑝2 = 𝑠1·𝑏21 𝑝3 = 𝑎21·𝑡1 𝑝4 = 𝑎12·𝑡2
𝑝5 = 𝑠2·𝑏22 𝑝6 = 𝑎22·𝑡3 𝑝7 = 𝑠3·𝑏11

𝑐11=𝑝7−𝑝6 𝑐12=𝑝2+𝑝3 𝑐21=𝑝4−𝑝5 𝑐22=𝑝1+𝑝2+𝑝5+𝑝6

Table 5: slp of Eq. (37) with 12 additions

Algorithm 4 CoBP(𝐴, ℓ) product change-of-basis of Eq. (36)
1: if ℓ ≤ 0 then return 𝐴. end if

2: 𝑚1 = CoBP(𝑎11, ℓ−1);𝑚2 = CoBP(𝑎21, ℓ−1);
3: 𝑚3 = CoBP(𝑎12, ℓ−1);𝑚4 = CoBP(𝑎22, ℓ−1);
4: 𝑡1 =𝑚4/2; 𝑡2 =𝑚4

√
3/2;

5: return [𝑚12/
√

3 + (𝑚3 −𝑚2)
√

3/3 + 𝑡2,𝑚2 − 𝑡1,𝑚3 + 𝑡1, 𝑡2].

Remark 24. With Algorithm 5, we can get the best of both worlds:

the best known dominant term of the complexity bound, while

mostly preserving the best known numerical accuracy. The former

property comes from the fact that Eq. (37) requires only 12 additions.

The latter is shown in Figure 2 but seems more complex to prove.

Indeed, the sparsest 7×4 matrices have a slightly reduced 𝛾2,1

growth factor. For the algorithm of [17], this growth factor is indeed

reduced from 7 + 8/
√

2 + 9/
√

3 ≈ 17.853, for [21], to 4 + 12/
√

2 ≈
12.486. But the three CoB and each ℓ recursive calls add some terms

Algorithm 5 Sparsification of Eq. (34)

Input: 𝐴, 𝐵 ∈ K𝑛02
ℓ×𝑛02

ℓ
.

Output: 𝐶 = 𝐴·𝐵.
1: 𝐴← LCoB(𝐴, ℓ); 𝐵 ← RCoB(𝐵, ℓ) ⊲ Via Algorithms 2 and 3

2: 𝐶 ← 𝐴 · 𝐵; ⊲ Via Table 5 with ℓ recursive calls

3: return 𝐶 ← CoBP(𝐶, ℓ). ⊲ Via Algorithm 4

in the bounds and has then to be taken into account. From Lem-

mas 8 and 11, even with the infinite operator norm, we thus have

to consider the maximum absolute row sum of the CoB. It is 3, for

that of [17]. Thus the error upper bound grows at least to

(
𝛾 ·33

)ℓ
.

Similarly, the 𝛾2,1 growth factor of Eq. (37) is lower than that

of Eq. (34): from 4/
√

2 + 16/
√

3 ≈ 12.066 to 7 + 6/
√

2 ≈ 11.243. But

again, the three CoB in Eq. (36) have maximum absolute row

sum 1 +
√

3 ≈ 2.73. The error upper bound then grows at least

to

(
𝛾 ·(10 + 18/

√
3)
)ℓ
.

In all cases though, these large upper bounds do not reflect the

experiments shown in Figure 2. They show, on the contrary, that

sparsification seems to mostly preserve accuracy. The accuracy of

the sparse Winograd variant, by [17], is around that of the original;

the accuracy of the sparse Strassen variant is slightly worse; and

the accuracy of Algorithm 5 is only barely inferior to that of Table 3

and Eq. (34), despite their better time complexity.

Figure 2: Numerical effect of sparsification (normal distribution)
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Sparse Table 3 (Algorithm 5)

Table 3 and Eq. (34)

Conventional

Following [19, § 3.2], we can also confirm our algorithms’ accu-

racy on badly conditioned matrices (see Figure 3).

Remark 25. To further improve their practical behavior, as done

in [9, § 4.3], [2, § 6.1] or [1, § 6], some diagonal scaling adapted to

specific input matrices can also be added to any algorithms. The

idea is to precondition the inputmatrices withwell suited𝐷1, 𝐷2, 𝐷3

thanks to the relationA · B = 𝐷1

−1
(
(𝐷1 · 𝐴𝐷2)·

(
𝐷2

−1 · 𝐵𝐷3

) )
𝐷3

−1
.

