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Abstract

This paper is devoted to the theoretical and numerical investigation
of the initial boundary value problem for a system of equations used for
the description of waves in coastal areas, namely, the Boussinesq-Abbott
system in the presence of topography. We propose a procedure that allows
one to handle very general linear or nonlinear boundary conditions. It
consists in reducing the problem to a system of conservation laws with
nonlocal fluxes and coupled to an ODE. This reformulation is used to
propose two hybrid finite volumes/finite differences schemes of first and
second order respectively. The possibility to use many kinds of boundary
conditions is used to investigate numerically the asymptotic stability of
the boundary conditions, which is an issue of practical relevance in coastal
oceanography since asymptotically stable boundary conditions would allow
one to reconstruct a wave field from the knowledge of the boundary data
only, even if the initial data is not known.
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1 Introduction

1.1 General motivation and objectives

The dynamics of water waves over a non flat bottom in the littoral area is a
subject of great interest with far-reaching societal and economic stakes. Among
them, one can mention safety aspects linked to the risk of flooding and sailing
accidents, the impact of waves on the morphodynamics of the beach through
sedimentation and erosion, or the issue of marine renewable energies, for which
a good knowledge of the waves dynamics would be beneficial to increase the
yield of offshore mooring systems or to choose pertinent wave farm locations.
When considering coastal flows, it is not always possible to neglect dispersive
effects which play an important role in the shoaling zone and in the generation of
extreme waves. In order to accurately describe these phenomena, one therefore
needs a model of shallow free surface flows that takes into account both nonlinear
and dispersive effects. In this regard, the family of weakly nonlinear vertically-
averaged Boussinesq-type systems is pertinent as it presents a good compromise
between accuracy and reduced complexity compared for instance to the shallow
water system, not accurate enough because it neglects dispersive effects, or to
the fully nonlinear Serre-Green-Naghdi equations, more accurate but also more
complex [25].

For practical applications, one usually considers a bounded spatial domain,
and one has to solve an initial boundary value problem: the solution is computed
at all times in terms of the initial data in the interior of the domain, as well
as of the boundary data imposed at all times on its boundary. In the presence
of dispersive terms, the question of boundary conditions is difficult and widely
open, yet it is crucial for applications. The purpose of this work is to investigate
this issue both theoretically and numerically in the case of the one dimensional
Boussinesq-Abbott model with a non flat bottom, namely,{

∂tζ + ∂xq = 0
(1 + hbTb)∂tq + ∂x(

1
hq

2) + gh∂xζ = 0
t > 0, x ∈ (0, ℓ),

where ζ(t, x) denotes the elevation of the fluid at time t and horizontal coordinate
x with respect to the rest state z = 0; q(t, x) is the horizontal discharge of the
fluid; h(t, x) = h0 + ζ(t, x)− b(x) is the water height, with h0 the characteristic
depth and z = −h0 + b(x) a parametrization of the bottom topography; g is
the acceleration of gravity; and finally Tb is a positive second order differential
operator, whose exact expression is not important at this point. This model was
proposed by Abbott [1] as a variant of the original Boussinesq-Peregrine model,
which is written in terms of ζ and the average velocity v = q/h; see [19] for a
comparison of these two approaches.

More specifically, we propose a new method that enables to prescribe a
nonlinear function of the unknowns (ζ, q) at the boundaries of the domain by a
given function of time. The possibility to enforce such general non homogeneous
boundary conditions is a prerequisite to be able to go beyond simple academic
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test-cases such as solitary waves, and instead force realistic and complex wave
fields in the domain, which typically feature swell and infra-gravity waves
characterized by very disparate spatial scales and multi-directional propagation.
This question is also related to that of asymptotic stability in the following sense:
if we know the boundary data for all times (via buoys measurements for instance)
but not the initial condition, can we expect the solution computed by solving
the initial boundary value problem with an arbitrary initial data to converge in
time to the real solution, and how does the choice of boundary conditions impact
this convergence? This is a completely open theoretical problem, for which we
propose here some numerical insight based on a new second order numerical
scheme.

1.2 State of the art and contribution

Before describing the state of the art for the mathematical and numerical analysis
of the initial boundary value problem associated with nonlinear dispersive models
such as the Boussinesq-Abbott equations, let us recall some elements of the
hyperbolic theory. Indeed, the Boussinesq-Abbott equations are a dispersive
perturbation of the nonlinear shallow water equations that can be deduced from
the Boussinesq-Abbott equations by neglecting the operator Tb, namely,{

∂tζ + ∂xq = 0,

∂tq + ∂x(
1
hq

2) + gh∂xζ = 0
t > 0, x ∈ (0, ℓ).

This model belongs to the class of hyperbolic systems for which initial boundary
value problems are well understood (see for instance [9] as well as [20] for a
detailed analysis of the one dimensional case). As we shall see, despite the fact
that the Boussinesq-Abbott system is a perturbation of the nonlinear shallow
water equations, the behavior of the associated initial boundary value problems
differ drastically. When applied to the nonlinear shallow water equations, the
general theory of hyperbolic systems implies that under certain well identified
conditions, it is possible to solve the equations on a finite domain if we know
ζ and q at t = 0, and if we impose at all times one scalar boundary data at
x = 0 and x = ℓ: typically, one can impose ζ, q or the incoming Riemann
invariant (see in particular V. Dougalis’ contribution for the numerical analysis
of characteristic boundary conditions [2]). The missing boundary data is then
recovered locally through the method of characteristics applied to the outgoing
Riemann invariants. This is a fundamental difference compared to dispersive
models, which do not admit Riemann invariants due to their non hyperbolic
nature, and a consequence is that it is no longer possible to recover the missing
boundary data using local arguments as pointed in [28].

V. Dougalis was a pioneer in the analysis of initial boundary value problems
for Boussinesq-type equations with non trivial (i.e. non periodic) boundary
conditions. In [4] he considered systems of the Bona-Smith family (for which a
dispersive term is also present in the equation for the surface elevation) with non
homogeneous boundary conditions on the surface elevation and on the velocity.
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In the case of homogeneous boundary conditions, he then proposed a numerical
Galerkin-finite element scheme [5]; he even addressed the two-dimensional case
in [18, 17] where he proposed a mathematical and numerical analysis for various
types of homogeneous boundary conditions, still for systems of the Bona-Smith
family. In [3] he considered the ”classical” Boussinesq system (corresponding to
the Boussinesq-Peregrine system with a flat topography), with a homogeneous
boundary condition on the velocity. He also considered the case of a variable
topography [24] with homogeneous condition on the velocity or approximate
transparent boundary conditions. The contribution of V. Dougalis and his
coauthors is without doubt the most important to the theoretical and numerical
analysis of the initial boundary value problem of Boussinesq-type equations.
In the wake of these works, we propose here to investigate the case of non
homogeneous boundary conditions.

Several authors also considered the related problem of transparent boundary
conditions: for the linear KdV, BBM or Boussinesq equations, this was addressed
in [11, 10, 30, 22] while for the nonlinear case approaches based on perfectly
matched layer (PML) methods have been proposed for the KdV equation [12]
and for a hyperbolic relaxation of the Serre-Green–Naghdi equations [21]. This
approach can be adapted to handle the initial boundary value problem; instead
of imposing a boundary condition, one imposes an initial data in the PML. This
is also the idea behind the source function method [33]. These methods are
robust and popular but have the drawback of being only approximations of
the initial boundary value problems and to require to work on a considerably
larger computational domain, at the cost of computational time. Besides let us
mention [29] where a class of boundary conditions for time-discrete Serre-Green-
Naghdi equations are considered.

It was shown recently that wave-structure interaction problems for the
Boussinesq equations could be reduced to initial boundary value problems with
non homogeneous boundary conditions. A new method was proposed to handle
this problem theoretically [15, 7] and numerically [8]; it was also generalized
in [28] to handle generating boundary conditions (the boundary condition is on
the surface elevation ζ). All these references considered the case of the Boussinesq-
Abbott model with a flat topography, and with boundary conditions imposed
on ζ or q. For applications to coastal oceanography it is however important to
consider a non-flat topography, as well as other kinds of boundary conditions.
The goal of this article is to generalize the above method to propose a solution to
these two problems, and to design a general second order well-balanced scheme
to approximate the solutions.

1.3 Organization of the paper

We first propose in Section 2 a theoretical analysis of the initial boundary value
problem associated with the Boussinesq-Abbott when the boundary conditions
are imposed on the surface elevation at x = 0 and x = ℓ. In the case of a flat
bottom, considered in §2.1 this is a generalization of [28] to the case of a finite
interval; in the case of a non-flat topography studied in §2.2, the analysis is
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significantly more involved because some crucial commutation properties used
in [28] are no longer true. Well-posedness is proved using a reformulation of
the original initial boundary value problem as a simple initial value problem
(no boundary condition); a well-balanced version of this formulation is proposed
in §2.3, on which our numerical scheme is based on.

We then consider the case of general boundary conditions in Section 3. We
work in a general framework where a (possibly nonlinear) function of ζ and
q is imposed at each endpoint of the domain; these functions are called input
functions. There exist also in this framework so called output functions and a
reconstruction mapping that allows to recover ζ and q from the knowledge of the
input and output functions, see §3.1. We show in §3.2 that the output functions
can be recovered through the resolution of a first or second order ODE; the
number of initial conditions that must be provided to solve this ODE depends
of course on its order; in addition compatibility conditions must also be imposed
on the data. The analysis of these two types of conditions is performed in §3.3.
The well-posedness of the original initial boundary value problem with general
boundary conditions can then be established in §3.4. We end this section by
commenting in §3.5 on an open theoretical problem of high practical interest: the
asymptotical stability of the boundary conditions. In other terms, the question
is to know whether the solution of the initial boundary value problem can be
asymptotically recovered after a transitory regime if we start from a different
initial data but impose the same boundary data.

We then present in Section 4 the numerical schemes we use in our numerical
simulations. We use an hybrid finite volumes/finite differences approach. We
propose both a first order Lax-Friedrichs scheme in §4.2 and a second order
MacCormack scheme in §4.3.

Numerical simulations are finally presented in Section 5. We first show in §5.1
the ability of our numerical schemes to solve non trivial initial boundary value
problems in the presence of topography. Several kinds of boundary conditions
are investigated. We finally investigate in §5.2 the issue of asymptotic stability.
It is in particular shown that numerical asymptotic stability is achieved by
imposing nonlinear boundary conditions (the Riemann invariants associated
with the nonlinear shallow water equations), but not if we impose the surface
elevation or the discharge at the boundaries. This shows the relevance of being
able to enforce generic nonlinear boundary conditions when dealing with complex
applications of initial boundary value problems.

Acknowledgement. The authors warmly thank Philippe Bonneton for many
fruitful discussions and for his insights on the physical motivations of this work.

2 The Boussinesq-Abbott system with boundary
conditions on the surface elevation

We propose here a theoretical analysis of the initial boundary value problem for
the Boussinesq-Abbott system with boundary conditions on the surface elevation.
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We first treat in §2.1 the case of flat bathymetries; this problem was considered
in [28] on the half-line; we extend it here to treat the case of a finite interval, with
boundary conditions on the surface elevation at both ends. We then consider
in §2.2 the Boussinesq-Abbott equations with topography. As in the case of flat
topography, it is possible to reduce the problem to an initial boundary value
problem, which we use to prove well-posedness, but the analysis is considerably
more difficult because the operator Tb does not commute with space derivatives.
In order to prepare the ground for our numerical scheme, a well balanced version
of this reformulation is proposed in §2.3.

2.1 The case of flat bathymetries

We consider here the case of a flat bathymetry; the Boussinesq-Abbott model
then reduces to {

∂tζ + ∂xq = 0

(1− h2
0

3 ∂2
x)∂tq + ∂xfNSW = 0

in (0, ℓ) ,(1)

where we recall that

fNSW = fNSW(ζ, q) =
1

2
g(h2 − h2

0) +
1

h
q2,

where h = h0 + ζ. The initial boundary value problem for this system was
studied in [28] on the half-line (0,∞), with a prescribed boundary value on the
surface elevation ζ at x = 0 (see also [8] for the case of a prescribed boundary
value on q). We extend this result here to the case of a finite interval (0, ℓ) with
prescribed boundary values on ζ at x = 0 and x = ℓ.

2.1.1 Notations

We first need to introduce R0, the inverse of (1 − h2
0

3 ∂2
x) with homogeneous

Dirichlet boundary data at x = 0 and x = ℓ; more precisely, we set

R0 : f ∈ L2(0, ℓ) 7−→ u ∈ H2(0, ℓ) solving

{ [
1− h2

0

3 ∂2
x

]
u = f

u(0) = u(ℓ) = 0
(2)

(note that R0 is also well defined on H−1(0, ℓ) with values in H1(0, ℓ)). Since,
contrary to [28], we work on a finite interval, we also need to introduce s(0) and
s(ℓ) the solutions of the equations of the homogeneous equation but with non
homogeneous boundary conditions at the left and right boundaries respectively,

(3)

{ [
1− h2

0

3 ∂2
x

]
s(0) = 0

s(0)(0) = 1, s(0)(ℓ) = 0
and

{ [
1− h2

0

3 ∂2
x

]
s(ℓ) = 0

s(ℓ)(0) = 0, s(ℓ)(ℓ) = 1
.

We also denote by S′ the matrix

(4) S′ =

(
(s(0))′(0) (s(ℓ))′(0)
(s(0))′(ℓ) (s(ℓ))′(ℓ)

)
.
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Remark 2.1. One can compute s(0) and s(ℓ) explicitly, namely,

(5) s(0)(x) =
sinh(

√
3 (ℓ−x)

h0
)

sinh(
√
3 ℓ
h0
)

, s(ℓ)(x) =
sinh(

√
3 x
h0
)

sinh(
√
3 ℓ
h0
)
,

from which an explicit expression for S′ easily follows.

