Beyond space and blocks: Generating networks with arbitrary structure

Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti

To cite this version:

Rémy Cazabet, Jacques Fize, Salvatore Citraro, Giulio Rossetti. Beyond space and blocks: Generating networks with arbitrary structure. International School and Conference on Network Science 2023, Jul 2023, Vienne, Austria. hal-04441398

HAL Id: hal-04441398
https://hal.science/hal-04441398
Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Beyond space and blocks: Generating networks with arbitrary structure

Rémy Cazabet¹, Jacques Fize², Salvatore Citraro³, Giulio Rossetti³

1. Univ Lyon, UCBR, CNRS, INSA Lyon, LIRIS, UMR5205, F-69622 Villeurbanne, France
2. Univ Lyon, Lyon 2; ERIIC UR 3883, Bron, 69676, France
3. Institute of Information Science and Technologies “A. Faedo” (ISTI), National Research Council (CNR), Italy

CONTEXT

Random graph models are ubiquitous in network science. Often used as null models, they require to preserve the size of the observed networks, i.e., the number of nodes and edges. We focus on models in which the probability to observe an edge between each pair of node is independent, as in an ER or expected degree preserving (Chung-Lu) model. Such models are widespread for block structures (SBM) and spatial structure (e.g., Waxman, gravity model), but there is no simple solution to create random graphs with arbitrary — defined by the analyst — structures.

CONTRIBUTION

We propose a model allowing to generate graphs of a chosen number of nodes and expected number of edges, following an arbitrary structure, and with a controllable amount of randomness. The model requires:

- The number of nodes n
- The expected number of edges m
- A cost function describing the generated network's structure

Let’s take a simple example: a possible cost function for a spatial graph is simply the distance between the nodes. This distance can be attributed randomly, or kept from observed data.

PROCESS OVERVIEW

We use a function allowing to tune the amount of randomness of the structure, \(c \in [0,1] \). When \(c = 0 \), the structure is deterministically determined by the cost function. When \(c = 1 \), the network is an ER random graph. The function interpolates between the two using a Bezier function, as illustrated in Fig. 2.

PROBABILITY FUNCTION

We use a function allowing to tune the amount of randomness of the structure, \(c \in [0,1] \). When \(c = 0 \), the structure is deterministically determined by the cost function. When \(c = 1 \), the network is an ER random graph. The function interpolates between the two using a Bezier function, as illustrated in Fig. 2.

STRUCTURE ZOO

Figure 1. Generating networks using the Structify.Net approach. A rank function defines an ordering between node pairs. A probability function is used to assign an edge probability to each node pair based on their rank in the ordering. This gives a random graph model, that can be used to generate graph instances. Note how the same Rank function \(R \) can give two Random-Graph Models using different Probability functions \(P_1 \) and \(P_2 \), how the same Probability function \(P_1 \) is used for two different Rank functions \(R_1 \) and \(R_2 \), and how multiple graphs can be generated from a single Random-Graph Model.

EXAMPLE: FRACTAL STRUCTURES

(a) Fractal Root tree embedding
(b) Fractal Leave tree embedding

Figure 4. Two methods to create fractal structures by embedding nodes into complete binary trees. In the example, we embed 6 nodes. In the simpler case, the probability to observe a graph in the resulting graph is proportional to the distance between the nodes in the tree.

SMALL WORLD EXPERIMENT

To illustrate the flexibility of this approach, we first reproduce the famous Watts and Strogatz experiment, on which a regular circular network is progressively randomized, leading to the apparition of a small-world structure. (Waxman, gravity model), but there is no simple solution to create random graphs with arbitrary — defined by the analyst — structures.

SMALL WORLDNESS OF OTHER STRUCTURES

Following the same experimental process, we can observe how different structures behaves in terms of clustering coefficient and short paths.

EXAMPLE: FRACTAL STRUCTURES

(a) The proposed rank matrix. It has similarity with, e.g., the spatial one in Fig. 3; (b) The small-world profile. As expected, the short path index increases significantly while the clustering coefficient remains close to the original value when increasing randomness.

Figure 5. Replicating the Watts-Strogatz experiment.

SMALL WORLDNESS OF OTHER STRUCTURES

Following the same experimental process, we can observe how different structures behave in terms of clustering coefficient and short paths.

Figure 6. Small-world profiles of networks generated by generators of the structure zoo. Blue is clustering, orange is the short path index (lower values correspond to longer paths). We observe super-small-world, e.g., fractal hierarchy, anti-small-world, e.g., nestedness, profiles similar to the Watts-Strogatz network, e.g., spatial or blocks associative.