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� Voice allows for the estimation of symptoms and syndromes related to sleepiness.
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Abstract

Sleepiness is a major public and personal health issue. Measuring sleepiness in patients' ev-
eryday living conditions would represent a signi�cant advancement in managing them. Voice
is a signal linked to numerous health dimensions, including sleepiness. However, previous
research has focused on short-term subjective sleepiness, using corpora with questionable
medical validity and without measuring the speci�city of identi�ed voice biomarkers. In
this article, we estimate di�erent symptoms and long-term sleepiness-related syndromes in
hypersomnolent patients. To achieve this, we have developed machine learning models that
identify biomarkers that are sensitive and speci�c to sleepiness, reaching classi�cation per-
formances (Unweighted Average Recall) above 75%. Importantly, we only used statistical
functions (decorrelation, Principal Component Analysis, Sensitivity test, linear classi�er) so
that this model remains simple and explainable to collaborating clinicians. We then lever-
age this explainability to identify speci�c vocal and speech manifestations for each type of
sleepiness. By combining objective measures and the analysis of vocal characteristics, our
approach provides a comprehensive understanding of long-term sleepiness and enhances pa-
tient care and management. This research holds great potential for advancing the �eld of
digital health and contributing to improved well-being for individuals a�ected by sleepiness-
related conditions.
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1. Introduction

1.1. Context

Excessive sleepiness is a subject of growing scienti�c, social, and political attention due
to its potential danger to individuals and public safety, particularly concerning road ac-
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cidents [1]. Excessive sleepiness also has consequences on individuals' health, since it is
associated with an increased risk of disability and mortality related to various diseases,
including sleep, metabolic, cardiovascular, neurological, and mental disorders [2, 3]. Fur-
thermore, excessive sleepiness is often accompanied by adverse economic and social burdens,
such as decreased work productivity and quality of life [4, 5, 6]. Depending on the de�nition
of excessive sleepiness, its prevalence varies from 2.5% to more than 40% in the general
population [7, 8, 9, 10].

1.2. The need for objective and ecological monitoring tools

While sleepiness is a natural psychophysiological state that regulates sleep and wake
cycles over a 24-hour period [11, 12], excessive sleepiness arises when sleepiness occurs at
inappropriate times or with increased frequency and can interfere with daily functioning [7].
When individuals report sleep disturbances, they are typically referred to a sleep specialist
clinician. However, the data collected by clinicians during clinical interviews is often biased
due to their own reasoning schemes [13], as well as patient biases [14] (e.g. recall biases).
Therefore, clinicians require objective tools for measuring sleepiness to quantify it indepen-
dently of these biases. Such a measuring tool already exists in the literature, known as
the Multiple Sleep Latency Test (MSLT [15]), which involves measuring the latency of sleep
onset in patients who are equipped with EEG electrodes and placed in a bed for �ve sessions
throughout the day, with the instruction to allow themselves to fall asleep (see Part 2.1 for
more details).

Yet, this procedure is costly (up to 2000¿) and requires patients to be hospitalized
during the test day, and the night before and after the test. This hospitalization has several
other major drawbacks. Firstly, patients have to travel to the sleep center, which may
not be close to their place of residence. Secondly, this hospitalization requires dedicated
hospital logistics, limiting the number of tests that can be conducted. Considering the high
prevalence of excessive sleepiness, there is a need for new tools that allow for the objective
measurement of sleepiness on a larger scale. Furthermore, parameters measured in a single
test conducted in a laboratory may di�er from the patients' usual sleep behavior in their
everyday living conditions, both due to environmental di�erences (such as noise [16]) and
intrinsic variations in sleep characteristics over time [17]. Therefore, there is also a need for
tools to measure sleepiness that can be implemented for regular measurement in ecological
conditions, i.e., in the patients' everyday living conditions.

Given the potential for bias and the high prevalence of excessive sleepiness, detecting and
monitoring sleepiness in the general population using ecologically valid methods is required
to bring sleep medicine into the realm of digital medicine. A promising tool to do so is voice
and speech analysis.

1.3. Voice and speech biomarkers: state of the art

Sleepiness estimation using voice and speech received less attention from the community
than emblematic tasks such as depression or Parkinson's disease estimation. Nevertheless,
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instantaneous sleepiness detection in speech has been the focus of two international chal-
lenges, proposed in parallel to the 2011 and 2019 Interspeech conferences1 (respectively noted
IS2011 and IS2019).

1.3.1. IS2011 challenge

During the 2011 challenge, competitors had the goal of classifying sleepiness from the
Sleep Language Corpus (SLC) [18]. This corpus, extensively described in one of our previous
article [19], contains the recordings of 99 healthy speakers, recorded on 9,089 samples (21
h 16 min 48 s) doing diverse speech tasks such as reading at loud a tale, sustaining vowels
and reading at loud car-driver interactions. The sleepiness level is annotated using three
Karolinska Sleepiness Scales (KSS) [20], which is a one-item self-questionnaire ranging from
�1 - Extremely alert� to �9 - Very sleepy, great e�orts to keep alert, �ghting with sleepiness�.
One of them is �lled out by the subjects themselves while the two others are completed by
trained assistants [21]. Based on this annotation, competitors had to detect an average KSS
score greater than 7.5, considered a `sleepy' state [22]. This dichotomization of the data
results in an unbalanced binary classi�cation problem (34.5% of the subjects were sleepy).
The metric was therefore chosen adequately to be sensitive to class imbalance: it is the
Unweighted Average Recall (UAR), varying between 0 and 100%. A careful review of the
six systems submitted by the competitors has been published in 2013 by Schuller et al.
[23]. The winner of the challenge [24] used ASIMPLS � Asymmetric Simple Partial Least
Squares [25] � and reached an UAR of 71.7%, which remains the state of the art on the SLC.
It is worth noting, however, that more recent e�orts have achieved a UAR of 76.4% on the
SLC read-aloud subcorpus alone [26].