We finally introduce the inverse of (1− h2
0

3 ∂2
x) with homogeneous Neumann

boundary data at x = 0 and x = ℓ;

R1 : f ∈ L2(0, ℓ) 7−→ u ∈ H2(0, ℓ) solving

{ [
1− h2

0

3 ∂2
x

]
u = f

∂xu(0) = ∂xu(ℓ) = 0.
.(6)

An important observation is the following commutation property,

(7) ∀f ∈ L2(0, ℓ), R0∂xf = ∂xR1f.

2.1.2 Well-posedness of the initial boundary value problem

We prove here that the initial boundary value problem formed by (1) with
boundary conditions

(8) ζ(·, 0) = g0 and ζ(·, ℓ) = gℓ,

and initial condition

(9) (ζ, q)(0, ·) = (ζ in, qin)

is well posed. Remarking that from the first equation of (15) one has d
dt (ζ(t, 0)) =

−∂xq(t, 0), and proceeding similarly at x = ℓ, a necessary compatibility condition
on the initial and boundary data to allow the possibility of a solution which is
of class C1 at the origin is that

(10)

{
ζ in(0) = g0(0),

−∂xq
in(0) = ġ0(0),

and

{
ζ in(ℓ) = gℓ(0),

−∂xq
in(ℓ) = ġℓ(0).

The key step, in the spirit of [28, 8] is to reformulate the problem as an initial
value problem (no boundary condition).

Proposition 2.2. Assume that the initial and boundary data (ζ in, qin) and
(g0, gℓ) satisfy the compatibility condition (10). Then the two following assertions
are equivalent:
i. The couple (ζ, q) is a regular solution to (1) such that the depth h never
vanishes and with boundary conditions (8) and initial condition (9).
ii. The couple (ζ, q) is a regular solution such that the depth h never vanishes to

(11)

{
∂tζ + ∂xq = 0,

∂tq + ∂x(R1fNSW) = q̇0s
(0) + q̇ℓs

(ℓ),
in (0, ℓ),
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with initial condition (9), and where q0 and qℓ solve the ODE

(12) S′
(
q̇0
q̇ℓ

)
+

3

h2
0

(
fNSW(g0, q0)
fNSW(gℓ, qℓ)

)
= −

(
g̈0
g̈ℓ

)
+

3

h2
0

(
(R1fNSW)|x=0

(R1fNSW)|x=ℓ

)
,

with S′ defined in (4), and with initial condition

(13) q0(0) = qin(0) and qℓ(0) = qin(ℓ).

Proof. Let (ζ, q) be a regular solution to (1) with boundary conditions ζ(·, 0) = g0
and ζ(·, ℓ) = gℓ and initial condition (ζ, q)(0, ·) = (ζ in, qin). By definition of R0,
the second equation of (1) can be rewritten as

∂tq +R0∂xfNSW = q̇0s
(0) + q̇ℓs

(ℓ),

where q0 and qℓ denote the trace of q at x = 0 and x = ℓ respectively. Differenti-
ating with respect to x we get

∂t∂xq + ∂xR0∂xfNSW = q̇0s
′(0) + q̇ℓs

′(ℓ).

Using the first equation one can replace ∂t∂xq = −∂2
t ζ while the identities

R0∂x = ∂xR1 and (1− h2
0

3 ∂2
x)R1 = Id allow us to deduce that

−∂2
t ζ −

3

h2
0

(1−R1)fNSW = q̇0s
′
(0) + q̇ℓs

′
(ℓ).

Taking the trace of this equation at x = 0 and x = ℓ respectively, we therefore
obtain the following differential system on q0 and qℓ,{

s′(0)(0)q̇0 + s′(ℓ)(0)q̇ℓ = − 3
h2
0
fNSW(g0, q0) +

3
h2
0
(R1fNSW)|x=0

− g̈0

s′(0)(ℓ)q̇0 + s′(ℓ)(ℓ)q̇ℓ = − 3
h2
0
fNSW(gℓ, qℓ) +

3
h2
0
(R1fNSW)|x=ℓ

− g̈ℓ;

this shows that the first point of the proposition implies the second one. For
the reverse implication, we can observe that if (ζ, q) and (q0, ql) solve the
above system then (ζ, q) solves the Boussinesq system (1). By taking the
trace of the second equation of (11) at x = 0 and x = ℓ respectively, we also
obtain that d

dtq(t, 0) = q̇0(t) and
d
dtq(t, ℓ) = q̇ℓ(t). Since moreover we take by

assumption q(0, 0) = q0(0) and q(0, ℓ) = qℓ(0), we deduce that q(t, 0) = q0(t)
and q(t, ℓ) = qℓ(t) for all times. In contrast, the boundary conditions (8) are
not necessarily satisfied. However, as for the derivation of (12), we obtain that
(ζ0(t), ζℓ(t)) := (ζ(t, 0), ζ(t, ℓ)) satisfies

S′
(
q̇0
q̇ℓ

)
+

3

h2
0

(
fNSW(ζ0, q0)
fNSW(ζℓ, qℓ)

)
= −

(
ζ̈0
ζ̈ℓ

)
+

3

h2
0

(
(R1fNSW)|x=0

(R1fNSW)|x=ℓ

)
,

and it follows that (ζ0, ζℓ) and (g0, gℓ) satisfy the same second order ODE. We
can therefore conclude that (ζ0, ζℓ) = (g0, gℓ) if and only if

(ζ0(0), ζℓ(0)) = (g0(0), gℓ(0)) and (ζ̇0(0), ζ̇ℓ(0)) = (ġ0(0), ġℓ(0)).

Replacing ∂tζ by −∂xq, these conditions are equivalent to (10). It follows that
the boundary conditions (8) are also satisfied. This concludes the proof of the
proposition.
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The initial value problem formed by (11) and (12) with initial conditions (9)
and (13) is actually an ordinary differential equation onHn(0, ℓ)×Hn+1(0, ℓ)×R2

for (ζ, q, q0, qℓ) if n is a nonnegative integer. The existence of a local in time
solution therefore follows immediately from Cauchy-Lipschitz theorem (we do
not give details for the proof, which can easily be adapted from [28]). Note that
the condition inf(h0 + ζ in) > 0 ensures that the shallow water flux fNSW is well
defined. By Proposition 2.2, this solution furnishes a solution to the original
initial boundary value problem (1), (8) and (9).

Proposition 2.3. Let g0, gℓ ∈ C∞(R+). Let also n ∈ N\{0} and (ζ in, qin) ∈
Hn(0, ℓ)×Hn+1(0, ℓ) be such that inf(h0+ζ in) > 0 and satisfying the compatibility
conditions (10).
Then there exists a maximal existence time T ∗ > 0 and a unique solution
(ζ, q, q0, qℓ) ∈ C∞([0, T ∗);Hn(0, ℓ) × Hn+1(0, ℓ) × R2) to (11) and (12) with
initial conditions (9) and (13), and for all t ∈ [0, T ∗), one has q0(t) = q(t, 0)
and qℓ(t) = q(t, ℓ).

2.2 The Boussinesq-Abbott model with topography

We now consider the full Boussinesq-Abbott model which contains additional
topography terms compared to (1). Throughout this section, we assume that
the bottom is parameterized by a function −h0 + b, with b a smooth function on
[0, ℓ]. We assume also that the depth of the fluid at rest never vanishes, namely,

(14) inf
(0,ℓ)

(h0 − b) > 0.

Denoting hb = h0 − b, the Boussinesq-Abbott model is given by{
∂tζ + ∂xq = 0
(1 + hbTb)∂tq + ∂xfNSW = −gh∂xb

in (0, ℓ) ,(15)

where h now contains an additional topography term, h = h0 + ζ − b, and where
the shallow water flux is still given by

fNSW = fNSW(ζ, q) =
1

2
g(h2 − h2

0) +
1

h
q2,

which is the same expression as in the case of a flat topography, except that h
now depends also on b. The second order operator Tb is given by

Tb(·) = − 1

3hb
∂x

(
h3
b∂x

(·)
hb

)
+

1

2
∂2
xb(16)

and can be alternatively written under the form (see Section 5.6 of [26])

Tb(·) = S∗(hbS(·)
)
+

1

4

(∂xb)
2

hb

with

(17) S(·) = − 1√
3
hb∂x(

1

hb
·) +

√
3

2

∂xb

hb
.
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2.2.1 Notations and preliminary results

We generalize here, in the presence of a non-flat topography, the concepts
introduced in Section 2.1.1. We introduce the operator R0

b as the inverse of
(1 + hbTb) with homogeneous Dirichlet boundary conditions, that is to say

R0
b : f ∈ L2(0, ℓ) 7−→ u ∈ H2(0, ℓ) solving

{ [
1 + hbTb

]
u = f

u(0) = u(ℓ) = 0
;(18)

here again, the operator R0
b can be also extended as an operator mapping

H−1(0, ℓ) to H1(0, ℓ). We also introduce the solutions s(b,0) and s(b,ℓ) of the
homogeneous equation with non homogeneous boundary conditions,
(19){ [

1 + hbTb
]
s(b,0) = 0

s(b,0)(0) = 1, s(b,0)(ℓ) = 0
and

{ [
1 + hbTb

]
s(b,ℓ) = 0

s(b,ℓ)(0) = 0, s(b,ℓ)(ℓ) = 1

and we also denote by S′
b the matrix

(20) S′
b =

(
(s(b,0))′(0) (s(b,ℓ))′(0)
(s(b,0))′(ℓ) (s(b,ℓ))′(ℓ)

)
.

Note that contrary to the case of a flat topography, there is in general no explicit
expression for s(b,0) and s(b,ℓ). We can however prove that S′

b is invertible under
an assumption which is satisfied by all the topography profiles we considered in
this paper, as well as by typical beach profiles.

Proposition 2.4. Assume that (14) is satisfied and that in addition

(21) min
(0,ℓ)

(1 +
1

4
(∂xb)

2 +
1

6
hb∂

2
xb) > 0.

Then the matrix S′
b is invertible and (s(b,0))′(0) ̸= 0 and (s(b,ℓ))′(ℓ) ̸= 0.

Proof. We can remark that

1 + hbTb = −1

3
∂x(h

2
b∂x·)−

1

3
hb(∂xb)∂x + (1 +

1

3
(∂xb)

2 +
1

6
hb∂

2
xb).

For all u ∈ H1(0, ℓ) such that ∂xu(0) = ∂xu(ℓ) = 0, we obtain therefore that

ˆ ℓ

0

u(1+hbTb)u =
1

3

ˆ ℓ

0

(h2
b(∂xu)

2−hb(∂xb)u∂xu)+

ˆ ℓ

0

(1+
1

3
(∂xb)

2+
1

6
hb∂

2
xb)u

2.

Since for all ϵ > 0, one has

−hb(∂xb)u∂xu ≥ − ϵ

2
h2
b(∂xu)

2 − 1

2ϵ
(∂xb)

2u2,

we deduce that
ˆ ℓ

0

u(1+hbTb)u ≥ 1

3
(1− ϵ

2
)

ˆ ℓ

0

h2
b(∂xu)

2+

ˆ ℓ

0

(1+
1

3
(1− 1

2ϵ
)(∂xb)

2+
1

6
hb∂

2
xb)u

2.
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Under the assumptions of the proposition, it is possible to find 1
2 < ϵ < 2 and a

constant Cϵ > 0 such that

ˆ ℓ

0

u(1 + hbTb)u ≥ Cϵ|u|2H1(0,ℓ);

in particular, if u solves (1 + hbTb)u = 0 and satisfies ∂xu(0) = ∂xu(ℓ) = 0, then
one has u ≡ 0.
Now, if the matrix S′

b were not invertible, there would exist (λ, µ) ̸= (0, 0) such
that the function s := λ(s(b,0)) + µ(s(b,ℓ)) would satisfy s′(0) = s′(ℓ) = 0. From
the above considerations, one would have s ≡ 0, which is not possible since
s(0) = λ and s(ℓ) = µ and (λ, µ) ̸= (0, 0).
In order to prove that (s(b,0))′(0) ̸= 0, we can modify the arguments above to
get that if u ∈ H1(0, ℓ) is such that u′(0) = 0 and u(ℓ) = 0 then u ≡ 0. If we
had (s(b,0))′(0) = 0 then (s(b,0)) would be such a function and would identically
vanish, which is absurd. We get similarly that (s(b,ℓ))′(ℓ) ̸= 0, which concludes
the proof.

Another important difference with the case of flat topography is that the
commutation property (7) is no longer true, that is, in general we have R0

b∂x ̸=
R1

b∂x if we define R1
b as the inverse of (1 + hbTb) with homogeneous Neumann

boundary conditions. We can however define R1
b as follows

R1
b : f ∈ L2(0, ℓ) 7−→ u ∈ H2(0, ℓ)

where u solves { [
1 + 1

hb
(hbS)

(
hb

αb
(hbS)

∗)]u = f,

(hbS)
∗u(0) = (hbS)

∗u(ℓ) = 0,
(22)

and with αb = 1 + 1
4 (∂xb)

2. The following proposition shows that there is
a commutation property that generalizes the identity R0∂x = ∂xR

1 for the
Boussinesq-Abbott model with topography.

Proposition 2.5. For all f ∈ H1(0, ℓ), the following identity holds

R0
b∂xf =

√
3
hb

αb
(hbS)

∗(R1
b(

1

h2
b

f))− 3

2
R0

b

(∂xb
hb

f
)
,

where αb = 1 + 1
4 (∂xb)

2, and where we recall that S(·) is defined in (17).

Remark 2.6. When b ≡ 0 then hb = h0, R
0
b = R0, R1

b = R1 and S∗ = 1√
3
∂x, so

that the identity of the lemma coincides with the identity R0∂x = ∂xR
1 obtained

previously.

Proof. Let us first remark that one can write

(23) 1 + hbTb = αb + hbS
∗(hbS(·)

)
;

11



it follows that the equation (1 + hbTb)u = ∂xf can be equivalently written under
the form [αb

hb
+ S∗(hbS(·)

)]
u =

1

hb
∂xf

= S∗(

√
3

hb
f)− 3

2

1

h2
b

(∂xb)f.(24)

We now need the following lemma.

