should compare such processes with random networks that 1)are comparable in terms of size, i.e., number of nodes and edges, and 2)differ in their structure. 

Method

Structify-Net principle is to create probabilistic random graph generators in two steps:

1. A rank function R sets an order among the node pairs, from most likely to appear to less likely to appear; 2. A probability function P assigns to each pair of nodes a probability to be connected by an edge, based on its rank.

P allows to control the expected number of edges b m. The function P is independent from the graph structure represented by R; and reciprocally R is independent from the expected number of edges b m or the function P .

Rank function

The principle of Structify-Net generator is to describe a network structure by an edge-pair ranking function.

More formally, we define R(u, v) = r the function assigning a value r to each undirected node pair, such as r 2 [1, n⇤(n 1) 2 ] corresponds to the rank of the node pair (u, v), and r(u, v) < r(u2, v2) means that it is more likely to observe an edge between the pair (u, v) than between the pair (u2, v2). This function can be 3 expressed directly in that form, or be trivially derived from a function R 0 assigning a cost to each node pair, coupled with a sorting function, ranking pairs by increasing or decreasing values of R 0 (u, v). In practice, in that case, we also add an infinitesimal random value ◆ to each cost, in order to avoid ties.

An intuitive example of such a cost function is for the spatial structure: given a position vector W u for each node u (provided to mimic real data, or generated in fully synthetic network generation), the tendency to observe edges can be a function of the distance, e.g., R 0 (u, v) = ||W u , W v ||. By sorting node pairs by increasing distance, we obtain a spatial structure such that the closer the nodes, the higher their tendency to be connected.

Section describes in more detail various types of network structures that can be represented this way.

Probability Function

To go from a ranking of node pairs to a random network generator, we use a rank probability function P (r) = p, p 2 [0, 1]. The only constraint to this function is that it must be non-increasing, so that a node pair of lower rank is at least as likely to be connected by an edge than a node pair of higher rank. We propose a family of probability functions controlled by 1) the target expected number of edges m, 2) a parameter ✏, which controls how strongly is the random graph driven by the community structure. The family is defined as follows: at one extreme (✏ = 1), the probability of observing an edge is independent of the rank, i.e., P (r) = m/L, as in an ER random graph. Conversely, at the other extreme ✏ = 0, the m edges connect the m pairs of nodes of lower rank: 

P (r) =

Structure Zoo

To illustrate the expression power of the Structify-Net rank generation approach, we propose a collection of structures, available in the Python library under the name of Structure Zoo. This collection contains both classic structures widely found in the literature, together with original ones. Fig. 3 introduces matrix representations of the node-pair ranks of all structures in the zoo.

Spatial structure

Spatial structures are commonly found in the literature. Several versions of random graphs spatial models exist, for instance, the Waxman Graph (Waxman, 1988). More complex versions exist such as the Gravity model (Cazabet et al., 2017). A simple spatial structure can be easily implemented as a Rank model by using

a cost Function, R 0 (u, v) = d(W u , W v ) 5

Star structure

Hubs are known to play an important role in many real networks. The hub-and-spoke structure is frequent both in human-designed infrastructure and in natural systems, forming patterns also known as stars. We can obtain such a structure with

R 0 (u, v) = u ⇥ n + v

Core Periphery

Core periphery structure is another well-known type of organization for complex systems. This organization is often modeled using blocks, one block being the dense core, another block, internally sparse, representing the periphery, and the density between the two blocks is set at an intermediate value. To illustrate the flexibility of the Rank approach, we propose a soft-core alternative, the coreness dissolving progressively into a periphery. To do so, we consider nodes embedded into a space, as for the spatial structure -random 1d positions in our example. The node-pair rank score is computed as the inverse of the product of 3 distances:

the distances from both nodes to the center, and the distance between the two nodes. As a consequence, when two nodes belong to the center, they are very likely to be connected; two nodes far from the center are unlikely to be connected unless they are extremely close to each other.

R 0 (u, v) = d(W u , W v )d(W u , 0)d(W v , 0)
With 0 the vector corresponding to the center of the location considered as the core of the space.

Perlin noise

Perline noise (Perlin, 2002) is a type of gradient noise frequently used in computer graphics to create images with a realistic feel, such as textures and landscapes. We use it to generate an adjacency matrix, from the upper triangle of a 2d image of size (in pixels) n⇥n. The R 0 cost function is the black intensity of the pixel. In practice, Perlin noise tends to create continuous shapes of lower and higher values, with smooth transitions between the two (see Fig. 3) for an example. Such a structure can be interpreted as a fuzzy version of a non-assortative SBM; with stronger relations between some groups of nodes and some other groups of nodes. Perlin noise has a parameter, called octaves, allowing to add smaller-scale structures on top of each other. 

Fractal structures

To better illustrate the expression power of the Structify-Net structure definition, we propose three variations of what we call fractal structures. The principle is to embed the nodes into a complete binary tree and to compute the rank scores based on distances on that binary tree. The purpose is to introduce heterogeneity among nodes, which can be used to create specific structures.
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The structures we introduced allow the generation of synthetic networks without prior data, but one can perfectly define a cost function defined on node attributes, e.g., take a real network in which nodes are located in space, belong to known groups, and have other characteristic attributes, and define a structure by using a cost function taking all these attributes into account. Fig. 3 proposes a representation as matrices of all these structures on a network of 128 nodes and 1048 edges.