1.3.2. IS2019 challenge

Eight years later, �The INTERSPEECH 2019 Computational Paralinguistics Challenge:
Styrian Dialects, Continuous Sleepiness, Baby Sounds & Orca Activity� was held during
the Interspeech 2019 conference [27]. For this challenge, a new corpus was introduced to
the community, the SLEEP corpus (extensively described in [19]). This corpus contains
the recordings of 885 healthy subjects, recorded on 10,892 samples (11h 41 min 17 s). The
recording tasks are unknown, and the data have been annotated with the rounded value of
the same annotation as performed on the SLC (average of three KSS). The large size of this
corpus made it possible to introduce a new automatic learning task through the estimation of
the severity of the speakers' sleepiness (i.e. the KSS score), whose performance is measured
by the Pearson correlation between the predictions and the ground truth values. On the six
competitors, three used classical machine learning models [28, 29, 30] while three introduced
deep-learning-based techniques to this task [31, 32, 33]. However, the best approach to this
day is based on extracting Fischer vectors from the spectrum and estimating sleepiness
using a Support Vector Regressor (SVR), leading to a Pearson correlation coe�cient of
r = .387 [30]. This score has never been outreached since then, even by systems using the

1The Interspeech conference is the �agship conference of the International Speech Communication Asso-
ciation (ISCA).
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latest deep learning techniques. Indeed, Fritsch et al. reached r = .325 using end-to-end
convolutional neural networks [34]; Amiriparian et al. obtained r = .367 using the fusion of
attention and non-attention autoencoders [35]; Egas-Lopez et al. reached r = .365 by using
x-vectors and SVR [36, 37]. The most recent approach, based on a Sequence-to-Sequence
model with global attention mechanism, achieved r = .383 in [38].

1.3.3. Voiceome dataset

During the international conference ICASSP 2022, a new large-scale dataset was intro-
duced: the Voiceome dataset, containing the recordings of 1828 subjects (186.2 h) from the
general population. These recordings were made by the subjects using their smartphone, in
ecological conditions, on 11 di�erent tasks comprising spontaneous speech, reading out loud,
sustained phonation, and diadochokinetic tasks. They have been annotated by the subject
themselves using the Standford Sleepiness Scale (SSS) [39], a one-item scale ranging from `1
- Feeling active, vital, alert, or wide awake' to `7 - No longer struggling to sleep, sleep onset
early, having dream-like thoughts'. The proposed system, based on masking and separated
training, reached an accuracy of 81.13% [40].

1.3.4. Multiple Sleep Latency Test corpus

In parallel of these works on instantaneous subjective sleepiness, we designed and col-
lected a corpus � the Multiple Sleep Latency Test corpus [41, 19] � at the Sleep Clinic of
the Bordeaux University Hospital, intending to estimate the objective long-term sleepiness
of hypersomniac patients. We previously used a combination of acoustic and Automatic
Speech Recognition system errors to detect with good classi�cation performances objective
long-term sleepiness (73.2% of UAR in [42]) and subjective long-term sleepiness (74.2% of
UAR in [43]).

1.4. Limits
The limitations of the previously published work are twofold. First, neither of the two

scales used to annotate the data in the SLC, the SLEEP corpus and the Voiceome dataset
(KSS or SSS) is used in clinical practices in sleep medicine [44, 45]. While the average
of the three KSS used for the SLC and the SLEEP corpus does not exist at all in the
sleep medicine literature, the SSS su�ers from the bidimensionality of the construct it mea-
sures [46]. This hinders the use and endorsement of these tools by clinicians, who discern
numerous psychophysiological constructs around sleepiness [47]. Moreover, recent percep-
tual experiments discussed the validity of the SLEEP corpus for sleepiness detection using
voice recordings [48, 49].

Moreover, �the clinician attempting to make a diagnosis is dealing almost exclusively at
the syndrome level� [50], a syndrome being de�ned as �a cluster of signs and symptoms� [50]
of higher conceptual level. To our knowledge, previous studies focused on a unique symptom
of sleepiness (i.e. instantaneous subjective sleepiness), whereas during clinical interviews,
clinicians usually investigate several symptoms and syndromes related to sleepiness. While
some of our previous works have initiated a multidimensional study of long-term sleepiness
in sleep clinic patients, our objective is to go further and propose the classi�cation of both
symptoms and syndromes related to excessive sleepiness.
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1.5. Objectives

In this study, we aim to bring the machine learning problem formulation of sleepiness
detection through voice closer to clinical reasoning reality. In this way, we propose to investi-
gate the classi�cation of three long-term sleepiness-related symptoms and two corresponding
syndromes, that are de�ned as di�erent combinations of symptoms. Contrary to previous
works focusing on the estimation of short-term sleepiness, we focus in this article only on
long-term sleepiness. We consider two methods to estimate syndromes: either directly from
voice biomarkers, using the same classi�cation model as symptoms, but with the database
labeled adequately; or combining the estimation of symptoms de�ning each syndrome to
estimate syndromes directly from voice recordings.

In order to achieve this goal, we extend our previous work on the Multiple Sleep Latency
Test corpus [19, 41] on objective [42] and subjective [43] measures of excessive sleepiness. In
addition to acoustic features and the errors made by Automatic Speech Recognition systems,
we aim at measuring the contribution of reading pauses (number, duration but also location
in the read text [51]) for the detection of excessive sleepiness using speech. Moreover, we aim
to design biomarkers of these symptoms and syndromes, thus features that are both sensible
and speci�c to sleepiness. Finally, since we work in close collaboration with sleep clinicians,
we require our features and model to be explainable by design [52] so that clinicians can
understand and be con�dent about the proposed system [53].