This can be still be applied to any of the variants presented here.



Strassen’s algorithm is not optimally accurate

REFERENCES

[1] Grey Ballard, Austin R. Benson, Alex Druinsky, Benjamin Lipshitz, and Oded

Schwartz. 2016. Improving the Numerical Stability of Fast Matrix Multiplication.

SIAM J. Matrix Anal. Appl. 37, 4 (2016), 1382–1418. https://doi.org/10.1137/

15M1032168

[2] Grey Ballard, James Demmel, Olga Holtz, Benjamin Lipshitz, and Oded Schwartz.

2012. Communication-Optimal Parallel Algorithm for Strassen’s Matrix Mul-

tiplication. In Proceedings of the Twenty-Fourth Annual ACM Symposium on
Parallelism in Algorithms and Architectures (Pittsburgh, Pennsylvania, USA)
(SPAA ’12). Association for Computing Machinery, New York, NY, USA, 193–204.

https://doi.org/10.1145/2312005.2312044

[3] Gal Beniamini and Oded Schwartz. 2019. Fast Matrix multiplication via sparse

decomposition. In SPAA ’19: Proceedings of the 31st annual ACM symposium on
Parallel algorithms and architectures (Phoenix, Arizona, USA), Petra Berenbrink
and Christian Scheideler (Eds.). Association for Computing Machinery, Phoenix,

Arizona, USA, 11–22. https://doi.org/10.1145/3323165.3323188

[4] Dario Andrea Bini and Grazia Lotti. 1980. Stability of fast algorithms for matrix

multiplication. Numer. Math. 36, 1 (March 1980), 63–72. https://doi.org/10.1007/

BF01395989

[5] Alin Bostan, Grégoire Lecerf, and Éric Schost. 2003. Tellegen’s principle into

practice. In ACM International Symposium on Symbolic and Algebraic Compu-
tation, Philadelphia, USA, Rafael Sendra (Ed.). ACM Press, New York, 37–44.

https://doi.org/10.1145/860854.860870

[6] Joan Boyar, Philip Matthews, and René Peralta. 2013. Logic Minimization Tech-

niques with Applications to Cryptology. Journal of Cryptology 26, 2 (2013),

280–312. https://doi.org/10.1007/s00145-012-9124-7

[7] R. P. Brent. 1970. Algorithms for matrix multiplication. Technical Report STAN-
CS-70-157. C.S. Dpt. Standford University.

[8] Zhen Dai and Lek-Heng Lim. 2023. Numerical stability and tensor nuclear norm.

Numer. Math. 155, 3-4 (Nov. 2023), 345–376. https://doi.org/10.1007/s00211-023-

01377-5

[9] James Demmel, Ioana Dumitriu, and Olga Holtz. 2007. Fast linear algebra is stable.

Numer. Math. 108, 1 (2007), 59–91. https://doi.org/10.1007/S00211-007-0114-X

[10] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. 2007. Fast

matrix multiplication is stable. Numer. Math. 106, 2 (Feb. 2007), 199–224. https:

//doi.org/10.1007/s00211-007-0061-6

[11] Jean-Guillaume Dumas, Bruno Grenet, Clément Pernet, and Alexandre Se-

doglavic. 2024. PLinOpt, a collection of C++ routines handling linear & bilinear

programs. https://github.com/jgdumas/plinopt 1.7 kSLOC.

[12] Jean-Guillaume Dumas, Clément Pernet, and Alexandre Sedoglavic. 2024. Matlab

accurate fast matrix multiplications via 2x2 recursion. https://github.com/

jgdumas/Fast-Matrix-Multiplication 1.6 kSLOC.

[13] Hans-Friedich de Groote. 1978. On varieties of optimal algorithms for the

computation of bilinear mappings I. The isotropy group of a bilinear mapping.

Theoretical Computer Science 7, 2 (1978), 1–24. https://doi.org/10.1016/0304-

3975(78)90038-5

[14] Hans-Friedich de Groote. 1978. On varieties of optimal algorithms for the compu-

tation of bilinear mappings II. Optimal algorithms for 2 × 2-matrix multiplication.

Theoretical Computer Science 7, 2 (1978), 127–148. https://doi.org/10.1016/0304-

3975(78)90045-2

[15] Nicholas J. Higham. 2002. Accuracy and Stability of Numerical Algorithms (second
ed.). Society for Industrial and Applied Mathematics. https://doi.org/10.1137/1.