Lemma 2.7. For all f̃ ∈ L2(0, ℓ), the following identity holds,

R0
b

(
hbS

∗f̃
)
=

hb

αb
(hbS)

∗(R1
b(

f̃

hb
)).

Proof of the lemma. Let us write v = R1
b(

f̃
hb
); by definition, one has{ [

1 + 1
hb
(hbS)

(
hb

αb
(hbS)

∗(·)
)]
v = 1

hb
f̃

(hbS)
∗v(0) = (hbS)

∗v(ℓ) = 0;

Applying (hbS)
∗ to the equation, one finds that

[
(hbS)

∗ + S∗(hbS)
(hb

αb
(hbS)

∗(·)
)]
v = S∗f̃

or equivalently [
αb + hbS

∗(hbS)
](hb

αb
(hbS)

∗(v)
)
= hbS

∗f̃ ;

using (23), we deduce that

[
1 + hbTb

](hb

αb
(hbS)

∗(v)
)
= hbS

∗f̃

Since moreover
(
hb

αb
(hbS)

∗(v)
)
vanishes at x = 0, ℓ, we use the definition of R0

b

to conclude that
hb

αb
(hbS)

∗(v) = R0
b

(
hbS

∗f̃
)
,

which proves the lemma.

Owing to (23), one can write (24) under the form

R0
b∂xf = R0

b

(
hbS

∗(

√
3

hb
f)
)
− 3

2
R0

b

(∂xb
hb

f
)
,

so that the result follows by applying the lemma with f̃ =
√
3

hb
f .
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2.2.2 Well-posedness of the initial boundary value problem

We prove here that the initial boundary value problem formed by (15) with
boundary conditions

(25) ζ(·, 0) = g0 and ζ(·, ℓ) = gℓ,

and initial condition

(26) (ζ, q)(0, ·) = (ζ in, qin)

is well posed. As seen previously, a necessary compatibility condition on the
initial and boundary data to allow the possibility of a solution which is of class
C1 at the origin is that

(27)

{
ζ in(0) = g0(0),

−∂xq
in(0) = ġ0(0),

and

{
ζ in(ℓ) = gℓ(0),

−∂xq
in(ℓ) = ġℓ(0).

We first state the following generalization of Proposition 2.2 to the Boussinesq-
Abbott model, in which we use the notation

(28) B(ζ, q) = −gh∂xb+
3

2

∂xb

hb
fNSW.

We also introduce the two dimensional vectors

(29) Vbdry(ζ0, q0, ζℓ, qℓ) =

(
3

hb(0)2
fNSW(ζ0, q0)

3
hb(ℓ)2

fNSW(ζℓ, qℓ)

)

which depends only on the boundary values of (ζ, q), and

(30) Vint[ζ, q] =

(
3(R1

b(
1
h2
b
fNSW))|x=0

−
(
∂x(R

0
bB)

)
|x=0

3(R1
b(

1
h2
b
fNSW))|x=ℓ

−
(
∂x(R

0
bB)

)
|x=ℓ

)
,

which is a nonlocal function of the interior values of ζ and q on the whole interval
(0, ℓ).

Proposition 2.8. Let the bottom parametrization b satisfy (14) and (21). As-
sume that the initial and boundary data (ζ in, qin) and (g0, gℓ) satisfy the compat-
ibility condition (27). Then the two following assertions are equivalent:
i. The couple (ζ, q) is a regular solution to (15) such that the depth h never
vanishes and with boundary conditions (25) and initial condition (26).
ii. The couple (ζ, q) is a regular solution such that the depth h never vanishes to
(31){

∂tζ + ∂xq = 0,

∂tq +
√
3 hb

αb
(hbS)

∗(R1
b(

1
h2
b
fNSW)) = R0

bB + q̇0s
(b,0) + q̇ℓs

(b,ℓ),
in (0, ℓ),

13



where we recall that (hbS)
∗ = 1√

3
1
hb
∂x(h

2
b ·) +

√
3
2 ∂xb and that B(ζ, q) is given

by (28), and with initial condition (26), while q0 and qℓ solve the ODE

S′
b

(
q̇0
q̇ℓ

)
+ Vbdry(g0, q0, gℓ, qℓ) = Vint[ζ, q]−

(
g̈0
g̈ℓ

)
,(32)

with S′
b defined in (20), and with initial condition

(33) q0(0) = qin(0) and qℓ(0) = qin(ℓ).

Remark 2.9. When b = 0 (flat topography), one can check that fb = R1fNSW

and gb = 0, so that (31) coincides as expected with (11).

Proof. We proceed as in the proof of Proposition 2.2. Applying R0
b to the

equation in q, and using Proposition 2.5, we first obtain

∂tq +
√
3
hb

αb
(hbS)

∗(R1
b(

1

h2
b

fNSW))− 3

2
R0

b

(∂xb
hb

fNSW

)
= −gR0

b(h∂xb) + q̇0s
(b,0) + q̇ℓs

(b,ℓ).

Regrouping the terms involving R0
b , one deduces the second equation of (31).

Applying ∂x to this equation and using the equation on ζ, we then get

−∂2
t ζ +

√
3∂x
[hb

αb
(hbS)

∗(R1
b(

1

h2
b

fNSW))
]
− 3

2
∂x
[
R0

b

(∂xb
hb

fNSW

)]
= −g∂xR0

b(h∂xb) + q̇0(s
(b,0))′ + q̇ℓ(s

(b,ℓ))′.(34)

We now need the following lemma.

Lemma 2.10. For all f̃ ∈ L2(0, ℓ), one has

√
3∂x
[hb

αb
(hbS)

∗(R1
b f̃)
]
|x=0,ℓ

= −3
[
(f̃ −R1

b f̃)
]
|x=0,ℓ

.

Proof. One can notice that
√
3∂x = −3S + β, where β is a function whose exact

expression is of no importance here. We then have

√
3∂x
[hb

αb
(hbS)

∗(R1
b f̃)
]
= − 3

hb
(hbS)

[hb

αb
(hbS)

∗(R1
b f̃)
]
+ β

hb

αb
(hbS)

∗(R1
b f̃);

by definition of R1
b , one has (hbS)

[
hb

αb
(hbS)

∗(R1
b f̃)
]
= hbf̃ − hbR

1
b f̃ so that

√
3∂x
[hb

αb
(hbS)

∗(R1
b f̃)
]
= −3(f̃ −R1

b f̃) + β
hb

αb
(hbS)

∗(R1
b f̃).

Since by construction (hbS)
∗(R1

b f̃) vanishes at x = 0 and x = ℓ, the result follows
upon taking the trace of the above identity at the two boundary points.
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Taking the trace of (34) at x = 0 ad x = ℓ and using the lemma with

f̃ = 1
h2
b
fNSW, we get that q0 and ql satisfy the differential system

q̇0s
′
(b,0)(0) + q̇ℓs

′
(b,ℓ)(0)− g

(
∂xR

0
b(h∂xb)

)
0
=

−g̈0 − 3
hb(0)2

fNSW(g0, q0) + 3
(
R1

b(
1
h2
b
fNSW)

)
0
− 3

2

[
∂xR

0
b

(
∂xb
hb

fNSW

)]
0
,

q̇ℓs
′
(b,0)(ℓ) + q̇ℓs

′
(b,ℓ)(ℓ)− g

(
∂xR

0
b(h∂xb)

)
ℓ
=

−g̈ℓ − 3
hb(ℓ)2

fNSW(gℓ, qℓ) + 3
(
R1

b(
1
h2
b
fNSW)

)
ℓ
− 3

2

[
∂xR

0
b

(
∂xb
hb

fNSW

)]
ℓ
,

which corresponds to (32). The end of the proof is as in Proposition 2.2.

The well-posedness of the initial value problem given in the second point of
the proposition is simply obtained as for Proposition 2.3 from Cauchy-Lipschitz
theorem.

Proposition 2.11. Assume that b is a smooth function satisfying (14) and (21).
Let g0, gℓ ∈ C∞(R+). Let also n ∈ N\{0} and (ζ in, qin) ∈ Hn(0, ℓ)×Hn+1(0, ℓ)
be such that inf [0,ℓ](h0 − b + ζ in) > 0 and assume that the compatibility con-
ditions (27) hold. Then there exists a maximal existence time T ∗ > 0 and a
unique solution (ζ, q, q0, qℓ) ∈ C∞([0, T ∗);Hn(0, ℓ) × Hn+1(0, ℓ) × R2) to (31)
and (32) with initial conditions (26) and (33), and for all t ∈ [0, T ∗), one has
q0(t) = q(t, 0) and qℓ(t) = q(t, ℓ), and inf [0,ℓ](h0 − b+ ζ(t, ·)) > 0.

Proof. The system (31)-(32) can be rewritten as

d

dt
U = F[t,U]

with U = (ζ, q, q0, qℓ)
T and

F[t,U] = (−∂xq,−∂x(fb[ζ, q]) + gb[ζ, q] +
(

s(b,0)

s(b,ℓ)

)
· hb[t,U],hb[t,U]T)T,

where

hb[t,U] = (S′
b)

−1
[
− Vbdry(g0(t), q0, gℓ(t), qℓ) + Vint[ζ, q]−

(
g̈0(t)
g̈ℓ(t)

)]
.

Let X = Hn(0, ℓ)×Hn+1(0, ℓ)×R2 and Ω ⊂ X the open subset of X consisting of
all U = (ζ, q, q0, qℓ)

T ∈ X such that inf(0,ℓ)(h0 + ζ − b) > 0. Then it follows from
standard product estimates, and because R0

b and R1
b map Hn(0, ℓ) to Hn+2(0, ℓ),

that F : R+×Ω → X is well-defined, continuous and locally-Lipschitz with respect
to U. By Cauchy-Lipschitz theorem, for all initial data Uin ∈ Ω there exists
therefore a maximal solution U ∈ C1([0, T ∗],Ω), with T ∗ > 0, and moreover
this solution belongs to U ∈ C∞([0, T ∗],Ω). The result then follows from
Proposition 2.8.
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2.3 A reformulation adapted to well-balancedness

Since the steady state (ζ, q) = (0, 0) (lake at rest) solves the system (31)-(32)
with boundary data g0 = gℓ = 0, one gets in particular the following identity
from the second equation of (31)

√
3
hb

αb
(hbS)

∗(R1
b(

1

h2
b

fNSW(0, 0))) = R0
bB(0, 0).

In the presence of topography, both terms of this identity are nonzero. Sub-
tracting this identity to the second equation of (31), one obtains the following
equivalent formulation
(35){

∂tζ + ∂xq = 0,

∂tq +
√
3 hb

αb
(hbS)

∗(R1
b(

1
h2
b
f̃NSW)) = R0

bB̃ + q̇0s
(b,0) + q̇ℓs

(b,ℓ),
in (0, ℓ),

where, denoting f̃NSW(ζ, q) := fNSW(ζ, q)− fNSW(0, 0), one has

(36) B̃(ζ, q) = −gζ∂xb+
3

2

∂xb

hb
f̃NSW.

Proceeding similarly with (32) we get that q0 and qℓ solve the ODE

S′
b

(
q̇0
q̇ℓ

)
+ Ṽbdry(g0, q0, gℓ, qℓ) = Ṽint[ζ, q]−

(
g̈0
g̈ℓ

)
,(37)

with

(38) Ṽbdry(ζ0, q0, ζℓ, qℓ) =

(
3

hb(0)2
f̃NSW(ζ0, q0)

3
hb(ℓ)2

f̃NSW(ζℓ, qℓ)

)

and

(39) Ṽint[ζ, q] =

(
3(R1

b(
1
h2
b
f̃NSW))|x=0

−
(
∂x(R

0
bB̃)

)
|x=0

3(R1
b(

1
h2
b
f̃NSW))|x=ℓ

−
(
∂x(R

0
bB̃)

)
|x=ℓ

)
,

In order to obtain well-balanced numerical schemes, we will use (35) and (37)
rather than (31) and (32).

3 More general boundary conditions

In the previous sections, we considered the Boussinesq-Abbott system (15) on a
finite interval (0, ℓ) and with imposed boundary conditions at x = 0 and x = ℓ
on the surface elevation ζ. In some situations, one may have to impose rather a
boundary condition on q, or an a function of ζ and q such as a Riemann invariant
of the nonlinear shallow water system.
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Denoting (ζ0, q0) = (ζ, q)|x=0
and (ζℓ, qℓ) = (ζ, q)|x=ℓ

, we study in this section
the possibility of imposing more general boundary conditions which take the
form

ξ+0 (ζ0, q0) = g0, ξ−ℓ (ζℓ, qℓ) = gℓ,(40)

where the data (g0, gℓ) are given functions of time, and where ξ+0 (ζ, q) and
ξ−ℓ (ζ, q) are functions of ζ and q; we refer to ξ+0 (ζ, q) and ξ−ℓ (ζ, q) as the input
functions.

In order to solve the initial boundary value problem associated with (40), an
essential point is to compute the traces of ζ and q at the boundaries x = 0 and
x = ℓ. This is done in two steps. We first need two output functions that can be
found in terms of the input functions; we then reconstruct the traces of ζ and
q in terms of the input and output functions. These two steps are explained
in §3.1. We then derive in §3.2 an ODE that can be used to compute the output
functions. In §3.3, we discuss the issue of providing initial data to this ODE, as
well as the issue of compatibility conditions between initial and boundary data.
We can then state and prove in §3.4 our main well-posedness result. We finally
introduce in §3.5 the issue of asymptotic stability which is an open theoretical
problem that will be numerically investigated later in Section 5.

3.1 The output functions and the reconstruction mappings

We assume that there exist two other functions ξ−0 (·, ·) and ξ+ℓ (·, ·), referred to as
the output functions, and such that (ζ0, q0) can be recovered from the knowledge
of g0 and ξ−0 (ζ0, q0) and similarly, (ζℓ, qℓ) can be recovered from the knowledge
of gℓ and ξ+0 (ζℓ, qℓ). More precisely, we make the following assumption.