2. Method

2.1. Multiple Sleep Latency Corpus � MSLTc

The Multiple Sleep Latency Test corpus (MSLTc) contains the recordings of 106 patients
admitted to the sleep medicine department of the Bordeaux University Hospital (France)
for the diagnosis and/or treatment of rare hypersomnia diseases [41, 19]. They undertake
a Multiple Sleep Latency Test (MSLT), consisting of asking them to take 20-minute naps
every two hours, from 9 a.m. to 5 p.m. During these naps, the time they fall asleep is
assessed by a specialized nurse watching online polysomnographic recordings: this value,
named sleep latency, is an objective measurement of short-term propensity to fall asleep in
sleep-favorable conditions. The Mean Sleep Latency (MSL) across the �ve naps is a reference
criterion in sleep medicine, measuring the average sleep propensity of a patient over a long
period of time [15].

Before each nap, patients are asked to read out loud an extract from Le Petit Prince
(A. de Saint-Exupéry) and they �ll out an instantaneous sleepiness questionnaire � the
Karolinska Sleepiness Scale (KSS) [20]. During their stay at the hospital, the patients
are asked to �ll out numerous sleep-related and health questionnaires [41], including the
Epworth Sleepiness Scale [54, ESS], a questionnaire measuring the subjective perception of
sleep propensity during the two previous weeks.

2.2. Symptom and syndrome de�nitions

All the recorded subjects are patients of the sleep clinic of Bordeaux (France) complain-
ing about hypersomnolence with di�erent etiologies and di�erent symptomatic pro�les (i.e.
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di�erent combinations of symptoms). We focus here on the detection of symptoms and
syndromes independently from their underlying disease. Of all the measures included in
the MSLTc, we focus on three symptoms and two syndromes, representing �ve di�erent
de�nitions of sleepiness. They are represented in the Figure 1.

The considered symptoms are the following:

S1
Objective severe daytime

sleep propensity 
MSL ≤ 8 min. (n=28)

S2 
Subjective perception of
severe daytime sleep
propensity 
 ESS > 15 (n=45)

S3 
Average subjective perception
of instantaneous sleepiness

across the day 
Avg. KSS > 5 (n=31)

9

3

14

5

11 20

9

SS 
Subjective Sleepiness  

KSS > 5 ∩ ESS > 15
(n=14) 

SP 
Sleep Propensity 

MSL ≤ 8 ∩ ESS > 15 
(n=16)

Figure 1: Venn diagram of the symptomatic pro�les of the patients in the MSLTc

(S1) Objective severe daytime sleep propensity, measured by an MSL ≤ 8 min (28/106
patients, 26.4%).

(S2) Subjective perception of severe daytime sleep propensity, measured by the score to an
ESS > 15 (45/106 patients, 42.4%).

(S3) Average subjective perception of instantaneous sleepiness across the day, measured by
an average KSS > 5 across the nap opportunities of the MSLT (31/106 patients,
29.2%).

From all these symptomatic pro�les, two syndromes are of particular interest for sleep
clinicians [47]:

(SP) Sleep Propensity, which measures the pathological tendency of patients to fall asleep
when the complaint of excessive sleep propensity (ESS > 15) is objecti�ed by an MSL
≤ 8 minutes (S1 ∩ S2). In this binary classi�cation task, 16/106 patients (15.0%) are
a�ected by the SP syndrome.
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(SS) Subjective Sleepiness, which measures a general complaint of the subjects about exces-
sive sleepiness. It is de�ned by an average KSS higher than 5 and a score to the ESS
higher than 15 (S2 ∩ S3). In this binary classi�cation task, 14/106 patients (13.2%)
are a�ected by the SS syndrome.

2.3. Voice and speech features

All the features that we extracted from the voice recordings and used as input to our
classi�cation model are listed in Table 1.

Family Type Metric Abbreviation

Acoustic

F0
mean F0mean

variance F0var
slope F0slope

Energy
mean NRJmean

variance NRJvar
slope NRJslope

Formant {1,2,3,4}
Frequency Formant F{1,2,3,4}
Bandwidth Formant bw{1,2,3,4}
Amplitude A{1,2,3}

Harmonics {1,2,4} Amplitude H{1,2,4}
H2 - H1, H4 - H2 H1H2, H2H4
A{1,2,4} - H1 A{1,2,4}H1

Harmonic-to-noise ratio

[0-500Hz] HNR1
[0-1500Hz] HNR2
[0-2500 Hz] HNR3
[0-3500Hz] HNR4

Cepstral Peak Prominence CPP

ASR errors

Insertion
Number WIns
Ratio %WIns

Deletion
Number WDel
Ratio %WDel

Substitution
Number WSub
Ratio %WDel

Correct
Number WCorrect
Ratio %WCorrect

Reading pauses {Correct, Incorrect, Total}

Number of pauses Nb_{+, -, Tot}
Nb/N_Tot Ratio_{-,+}
Total time T_{+,-,Tot.}

Naturalness score S_{+, -, Tot}
Time-weighted
naturelness score

WS_{+, -, Tot}

Table 1: Features automatically extracted from audio recordings
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Constraints. As this work is carried out in close collaboration with sleep clinicians, we
set the interpretability of our results as a major criterion of our work [53]. We therefore
decided to put this factor as a priority in the design of our descriptors and our classi�cation
model [52]. Therefore, we used descriptors that are understandable by non-specialists in
signal processing and designed our machine learning classi�cation model with functions to
which they are already familiar (PCA, logistic regression, ...). Three families of descriptors
are extracted from the audio recordings.

Acoustic parameters. First, we extracted features related to the quality of the voice (n =
30) [26, 55] that we validated with clinicians. After having automatically identi�ed the
voiced parts in recordings, we estimated the fundamental frequency, energy, Harmonic-to-
Noise Ratio, ... using the Snack toolbox [56].