9780898718027

[16] John Edward Hopcroft and Jean Musinski. 1973. Duality Applied to the Com-

plexity of Matrix Multiplications and other Bilinear Forms. In 5th Annual ACM
Symposium on the theory of computing (Austin, TX, USA), Alfred V. Aho, Allan

Borodin, Robert L. Constable, Robert W. Floyd, Michael A. Harrison, Richard D.

Karp, and Raymond H. Strong (Eds.). 73–87. https://doi.org/10.1137/0202013

[17] Elaye Karstadt and Oded Schwartz. 2017. Matrix Multiplication, a Little Faster.

In Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and
Architectures (Washington, DC, USA) (SPAA ’17), Christian Scheideler and

Mohammad Hajiaghayi (Eds.). ACM, New York, NY, USA, 101–110. https:

//doi.org/10.1145/3087556.3087579

[18] Joseph M. Landsberg. 2016. Geometry and complexity theory. Cambridge Studies

in Advanced Mathematics, Vol. 169. Cambrigde University Press. https://doi.

org/10.1017/9781108183192

[19] Katsuhisa Ozaki, Takeshi Ogita, Shin’ichi Oishi, and Siegfried M. Rump. 2012.

Error-free transformations of matrix multiplication by using fast routines of

matrix multiplication and its applications. Numer. Algorithms 59, 1 (2012), 95–118.
https://doi.org/10.1007/S11075-011-9478-1

[20] Volker Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13, 4
(Aug. 1969), 354–356. https://doi.org/10.1007/BF02165411

[21] Shmuel Winograd. 1977. La complexité des calculs numériques. La Recherche 8
(1977), 956–963.

A SUPPLEMENTARY MATERIALS

A.1 Computational proofs

We gather in this section proofs of several proposition that are

simple computations on objects presented in our work.

Proof of Proposition 15. To simplify our computations, we

use the following coordinates 𝜌 = 4

√︁
4/𝑟 and 𝜉 = (𝑥 − 1)/2, the ma-

trix 𝑢 (𝜌, 𝜉) and the associated isotropy g𝜌,𝜉 ⋄S. In that case, the ex-

plicit expression of the𝛾2,1 growth factor𝛾
(
g𝑟,𝑥 ⋄ S

)
along this orbit

is 2

√
2 + 3A withA(𝑟, 𝑥) equal to

(
(1 + 𝑥)2 + 𝑟

) (
(𝑥 − 1)2 + 𝑟

)
/𝑟
√
𝑟 .

To conclude, we prove that the minimum of A(𝑟, 𝑥) in R+ × R is

16/3
√

3. The partial derivatives of A(𝑟, 𝑥) w.r.t. 𝑟 and 𝑥 are

𝜕A
𝜕𝑥 =4

(𝑥2+𝑟−1)𝑥
𝑟 3/2 , 𝜕A𝜕𝑟 =

𝑟 2−2(𝑥2+1)𝑟−3(𝑥2−1)2
2𝑟 5/2 . (38)

First, notice that
𝜕A
𝜕𝑥

(
1 − 𝑥2, 𝑥

)
is 0 and that

𝜕A
𝜕𝑟

(
1 − 𝑥2, 𝑥

)
is equal

to 2/((𝑥 − 1) (1 + 𝑥))3/2. The only critical point is 𝑥 equal to 0 and,

as 𝑟 is positive, it only could be equal to 3. The Hessian matrix is:

𝐻 (A(𝑟, 𝑥)) = 1

𝑟
3

2

[
4 (3𝑥2+𝑟−1) − 2

𝑟 (3𝑥2+𝑟−3)
− 2

𝑟 (3𝑥2+𝑟−3) − 𝑟2−6(𝑥2+1)𝑟−15(𝑥2−1)2
4𝑟2

]
, (39)

one can notice that 𝐻 (A(3, 0)) is equal to
[

2
3

0

0 2/3

]
/3
√

3. Hence,

the second partial derivative test states that

(
4

√︁
4/3,−1/2

)
is a local

minimum of 𝛾
(
g𝑟,𝑥 ⋄ S

)
equal to 2

√
2 + 16√

3

≈ 12.06603143. To con-

clude, the 𝛾2,1 growth factor reaches its global minimal at this point

on the considered orbit because it is its only critical point. □

Proof of Proposition 17. Recall that any of the three matrices

in the hm representation of such an algorithm is obtained by row

and column permutations of one of these matrices, multiplied by

the Kronecker product of two invertible 2×2 matrices W and V
(see Lemma 6 and Theorem 7). From the analysis of Section 4, we