Assumption 3.1. There exists a non-empty connected open set U ⊂ R2 verify-
ing (0, 0) ∈ U such that the following conditions hold:
i. The input functions ξ+0 : U → R and ξ−ℓ : U → R are well defined and smooth;
ii. There are two output functions ξ−0 : U → R and ξ+ℓ : U → R and two
open sets V0 and Vℓ that contain the range of the mappings ξ0 : U ∋ (ζ, q) 7→
(ξ+0 (ζ, q), ξ

−
0 (ζ, q)) ∈ R2 and ξℓ : U ∋ (ζ, q) 7→ (ξ+ℓ (ζ, q), ξ

−
ℓ (ζ, q)) ∈ R2 respec-

tively, as well as two smooth mappings H0 : V0 → R2 and Hℓ : Vℓ → R2 such
that for all (ζ, q) ∈ U , one has

(41) H0(ξ
+
0 (ζ, q), ξ

−
0 (ζ, q)) = (ζ, q)T and Hℓ(ξ

+
ℓ (ζ, q), ξ

−
ℓ (ζ, q)) = (ζ, q)T;

we refer to H0 and Hℓ as the reconstruction mappings.

Example 3.2. For instance, let us impose the boundary conditions ζ0 = g0 and
R−(ζℓ, qℓ) = gℓ, where R−(ζ, q) = q

h0+ζ−b − 2
√
g(h0 + ζ − b) is the left-going

Riemann invariant associated with the nonlinear shallow water equations. With
the above notations, this amounts to take

ξ+0 (ζ, q) = ζ and ξ−ℓ (ζ, q) = R−(ζ, q).
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We can then choose

ξ−0 (ζ, q) = q and ξ+ℓ (ζ, q) = R+(ζ, q),

where R+ = q
h0+ζ−b + 2

√
g(h0 + ζ − b) is the right-going analogue of R−. The

corresponding maps H0 and Hℓ are then given by

H0(ξ
+, ξ−) = (ξ+, ξ−)T,

Hℓ(ξ
+, ξ−) =

( 1

16g
(ξ+ − ξ−)2 − h0 + b,

ξ+ + ξ−

32g
(ξ+ − ξ−)2

)T
.

3.2 Equations for the output functions

If Assumption 3.1 holds, the knowledge of the output functions ξ−0 (ζ, q) and
ξ+ℓ (ζ, q), together with the boundary conditions set on the input functions
ξ+0 (ζ, q) and ξ−ℓ (ζ, q) allow one to determine the traces of ζ and q at x = 0 and
x = ℓ. The issue know is to be able to compute the output functions ξ−0 (ζ, q)
and ξ+ℓ (ζ, q). In the (hyperbolic) case of the nonlinear shallow water equations,
this can be done using the characteristic equations satisfied by the Riemann
invariants, provided that the input functions ξ±0 and ξ±ℓ are correctly chosen
(see [20] for a full analysis of 1D hyperbolic initial boundary value problems).

Due to the presence of dispersion, there are no Riemann invariants associated
with the Boussinesq-Abbott model. However, we can notice that the relation (37)
stems from a more general differential identity that relates ζ0, q0, ζℓ and qℓ,
namely,

S′
b

(
q̇0
q̇ℓ

)
+ Ṽbdry(ζ0, q0, ζℓ, qℓ) = Ṽint[ζ, q]−

(
ζ̈0
ζ̈ℓ

)
;(42)

in fact we see that (42) reduces to (37) when enforcing (ζ0, ζℓ) = (g0, gℓ). We
now show how to use this differential identity to compute ξ−

0
:= ξ−0 (ζ0, q0)

and ξ+
ℓ
:= ξ+ℓ (ζℓ, qℓ) when enforcing the general boundary conditions (40). By

definition of H0 and Hℓ, and using the boundary conditions (40), one has(
ζ0
q0

)
= H0(g0, ξ

−
0
) and

(
ζℓ
qℓ

)
= Hℓ(ξ

+

ℓ
, gℓ);

denoting H0 = (H0,1,H0,2)
T and Hℓ = (Hℓ,1,Hℓ,2)

T, one deduces that

(43) q̇0 = ∇H0,2(g0, ξ
−
0
) ·
(
ġ0
ξ̇−
0

)
and q̇ℓ = ∇Hℓ,2(ξ

+

ℓ
, gℓ) ·

(
ξ̇+
ℓ
ġℓ

)
as well as

ζ̈0 = ∇H0,1(g0, ξ
−
0
) ·
(
g̈0
ξ̈−
0

)
+

(
ġ0
ξ̇−
0

)
·HessH0,1

(g0, ξ
−
0
)

(
ġ0
ξ̇−
0

)
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ζ̈ℓ = ∇Hℓ,1(ξ
+

ℓ
, gℓ) ·

(
ξ̈+
ℓ
g̈ℓ

)
+

(
ξ̇+
ℓ
ġℓ

)
·HessHℓ,1

(ξ+
ℓ
, gℓ)

(
ξ̇+
ℓ
ġℓ

)
,

where HessH0,1
and HessHℓ,1

denote the 2× 2 Hessian matrices of H0,1 and Hℓ,1

respectively. Introducing the matrices

Dj =

(
∂1H0,j(g0, ξ

−
0
) 0

0 ∂2Hℓ,j(ξ
+

ℓ
, gℓ)

)
and

D̃j =

(
∂2H0,j(g0, ξ

−
0
) 0

0 ∂1Hℓ,j(ξ
+

ℓ
, gℓ)

)
,

and the quadratic forms defined on R2 by

Q1(u0, v0) =

(
u0

v0

)
·HessH0,1

(g0, ξ
−
0
)

(
u0

v0

)
,

Q2(uℓ, vℓ) =

(
uℓ

vℓ

)
·HessHℓ,1

(ξ+
ℓ
, gℓ)

(
uℓ

vℓ

)
,

we deduce from (42) the following systems of two scalar ODEs on (ξ−
0
, ξ+

ℓ
),

D̃1

(
ξ̈−
0

ξ̈+
ℓ

)
+S′

bD̃2

(
ξ̇−
0

ξ̇+
ℓ

)
+

(
Q1(ġ0, ξ̇

−
0
)

Q2(ξ̇
+

ℓ
, ġℓ)

)
+ Ṽbdry

(
H0(g0, ξ

−
0
),Hℓ(ξ

+

ℓ
, gℓ)

)
= Ṽint[ζ, q]−D1

(
g̈0
g̈ℓ

)
−S′

bD2

(
ġ0
ġℓ

)
.(44)

The order of this system of ODEs depends on whether the coefficients of D̃1

vanish or not. We make the following assumption which ensures that (44) can
be put as a system of explicit ODEs of first or second order on ξ−

0
and ξ+

ℓ
.

Assumption 3.3. Under Assumption 3.1 and with the same notations, we
assume that:
i. Either ∂2H0,1 ≡ 0 and ∂2H0,2 does not vanish on V0, or ∂2H0,1 does not
vanish on V0;
ii. Either ∂1Hℓ,1 ≡ 0 and ∂1Hℓ,2 does not vanish on V0, or ∂1Hℓ,1 does not
vanish on Vℓ

Remark 3.4. If ∂2H0,1 ≡ 0 on V0 then Q1(ġ0,
˙ξ−
0
) = ∂2

1H0,1(g0, ξ
−
0
)ġ20 which is

independent of ξ−
0
. The system of ODEs (44) is therefore of order 1 in ξ−

0
and

can be put in explicit form if ∂2H0,2 does not vanish. A similar comment can be
made for the ODE on ξ+

ℓ
.

Example 3.5. Considering the same configuration as in Example 3.2, and with
the same notations, one readily checks that ∂2H0,1 = 0 and ∂2H0,2 = 1 so that
the first point of the assumption is satisfied. Moreover, in this case, Q1 = 0.
We also compute ∂1Hℓ,1 = 1

8g (ξ
+ − ξ−). It is possible to choose the open set Vℓ
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in such a way that ξ+ − ξ− > 0 for all (ξ+, ξ−) ∈ Vℓ provided that we assume
the total water height h never vanishes. Assumption 3.3 is therefore satisfied.
Recalling the definition (20) of S′

b, the system (44) can be put under the form

T

(
ξ̇−
0

ξ̈+
ℓ

)
+S′

bD̃2

(
0

ξ̇+ℓ

)
+

(
0

Q2(ξ̇
+

ℓ
, ġℓ)

)
+ Ṽbdry

(
H0(g0, ξ

−
0
),Hℓ(ξ

+

ℓ
, gℓ)

)
= Ṽint[ζ, q]−D1

(
g̈0
g̈ℓ

)
−S′

bD2

(
ġ0
ġℓ

)
,(45)

where T is the triangular matrix

T =

(
(sb,0)′(0) 0
(sb,0)′(ℓ) ∂1Hℓ,1(ξ

+

ℓ
, gℓ)

)
.

Under the assumption on b made in the statement of Proposition 2.4, one has
(sb,0)′(0) ̸= 0 and T is invertible, and the system (45) therefore furnishes an
ODE in explicit form of first order in ξ−

0
and second order on ξ+

ℓ
. For all the

applications considered in this paper, we will always have ODEs of second order,
except when the boundary condition is imposed on the surface elevation (as in
this example at x = 0).

We can notice that if ξ+0 (ζ, q) = q (boundary condition on the discharge q
at x = 0), and if we choose ξ−0 (ζ, q) = ζ as output function, then H0(ξ

+, ξ−) =
(ξ−, ξ+) and in particular ∂1H0,1 ≡ 0. We make the following assumption to
ensure that if we make another choice of input function, then ∂1H0,1 does not
vanish.

Assumption 3.6. Under Assumption 3.1 and with the same notations, we
assume that:
i. If ∂1H0,1 vanishes on V0 then ξ+0 (ζ, q) = ξ+0 (q) on U .
ii. If ∂2Hℓ,1 vanishes on Vℓ then ξ−ℓ (ζ, q) = ξ−ℓ (q) on U .

3.3 Compatibility conditions and initial conditions for the
output functions

If the initial condition (ζ, q)|t=0
= (ζ in, qin) is imposed for the Boussinesq-

Abbott system, then a necessary compatibility condition with the boundary
conditions (40) to allow solutions that are continuous at (t = 0, x = 0, ℓ) is that

(46) ξ+0 (ζ
in(0), qin(0)) = g0(0) and ξ−ℓ (ζ in(ℓ), qin(ℓ)) = gℓ(0);

these conditions generalize the first condition of (27). In order to solve (44), one
also has to prescribe initial data on ξ−

0
and ξ+

ℓ
; one naturally takes

(47) ξ−
0
(0) = ξ−0 (ζ in(0), qin(0)) and ξ−

ℓ
(0) = ξ+ℓ (ζ

in(ℓ), qin(ℓ)).

By definition of H0 and Hℓ, we know that

ζ̇0 = ∂1H0,1(g0, ξ
−
0
)ġ0 + ∂2H0,1(g0, ξ

−
0
)ξ̇−

0
,
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ζ̇ℓ = ∂1Hℓ,1(ξ
+

ℓ
, gℓ)ξ̇

+

ℓ
+ ∂2Hℓ,1(ξ

+

ℓ
, gℓ)ġℓ.

Using the first equation of the Boussinesq-Abbott system (15), we can replace
ζ̇0(t) by −∂xq(t, 0) (and proceed similarly at x = ℓ) to obtain

(48)

{
∂2H0,1(g0(0), ξ

−
0
(0)) ξ̇−

0
= −∂xq

in(0)− ∂1H0,1(g0(0), ξ
−
0
(0))ġ0(0),

∂1Hℓ,1(ξ
+

ℓ
(0), gℓ(0)) ξ̇

+

ℓ
= −∂xq

in(ℓ)− ∂2Hℓ,1(ξ
+

ℓ
(0), gℓ(0))ġℓ(0),

where we assumed that the solution was regular enough to take the trace at
(t = 0, x = 0, ℓ). Depending on the situation, these conditions can be either a
compatibility condition in the boundary and initial data to allow the possibility
of regular solutions, or an initial condition for ξ̇−

0
(0) or ξ̇+

ℓ
(0). More precisely:

• If (44) is of second order on ξ−
0
(resp. on ξ+

ℓ
), then an initial condition is also

needed on ξ̇−
0

(resp. on ξ̇+
ℓ
). Remarking further that under Assumption 3.3,

∂2H0,1 does not vanish if (44) is of second order in ξ−
0

(resp. ∂1Hℓ,1 does

not vanish if (44) is of second order in ξ+
ℓ
), (48) furnishes the needed initial

data for ξ̇−
0

(resp. on ξ̇+
ℓ
).

• If (44) is of first order on ξ−
0

(resp. on ξ+
ℓ
) then by Assumption 3.3 one has

∂2H0,1 ≡ 0 (resp. ∂1Hℓ,1 ≡ 0), and (48) is then a compatibility condition
on the data that generalizes the second equations in the compatibility
conditions (27) imposed in Proposition 2.11.

Example 3.7. For the configuration considered in Examples 3.2 and 3.5, and
assuming that (46) holds, the ODE is of first order on ξ−

0
and of second order

in ξ+
ℓ
. The initial conditions we need to impose are therefore (47) and also, at

x = ℓ, the second condition of (48). In order to expect C1 solutions at the origin,
we also need to impose at x = 0 a compatibility condition on the initial and
boundary data, which is given by the first equation of (47) (and which coincides
in this case with the compatibility condition (27), namely, −∂xq

in(0) = ġ0).

3.4 Well-posedness of the initial boundary value problem
with general boundary conditions

We can now state the main result of this paper, which proves the well-posedness
of the Boussinesq-Abbott system (15) with general boundary conditions (40).
Proposition 2.11 is a particular case of the theorem, corresponding to ξ+0 (ζ, q) =
ξ−ℓ (ζ, q) = ζ.