Automatic Speech Recognition errors (n = 112). The second set of features used in this
study is intended to complement the previous information on acoustic voice quality with
metrics related to reading quality, re�ecting the interference of sleepiness with the neurolin-
guistic processes involved in reading aloud. In a preliminary study [57], we have shown
the e�ciency of hand-labeled reading mistakes for the detection of objective daytime sleep
propensity (MSL ≤ 8, Symptom n°1). However, this manual annotation is very costly both
in terms of time and expertise and is not compatible with the goal of a fully automated
model. Therefore, we sought to automate the extraction of these reading errors by studying
the errors made by automatic speech recognition systems. We consider in this study four de-
scriptors (Insertions, Substitutions, Deletions, and the number of correctly identi�ed tokens
� Correct) made by a conformer-based end-to-end ASR system, implemented in Espnet [58]
and trained on ESTER [59]. The errors are computed on words, and we consider both the
number of errors and their ratio over the total number of identi�ed words. As our ASR
system is an end2end system using Conformer blocks, this sequence-to-sequence design does
not allow to keep the time alignements between frames and output symbols.

These features have previously been proven useful in the detection of Symptom n°1
(MSL ≤ 8 min) [42] and Symptom n°2 (ESS > 15) [43]. They are therefore promising for
the detection of the syndromes targeted in this article.

Pauses duration and location (n = 14). To complement the estimate of reading ability given
by reading errors, we studied reading pauses: their number, their duration but also their
location in the text, using a combination of ASR system and a Voice Activity Detector.
Then, thanks to annotations made by speech therapists, we were able to estimate whether
the reader stops at �natural� locations (e.g. at the end of a sentence) or �unnatural� ones (e.g.
in the middle of a sentence) [60]. Using this information, we computed features derived from
the number of pauses, their duration, naturalness scores, and duration-weighted naturalness
scores. These features have been previously linked to both objective sleepiness (Symptom
n°1) and subjective sleepiness (Symptom n°2 and Symptom n°3). We redirect the reader to
a previous publication for more details [51].
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2.4. Classi�cation model

Our classi�cation model is represented in Figure 2. In the same manner as the features,
it has been designed to be understood and has been validated by clinicians. We trained and
evaluated �ve models, each corresponding to the classi�cation of a symptom or a syndrome
related to sleepiness.

Sensitivity MW test 
α = [0.01,0.05,0.075,0.1] 

 

PCA 
η = [70, 75, 80,85, 

90,95,100]% 

Classification  
[LDA, Log.
Reg.,SVC,
Binary tree] 

.

Decorrelation 

Acoustic

ASR

Pauses

Acoustic

ASR

Pauses

...

Session n°1 Session n°5
y

xz

Text

Text

Figure 2: Classi�cation model and hyperparameters.
ASR: Automatic Speech Recognition errors, fi: confounding factors, MW: Mann-Whitney, PCA: Principal
Component Analysis, LDA: Linear Discriminant Analysis, Log. Reg.: Logistic Regression, SVC: Support
Vector Classi�er.

Features averaging and aggregation. We aim to detect long-term sleepiness-related symptoms
and syndromes from the �ve recordings collected during a MSLT. To do so, we tested
four feature fusion strategies: averaging them across the naps, keeping the average and
the standard deviation, keeping only the standard deviation, and aggregating all features.
Moreover, to limit the features to the essential minimum, we tested all di�erent combinations
of feature categories (Acoustic, ASR errors, and Pauses). Features are then fed into the
following pipeline.

(i) Decorrelation (speci�city). First, a decorrelation algorithm is applied to the features.
Indeed, multiple traits are expressed through one's voice, and we need to ensure that the
selected features are speci�c to sleepiness. In the MSLTc, seven confounding factors have
been identi�ed as potentially interfering with both sleepiness and voice: age, sex, Body
Mass Index (BMI), neck circumference, anxiety, and depression levels (as measured by the
Hospital Anxiety and Depression scale [61]), and educational level (as measured by the
highest level obtained after the French Certi�cate of Education).

To decorrelate each feature Xi(measured), we assume that it can be written as the
combination of a contribution from sleepiness X̂i(sleepiness) and a contribution from the
confounding factors correlating with Xi(measured), denoted by X̂i(fi):

Xi(measured) = X̂i(sleepiness) + X̂i(fi)

The decorrelation process is thus the following:

1. For each measured feature Xi(measured), we identi�ed the confounding factors corre-
lating with it (Pearson's test p-value p < β ∈ {.05, .01}), denoted as fi.
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2. We estimate the contribution of the confounding factors fi to Xi(measured), noted by
X̂i(fi), by a multivariate linear regression, i.e. X̂i(fi) =

∑
fi
αifi

3. We �nally estimate X̂i(sleepiness), the contribution of sleepiness to Xi(measured), by:

X̂i(sleepiness) = Xi(measured)− X̂i(fi)

The features still correlating Pearson's test p-value (p < β) with at least one confounding
factor after this procedure are excluded from the selected features since they are not speci�c
to sleepiness regarding the measured confounding factors. An example of such a decorrelation
process is given in Annex Appendix B.

(ii) PCA. Next, to reduce the dimensionality, to orthogonalize and to maximize the variance
in each dimension of the selected features, we perform a Principal Component Analysis
(PCA), keeping η% ∈ {75, 80, 85, 90, 95} of the original variance.

(iii) Sensitivity to sleepiness. Then, we �lter out PCA dimensions that are not sensitive
enough for sleepiness, in order to select only biomarkers of sleepiness. To do so, we select
dimensions for which either a Mann-Whitney test ran on the a�ected vs. non-a�ected classes
gives a p-value lower than α ∈ {.01, .05, .075, .1} (using the SelectKBest function of the
scikit-learn Python package [62]), or those having the k% ∈ {5, 10, 25, 50, 75, 90} best
Cohen's d (using SelectPercentile).

(iv) Classi�cation. Finally, the classi�cation is performed by a Support Vector Classi�er
(SVC) with a linear kernel, a logistic regression, a Linear Discrimant Analysis (LDA) or a
binary tree, all known by clinicians and allowing the explainability of the selected descriptors.
Since the classi�cation problems are unbalanced, weights are biased by the number of positive
samples in each class during the training.

Nested cross-validation and performance metric. In line with community guidelines [63],
performances are computed using the Unweighted Average Recall (UAR), a relevant metric
for unbalanced binary classi�cation problems, de�ned as the average of the recall on the
positive class and recall on the negative class.

