
HAL Id: hal-04441398
https://hal.science/hal-04441398v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Beyond space and blocks: Generating networks with
arbitrary structure

Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti

To cite this version:
Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti. Beyond space and blocks: Generating
networks with arbitrary structure. International School and Conference on Network Science 2023, Jul
2023, Vienne, Austria. . �hal-04441398�

https://hal.science/hal-04441398v1
https://hal.archives-ouvertes.fr

should compare such processes with random networks that 1)are comparable in terms of size, i.e., number
of nodes and edges, and 2)differ in their structure.

Figure 1. Generating networks using the Structify-Net approach. A rank function defines an ordering between
node pairs. A probability function is used to assign an edge probability to each node pair based on their rank
in the ordering. This gives a Random graph model, that can be used to generate graph instances. Note how
the same Rank functionR1 can give 2 Random Graph Models using different Probability function P1 and P2,
how the same Probability function P1 is used for two different Rank functions R1 and R2, and how multiple
graphs can be generated from a single Random Graph Model.

Method

Structify-Net principle is to create probabilistic random graph generators in two steps:

1. A rank function R sets an order among the node pairs, from most likely to appear to less likely to
appear;

2. A probability function P assigns to each pair of nodes a probability to be connected by an edge, based
on its rank.

P allows to control the expected number of edges bm. The functionP is independent from the graph structure
represented by R; and reciprocally R is independent from the expected number of edges bm or the function
P .

Rank function

The principle of Structify-Net generator is to describe a network structure by an edge-pair ranking function.
More formally, we define R(u, v) = r the function assigning a value r to each undirected node pair, such
as r 2 [1, n⇤(n�1)

2] corresponds to the rank of the node pair (u, v), and r(u, v) < r(u2, v2) means that it is
more likely to observe an edge between the pair (u, v) than between the pair (u2, v2). This function can be

3

expressed directly in that form, or be trivially derived from a function R
0 assigning a cost to each node pair,

coupled with a sorting function, ranking pairs by increasing or decreasing values of R0(u, v). In practice, in
that case, we also add an infinitesimal random value ◆ to each cost, in order to avoid ties.

An intuitive example of such a cost function is for the spatial structure: given a position vector Wu for
each node u (provided to mimic real data, or generated in fully synthetic network generation), the tendency
to observe edges can be a function of the distance, e.g., R0(u, v) = ||Wu,Wv||. By sorting node pairs by
increasing distance, we obtain a spatial structure such that the closer the nodes, the higher their tendency to
be connected.

Section describes in more detail various types of network structures that can be represented this way.

Probability Function

To go from a ranking of node pairs to a random network generator, we use a rank probability function
P (r) = p, p 2 [0, 1]. The only constraint to this function is that it must be non-increasing, so that a node pair
of lower rank is at least as likely to be connected by an edge than a node pair of higher rank.

The probability function controls the expected number of edges:

bm =
LX

r

P (r)

with L = n(n�1)
2

Endpoint 2

Endpoint 1

Control point

(a)Bezier interpolation of the number of edges encoun-
tered at a given rank

(b) The corresponding probability function, i.e., proba-
bility of observing an edge at a given rank

Figure 2. Example of probability functions for various values of ✏. In this example, we setm = 128, n = 512

Bezier Interpolated Probability Function

We propose a family of probability functions controlled by 1) the target expected number of edgesm, 2) a
parameter ✏, which controls how strongly is the random graph driven by the community structure. The family
is defined as follows: at one extreme (✏ = 1), the probability of observing an edge is independent of the rank,
i.e., P (r) = m/L, as in an ER random graph. Conversely, at the other extreme ✏ = 0, the m edges connect
them pairs of nodes of lower rank:

P (r) =

8
<

:
0 if r m

1 otherwise

To interpolate between the two, we use a rational Bezier parametric curve, as illustrated in Fig. 2. The Bezier
curve is defined by two endpoints, corresponding to the two points shared by both cumulative distributions:
the points (0,0) and (L,m). The control point of the curve is (m,m). A weight b allows controlling how close

4

the curve is to each of the two extremes. If b = 0, the curve corresponds to ✏ = 0, and ✏(limb!1) = 1. For
convenience, we thus simply rescale the given parameter ✏ into b as follows:

b =
log(0.5)

log(1� ✏)

By convention, if ✏ = 0, b = b
max and if ✏ = 1,b = 0, with b

max a large integer constant.
The function giving the probability of observing an edge between node pairs given their rank is defined by

the derivative of the parametric Bezier curve (See Fig. 2).