Application: Swall World Structures

One of the most famous properties of network structure is the so-called small world property. Introduced in (Watts and Strogatz, 1998), it characterizes a network as being a small world if it has both 1) a high clustering coefficient -significantly larger than in an ER random graph, 2) a short average distance -of the same order of magnitude as in an ER random graph. This property, considered ubiquitous in real networks, has been reproduced in (Watts and Strogatz, 1998) by progressively adding randomness to a regular network, built such as the n nodes are ordered in a circle, and each node is connected to its b k/2 neighbors in both directions. The small world property emerges because, when we rewire edges at random, the average distance decreases faster than the clustering coefficient -both being large in the regular network and low in the ER random graph.

We conduct an experiment to observe how other structures behave in term of small-worldness when submitted to a similar experiment, i.e., starting with an archetypal structure, and adding noise progressively. 

Scoring functions

In the original article, clustering coefficients and average distances were expressed as a fraction of the value obtained for the regular structure. We cannot reuse this approach for multiple structures, having different 9 Random graph models are ubiquitous in network science. Often used as null models, they require to preserve the size of the observed networks, i.e., the number of nodes and edges. We focus on models in which the probability to observe an edge between each pair of node is independent, as in an ER or expected degree preserving (Chung-Lu) model. Such models are widespread for block structures (SBM) and spatial structure (e.g., Waxman, gravity model), but there is no simple solution to create random graphs with arbitrary -defined by the analyst-structures.

We propose a model allowing to generate graphs of a chosen number of nodes and expected number of edges, following an arbitrary structure, and with a controllable amount of randomness.

The model requires:

• The number of nodes n

• The expected number of edges m

• A cost function describing the generated network's structure Let's take a simple example: a possible cost function for a spatial graph is simply the distance betwen the nodes -This distance can be attributed randomly, or kept from observed data.

CONTEXT

CONTRIBUTION PROCESS OVERVIEW

We use a function allowing to tune the amount of randomness of the structure, . When , the structure is deterministically determined by the cost function. When , the network is an ER random graph. The function interpolates between the two using a Bezier function, as illustrated in Fig. 2 ϵ ∈ [0,1] ϵ = 0 ϵ = 1

PROBABILITY FUNCTION STRUCTURE ZOO

To illustrate the flexibility of this approach, we first reproduce the famous Watts and Strogatz experiment, on which a regular circular network is progressively randomized, leading to the apparition of a small-world structure. (We use a normalized short path index increasing with shortest paths, in order to compare different network structures) 

EXAMPLE: FRACTAL STRUCTURES SMALL WORLD EXPERIMENT SMALL WORLDNESS OF OTHER STRUCTURES

Figure 1 .

 1 Figure 1. Generating networks using the Structify-Net approach. A rank function defines an ordering between node pairs. A probability function is used to assign an edge probability to each node pair based on their rank in the ordering. This gives a Random graph model, that can be used to generate graph instances. Note how the same Rank function R1 can give 2 Random Graph Models using different Probability function P 1 and P 2, how the same Probability function P 1 is used for two different Rank functions R1 and R2, and how multiple graphs can be generated from a single Random Graph Model.

  The probability function controls the expected number of edges: Bezier interpolation of the number of edges encountered at a given rank (b) The corresponding probability function, i.e., probability of observing an edge at a given rank

Figure 2 .

 2 Figure 2. Example of probability functions for various values of ✏. In this example, we set m = 128, n = 512

  the two, we use a rational Bezier parametric curve, as illustrated in Fig. 2. The Bezier curve is defined by two endpoints, corresponding to the two points shared by both cumulative distributions: the points (0,0) and (L,m). The control point of the curve is (m,m). A weight b allows controlling how close 4 the curve is to each of the two extremes. If b = 0, the curve corresponds to ✏ = 0, and ✏(lim b!1 ) = 1. For convenience, we thus simply rescale the given parameter ✏ into b as follows: By convention, if ✏ = 0, b = b max and if ✏ = 1,b = 0, with b max a large integer constant.The function giving the probability of observing an edge between node pairs given their rank is defined by the derivative of the parametric Bezier curve (See Fig.2).

Figure 3 .

 3 Figure 3. The Structure Zoo. Matrix of node-pairs ranks for networks with 128 nodes. Darker colors correspond to lower ranks. For Disconnected cliques, we set m = 128 ⇤ 8. When involving spatial or clique positions, nodes are ordered according to this value.

Figure 4 .

 4 Figure4. Two methods to create fractal structures by embedding nodes into complete binary trees. In the example, we embed 6 nodes. In the simpler case, the probability to observe a graph in the resulting graph is proportional to the distance between the nodes in the tree.

( a )Figure 5 .

 a5 Fig. 3

Figure 6 .

 6 Figure6. Small-World profiles of networks generated by generators of the structure zoo. Blue is clustering, orange is the short path index (lower values correspond to longer paths). We observe super-small-world, e.g., fractal-hierarchy, anti-small-world, e.g., nestedness, profiles similar to the Watts-Strogatz network, e.g., spatial or blocks assortative.

Following

  the same experimental process, we can observe how different structures behaves in term of clustering coefficient and short paths https://github.com/Yquetzal/structify_net Structify-Net python library arXiv preprint https://aps.arxiv.org/abs/2306.05274