only need to consider the case where-𝑊 and 𝑉 are each of the

form

[ 𝑟 𝑥
0 𝑟 −1

]
, with strictly positive 𝑟 (matrices𝑊 and 𝑉 are taken

in a simpler form for the sake of simplicity). For this, we let𝑊

be

[ 𝑟 𝑥
0 𝑟 −1

]
and 𝑉 be

[
𝑠 𝑦

0 𝑠−1

]
, and choose 𝐿 the first component of

Strassen’s hm representation given in Eq. (6). We then obtain the

square of the Frobenius norm of L · (W ⊗ V) as a function of 𝑟, 𝑥, 𝑠

and𝑦: 𝑓 (𝑟, 𝑥, 𝑠,𝑦) = 4𝑟2𝑠2+3𝑟2𝑦2+3𝑠2𝑥2+𝑥2𝑦2+𝑟2/𝑠2+𝑠2/𝑟2+1/𝑟2𝑠2

+ (𝑥/𝑠 + 1/𝑟𝑠)2 + (𝑦/𝑟 − 1/𝑟𝑠)2 + (𝑥/𝑠 − 𝑥𝑦)2 + (𝑦/𝑟 + 𝑥𝑦)2
+ (𝑥𝑦 + 1/𝑟𝑠)2 + (𝑠/𝑟 + 𝑥𝑠)2 + (𝑟/𝑠 − 𝑟𝑦)2 . Solving the four par-

tial derivatives of the gradient

[
𝜕𝑓
𝜕𝑟 ,

𝜕𝑓
𝜕𝑠 ,

𝜕𝑓
𝜕𝑥 ,

𝜕𝑓
𝜕𝑦

]
, for a simultane-

ous zero, we obtain that the only real extrema of 𝑓 are at the

four points: 𝑟 = ± 4

√︁
3/4, 𝑠 = ±𝑟, 𝑥 = −2/3𝑟3, 𝑦 = 2/3𝑠3

, for which its

value is always 10. The additional constraint that 𝑟 and 𝑠 are posi-

tive, thus gives a single extremum. Now, the Hessian matrix at that

point is computed as: H𝑓

(
4
√

3√
2

,−
4
√

3√
6

,
4
√

3√
2

,
4
√

3√
6

)
= 4

9



195√
3

69√
3

−15 15

69√
3

195√
3

−15 15

−15 −15
45√

3

9√
3

15 15
9√
3

45√
3


.

Leaving out the factor 4/9, the characteristic polynomial of this ma-

trix is𝑋 4 − 160

√
3𝑋 3 + 22536𝑋 2 − 362880

√
3𝑋 + 5143824 whose all

four roots

√
7500 ±

√
5232, (30 ± 12

√
3 are positive. Therefore the

point is a local minimum. From this, we see that

√
10

3

is a lower
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bound on the product of their Frobenius norms. Furthermore, re-

mark that this lower bound is reached, by the algorithm which hm

representation is given in Equation (34). □

A.2 Rational approximations

As stated in Remark 23, by approximating the minimal point of

the 𝛾2,1 growth factor presented in Proposition 15, we could con-

struct further algorithms presented in this section.



4
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− 8

9
− 8

9
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8
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4

9
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9
0 0

4

9
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9

2

3
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9
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9
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9
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9
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⊺

(40)

First, Eq. (40) is an orthogonal optimization of Eq. (35), with one

canonical vector in each of components of the hm representation.

Unfortunately some small non-powers of 2 are then unavoidable,

but this gives in Table 6 an algorithm realizing the formula with

less additions than that of Table 4.

