Beyond space and blocks: Generating networks with arbitrary structure
Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti

To cite this version:
Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti. Beyond space and blocks: Generating networks with arbitrary structure. International School and Conference on Network Science 2023, Jul 2023, Vienne, Austria. . hal-04441398

HAL Id: hal-04441398
https://hal.science/hal-04441398
Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Random graph models are ubiquitous in network science. Often used as null models, they require to preserve the size of the observed networks, i.e., the number of nodes and edges. We focus on models in which the probability to observe an edge between each pair of node is independent, as in an ER or expected degree preserving (Chung-Lu) model. Such models are widespread for block structures (SBM) and spatial structure (e.g., Waxman, gravity model), but there is no simple solution to create random graphs with arbitrary —defined by the analyst— structures.

The probability function controls the expected number of edges:

\[P(n) = \exp(bm) \]

where \(P(n) \) is the expected number of edges, \(n \) is the number of nodes, \(b \) is the probability function which assigns to each node pair a probability to be connected by an edge, and \(m \) is the expected number of edges.

To go from a ranking of node pairs to a random network generator, we use a rank probability function. The model requires:

- The number of nodes \(n \)
- The expected number of edges \(m \)
- A cost function describing the generated network’s structure

Let’s take a simple example: a possible cost function for a spatial graph is simply the distance between the nodes. This distance can be attributed randomly, or kept from observed data.

Random graph models are ubiquitous in network science. Often used as null models, they require to preserve the size of the observed networks, i.e., the number of nodes and edges. We focus on models in which the probability to observe an edge between each pair of node is independent, as in an ER or expected degree preserving (Chung-Lu) model. Such models are widespread for block structures (SBM) and spatial structure (e.g., Waxman, gravity model), but there is no simple solution to create random graphs with arbitrary —defined by the analyst— structures.

Beyond space and blocks: Generating networks with arbitrary structure

CONTEXT

CONTRIBUTION

We propose a model allowing to generate graphs of a chosen number of nodes and expected number of edges, following an arbitrary structure, and with a controllable amount of randomness.

The model requires:

- The number of nodes \(n \)
- The expected number of edges \(m \)
- A cost function describing the generated network’s structure

Let’s take a simple example: a possible cost function for a spatial graph is simply the distance between the nodes. This distance can be attributed randomly, or kept from observed data.

PROCESS OVERVIEW

PROBABILITY FUNCTION

We use a function allowing to tune the amount of randomness of the structure, \(c \in [0, 1] \). When \(c = 0 \), the structure is deterministically determined by the cost function. When \(c = 1 \), the network is an ER random graph. The function interpolates between the two using a Bezier function, as illustrated in Fig. 2.

EXAMPLE: FRACTAL STRUCTURES

(\(\epsilon = 0.5 \), \(m = m \)) for an example. Such a structure can be interpreted as a fuzzy version of a non-assortative small-world network. (We use a normalized short path index increasing with \(c \).)

SMALL WORLD EXPERIMENT

To illustrate the flexibility of this approach, we first reproduce the famous Watts and Strogatz experiment, on which a regular circular network is progressively randomized, leading to the appearance of a small-world structure. (We use a normalized short path index increasing with shortest paths, in order to compare different network structures.)

SMALL WORLDNESS OF OTHER STRUCTURES

Following the same experimental process, we can observe how different structures behave in term of clustering coefficient and shortest paths.

STRUCTURE ZOO

EXAMPLE: FRACTAL STRUCTURES

- Fractal forest tree embedding
- Fractal leaf tree embedding

SMALL WORLDNESS OF OTHER STRUCTURES

- Three small-world profiles of networks generated by generators of the structure zoo. Blue is clustering, orange is the short path index (lower values correspond to longer paths). We observe super-small-world, e.g., fractal hierarchy, anti-small-world, e.g., nestedness, profiles similar to the Watts-Strogatz network, e.g., spatial or blocks assortative.