The validation of the system is performed under nested cross-validation. The external
loop is performed under Leave One Speaker Out cross-validation (LOSO), while the internal
loop is evaluated under strati�ed k-fold with di�erent parameters kinner ∈ {3, 5, 10}. For
each loop, predictions are aggregated before computing the UAR on all the predictions vs.
ground truth, to limit approximations due to averaging metrics computed on few samples.

While LOSO has been described as in�ating performances on regression tasks [64], it is
used in the external loop to have the same training and test bases for each of the symp-
toms and syndromes, in order to provide valid comparison. Doing so, each testing sample
corresponds to the aggregated features of one patient, mimicking the clinical reasoning, i.e.
evaluating one patient based on the knowledge accumulated on the previous ones [13].
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2.5. Other classi�cation tasks

Estimation of syndromes from symptoms. In addition to the detection of three sleepiness-
related symptoms and two syndromes from speech recordings, we also evaluated a second
method for estimating syndromes, by �rst estimating the symptoms composing the syn-
dromes, and then merging the probabilities to estimate the syndromes. By selecting the
systems achieving the best performances on S1, S2 and S3, we merged (applying an AND
operator) their predictions: ySPpred = yS1pred ∩ yS2pred and ySSpred = yS2pred ∩ yS3pred.

Di�erential diagnosis. To ensure that the classi�ers have learned the desired task, we also
evaluated the performances of each classi�er to detect the other symptoms and syndromes
that it has not been trained to identify, by comparing the predictions made by each classi�er
with the ground truths of other symptoms or syndromes. These performances give a measure
of the speci�city of the prediction obtained by a classi�er to the symptom or syndrome it
has been trained on: the more speci�c a classi�er is for one symptom or syndrome, the lower
its prediction score should be for another symptom, and vice versa.

2.6. Contribution of the vocal features implied in each classi�er's decision

In order to identify the voice parameters that have the strongest weights in the �nal
classi�cation, we computed, for each LOSO external loop iteration and each descriptor, the
product of the weight of this descriptor in the PCA and the weight of each PCA component
in the classi�cation. Then, we computed the absolute average contribution of each descriptor
across the LOSO.

3. Results

The classi�cation results of symptoms and syndromes based on recordings are presented
in Table 2, while the results of the di�erential diagnosis are presented in Table 3. Finally,
the analysis of audio descriptors contributing to the classi�cation is provided in Section 3.3.

3.1. Classi�cation model performances

Task UAR kinner Fusion Combination Decorrelation Sen. PCA Classif.
S1 81.5% 10 Avg. All p = .05 Cohen Yes Log. Reg.
S2 76.6% 3 Avg. Ac. p = .01 None Yes SVC
S3 79.0% 3, 5, 10 Avg. Ac. p = .05 Cohen Yes Log. Reg.
SP 75.3% 3 Std. Ac. p = .05 Cohen Yes SVC
SS 66.2% 3, 5, 10 Std. Ac. p = 0.01 None No LDA

Table 2: Best hyperparameter combination for each classi�er and the corresponding UAR.
kinner: number of folds in the inner cross-validation loop, Fusion: function for the aggregation of the 5 sets
of features/patient, Combination: features combination, Ac.: Acoustic features only, Decorrelation: p-value
threshold for the decorrelation process (see Appendix B), Sen.: Sensibility function
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Model performances. Our automatic classi�cation pipeline achieve Unweighted Average Re-
calls(UAR) of respectively 81.5%, 76.6%, and 79.0% for the detection of S1, S2, and S3.
However, the classi�cation performance is less consistent for syndromes: while Sleep Propen-
sity (SP) is detected with a UAR of 75.3%, the classi�cation of Subjective Sleepiness (SS)
achieves only an UAR of 66.2%. Performances of each pipeline depending on its hyperpa-
rameters are reported in Appendix C.

Estimation of syndromes from symptoms. Combining the predictions of the two symptoms
composing each syndrome a posteriori results in an UAR of 70.0% for estimating SP, which
is slightly lower than the direct estimation (75.3%): the accumulation of errors made on
the estimation of each symptom decreases the performance of the associated syndrome. On
the other hand, for SS, combining the estimations of the two symptoms S2 and S3 yields
an UAR of 76.2%, which is 10% higher than the pipeline estimating this syndrome directly
from voice. One possible cause may be the highly imbalanced class distribution for the
subjective sleepiness detection problem (14/106 positives), while the symptoms are slightly
more balanced (45/106 positives for S2, 31/106 for S3), making it easier to build classi�ers.

3.2. Di�erential diagnosis

prediction
S1 S2 S3 SP SS

gr
ou
n
d
tr
u
th S1 81.5 59.2 49.8 70.7 51.7

S2 51.7 76.6 52.3 59.2 64.5
S3 47.5 55.4 79.0 50.1 64.0
SP 73.1 66.4 48.8 75.3 57.3
SS 45.8 80.4 64.2 57.2 66.2

Table 3: Performance of each model on every task. For instance, the estimation of S1 using the ground
truth of SP yields an UAR of 73.1%.

The performance of each model for every task is reported in Table 3. The diagonal of
this table corresponds to the performances reported in Table 2. The higher the performance,
the better the system has generalized the task on which it was trained.

The other performances correspond to the estimation of symptoms and syndromes other
than those on which the models have been trained. Thus, the system trained on symptom S1
achieves an UAR of 70.7% for predicting syndrome SP, and the system trained on syndrome
SS estimates symptom S2 with an UAR of 80.4%, outperforming the speci�cally trained S2
system for this task.

3.3. Voice features implied in the classi�cation systems

The feature contribution to each symptom classi�cation task is plotted in Figure 3, while
the contribution of features for the classi�cation of syndromes is represented in Figure 4.
For each of these �gures, the green color refers to pause-related features, while the orange
color refers to acoustic features. The angle of each disc portion is proportional to the
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Figure 3: Voice and speech features implied in the classi�cation of the objective severe daytime sleep
propensity (S1, left); subjective perception of severe daytime sleep propensity (S2, middle); and average
subjective perception of instantaneous sleepiness across the day (S3, left).