Theorem 3.8. Assume that b is a smooth function satisfying (14) and (21).
Let also ξ+0 and ξ−ℓ be two input functions, ξ−0 and ξ+ℓ be two output functions,
and H0 and Hℓ be reconstruction mappings that satisfy Assumptions 3.1, 3.3
and 3.6.
Let g0, gℓ ∈ C∞(R+). Let also n ∈ N\{0} and (ζ in, qin) ∈ Hn(0, ℓ)×Hn+1(0, ℓ)
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be such that inf [0,ℓ](h0 − b+ ζ in) > 0 and assume that the compatibility condi-
tion (46) holds. If moreover ∂2H0,1 ≡ 0 (resp. ∂1Hℓ,1 ≡ 0) then we also assume
that the first (resp. the second) compatibility condition of (48) holds.
Then there exists a maximal existence time T ∗ > 0 and a unique solution
(ζ, q) ∈ C∞([0, T ∗);Hn(0, ℓ)×Hn+1(0, ℓ)) to the Boussinesq-Abbott system (15)
with initial conditions (26) and boundary conditions (40), and moreover for all
t ∈ (0, T ∗), one has inf [0,ℓ](h0 − b+ ζ(t, ·)) > 0.

Proof. From the analysis of §3.2 and with the same notations, we know that if
such a solution exists, then (ζ, q) solves the system (35). Substituting for q̇0 and
q̇ℓ in the right-hand side of (35) using (43), we obtain that

(49)


∂tζ + ∂xq = 0,

∂tq +
√
3 hb

αb
(hbS)

∗(R1
b(

1
h2
b
f̃NSW)) = R0

bB̃

+∇H0,2(g0, ξ
−
0
) ·

(
ġ0

ξ̇−
0

)
s(b,0) +∇Hℓ,2(ξ

+

ℓ
, gℓ) ·

(
ξ̇+
ℓ

ġℓ

)
s(b,ℓ),

This system is complemented by the ODE (44) for (ξ−
0
, ξ+

ℓ
) which can be of

first or second order in ξ−
0

or ξ+
ℓ
. We now distinguish several cases and, for the

sake of clarity, focus our attention at x = 0, the adaptations to x = ℓ being
straightforward.

• If ∂2H0,1 ≡ 0, then by Assumption 3.3 we know that ∂2H0,2 does not vanish
and the ODE (44) is explicit and of first order in ξ−

0
. The needed initial

condition on ξ−
0

is furnished by (47).

• If this is not the case then ∂2H0,1 does not vanish in virtue of Assumption 3.3,
and the ODE (44) is explicit and of second order in ξ−

0
. In addition to the

initial condition on ξ−
0

furnished by (47), we need an initial condition on ξ̇−
0
,

which is furnished by (48).

In all cases, we can use as in the proof of Proposition 2.11 the Cauchy-Lipschitz
theorem to construct a solution (ζ, q, ξ−

0
, ξ+

ℓ
) to the initial value problem formed

by (49), (44) and the initial conditions. We need to prove now that (ζ, q) solves
the Boussinesq-Abbott system (15) with initial conditions (26) and boundary
conditions (40).
Applying (1+hbTb) to (49), we obtain that (ζ, q) solves (15); it remains to prove
that the boundary conditions (40) are satisfied. Taking the trace of the second
equation of (49) at x = 0 and x = ℓ, we deduce from (18), (19) and (22) that

d

dt
q(t, 0) =

d

dt
H0,2(g0, ξ

−
0
) and

d

dt
q(t, ℓ) =

d

dt
Hℓ,2(ξ

+

ℓ
, gℓ).

Since we also know from Assumption 3.1 and (47) that H0,2(g0, ξ
−
0
)|t=0

= qin(0)

and Hℓ,2(ξ
+

ℓ
, gℓ)|t=0

= qin(ℓ), it follows that for all time, one has q(t, 0) =

H0,2(g0, ξ
−
0
) and q(t, ℓ) = Hℓ,2(ξ

+

ℓ
, gℓ). We here again have to distinguish two

cases, and as above we focus our attention at x = 0.
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• If ξ+0 (ζ, q) = q then one has H0,2(ξ
+, ξ−) = ξ+ so that we deduce that

q(t, 0) = g0, which is exactly the boundary condition (40).

• If this is not the case, then we know by Assumption 3.6 that ∂1H0,1(ξ
+, ξ−)

does not vanish on V0; therefore the ODE

D̃1

(
ξ̈−
0

ξ̈+
ℓ

)
+S′

bD̃2

(
ξ̇−
0

ξ̇+
ℓ

)
+

(
Q1(ξ̇

+

0
, ξ̇−

0
)

Q2(ξ̇
+

ℓ
, ξ̇−

ℓ
)

)
+ Ṽbdry(H0(ξ

+

0
, ξ−

0
),Hℓ(ξ

+

ℓ
, ξ+

ℓ
))

= Ṽint[ζ, q]−D1

(
ξ̈+
0

ξ̈−
ℓ

)
−S′

bD2

(
ξ̇+
0

ξ̇−
ℓ

)
.

which is obtained as (44), is of second order in ξ+
0
= ξ+0 (ζ0, q0). It follows

that (ξ+
0
, ξ−

ℓ
) satisfy the same ODE as (g0, gℓ). These two quantities are

therefore equal (which implies that the boundary condition (40) is satisfied)
if (ξ+

0
(0), ξ−

ℓ
(0)) = (g0(0), gℓ(0)) and (ξ̇+

0
(0), ξ̇−

ℓ
(0)) = (ġ0(0), ġℓ(0)). The

first of these two conditions corresponds to (46). For the second one (focusing
our attention on the case x = 0), we observe by time differentiating the
relation H0,1(ξ

+

0
, ξ−

0
) = ζ(t, 0) and using the first equation of (15) that

∂1H0,1(ξ
+

0
(0), ξ−

0
(0))ξ̇+

0
(0) + ∂2H0,1(ξ

+

0
(0), ξ−

0
(0))ξ̇−

0
(0) = −∂xq

in(0).

Since ξ+
0
(0) = g(0) by (46), we can use (48) (which holds by assumption if

∂2H0,1 ≡ 0 and by the initial condition imposed on ξ̇−
0

otherwise) to obtain

∂1H0,1(ξ
+

0
(0), ξ−

0
(0))

(
ξ̇+
0
(0)− ġ0(0)

)
= 0,

and since ∂1H0,1 does not vanish, this implies that ξ̇+
0
(0) = ġ0(0), so that

the boundary condition (40) is satisfied.

The proof of the theorem is then complete.

3.5 Asymptotic stability

For some applications, we have some information on ζ and q at x = 0 and
x = ℓ; this provides us with boundary conditions of the form (40) on some input
functions ξ+0 and ξ−ℓ . For instance, we may know the surface elevation ζ(t, 0) and
ζ(t, ℓ) through buoys located at x = 0 and x = ℓ. By Theorem 3.8 we are able
to compute the solution (ζ, q) of the Boussinesq-Abbott equations (15) on the
full domain (0, ℓ) for some time interval (0, T ∗) with T ∗ > 0 provided that we
know the initial data (ζ in, qin). Unfortunately, for most applications, the initial
data are not known (it is very complicated to measure the surface elevation
and the horizontal discharge on the whole interval (0, ℓ)). A question of high

practical relevance is therefore the following: if we consider the solution (ζ̃, q̃) of
the initial boundary value problem with the same boundary conditions but with
initial data (ζ̃ in, q̃in) ̸= (ζ in, qin) do we have (ζ̃, q̃) ∼ (ζ, q) for large times? If
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this is the case, we shall say that the solution (ζ, q) of the initial boundary value
problem formed by (15) with initial conditions (26) and boundary conditions (40)
is asymptotically stable.

Asymptotic stability cannot be expected in general, even if we consider only
the linear equation. Consider for instance the linearized Boussinesq equations
with a flat topography

(50)

{
∂tζ + ∂xq = 0,

(1− h2
0

3 ∂2
x)∂tq + gh0∂xζ = 0,

with boundary conditions

(51) ζ(t, 0) = ζ(t, ℓ) = 0.

The rest state (ζ, q) = (0, 0) is obviously a solution to this problem, associated
with a homogeneous initial condition. This following proposition shows that the
rest state is not asymptotically stable. In the statement, we use the notation

(52) E(t) =
1

2
g|ζ̃(t)|2L2(0,ℓ) +

1

2

1

h0
|q̃(t)|2L2(0,ℓ) +

h0

6
|∂xq̃(t)|2L2(0,ℓ)

Proposition 3.9. If (ζ̃, q̃) is a smooth solution to (50) and (51) then for all

times, one has E(t) = E(0). In particular, if (ζ̃, q̃)|t=0
≠ (0, 0) then one cannot

have (ζ̃, q̃) → (0, 0) in L2(0, ℓ)×H1(0, ℓ).

Proof. Multiplying (50) by (gζ̃, 1
h0
q̃) and integrating by parts and using the

boundary conditions (51), we obtain

d

dt
E − h0

3
[∂x∂tq̃q̃]

ℓ
0 = 0.

Using the first equation of (50), one has ∂x∂tq̃ = −∂2
t ζ̃ so that using (51) we

deduce that [∂x∂tq̃q̃]
ℓ
0 = 0, and the result follows easily.

The fact that we allow in (40) very general boundary conditions is important
because it may allow us to use boundary conditions for which the solution
furnished by Theorem 3.8 is asymptotically stable (provided that it is well
defined globally in time of course). This question of asymptotic stability is a
difficult open problem for the Boussinesq-Abbott equations. Even in the case of
the much more widely studied nonlinear shallow water equations, very little is
known. The most relevant result is the fact that the rest state is asymptotically
stable if the input functions ξ+0 and ξ−ℓ at x = 0 and x = ℓ are respectively the
right and left-going Riemann invariants R+ and R− [16].
In §5.2, we investigate numerically the asymptotic stability of the solution of
the initial boundary value problem associated with various types of boundary
conditions.
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4 Numerical schemes

In this section we detail the numerical approximation of the Boussinesq-Abbott
system with topography (15), namely,{

∂tζ + ∂xq = 0
(1 + hbTb)∂tq + ∂xfNSW = −gh∂xb

in (0, ℓ) ,

with the general boundary conditions (40), that is, with the notations of Section 3,

ξ+0 (ζ0, q0) = g0, ξ−ℓ (ζℓ, qℓ) = gℓ,

and with initial condition

(ζ, q) = (ζ in, qin) at t = 0.

Under the assumptions of Theorem 3.8, we know that there is a unique solution to
this initial boundary-value problem. We show in this section how to approximate
numerically this solution. We actually solve the reformulation (49) of the
equations that reads

(53)


∂tζ + ∂xq = 0,

∂tq +
√
3 hb

αb
(hbS)

∗(R1
b(

1
h2
b
f̃NSW)) = R0

bB̃

+∇H0,2(g0, ξ
−
0
) ·

(
ġ0

ξ̇−
0

)
s(b,0) +∇Hℓ,2(ξ

+

ℓ
, gℓ) ·

(
ξ̇+
ℓ

ġℓ

)
s(b,ℓ),

where (ξ+
0
, ξ−

ℓ
) solves the system of ODEs (44) that we rewrite here for the sake

of clarity,

D̃1

(
ξ̈−
0

ξ̈+
ℓ

)
+S′

bD̃2

(
ξ̇−
0

ξ̇+
ℓ

)
+

(
Q1(ġ0, ξ̇

−
0
)

Q2(ξ̇
+

ℓ
, ġℓ)

)
+ Ṽbdry

(
H0(g0, ξ

−
0
),Hℓ(ξ

+

ℓ
, gℓ)

)
= Ṽint[ζ, q]−D1

(
g̈0
g̈ℓ

)
−S′

bD2

(
ġ0
ġℓ

)
.(54)

As explained in Section 2.3, this reformulation is adapted to well-balancedness
in the sense that it enables to derive numerical schemes which naturally preserve
the hydrostatic equilibrium (ζ, q) = (0, 0).

Our strategy consists in an hybrid approach mixing a finite volumes scheme
for the interior equations (53), and a finite difference discretization of the nonlocal
operators R0

b , R
1
b defined in (18)-(22) and of the system of ODEs (54) that relates

the evolution of the output functions at the boundaries to the boundary data.
We explain in Section 4.1 how to discretize the various operators involved in (53);
we then propose in Section 4.2 a first order Lax-Friedrichs scheme, and a second
order MacCormack scheme in Section 4.3.
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Notations. We introduce a few notations used in the following lines. We
consider the grid points xi = (i− 1)∆x for all 1 ≤ i ≤ N with (N − 1)∆x = ℓ.
A dual mesh is then obtained as the N cells centered on the (xi)1≤i≤N and
delimited by their interfaces xi±1/2 = xi ±∆x/2. The use of this dual mesh is
not mandatory, but it will allow us to deal with the boundary conditions (40) and
the dispersive boundary layer directly in the border cells which are centered on
x1 = 0 and xN = ℓ. In particular, this rids us from the need to use interpolation
formulas whenever a quantity has to be evaluated at the boundary of the domain.
We denote the discrete times tn = n∆t, and we consider Un

i = (ζni , q
n
i )

T an

approximation of 1
∆x

´ xi+1/2

xi−1/2
(ζ, q)T (tn, s)ds, the average of the solution in the

cell i at time tn. A similar notation is adopted for the bathymetry b.

4.1 Discrete operators

In order to discretize (hbS), its adjoint (hbS)
∗ and the nonlocal operators R0

b , R
1
b ,

we shall make use of the second order finite difference operator δx : RN → RN

defined such that for any v ∈ RN and 1 ≤ i ≤ N we have

(55) δx(v)i =


1

2∆x (vi+1 − vi−1) if 2 ≤ i ≤ N − 1,

1
2∆x (−3v1 + 4v2 − v3) if i = 1,

1
2∆x (vN−2 − 4vN−1 + 3vN ) if i = N.

For any index 1 ≤ i ≤ N , we define the quantities

αb,i = 1 +
1

4
(δx(b)i)

2, hb,i = h0 − bi,

and whenever considering the discrete setting, αb and hb will from now on refer to
the vectors with corresponding coefficients (αb,i)i and (hb,i)i. It is then possible
to approximate (hbS) by (hbS) as follows:

(56) ∀v ∈ RN , (hbS)(v)i = −
h2
b,i√
3
δx

( v

hb

)
i
+

√
3

2
δx(b)ivi,

which is consistent with the definition (17) of S(·). In a similar fashion we
introduce (hbS)

∗ defined as

(hbS)
∗(f)i =

αb,i√
3hb,i

δx

(h2
bf

αb

)
i
+
(hb,i√

3

δx(αb)i
αb,i

+

√
3

2
δxbi

)
fi,(57)

and that is shown to be consistent with (hbS)
∗ up to a O(∆x2) error.