Figure 3. The Structure Zoo. Matrix of node-pairs ranks for networks with 128 nodes. Darker colors corre-
spond to lower ranks. For Disconnected cliques, we setm = 128 ⇤ 8. When involving spatial or clique positions,
nodes are ordered according to this value.

Structure Zoo

To illustrate the expression power of the Structify-Net rank generation approach, we propose a collection
of structures, available in the Python library under the name of Structure Zoo. This collection contains both
classic structures widely found in the literature, together with original ones. Fig. 3 introduces matrix repre-
sentations of the node-pair ranks of all structures in the zoo.

Spatial structure

Spatial structures are commonly found in the literature. Several versions of random graphs spatial models
exist, for instance, the Waxman Graph (Waxman, 1988). More complex versions exist such as the Gravity
model (Cazabet et al., 2017). A simple spatial structure can be easily implemented as a Rank model by using
a cost Function,

R
0(u, v) = d(Wu,Wv)

5

Star structure

Hubs are known to play an important role in many real networks. The hub-and-spoke structure is frequent
both in human-designed infrastructure and in natural systems, forming patterns also known as stars. We can
obtain such a structure with

R
0(u, v) = u⇥ n+ v

Core Periphery

Core periphery structure is anotherwell-known type of organization for complex systems. This organization
is often modeled using blocks, one block being the dense core, another block, internally sparse, representing
the periphery, and the density between the two blocks is set at an intermediate value. To illustrate the flex-
ibility of the Rank approach, we propose a soft-core alternative, the coreness dissolving progressively into a
periphery. To do so, we consider nodes embedded into a space, as for the spatial structure —random 1d
positions in our example. The node-pair rank score is computed as the inverse of the product of 3 distances:
the distances from both nodes to the center, and the distance between the two nodes. As a consequence,
when two nodes belong to the center, they are very likely to be connected; two nodes far from the center are
unlikely to be connected unless they are extremely close to each other.

R
0(u, v) = d(Wu,Wv)d(Wu,0)d(Wv,0)

With 0 the vector corresponding to the center of the location considered as the core of the space.

Perlin noise

Perline noise (Perlin, 2002) is a type of gradient noise frequently used in computer graphics to create images
with a realistic feel, such as textures and landscapes. Weuse it to generate an adjacencymatrix, from theupper
triangle of a 2d image of size (in pixels) n⇥n. TheR0 cost function is the black intensity of the pixel. In practice,
Perlin noise tends to create continuous shapes of lower and higher values, with smooth transitions between
the two (see Fig. 3) for an example. Such a structure can be interpreted as a fuzzy version of a non-assortative
SBM; with stronger relations between some groups of nodes and some other groups of nodes. Perlin noise
has a parameter, called octaves, allowing to add smaller-scale structures on top of each other.

1

2

4 5

3

6

(a) Fractal Root tree embedding

1 2 3 4 5 6

(b) Fractal Leaves tree embedding

Figure 4. Two methods to create fractal structures by embedding nodes into complete binary trees. In the
example, we embed 6 nodes. In the simpler case, the probability to observe a graph in the resulting graph is
proportional to the distance between the nodes in the tree.

Fractal structures

To better illustrate the expression power of the Structify-Net structure definition, we propose three varia-
tions of what we call fractal structures. The principle is to embed the nodes into a complete binary tree and to
compute the rank scores based on distances on that binary tree. The purpose is to introduce heterogeneity
among nodes, which can be used to create specific structures.

7

The structures we introduced allow the generation of synthetic networks without prior data, but one can
perfectly define a cost function defined on node attributes, e.g., take a real network in which nodes are located
in space, belong to known groups, and have other characteristic attributes, and define a structure by using a
cost function taking all these attributes into account. Fig. 3 proposes a representation as matrices of all these
structures on a network of 128 nodes and 1048 edges.

Application: Swall World Structures

One of the most famous properties of network structure is the so-called small world property. Introduced
in (Watts and Strogatz, 1998), it characterizes a network as being a small world if it has both 1) a high clustering
coefficient — significantly larger than in an ER random graph, 2) a short average distance— of the same order
of magnitude as in an ER random graph. This property, considered ubiquitous in real networks, has been
reproduced in (Watts and Strogatz, 1998) by progressively adding randomness to a regular network, built such
as the n nodes are ordered in a circle, and each node is connected to its bk/2 neighbors in both directions. The
small world property emerges because, when we rewire edges at random, the average distance decreases
faster than the clustering coefficient — both being large in the regular network and low in the ER random
graph.

We conduct an experiment to observe how other structures behave in term of small-worldness when sub-
mitted to a similar experiment, i.e., starting with an archetypal structure, and adding noise progressively.