𝑢1=𝑎12+ 1

2
𝑎22 𝑡2=

8

9
𝑎11− 2

3
𝑎12 𝑡1=

5

9
𝑢1 𝑡4=

10

9
𝑎12

𝑡3=
4

9
𝑎11+ 8

9
𝑎21+ 2

9
𝑢1 𝑡0=𝑡2−𝑡3 𝑡5=𝑡1+𝑡0 𝑡6=𝑡4+𝑡0

𝑣1=
1

2
𝑏12 𝑠1=𝑣1−𝑏22 𝑠2=𝑣1−𝑏11 𝑠3=

5

4
𝑏12

𝑠4=
2

5
𝑏22− 4

5
𝑏21+ 3

5
𝑠2 𝑠0=𝑠1+𝑠4 𝑠5=𝑠0−𝑠2 𝑠6=𝑠3−𝑠0

𝑝0=𝑡0·𝑠0 𝑝1=𝑡1·𝑠1 𝑝2=𝑡2·𝑠2 𝑝3=𝑡3·𝑠3
𝑝4=𝑡4·𝑠4 𝑝5=𝑡5·𝑠5 𝑝6=𝑡6·𝑠6

𝑤1=𝑝6+𝑝0+𝑝4 𝑤2=𝑝5+𝑝6 𝑤3=𝑝3+𝑤1 𝑤4=𝑝2+𝑝4

𝑤5=𝑝1+𝑤1 𝑤6=
9

20
𝑤3 𝑐11=𝑤6− 9

8
𝑤4

𝑐12=
9

10
𝑤3 𝑐21=

27

40
𝑤5− 9

8
𝑤2+ 1

2
𝑐11 𝑐22=𝑤6− 9

10
𝑤5

Table 6: slp of Eq. (40), 𝛾𝐹 ≈ 12.2034, with 24 add. and 20 mul.

Finally, we present in Eqs. (41) and (42), successive higher-order

rational approximations of the point

(
4

√︁
4/3,−1/2

)
reducing the 𝛾2,1

growth factor to 12.0695 (resp. 12.0661), approaching 12.06603. They

then provide rational algorithms whose accuracy is pretty close to

our best one, as shown in Figure 1.
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A.3 Further numerical experiments

Following [19, § 3.2], we study in Figure 3 the effect of sparsi-

fication on random matrix with preassigned singular values and

large condition number ≈ 10
12

given by the Matlab function gallery

’randsvd’. The fast variants behavior is unchanged while only the

conventional algorithm performs better.

Figure 3: Numerical Effect of Sparsification (large conditioning)
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We now show more evidence on the practical accuracy of the al-

gorithms, with respect to their𝛾2,1 growth factor. Figure 4 compares

the main possibilities on a uniform [−1, 1] distribution, while Fig-
ure 1 was using a normal distribution. The behavior is similar, with

again our best variant one or two orders of magnitude more accu-

rate, and being quite close to that of the conventional algorithm.



Strassen’s algorithm is not optimally accurate

Figure 4: Numerical accuracy for uniform [-1,1] distribution

10
−14

10
−13

10
−12

10
−11

32 64 128 256

error

square matrix dimension

Winograd [21]

Strassen [20]

Table 3 and Eq. (34)

Conv.

A.4 Cancellation-free search

Algorithm 6 describes a common sub-expression elimination heuris-

tic that reduced the number of operations in our algorithms.

Algorithm 6 Cancellation-free optimization of a linear operator

Input: 𝑀 ∈ K𝑚×𝑛 .
Output: A straight-line program computing 𝑥 → 𝑀 ·𝑥 .
1: repeat ⊲ Precomputing all repeated pairs

2: In each row list all pairs of indices of non-zero coefficients;

3: Among all the rows, find the pair(s) with the maximal num-

ber of co-linear representatives;

4: In case of ties, exhaust all the possibilities with maximal

pairs (or choose one using a score like that of [6, § 3.2]);

5: Precompute the chosen pair (in a temporary variable);

6: Factor this pair out of all the rows: that is remove the pair

from all rows but add a new column to the matrix (representing

that pair) with the co-linear multiple of that temporary variable;

7: until no pair has more than 1 representative

⊲ Multipliers by columns:

8: for all equal coefficients in a column (up to sign) do

9: Compute the product by the absolute value in a temporary

variable;

10: Factor this coefficient out: remove it from the column, add

a new column (representing that product) with a ±1 in the

corresponding row(s);

⊲ Multipliers by rows:

11: for all equal coefficients in a row (up to sign) do

12: Compute the sum (or subtraction) of variables with that

same coefficients in a temporary variable;

13: Factor the coefficient out: remove it from the row, but add

a new column (representing that sum/subtraction) with the

coefficient in the same row;

⊲ Now the matrix has been simplified

14: Apply the remaining linear operations of the matrix.
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