Next we discretize the nonlocal operator R0
b by R0

b defined implicitly as

R0
b : f ∈ RN 7−→ v = R0

bf ∈ RN such thatvi − δx

(h3
b

3
δx

( v

hb

))
i
+

hb,i

2∆x2
(bi+1 − 2bi + bi−1)vi = fi, 1 < i < N,

v1 = 0, vN = 0.
(58)
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and one readily checks that this is a consistent approximation of (1 + hbTb) at
order 2, with the operator Tb given in (16). Likewise R1

b is discretized by R1
b

defined implicitly as

R1
b : f ∈ RN 7−→ v = R1

bf ∈ RN such thatvi +
1

hb,i
(hbS)

(hb

αb
(hbS)

∗(v)
)
i
= fi, 1 < i < N,

(hbS)
∗(v)1 = 0, (hbS)

∗(v)N = 0,
(59)

which is consistent with (22). The definitions (58)-(59) are implicit since the
practical computation of R0

b and R1
b applied to some vector will require the

resolution of a linear system, and this will be the costliest step of the algorithm.
However, these discrete operators do not evolve in time and it is thus possible
to assemble them and perform their factorization in a prepossessing step, which
greatly reduces the computational time.

Remark 4.1. Owing to the homogeneous conditions from (59) verified in the
border cells, one has (hbS)

∗(f)1 = (hbS)
∗(f)N = 0 for any vector f in Im(R1

b).
This is the discrete counterpart to the fact that (hbS)

∗(R1
b ·)|x=0,ℓ

≡ 0 in L2(0, ℓ),
which enables to obtain the relation (54) — ensuing from Lemma 2.10 after
applying ∂x to the second equation of (53) and taking the trace at x = 0, ℓ —
and hereby to ensure that the boundary conditions (40) are satisfied. Therefore
it is important to have this property at the discrete level to remain consistent
with the continuous reformulation (53)-(54).

4.2 First order Lax-Friedrichs scheme

We begin by describing how the system (53) for the interior values is approx-
imated. For the first equation, the free surface elevation is updated in cells
2 ≤ i ≤ N − 1 using a finite volumes strategy

(60)
ζn+1
i − ζni

∆t
+

1

∆x

(
qni+1/2 − qni−1/2

)
= 0,

where qni±1/2 is the Lax-Friedrichs numerical flux defined by

(61) qni+1/2 =
1

2
(qni + qni+1)−

∆x

2∆t
(ζni+1 − ζni ).

The boundary values ζn+1
1 , ζn+1

N will be deduced upon approximating the ODE
for the output functions. To approximate the second equation of (53) we first

introduce the vectors f̃n
NSW, B̃n ∈ RN with coefficients

f̃n
NSW,i =

(qni )
2

h0 + ζni − bi
+

g

2
((ζni )

2 + 2hb,iζ
n
i ),

B̃n
i = −gζni δx(b)i +

3

2

δx(b)i
hb,i

f̃n
NSW,i,

(62)
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which is consistent with the definition (36) of B̃(ζ, q). The update of the discharge
in cells 1 ≤ i ≤ N makes use of the discrete operators introduced in Section 4.1
as follows:

qn+1
i − qni

∆t
+
√
3
hb,i

αb,i
(hbS)

∗
(
R1

b

( 1

h2
b

f̃n
NSW

))
i
=(63)

R0
b(B̃

n)i + δtq
n
1 · s(b,0)i + δtq

n
N · s(b,ℓ)i +

∆x2

2∆t

qni+1 − 2qni + qni−1

∆x2
1i̸∈{1,N},

where it remains to specify how to compute δtq
n
1 and δtq

n
N , and where the vectors

s(b,0) and s(b,ℓ) are taken as the solutions v ∈ RN of

vi − δx

(h3
b

3
δx

( v

hb

))
i
+

hb,i

2∆x2
(bi+1 − 2bi + bi−1)vi = 0, 2 ≤ i ≤ N − 1(64)

with respective conditions{
s
(b,0)
1 = 1

s
(b,0)
N = 0

,

{
s
(b,ℓ)
1 = 0

s
(b,ℓ)
N = 1

,(65)

yielding a discrete counterpart of (19). Owing to the conditions (65), to the
definition (58) of R0

b and to Remark 4.1, the update (63) in border cells i = 1, N
reduces to

(66)
qn+1
1 − qn1

∆t
= δtq

n
1 ,

qn+1
N − qnN

∆t
= δtq

n
N .

Remark 4.2. We also want to comment on the last term in the right hand side
of (63), which is a first order numerical diffusion required for stability purposes.
We can then show that the update (63) amounts to a finite volumes method with
Lax-Friedrichs nonlocal numerical flux and with source terms accounting for the
bathymetry and the boundary layer. In fact, defining the nonlocal flux vector as

(67) fn =
(h2

b,i

αb,i
R1

b

( 1

h2
b

f̃n
NSW

)
i

)
1≤i≤N

,

and the associated Lax-Friedrichs flux

fni+1/2 =
1

2
(fni + fni+1)−

∆x

2∆t
(qni+1 − qni ),(68)

we can show that for 2 ≤ i ≤ N − 1 the update (63) equivalently rewrites

qn+1
i − qni

∆t
+

fni+1/2 − fni−1/2

∆x
=(69)

R0
b(B̃

n)i −
(δx(αb)i

αb,i
+

3

2

δx(b)i
hb,i

)
fni + δtq

n
1 · s(b,0)i + δtq

n
N · s(b,ℓ)i .

When the bottom is flat, the vectors δx(b) and B̃n cancel, so that the discharge
update (69) is conservative up to the boundary cells, which is coherent with the
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continuous model. Note also that when considering the scheme for the Boussinesq-
Abbott model with flat topography (b ≡ 0), we can directly use the expression (5)
to compute s(b,0) and s(b,ℓ) instead of approximating them through (64)-(65).
However in practice this does not affect the numerical results in a noticeable way.

Finally we detail the handling of the border cells and the computation of
δtq

n
1 , δtq

n
N in the framework of general boundary conditions discussed in Section 3.

Assuming Assumption 3.1 holds, the knowledge of Un+1
1 , Un+1

N is deduced from
the reconstruction formulas (41) reading as

Un+1
1 = H0(ξ

+
0 (U

n+1
1 ), ξ−0 (Un+1

1 )) and Un+1
N = Hℓ(ξ

+
ℓ (U

n+1
N ), ξ−ℓ (Un+1

N )).

In the above, we set the input functions according to (40) as ξ+0 (U
n+1
1 ) = gn+1

0

and ξ−ℓ (U
n+1
N ) = gn+1

ℓ . On the other hand, the output values ξ−0 (U
n+1
1 ) and

ξ+ℓ (U
n+1
N ) are obtained by discretizing the ODE (54) for the traces as follows.

Given Xn and Y n the respective approximations at time tn of the functions

(70) X : t 7−→
(
ξ−0 (U(t, 0))
ξ+ℓ (U(t, ℓ))

)
∈ R2, Y : t 7−→ Ẋ(t),

we define the update Xn+1, Y n+1 as

Xn+1 −Xn

∆t
= Y n+1

D̃n
1

Y n+1 − Y n

∆t
+S′

bD̃
n
2Y

n+1 +

(
Qn

1 (
gn+1
0 −gn−1

0

2∆t , Y n
1 )

Qn
2 (Y

n
2 ,

gn+1
ℓ −gn−1

ℓ

2∆t )

)
+ Ṽ n

bdry

= Ṽ n
int −Dn

1

(
gn+1
0 −2gn

0 +gn−1
0

∆t2

gn+1
ℓ −2gn

ℓ +gn−1
ℓ

∆t2

)
−S′

bD
n
2

(
gn+1
0 −gn−1

0

2∆t
gn+1
ℓ −gn−1

ℓ

2∆t

)(71)

where the diagonal matrices Dn
j , D̃

n
j are defined for j ∈ {1, 2} as

Dn
j =

(
∂1H0,j(g

n
0 , X

n
1 ) 0

0 ∂2Hℓ,j(X
n
2 , g

n
ℓ )

)
,

D̃n
j =

(
∂2H0,j(g

n
0 , X

n
1 ) 0

0 ∂1Hℓ,j(X
n
2 , g

n
ℓ )

)
,

where we used the quadratic forms

Qn
1 (u0, v0) =

(
u0

v0

)
·HessH0,1

(gn0 , X
n
1 )

(
u0

v0

)
,

Qn
2 (uℓ, vℓ) =

(
uℓ

vℓ

)
·HessHℓ,1

(Xn
2 , g

n
ℓ )

(
uℓ

vℓ

)
,

and where

S′
b =

(
δx(s

(b,0))1 δx(s
(b,ℓ))1

δx(s
(b,0))N δx(s

(b,ℓ))N

)
, Ṽ n

bdry =

 3
h2
b,1

f̃NSW(H0(g
n
0 , X

n
1 ))

3
h2
b,N

f̃NSW(Hℓ(X
n
2 , g

n
ℓ ))
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Ṽ n
int =

(
3(R1

b(
1
h2
b
f̃n
NSW))1 −

(
δx(R

0
bB̃

n)
)
1

3(R1
b(

1
h2
b
f̃n
NSW))N −

(
δx(R

0
bB̃

n)
)
N

)
.

The functions g0, gℓ are defined over t ∈ R+, therefore the terms gn−1
0 , gn−1

ℓ

found in (71) are not known when n = 0. We suggest to define them following
the relations below:

g0(∆t)− g−1
0

2∆t
=

−3g0(0) + 4g0(∆t)− g0(2∆t)

2∆t
,

gℓ(∆t)− g−1
ℓ

2∆t
=

−3gℓ(0) + 4gℓ(∆t)− gℓ(2∆t)

2∆t
.

The sequence (Xn)n is initialized by taking X0 = (ξ−0 (U
0
1 ), ξ

+
ℓ (U

0
N ))T . As in

the continuous case (see the proof of Theorem 3.8), when ∂2H0,1(g
0
0 , X

0
1 ) ̸= 0

(respectively when ∂2H0,1(X
0
2 , g

0
ℓ ) ̸= 0), an initial value Y 0

1 (respectively Y 0
2 )

must also be provided in order to compute the second line of (71) for n = 0.
These quantities can be obtained by discretizing (48) in the following way

(72)


∂2H0,1(g0(0), X

0
1 )Y

0
1 = −δx(q

0)1 − ∂1H0,1(g0(0), X
0
1 )

g0(∆t)− g0(0)

∆t
,

∂1Hℓ,1(X
0
2 , gℓ(0))Y

0
2 = −δx(q

0)N − ∂2Hℓ,1(X
0
2 , gℓ(0))

gℓ(∆t)− gℓ(0)

∆t
.

Remark that in (72), if for a given index 1 ≤ k ≤ 2 the coefficient in factor of Y 0
k

cancels, then the quadratic function Q0
k does not depend on Y 0

k anymore (this is
the discrete counterpart of Remark 3.4); hence in the second equation of (71)
the value Y 0

k is not required to compute Y 1
k . The proposed discretization (71)

thus automatically adapts to the order of the ODE for the output functions,
which dictates as in the continuous case how many initial conditions are required
on the output functions.

Once the approximation Xn+1 of the output functions is known, it is
possible to compute the border values Un+1

1 = H(gn+1
0 , Xn+1

1 ) and Un+1
N =

H(Xn+1
2 , gn+1

ℓ ), and δtq
n
1 , δtq

n
N are deduced from (66) so that we can update the

interior discharge through (69). The iteration is complete.

Remark 4.3. We need to check that the update (71) becomes well-defined for
∆t > 0 small enough. Indeed, the second equation of this system admits a unique
solution Y n+1 if the matrix D̃n

1 +∆tS′
bD̃

n
2 is invertible. Its determinant is the

second degree polynomial in ∆t given by

det(D̃n
1 ) + ∆t

(
(S′

b)1,1(D̃
n
1 )2,2(D̃

n
2 )1,1 + (S′

b)2,2(D̃
n
1 )1,1(D̃

n
2 )2,2

)
+∆t2

(
det(S′

b) det(D̃
n
2 )
)
;

as a consequence of Assumption 3.3 and Proposition 2.4 this determinant is non
zero for ∆t small enough, so that the update (71) is well-defined.
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When approximating the nonlinear Boussinesq-Abbott system (35)-(37) with
the scheme described above, in practice we need to restrict the time-step with
a CFL condition similar to that usually encountered when discretizing the
hyperbolic nonlinear shallow water system, that is to say we take

∆t

∆x
≤ K

maxi|λ(Un
i )|

,

with |λ(Un
i )| = |un

i |+
√
ghn

i the maximum eigenvalue in absolute value of the
Jacobian matrix DfNSW(Un

i ). In our numerical experiments such a constraint
seems to be a requirement to achieve stable results.

4.3 Second order MacCormack scheme

Due to the dispersive nature of the Boussinesq-type models, it can be challenging
to increase the order of their numerical approximations while keeping them stable
and free of spurious oscillations in the presence of non homogeneous boundary
conditions. A strategy introduced in [8] for the numerical simulation of waves
interacting with floating objects is the MacCormack discretization method, which
we describe in the lines below. It consists in alternating a first order prediction
step with a correction step during which the predicted state is used. The final
update is then obtained by averaging the prediction and correction steps. This
procedure is explained in detail thereafter.