Figure 4: Voice and speech features implied in the classi�cation of sleep propensity (SP, left) and subjective
sleepiness (SS, right)

contributions of each descriptor involved in the classi�cation. The numbers in parentheses
are the relative contributions of each descriptor. An example of such feature values on two
patients (one having all the three symptoms and another having none of them) has been
reported in Appendix A. More detailed metrics on the contribution of each descriptor to
the classi�cation are provided in Table D.8 to D.12 in the Appendix D.

The classi�er detecting objective sleep propensity (S1) is the only one relying on features
related to pauses, namely the ration of correct and incorrect pauses. The third feature is
related to acoustic energy. Thus, a patient with symptom S1 will be identi�able not only
by a higher energy slope but above all by the less natural placement of reading pauses.

For the detection of both S2 and S3 symptoms, both the energy slope and the bandwidth
characteristics of the formants are important in the classi�cation, but with opposite e�ects.
While patients su�ering from S2 are identi�ed by a greater energy slope and a decrease in
formant 4 bandwidth, patients su�ering from S3 are on the contrary recognizable by their
lower energy slope and increased formant 4 bandwidth.
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Concerning syndromes, their identi�cation mobilizes many more di�erent vocal features,
re�ecting the complexity of the task compared to the identi�cation of symptoms. Thus,
sleep propensity (SP) is identi�ed by an increase in 4th formant bandwidth, Cepstral Peak
Prominence, slope energy and the di�erence between H1 and H2; subjective sleepiness (SS)
is identi�able by its alteration in HNR and 2nd and 3rd formant amplitude.

4. Discussion

The contribution of this article is twofold: on the one hand, we investigate the link
between various sleepiness-related symptoms and changes in the voice and speech of hy-
persomnia patients; these links are discussed in Section 4.1. Secondly, we are building
machine-learning models of di�erent conceptual levels of clinical reasoning: symptoms and
syndromes. The conceptual level learned by each model is discussed in Section 4.2.

4.1. Impact of physiological and subjective sleepiness on voice

In their 2009 seminal paper, Krajewski et al. [22] identi�ed �ve pathways of the impact
of sleepiness on speech production:

� Cognitive speech planning: reduced cognitive processing speed → slackened articula-
tion and slowed speech ;

� Respiration: decreased of muscle tension → lower fundamental frequency, intensity,
articulatory precision, and rate of articulation ;

� Phonation: decreased muscle tension → decreased resonance frequencies (formants)
positions and broadened formant bandwidth.

� Articulation: decreased muscle tension → shift in the spectral energy distribution,
broader formant bandwidth, increase in formant frequencies especially in lower for-
mants.

� Radiation: decreased orofacial movement → broadened Formant 1 bandwidth, smaller
Formant 1 amplitude.

However, these pathways have been proposed only for instantaneous subjective sleepiness.
Our results complete this model with the impact of physiological (S1), long-term subjective
(S2) and average sleepiness (S3) on speech production.

First, the expression through voice and speech of average sleepiness over the day (S3)
is in agreement with the previous model: a higher level of average sleepiness is associated
with an increase in the bandwidth of the 4th formant and a decrease in slope energy. These
descriptors have previously been associated with phonation and articulation e�ects for the
bandwidth of the 4th formant, and with breathing-related factors for the decrease in the
energy slope. The correspondence between our results and the model of Krajewski et al. is
explained by the fact that the S3 symptom is the average of several estimates of instantaneous
sleepiness, re�ecting the average of the phenomena across the recording sessions.
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However, this has to be distinguished from the impact of subjective perception of sleep
propensity (S2), which is a single subjective assessment of sleepiness over the last few weeks.
Indeed, not only does this symptom a�ect the bandwidth of formants 2 (which increases) and
3 (which decreases), but the coe�cients attributed to the slope energy and the bandwidth
of formant 4 are inverted.

Finally, thanks to the study of symptom S1, we add a new dimension to the previous
model by revealing the speci�c impact of physiological sleepiness on speech production.
Indeed, whereas for healthy subjects physiological sleepiness and subjective sleepiness cor-
relate [65], the subjects we recorded were diagnosed as hypersomniac, a disease for which
perception does not necessarily correspond to physiological sleepiness [66], allowing us to
study each separately. Thus, our results show that physiological sleepiness does not have a
major impact on acoustic quality, as is the case for the two subjective sleepiness symptoms,
but on reading quality, and more speci�cally on the location of reading pauses. Thus, the
higher the physiological sleepiness of the patients (i.e., low sleep latency), the more they
tend to distribute their reading pauses in locations considered unnatural [60]. Acoustic de-
scriptors have only a small contribution to the classi�cation of symptom S1, explaining our
previous failures to classify physiological sleepiness based solely on acoustic descriptors [67].
Moreover, this strong di�erence between subjective sleepiness, which impacts acoustic voice
quality, and physiological sleepiness, which impacts reading quality, is consistent with a
recent perceptual study on the di�erence in physiological and subjective sleepiness percep-
tion [68].

4.2. What concept has been generalized by each system?

In a second step, we aim at discussing the concept that has been generalized by each
system. Indeed, when training a system to reproduce the ground truth of a database, it
is generally accepted that the classi�cation system has generalized the concept contained
in the database annotation [69, 70, 71, 72, 73]. We propose here to discuss the conceptual
level learned by the classi�ers: did they generalize the concept presented to them, or on the
contrary a higher-level concept (e.g. the syndrome instead of the symptom) or a lower-level
concept (e.g. a symptom instead of the syndrome)?