(a) The proposed rank matrix. It has
similarity with, e.g., the spatial one in
Fig. 3

(b) The small-world profile. As expected, the short path index increases signifi-
cantly while the clustering coefficient remains close to the original value when
increasing randomness

Figure 5. Replicating the Watts-Strogatz experiment

Reproducing the Watts-Strogatz experiment

Watts-Strogatz rank model

To mimic the original small-world experiment, we define a rank-based structure using a cost function, pa-
rameterized by the number of nodes n and the desired average node degree k.

R
0 =

8
<

:
0, if (v � u) mod (n� k/2) < k/2

1, otherwise

with u, v node indices taken from [0, .., n� 1]. The corresponding rank matrix is shown if Fig. 5a

Scoring functions

In the original article, clustering coefficients and average distanceswere expressed as a fraction of the value
obtained for the regular structure. We cannot reuse this approach for multiple structures, having different

9

Figure 6. Small-World profiles of networks generated by generators of the structure zoo. Blue is clustering,
orange is the short path index (lower values correspond to longer paths). We observe super-small-world, e.g.,
fractal-hierarchy, anti-small-world, e.g., nestedness, profiles similar to the Watts-Strogatz network, e.g., spatial
or blocks assortative.

For convenience, the library is compatible with Networkx (Hagberg et al., 2008). Obtaining a rank model
corresponding to one of those defined in the zoo, such as the nested structure, is as simple as calling it:

1 import s t ruc t i f y _ne t . zoo as zoo
2 n=128
3 rank_model = zoo . sort_nestedness (n)

Generating a network as a Networkx object from it is straightforward:

1 import s t ruc t i f y _ne t . zoo as zoo
2 n=128
3 m=512
4 generator = zoo . sort_nestedness (n) . get_generator (epsi lon =0.5 ,m=m)
5 g_generated = generator . generate ()

One can also define a custom structure by providing a rank-score function:

1 import s t ruc t i f y _ne t as stn
2 n=128
3 m=512
4

5 def R_nestedness (u , v , _) :
6 return u+v
7 rank_nested = stn . Rank_model (n , R_nestedness)
8 g = rank_nested . generate_graph (epsi lon =0.1 ,m=m)

The library allows easy plotting of the rank-score matrices and node-pair probability matrices, and more
generally reproduces all the content of the current article.

Discussion

This article introduced a newmethod to generate random networks with a customizable network structure,
and a target number of nodes and edges, while controlling the amount of randomness. To the best of our

11

Beyond space and blocks: Generating
networks with arbitrary structure

Rémy Cazabet1, Jacques Fize2, Salvatore Citraro3, Giulio Rossetti3

1. Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
2. Univ Lyon, Lyon 2, ERIC UR 3083, Bron, 69676, France
3. Institute of Information Science and Technologies “A. Faedo” (ISTI), National Research Council (CNR), Italy

Random graph models are ubiquitous in network science. Often used as null models, they require
to preserve the size of the observed networks, i.e., the number of nodes and edges. We focus on
models in which the probability to observe an edge between each pair of node is independent, as
in an ER or expected degree preserving (Chung-Lu) model. Such models are widespread for
block structures (SBM) and spatial structure (e.g., Waxman, gravity model), but there is no
simple solution to create random graphs with arbitrary —defined by the analyst— structures.

We propose a model allowing to generate graphs of a chosen number of nodes and expected
number of edges, following an arbitrary structure, and with a controllable amount of randomness.

The model requires:

• The number of nodes n

• The expected number of edges m

• A cost function describing the generated network’s structure

Let’s take a simple example: a possible cost function for a spatial graph is simply the distance
betwen the nodes —This distance can be attributed randomly, or kept from observed data.

CONTEXT

CONTRIBUTION

PROCESS OVERVIEW

We use a function allowing to tune the amount of randomness of the structure, . When
, the structure is deterministically determined by the cost function. When , the

network is an ER random graph. The function interpolates between the two using a Bezier
function, as illustrated in Fig.2

ϵ ∈ [0,1]
ϵ = 0 ϵ = 1

PROBABILITY FUNCTION

STRUCTURE ZOO

To illustrate the flexibility of this approach, we first reproduce the famous Watts and Strogatz
experiment, on which a regular circular network is progressively randomized, leading to the
apparition of a small-world structure. (We use a normalized short path index increasing with
shortest paths, in order to compare different network structures)

EXAMPLE: FRACTAL STRUCTURES

SMALL WORLD EXPERIMENT

SMALL WORLDNESS OF OTHER STRUCTURES

Following the same experimental process, we can observe how different structures behaves in
term of clustering coefficient and short paths

https://github.com/Yquetzal/structify_net

Structify-Net python library arXiv preprint

https://aps.arxiv.org/abs/2306.05274