Prediction step — Given an approximation (Un
i )1≤i≤N of the solution

to (35)-(37) at time tn, we first compute Un+1
P,i = (ζn+1

P,i , qn+1
P,i )T the predicted

state using a forward Euler method with a left upwinding for the numerical
fluxes in every interior cell 2 ≤ i ≤ N − 1



ζn+1
P,i − ζni

∆t
+

1

∆x

(
qni − qni−1

)
= 0

qn+1
P,i − qni

∆t
+

fni − fni−1

∆x
= R0

b(B̃
n)i−1 + δtq

n
P,1 · s

(b,0)
i−1 + δtq

n
P,N · s(b,ℓ)i−1

− 1

2

(αb,i+1 − αb,i−1

αb,i ∆x
+

3

2

bi+1 − bi−1

hb,i ∆x

)
fni−1

,

(73)

where we kept the same definitions for R0
b , R

1
b , f

n, B̃n, s(b,0), s(b,ℓ), αb as in the
previous Section, which involve the second order centered operator δx given
in (55). The boundary cells are treated similarly to the first order scheme
described in Section 4.2; that is to say we enforce

ξ+0 (U
n+1
P,1 ) = gn+1

0 , ξ−ℓ (Un+1
P,N ) = gn+1

ℓ ,

then compute the output functions according to (71) to get (X,Y )n+1
P , and

finally use the reconstruction formulas (41) to get Un+1
P,1 , Un+1

P,N and define

δtq
n
P,1 =

qn+1
P,1 − qn1

∆t
, δtq

n
P,N =

qn+1
P,N − qnN

∆t
.
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Notice that, although in (73) we did not write the discharge update under a form
involving an explicit discretization of (hbS)

∗, it is of course possible to rewrite
it in a form similar to (63), where (hbS)

∗ defined in (57) has to be substituted
with its left-upwinded counterpart, and without the numerical diffusion term. A
similar comment will hold in the correction step.

Correction step — Next the correction term Un+1
C,i = (ζn+1

C,i , qn+1
C,i )T is com-

puted using a forward Euler update with right upwinding in the interior cells
2 ≤ i ≤ N − 1. It involves the predicted state obtained in the previous step in
order to evaluate the flux and source terms:



ζn+1
C,i − ζni

∆t
+

1

∆x

(
qn+1
P,i+1 − qn+1

P,i

)
= 0

qn+1
C,i − qni

∆t
+

fn+1
P,i+1 − fn+1

P,i

∆x
= R0

b(B̃
n+1
P )i+1 + δtq

n
C,1 · s

(b,0)
i+1 + δtq

n
C,N · s(b,ℓ)i+1

− 1

2

(αb,i+1 − αb,i−1

αb,i ∆x
+

3

2

bi+1 − bi−1

hb,i ∆x

)
fn+1
P,i+1

.

(74)

In the above, the fluxes fn+1
P,i and the source term B̃n+1

P,i are defined as in (67)
and (62) but making use of the prediction state, that is to say

∀1 ≤ i ≤ N,


B̃n+1

P,i = −gζn+1
P,i δx(b)i +

3

2

δx(b)i
hb,i

f̃NSW(Un+1
P,i ),

fn+1
P,i =

h2
b,i

αb,i
R1

b

({ 1

h2
b,j

f̃NSW(Un+1
P,j )

}
1≤j≤N

)
i
.

The handling of the border cells is the same as before, except that in (71), for

k ∈ {1, 2} the matrices Dk, D̃k and the quadratic forms Qn
k need to be evaluated

with the predicted values (X,Y )n+1
P obtained in the previous step instead of

(X,Y )n, and the vectors Ṽ n
bdry, Ṽ

n
int need to be evaluated with Un+1

P instead of
Un. Therefore the correction update for the output functions can be written



Xn+1
C −Xn

∆t
= Y n+1

C

D̃n+1
P,1

Y n+1
C − Y n

∆t
+S′

bD̃
n+1
P,2 Y n+1

C +

(
Qn+1

P,1 (
gn+1
0 −gn−1

0

2∆t , Y n+1
P,1 )

Qn+1
P,2 (Y n+1

P,2 ,
gn+1
ℓ −gn−1

ℓ

2∆t )

)
+ Ṽ n+1

bdry,P

= Ṽ n+1
int,P −Dn+1

P,1

(
gn+1
0 −2gn

0 +gn−1
0

∆t2

gn+1
ℓ −2gn

ℓ +gn−1
ℓ

∆t2

)
−S′

bD
n+1
P,2

(
gn+1
0 −gn−1

0

2∆t
gn+1
ℓ −gn−1

ℓ

2∆t

) ,

(75)

and after computing Un+1
C,1 = H(gn+1

0 , Xn+1
C,1 ) and Un+1

C,N = H(Xn+1
C,2 , gn+1

ℓ ) we
set

δtq
n
C,1 =

qn+1
C,1 − qn1

∆t
, δtq

n
C,N =

qn+1
C,N − qnN

∆t
.
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Final step — The final update is defined as the average between the prediction
and correction states for all 2 ≤ i ≤ N − 1, and likewise the output functions
are averaged in the border cells i = 1, N :
(76)

ζn+1
i =

1

2
(ζn+1

P,i + ζn+1
C,i )

qn+1
i =

1

2
(qn+1

P,i + qn+1
C,i )

,


ξ−0 (Un+1

1 ) =
1

2
(ξ−0 (Un+1

P,1 ) + ξ−0 (Un+1
C,1 ))

ξ+ℓ (U
n+1
N ) =

1

2
(ξ+ℓ (U

n+1
P,N ) + ξ+ℓ (U

n+1
C,N ))

The final border elevations and discharges ζn+1
1 , qn+1

1 , ζn+1
N , qn+1

N are recovered
through the formula (41) involving the reconstruction maps H0,Hℓ evaluated
respectively with (g0(t

n+1), ξ−0 (Un+1
1 )) and (ξ+ℓ (U

n+1
N ), gℓ(t

n+1)).

Remark 4.4. Nothing prevents us from switching the upwinding direction in
the first two steps, so that a right upwinding is performed in the prediction step
together with a left upwinding in the correction step. This does not seem to
affect the numerical results in practice. What is important is that the direction
of upwinding alternates between these two stages, otherwise the method becomes
first order in space.

Remark 4.5. Since we do not make use of ghost cells, the alternation of the
upwinding direction characterizing the MacCormack scheme cannot be performed
in the border cells, where we always need to upwind towards the interior of the
domain. This does not prevent the scheme from reaching a second order of
accuracy in space in the border cells. Indeed (71), (72) and (75) are already
second order in space thanks to the use of the discrete operator δx given by (55)

to discretize S′
b, Ṽint.

5 Numerical simulations

In this section we aim to validate the proposed first order Lax-Friedrichs and sec-
ond order MacCormack schemes, and to assess the effect that different boundary
conditions can have on the solutions; in particular, we numerically investigate
the issue of asymptotic stability of the boundary conditions. To this end we
shall consider three cases:

1. Input functions given by the elevation, output functions given by the
discharge

ξ+0 (ζ, q) = ξ−ℓ (ζ, q) = ζ, ξ−0 (ζ, q) = ξ+ℓ (ζ, q) = q;

2. Input functions given by the discharge, output functions given by the
elevation

ξ+0 (ζ, q) = ξ−ℓ (ζ, q) = q, ξ−0 (ζ, q) = ξ+ℓ (ζ, q) = ζ;

33



3. Input functions given by the incoming Riemann invariants, output functions
given by the outgoing Riemann invariants{

ξ+0 (ζ, q) = u+ 2
√
gh

ξ−ℓ (ζ, q) = u− 2
√
gh

,

{
ξ−0 (ζ, q) = u− 2

√
gh

ξ+ℓ (ζ, q) = u+ 2
√
gh

.

The gravitational acceleration g will be taken equal to 9.81, and unless specified
otherwise the ratio ∆t/∆x will be taken equal to 0.8 for the Lax-Friedrichs
scheme and to 0.45 for the MacCormack scheme.

We propose in §5.1 a numerical resolution of the initial boundary value
problem with the different boundary conditions presented above. In the case
of a flat bottom, considered in §5.1.1, the Boussinesq-Abbott system possesses
solitary waves that can be used to study the convergence of the schemes. In the
case of a non-flat topography investigated in §5.1.2, this is no longer true and
we therefore use a solution computed in a wider domain and for a very refined
mesh to study the convergence. The theoretical open problem of asymptotic
stability is then numerically investigated in §5.2.

5.1 Numerical resolution of the initial boundary value
problem

5.1.1 The Boussinesq-Abbott system with flat topography

We consider the case of a solitary wave travelling over a flat bottom, which
consists in a solution of (1) of the form

(77) ζ(t, x) = ζ̃(x− x0 − ct), q(t, x) = q̃(x− x0 − ct),

where c is the celerity at which the solitary wave propagates without deformation,
and where x0 ∈ R is the initial position of the maximum elevation ζ(0, x0) denoted
ζmax. Despite the apparent simplicity of this solution, it involves nonlinear and
dispersive effects which make it an interesting test-case for numerical validation
purposes. As explained in [28], the wave profile ζ̃ verifies the following second
order ODE

(78) −c2
h0ζ̃

h0 + ζ̃
+

c2h2
0

3
ζ̃ ′′ +

g

2
(ζ̃2 + 2h0ζ̃) = 0.

It is obtained by remarking that (77) implies q̃ = cζ̃ from the first equation
of (1). Injecting this in the second equation of (1) and upon integration in space

with the hypothesis that ζ̃ vanishes at infinity, one recovers (78). Furthermore,

keeping in mind that ζ̃(0) = ζmax, the celerity is shown to satisfy the relation

c2 =
g
6ζ

3
max +

gh0

2 ζ2max

h2
0(ζmax/h0 − ln(1 + ζmax/h0))
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by integrating (78) against ζ̃ ′, using again that ζ̃ cancels at infinity and that

ζ̃ ′(0) = 0.
Once the solution of (78) has been approximated, it can be used to generate

initial and boundary conditions in the domain (0, ℓ), and can also serve as
a reference solution to measure the error of the proposed numerical schemes.
The initial condition is taken as (ζ in, qin)(x) = (ζ̃, c ζ̃)(x− x0) and the general
boundary conditions write

ξ+0 (ζ0, q0)(t) = g0(t) := ξ+0 (ζ̃(−x0 − ct), c ζ̃(−x0 − ct)),

ξ−ℓ (ζℓ, qℓ)(t) = gℓ(t) := ξ−ℓ (ζ̃(ℓ− x0 − ct), c ζ̃(ℓ− x0 − ct)).

In practice we take ℓ = 60, h0 = 1, ζmax = h0/5, and c > 0. In order to validate
the treatment of the boundary conditions we consider the two settings below.

Incoming solitary wave – The solitary wave is initially centered on x0 =
−ℓ/2 outside of the computational domain (0, ℓ). It then enters the domain
from the left boundary, and the simulation stops at time t = ℓ/c when the
solitary wave is centered on ℓ/2.

Outgoing solitary wave – The solitary wave is initially centered on x0 = ℓ/2
inside the computational domain, and the simulation is stopped once most of
the wave left the domain through the right boundary at time t = 3ℓ/4c.

Figure 1 compares the Lax-Friedrichs and MacCormack schemes at final
time for both settings with incoming Riemann invariants enforced as boundary
conditions. Unsurprisingly, the Lax-Friedrichs is much more diffusive than
MacCormack, and also creates more reflections when trying to evacuate the wave
through the right boundary.

Next we compare the three different choices for ξ+0 , ξ
−
ℓ mentioned at the

beginning of Section 5, and for each case we display the following ℓ2 error on
the elevation

(79) En
num =

√
∆x

ℓ

( N∑
i=1

(
ζni − ζ̃(xi − x0 − ctn)

)2)1/2

at final time t = ℓ/c.
Tables 1 and 2 correspond respectively to the Lax-Friedrichs and MacCormack

schemes for the incoming solitary wave test-case. Experimentally, both methods
achieve the expected order of convergence, that is to say first order for Lax-
Friedrichs and second order for MacCormack. The difference between the various
boundary conditions in terms of the ℓ2 error is marginal, except when enforcing
the discharge with the MacCormack scheme which leads to a substantially larger
error than the two other choices.

Likewise, the outgoing solitary wave test-case is addressed in Table 3 for
Lax-Friedrichs and Table 4 for MacCormack. The latter method shows good
agreement with a second order convergence. For Lax-Friedrichs the situation is
comparable to the incoming solitary wave test-case, except that a more refined
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Figure 1: Free surface elevation for the incoming and outgoing solitary wave
test-cases (respectively top and bottom); incoming Riemann invariants imposed
at the boundaries

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
8.82E-02 4.409E-03 – 4.728E-03 – 4.482E-03 –
6.25E-02 3.263E-03 0.87 3.484E-03 0.88 3.312E-03 0.87
4.42E-02 2.387E-03 0.90 2.539E-03 0.91 2.420E-03 0.91
3.12E-02 1.727E-03 0.93 1.833E-03 0.94 1.750E-03 0.93
2.21E-02 1.244E-03 0.95 1.318E-03 0.95 1.260E-03 0.95
1.56E-02 8.906E-04 0.97 9.411E-04 0.97 9.015E-04 0.97

Table 1: Lax-Friedrichs scheme for the incoming solitary wave with different
boundary conditions. In the last column R± refers to the incoming Riemann
invariant associated with the shallow water system.
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∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
1.00E+00 7.846E-03 – 1.186E-02 – 9.424E-03 –
5.00E-01 2.473E-03 1.67 3.789E-03 1.65 2.783E-03 1.76
2.50E-01 6.670E-04 1.89 1.026E-03 1.89 7.199E-04 1.95
1.25E-01 1.696E-04 1.98 2.662E-04 1.95 1.832E-04 1.97
6.25E-02 4.312E-05 1.98 6.804E-05 1.97 4.624E-05 1.99
3.12E-02 1.107E-05 1.96 1.731E-05 1.97 1.162E-05 1.99

Table 2: MacCormack scheme for the incoming solitary wave.

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
6.25E-02 2.363E-03 – 2.666E-03 – 1.331E-04 –
4.42E-02 1.785E-03 0.81 2.031E-03 0.78 1.070E-04 0.63
3.12E-02 1.322E-03 0.87 1.514E-03 0.85 8.401E-05 0.70
2.21E-02 9.725E-04 0.89 1.119E-03 0.87 6.503E-05 0.74
1.56E-02 7.053E-04 0.93 8.145E-04 0.92 4.939E-05 0.79
1.11E-02 5.098E-04 0.94 5.903E-04 0.93 3.711E-05 0.83

Table 3: Lax-Friedrichs scheme for the outgoing solitary wave.