Based on the results of the di�erential diagnosis, the predictions made by the S1 classi�er
allow the classi�cation of both S1 symptoms (UAR = 81.5%) and, to a lesser extent, the SP
syndrome (UAR = 73.1%). Therefore, we hypothesize that the classi�er trained to estimate
S1 has generalized the concept of an objective measure of the propensity to fall asleep during
the day, which allows the partial detection of the sleep proportion syndrome. In return, the
estimates made by the classi�er trained to detect the SP syndrome allow detecting the SP
syndrome with an UAR of 75.3% and the S1 symptom with an UAR of 70.7%, but with
lower performances concerning the S2 symptom which also composes the syndrome. This
seems to indicate that the expression of sleep propensity (SP) in the voice manifests itself
more closely to the objective sleep propensity (S1) than to the subjective sleep propensity
(S2).

On the contrary, the classi�er trained to estimate S2 allows estimating the SS syndrome
with more precision than the system trained to do so: we assume this system has learned a
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more general concept (i.e. subjective sleepiness) than the one it was trained on (i.e. subjec-
tive perception of severe daytime sleep propensity, S2). This is in line with the observation
that the classi�er trained to estimate S3 stands out of the crowd and has very speci�cally
learned the concept of average subjective sleepiness (S3).

In conclusion, our results do not allow us to decide between a direct estimate of syn-
dromes and a primary estimate of symptoms. On the other hand, for clinical use, symptom
estimation is a much more �exible option, allowing the clinician to follow the desired symp-
toms, and even recompose them into syndromes.

5. Conclusion and Perspectives

This study paves the way for the integration of sleepiness measurement tools directly
with patients in a medical context, using voice recordings. This disruptive approach will
address the limitations of the MSLT concerning hospital noise, natural variations in EEG
parameters, high cost of the test while providing crucial information to clinicians about
the progression of patients' symptoms in their everyday living environment. This approach
allows, for example, measuring the therapeutic e�cacy of proposed treatments or early
detection of relapse. To achieve this, we have made technological and scienti�c contributions
to the problem of designing vocal biomarkers for sleepiness [74].

Firstly, we have designed a fully explainable automatic classi�cation model that enables
the detection of three symptoms and two syndromes related to long-term sleepiness in hy-
persomnolent patients, with performance exceeding 75% of UAR. Both this classi�cation
model and the descriptors extracted from the voice recordings were intentionally kept as
simple as possible to facilitate dialogue with the collaborating clinicians. Additionally, par-
ticular attention was given to the features selection step, aiming for descriptors that are
sensitive but also speci�c to sleepiness. Speci�city was ensured through the introduction of
a decorrelation step in the model involving seven confounding factors.

Secondly, the scienti�c contribution of our work has been to leverage the explainability
of our classi�cation process to study the link between di�erent symptoms and syndromes
related to long-term sleepiness and their manifestation in speech. This complements previous
studies that have focused on short-term subjective sleepiness. Our results seem to indicate
a speci�c connection between physiological sleepiness and decreased reading performance
(misplaced pauses). Furthermore, a strong relationship was observed between the perception
of sleepiness and the acoustic quality of the voice (energy, formant bandwidth). However,
these preliminary results need to be con�rmed by further experimental studies.

Our future work aims to expand upon these initial results obtained in highly controlled
conditions (hospital environment, high-quality microphone, reading aloud tasks) to more
naturalistic conditions. To achieve this, data collection is already underway, involving
recordings of hypersomnolent patients using smartphones in tasks such as reading aloud,
semi-spontaneous speech (e.g., describing the route to this location), and spontaneous speech
relevant to physicians (e.g., "Do you feel like it takes a long time for you to get up when
you wake up in the morning?"). These new tasks will require the adaptation of certain
speech recording features (e.g., the placement of reading pauses) or the exploration of new
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dimensions in speech production, such as the phonetic aspects that we have already begun
to study [75]. Furthermore, data collection is currently underway on healthy subjects un-
dergoing sleep deprivation. This will enable us to compare the expression of di�erent types
of sleepiness in the voices of both healthy subjects and hypersomnolent patients.
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Appendix A. Features example

Two example of feature value averaged across the sessions are reported in Table A.4

Features Speaker A Speaker B

Average
across
sessions

MSL = 1 min
ESS = 24
KSS = 6.2

MSL = 14.4 min
ESS = 9
KSS = 1.0

Energy slope 4.25e-3 5.84e-3
F.bw2 404,92 343,47
F.bw3 382,98 382,19
F.bw4 378,01 373,76
Ratio + 0,887 0,932
Ratio - 0,113 0,0678

Table A.4: Features implied in the classi�cation of symptoms extracted for two speakers with di�erent
sleepiness levels

Appendix B. Decorrelation algorithm example

Let's take the average fundamental frequency F0. This feature is signi�cantly correlated
to age, sex, BMI, neck circumference, educational level, and depression levels (Pearson's r, p <
0.05). The correlation coe�cient and corresponding p-values are reported on the �rst line
of the table below.

This, we estimate F̂0(ge, sex, BMI, neck circ., edu. level, dep.) as a multivariate linear
regression, whose coe�cients are given in the second table below.

F̂0(sleepiness) is then estimated by par :

F̂0(sleepiness) = F0(measure)− F̂0(age, sex, BMI, neck circ., edu. level, dep.)

The correlation coe�cient between F̂0(sleepiness) and the cofactors con�rms the decor-
relation of this descriptor with these cofactors (third line of the table below).

Sex Age BMI Neck circ. Edu. level Dep. Anxiety
rbefore
(p)

-0.29
(0.004)

-0.76
(0.0)

-0.34
(9.7e-4)

-0.57
(1.7e-9)

0.30
(0.003)

-0.27
(0.009)

0.14
(0.17)

αreg -0.57 -75.5 -0.12 -0.13 0.19 -1.22 -
rafter
(p)

0.06
(0.58)

-0.12
(0.26)

0.02
(0.79)

-0.07
(0.46)

0.06
(0.54)

0.03
(0.32)

0.15
(0.14)

Appendix C. Performances depending on model hyperparameters

Performances depending on features fusion are reported in Table C.5; performances de-
pending on feature combination on Table C.6; �nally, the e�ect of all the other model
parameters are reported in Table C.7.
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Ref. Avg. Std. Avg. + Std. Agg.
S1 81.5 63.2 62.4 68.7
S2 76.6 70.2 64.3 71.3
S3 79.0 60.0 63.7 73.2
SP 71.4 75.3 74.0 70.8
SS 61.8 66.2 65.7 66.0