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
1.00E+00 6.430E-03 – 1.031E-02 – 4.287E-03 –
5.00E-01 1.885E-03 1.77 4.437E-03 1.22 1.993E-03 1.11
2.50E-01 5.568E-04 1.76 1.257E-03 1.82 5.607E-04 1.83
1.25E-01 1.459E-04 1.93 3.252E-04 1.95 1.318E-04 2.09
6.25E-02 3.674E-05 1.99 8.223E-05 1.98 2.826E-05 2.22
3.12E-02 9.162E-06 2.00 2.067E-05 1.99 7.085E-06 2.00

Table 4: MacCormack scheme for the outgoing solitary wave.
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mesh is required to start approaching a first order convergence. Note also that
when enforcing the incoming Riemann invariants with the Lax-Friedrichs scheme,
the order of convergence seems smaller than for the other boundary conditions,
however we remark that in this case the errors differ by one order of magnitude
in favor of the boundary conditions obtained by enforcing the incoming Riemann
invariants.

5.1.2 The Boussinesq-Abbott system with varying bathymetry

Since no analytic expression is available for solutions of the Boussinesq-Abbott
model (15) in the general case of unsteady flows over a non-flat bottom, we
instead approximate a reference solution over a large domain (−ℓ, 2ℓ) with
periodic boundary conditions by the mean of a fine mesh; this approximated
reference solution is then used to generate boundary conditions for the small
domain (0, ℓ), in which the solution can be solved numerically with the proposed
Lax-Friedrichs and MacCormack schemes.

The small domain length is set to ℓ = 25, and we choose the following values
for the characteristic depth, bathymetry and wave amplitudes:

h0 = 1, β = 1/4, A = h0/4.

The bathymetry profile is defined as follows

b(x) = βh0 ·


1 if |x− ℓ/2| < ℓ

4

σ(1.5− 2
ℓ |x− ℓ/2|) if ℓ

4 ≤ |x− ℓ/2| ≤ 3ℓ
4

0 otherwise

,(80)

where σ : [0, 1] → [0, 1] is a smooth step function given here by σ(x) = 6x5 −
15x4 + 10x3, which allows the bathymetry (80) to be C2. The initial condition
is taken as a Gaussian centered outside of the small domain:

ζ in(x) = A · exp(−(x− 11)2/3), qin(x) = 5 · ζ in(x).(81)

Recalling the shallowness parameter µ = (2πh0)
2/λ2 with the characteristic

wavelength defined here as λ = length {x, ζ in(x) > A/100}, one has µ ≈ 0.6 so
that the flow is only moderately shallow. The nonlinearity parameter A/h0 is
ϵ = 0.25.

The periodic reference solution is approximated over the large domain (−ℓ, 2ℓ)
with a spatial step ∆x ≈ 8.14 · 10−3, and the simulation stops at time t = 15; see
Figure 2 for plots of the initial and final states. Note that the shape of the initial
free surface elevation (81) is not preserved through time. More specifically, the
Gaussian splits into right- and left-going signals; owing to the periodic condition,
both of these signals will enter the small domain (0, ℓ) respectively from the
left and right boundaries, moreover the right-going signal begins to exit the
small domain before the simulation ends. Therefore this can be considered a rich
test-case featuring wave generation, interaction and evacuation over a non-flat
bottom b whose derivative doesn’t vanish at boundaries x = 0, ℓ.
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Figure 2: Left: initial condition. Right: reference solution, Lax-Friedrichs and
MacCormack approximations at time t = 15, both obtained using the same CFL
constant of 0.45.

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
3.26E-02 1.017E-02 – 1.300E-02 – 8.545E-03 –
2.30E-02 7.862E-03 0.74 1.016E-02 0.71 6.604E-03 0.74
1.63E-02 5.962E-03 0.80 7.759E-03 0.78 5.003E-03 0.80
1.15E-02 4.440E-03 0.85 5.802E-03 0.84 3.721E-03 0.85
8.14E-03 3.265E-03 0.89 4.278E-03 0.88 2.733E-03 0.89
5.75E-03 2.375E-03 0.92 3.118E-03 0.91 1.986E-03 0.92

Table 5: Lax-Friedrichs scheme for the Gaussian over bump test-case.

∆x ζ enforced q enforced R± enforced

L2-error Order L2-error Order L2-error Order
2.60E-01 4.635E-03 – 5.708E-03 – 3.301E-03 –
1.84E-01 2.470E-03 1.81 3.076E-03 1.78 1.690E-03 1.92
1.30E-01 1.288E-03 1.89 1.629E-03 1.84 8.485E-04 2.00
9.19E-02 6.575E-04 1.93 8.402E-04 1.90 4.095E-04 2.09
6.51E-02 3.384E-04 1.93 4.316E-04 1.93 1.930E-04 2.18
4.60E-02 1.777E-04 1.85 2.211E-04 1.92 9.056E-05 2.17

Table 6: MacCormack scheme for the Gaussian over bump test-case.
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Comparing the numerical solution obtained in the small domain with different
mesh sizes to the reference solution, we can compute the ℓ2 error (79) and the
associated experimental orders of convergence are shown in Tables 5 and 6. Both
the Lax-Friedrichs and MacCormack schemes achieve the expected order for the
different boundary conditions considered. The most advantageous choice seems
to enforce the incoming Riemann invariants, as it leads to the smallest error.

5.2 Asymptotic stability

Finally we wish to assess the feasibility of achieving a reliable approximation of
the solution to the Boussinesq-Abbott system (15) over a varying bathymetry
when starting the simulation with a wrong initial condition. This is motivated by
the fact that in real-life, measurements of the free surface elevation can only be
performed at a limited number of points, preventing us from knowing the state
of the flow everywhere in the domain of interest. Instead, one has to provide an
initial guess, which might not be accurate at all.

To this end, we use a setup similar to the one from Section 5.1.2: a periodic
reference solution computed on the large domain (−ℓ, 2ℓ) is used to generate
boundary conditions for the small domain (0, ℓ). We keep the same domain length
ℓ = 25 and the same definition (80) for the bottom, however the characteristic
depth and wave amplitude are now scaled with respect to a parameter Kµ as
follows:

h0 =
√
Kµ, A =

√
Kµ/4.

The initial data of the reference solution consists in a sine wave of period λ = 3ℓ/5
and amplitude A for the elevation, together with a nonzero discharge:

(82) ζ̃ in(x) = A · sin(2πx/λ), q̃in(x) = 2 · ζ̃ in(x).

The factor Kµ shall be taken equal to (2π/λ)−2µ, with µ the shallowness
parameter valued in {0.01, 0.1, 1}. The nonlinearity parameter ϵ and bathymetry
parameter β are kept to 0.25. We also introduce the characteristic time T0 given
by 2πT0 = λ/

√
gh0.

When approximating the reference solution over the small domain (0, ℓ) with
the proposed MacCormack scheme, the simulation is initialized with a lake at rest
(ζ in, qin) = (0, 0) which is different from the initial state of the reference solution.
This initial setup is plotted in Figure 3 for µ = 1. In order to comply with the
system (48), which we recall provides compatibility conditions when enforcing ζ,

the reference solution (ζ̃, q̃) is progressively enforced at the boundaries of the
small domain by the mean of the smooth step function σ defined in Section 5.1.2:

ξ+0 (ζ0, q0)(t) = g0(t) := σ(5t/T0) · ξ+0 (ζ̃(t, 0), q̃(t, 0)),

ξ−ℓ (ζℓ, qℓ)(t) = gℓ(t) := σ(5t/T0) · ξ−ℓ (ζ̃(t, ℓ), q̃(t, ℓ)).

If on the contrary the boundary conditions on the elevation were enforced directly
at t = 0, then system (48) would be violated, and the well-posedness result from
Theorem 3.8 does not hold anymore in this situation.
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Figure 3: Initial elevation for reference and small domain solutions (µ = 1).

We plot the results obtained at final time t = 50T0 in Figure 4 for µ = 1 and
µ = 0.1, and in Figure 5 for µ = 0.01. Out of the three boundary conditions tested,
only the choice of enforcing the incoming Riemann invariants seems to allow
the ℓ2 error (79) to decay to zero, which is consistent with the considerations of
Section 3.5. On the other hand, this is not the case when enforcing the elevation
or the discharge; our interpretation is that the initial information — which
represents the perturbation of the reference solution — is prevented from leaving
the domain due to reflections. Reducing the shallowness parameter to 0.01,
one eventually observes a blow up of the numerical approximation for these
two boundary conditions, and which is avoided with the incoming Riemann
invariants. As a conclusion, the latter should clearly be preferred over the
elevation or discharge in a situation where waves need to be evacuated from the
computational domain.

Remark 5.1. In practice, enforcing the incoming Riemann invariant at only one
of the two boundaries is enough to recover a good approximation of the reference
solution. In this case the ℓ2 error on the elevation decays slightly slower towards
zero compared to when the incoming Riemann invariants are enforced at both
boundaries.
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Figure 4: Flow over bar test-case for µ = 1 (first column) and µ = 10−1 (second
column). First and second rows correspond respectively to the MacCormack

elevation and its deviation from the reference elevation ζ̃ at final time t = 50T0

for various boundary conditions. The last row represents the ℓ2 error (79) over
time. Out of the three boundary conditions investigated here, only enforcing the
incoming Riemann invariants allows this error to decay towards zero.
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Figure 5: Flow over bar test-case for µ = 10−2. The first plot was obtained at
final time t = 50T0. Enforcing ζ or q as boundary conditions led to a blow up of
the MacCormack approximation, therefore only the case of incoming Riemann
invariants is displayed here. The ℓ2 error (79) decays over time but does not
quite vanish; this is most likely due to the coarseness of the mesh which make it
difficult to accurately capture the high frequencies that develop in the solution.
A fix would be to refine the mesh further.
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6 Conclusion and perspectives

In this article, the initial boundary value problem linked to the Boussinesq-
Abbott model with non flat bottom has been considered. When imposing the
values of the surface elevation at the boundaries, we have seen that like in the case
of a flat bottom over a half-line treated in [28], this problem can be equivalently
reformulated as an initial value problem involving a nonlocal flux and an ODE
on the trace of the discharge, even in presence of a varying topography and
over a bounded domain. This formulation is however more complex because
some commutation properties used in the case of a flat bottom are no longer
true. We then proposed a new method allowing to prescribe a nonlinear function
of the unknowns at the endpoints of the domain by a given function of time.
This method is based on the notion of input functions, which represent the
information that one wants to let in the domain, and that of output functions.
We believe that the ability to enforce such general boundary conditions is quite
relevant for complex applications such as the ones encountered in oceanography.
Importantly, our reformulated model defines an ODE on some functional space;
under regularity assumptions on the boundary data and on the initial condition,
it is possible to obtain the well-posedness of this model in finite time by the
Cauchy-Lipschitz theorem. We do not believe however that this approach can be
transposed to the Serre-Green-Naghdi model, for which the infinite dimensional
ODE structure of the Boussinesq-Abbott system is lost.

This theoretical study was then followed by a numerical discretization of the
equations using a hybrid finite difference/finite volumes approach. New schemes
of first and second orders were designed using respectively the Lax-Friedrichs
numerical flux and the MacCormack strategy, similarly to what was proposed
in [8] for wave-structure interactions over a flat bottom and for boundary
conditions on the horizontal discharge. Owing to a simple adaptation of the
equations, these schemes can be rendered well-balanced, that is to say that they
preserve the lake at rest equilibrium. Next we performed numerical experiments
validating the expected orders of convergence for various types of boundary
conditions, in a complex setup featuring wave generation and evacuation over a
varying topography. Finally we explored numerically the question of asymptotic
stability, which is to know whether solutions arising from different initial data
but with the same boundary conditions converge to each other after a transitory
regime. We found that this is the case when enforcing the incoming Riemann
invariants of the shallow water equations, but not when enforcing the elevation
nor the discharge. Again this underlines the interest there is to be able to enforce
general boundary conditions.

We consider several perspectives to the present work. The first one is related
to a limitation inherent to dispersive models in general (including Boussinesq
and Serre-Green-Naghdi), that is their inability to describe the breaking of waves;
in fact for steep variations of the elevation it is well known that these models
produce non physical spurious oscillations. Despite being less accurate than
these dispersive models, the shallow water equations present the benefit of being
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able to handle breaking waves in a physically relevant way by dissipating the
energy in the form of shocks, see [13] for a physical justification and [32] for
a general methodology on Riemann problems. Note also that the nonlinear
shallow water equations are able to take into account the vanishing of the water
height h (see [27] for the mathematical analysis of this singularity and [6] for
its numerical treatment); therefore this model is pertinent to describe the wave
dynamics in the surf and swash areas. For these reasons, several authors propose
to use a dispersive model and to switch the dispersive terms off in the vicinity
of wave breaking [31, 14, 23], hereby working locally with the less precise but
more robust nonlinear shallow water equations. The coupling between the
nonlinear shallow water equations and dispersive models like the Boussinesq and
Serre-Green-Naghdi equation is however not well understood essentially because
the boundary conditions that must be imposed on the dispersive component
is unclear. A natural perspective of this work is therefore to investigate this
coupling.

As pointed in [19], the shoaling phenomenon is systematically underestimated
(resp. overestimated) by Boussinesq-type models written in elevation-discharge
form (resp. in elevation-velocity form). Preliminary tests show that our reformu-
lated Boussinesq-Abbott model is no different; it would thus be interesting to try
circumventing this issue. An idea that we would like to explore would consist to
perform some form of averaging between the Boussinesq-Abbott model in (ζ, q)
coordinates and the classical Boussinesq-Peregrine model in (ζ, v) coordinates.

To conclude, we mention a long term goal related to the statistical study of
extreme waves. This would require to generate random waves at the boundaries
of the domain so as to force a realistic wave field in the domain. We presume that
the use of asymptotically stable boundary conditions is crucial in this setting.
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