Table C.5: Max. UAR (%) depending on features fusion

Acoustic Yes
ASR Yes No
Pauses Yes No Yes No
S1 81.5 64.4 72.1 68.7
S2 64.8 63.5 71.3 76.6

S3 73.2 79.0 68.6 79.0

SP 70.8 73.4 74.0 75.3

SS 66.0 65.5 64.2 66.2

Table C.6: Max. UAR (%) depending on features combination

Appendix D. Contribution coe�cients of features implied in the classi�cation

modeles

The contribution coe�cients of features implied in the classi�cation of S1, S2, S3, SP
and SS are respectively reported in Tables D.8, D.9, D.10, D.11, and D.12.
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Ref. kinner Decorrelation Sen. PCA Classif.

3 5 10 p = .05 p = .01 None MW Cohen's d None Yes No Log. Reg. SVC LDA btree
S1 73.5 80.7 81.5 81.5 64.4 68.7 65.8 81.5 64.4 81.5 64.4 81.5 62.5 62.4 68.7
S2 76.6 71.3 65.2 71.0 76.6 71.3 - 71.0 76.6 76.6 70.2 66.2 76.6 61.3 70.2
S3 79.0 79.0 79.0 79.0 73.2 66.1 58.4 79.0 73.2 79.0 73.2 79.0 76.2 64.9 68.6
SP 75.3 70.8 74.0 75.3 73.4 74.0 - 75.3 70.8 75.3 69.2 69.2 75.3 65.2 65.2
SS 66.2 66.2 66.2 64.2 66.2 66.0 - 64.9 66.2 66.0 66.2 64.2 59.1 66.2 66.0

Table C.7: Maximum UAR (%, external loop of nested CV) depending on the di�erent elements of the
classi�cation model

Category Name Median Avg. Std. Min Max

Acoustic
Energy slope -0.044 -0.080 0.292 -0.483 0.483
Formant bw4 0.003 0.193 0.234 -0.038 0.487

Pauses
Ratio + -0.471 -0.279 0.235 -0.484 0.053
Ratio - 0.471 0.279 0.235 -0.053 0.484

Table D.8: Median, average, standard deviation, minimum and maximum contribution coe�cient of each
feature implied in the classi�cation of the objective severe daytime sleep propensity (S1) across the external
loop of cross-validation

Category Name Median Avg. Std. Min Max

Acoustic

Energy slope 0.328 0.379 0.132 0.199 0.747
Formant bw2 0.191 0.144 0.128 -0.131 0.323
Formant bw3 -0.268 -0.248 0.100 -0.528 -0.024
Formant bw4 -0.202 -0.192 0.070 -0.304 0.087

Table D.9: Median, average, standard deviation, minimum and maximum contribution coe�cient of each
feature implied in the classi�cation of subjective perception of severe daytime sleep propensity (S2) across
the external loop of cross-validation

Category Name Median Avg. Std. Min Max

Acoustic
Energy slope -0.5 -0.500 0.000 -0.5 -0.5
Formant bw4 0.5 0.104 0.491 -0.5 0.5

Table D.10: Median, average, standard deviation, minimum and maximum contribution coe�cient of each
feature implied in the classi�cation of the average subjective perception of instantaneous sleepiness across
the day (S3) across the external loop of cross-validation
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Category Name Median Avg. Std. Min Max

Acoustic

Energy slope -0.173 -0.064 0.190 -0.277 0.309
Formant bw4 -0.339 -0.350 0.144 -0.640 0.115

A1 0.012 0.018 0.021 -0.006 0.098
A2 0.001 0.010 0.023 -0.017 0.095
H2 -0.026 -0.011 0.029 -0.038 0.081

H1H2 -0.148 -0.080 0.134 -0.368 0.252
hnr1 0.006 0.010 0.022 -0.005 0.098
hnr2 0.019 0.020 0.021 -0.017 0.108
hnr3 0.019 0.017 0.023 -0.023 0.109
hnr4 0.026 0.026 0.021 -0.026 0.112
cpp -0.158 -0.169 0.099 -0.338 0.277

Table D.11: Median, average, standard deviation, minimum and maximum contribution coe�cient of each
feature implied in the classi�cation of sleep propensity (SP) across the external loop of cross-validation

Category Name Median Avg. Std. Min Max

Acoustic

F0var -0.010 -0.010 0.001 -0.018 -0.003
Energy mean 0.014 0.014 0.002 0.008 0.025
Energy slope -0.007 -0.007 0.001 -0.016 -0.004
Formant fq4 0.004 0.004 0.001 -0.002 0.007
Formant bw2 -0.018 -0.018 0.001 -0.022 -0.014
Formant bw3 -0.006 -0.006 0.001 -0.010 -0.002
Formant bw4 -0.007 -0.007 0.001 -0.011 -0.001

A1 -0.005 -0.005 0.003 -0.028 0.007
A2 0.067 0.067 0.005 0.050 0.099
A3 -0.073 -0.073 0.006 -0.110 -0.053
H1 -0.044 -0.044 0.003 -0.053 -0.028
H2 0.017 0.017 0.003 0.004 0.030
H4 0.016 0.016 0.004 -0.010 0.027

H1H2 0.016 0.016 0.002 0.010 0.023
H2H4 0.030 0.030 0.002 0.019 0.039
hnr1 -0.015 -0.015 0.004 -0.043 -0.004
hnr2 -0.161 -0.161 0.009 -0.189 -0.117
hnr3 0.329 0.329 0.006 0.305 0.354
hnr4 -0.154 -0.154 0.011 -0.196 -0.119
CPP -0.004 -0.004 0.001 -0.014 0.001

Table D.12: Median, average, standard deviation, minimum and maximum contribution coe�cient of each
feature implied in the classi�cation of subjective sleepiness (SS) across the external loop of cross-validation
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