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Abstract

This paper proposes a general approach for building a mechanistic model that is able to
predict the shift of metabolic pathways. This general approach is applied to a commercial
strain of Saccharomyces cerevisiae. The mechanistic model accounts for the coexistence of
several metabolic pathways whose activation depends on growth conditions. Stoichiometry
and yeast kinetics were experimentally determined to the extent that was possible under
aerobic and completely anaerobic conditions. Known parameters were taken from the
literature, and the remaining parameters were estimated by inverse analysis using particle
swarm optimization method.
The mechanistic model switches from aerobic glucose fermentation to glucose respiration
when the glucose concentration is below 0.10-0.15 g/l and to ethanol respiration after
glucose depletion. Di�erent a�nities of yeast for glucose and ethanol tolerance under
aerobic and anaerobic conditions were obtained. Finally, the model was successfully tested
against a validation test, a batch fermentation process without gas injection, with an overall
mean relative error of 7 %.
This model represents a useful tool for the control and optimization of yeast fermentation
systems. More generally, the modeling framework proposed here is intended to be used as
a building block of a digital twin of any bioproduction process.

Highlights

� A set of original yeast cultures with contrasting growth conditions,

� A complete formulation of yeast growth with co-current metabolic pathways and
adapted shift functions,

� A particle swarm optimization method was used to determine the most di�cult
parameters,

� Di�erent glucose a�nity and ethanol tolerance under aerobic and anaerobic condi-
tions,

� Model successfully validated using a commercial yeast strain under di�erent operation
conditions,
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� The formulation and the whole set of parameters are provided for future use.

Keywords: yeast, fermentation, Crabtree e�ect, switching metabolism, modeling,
calibration

Nomenclature

δ Safety factor of switching function for the ethanol respiration process activation

µmax(i) Maximum growth rate for process −i in the matrix model representation (h−1)

ρ(T ) Water density at temperature T (mol/l)

υ(i,j) Stoichiometric coe�cient corresponding to the biological process −i and the
component −j

b(i) Oxygen stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

c(i) Ammonia stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

C(j) Concentration of the component −j in the matrix model representation (g/l)

d(i) Yeast stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

e(i) Ethanol stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

f(i) Glycerol stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

g(i) Carbon dioxide stoichiometric coe�cient for biological process −i in the matrix
model representation (mol)

h(i) Water stoichiometric coe�cient for biological process −i in the matrix model
representation (mol)

H(T ) Henry constant at temperature T (mol/l/atm)

Kinh
E,Ax Half-saturation coe�cient for ethanol inhibition under anaerobic conditions (g/l)

KE Half-saturation coe�cient for ethanol (g/l)

KGlc,Ax Half-saturation coe�cient for glucose under anaerobic conditions (g/l)

KGlc,Ox Half-saturation coe�cient for glucose under aerobic conditions (g/l)

Kinh
iE,Ox Half-saturation coe�cient for ethanol inhibition under aerobic conditions (g/l)

kLa Overall oxygen transfer rate (h−1)

KO2 Half-saturation coe�cient for oxygen (mg/l)

KS(j) Half-saturation coe�cient for the limiting substrate S(j) in the matrix model
representation (g/l)

Kinh
S(j) Half-saturation coe�cient for the inhibiting by-product S(j) in the matrix model

representation (g/l)
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KS Half-saturation coe�cient for substrate S (g/l)

ME Ethanol molar mass (g/mol)

MGlc Glucose molar mass (g/mol)

MGly Glycerol molar mass (g/mol)

MO2 Oxygen molar mass (g/mol)

MXY
Yeast molar mass (g/mol)

PO2 Oxygen partial pressure in the air (atm)

R(i) Speci�c growth rate of the biological process −i in the matrix model represen-
tation (g/l/h)

S Substrate concentration (g/l)

S∗
O2

Saturation oxygen concentration (g/l)

S(j) Limiting substrate −j in the matrix model representation (g/l)

Sinh
(j) Inhibiting by-product −j in the matrix model representation (g/l)

SE Ethanol concentration (g/l)

SGlc,c Critical glucose concentration for switching from aerobic fermentation to respi-
ration (g/l)

SGlc Glucose concentration (g/l)

SGly Glycerol concentration (g/l)

SO2 Dissolved oxygen concentration (g/l)

XY Yeast concentration (g/l)

y
(i)
e(j,k) Experimental data value −k of variable −j in the experiment −i

y
(i)
m(j,k) Model output data value −k of variable −j in the experiment −i

1. Introduction

Following the growing popularity of digital twins in bio-production (Muldbak et al., 2022;
Sokolov et al., 2021; Babi et al., 2022), mechanistic modeling has received renewed atten-
tion by the scienti�c community. Whatever the complexity of digital twins at the plant
level, mechanistic models remain important, as they provide an excellent summary of
available process knowledge. Although scientists and industry experts use these models
e�ciently, they can be further improved by Machine Learning, either using data taken
from online sources or existing databases. In addition, such models are useful for planning
experiments and determining which critical process variables need to be monitored and
controlled tightly (Lencastre Fernandes et al., 2012). More precisely, these mechanistic
models allow a better understanding, description, and quanti�cation of the phenomena in-
volved in highly important and complex bioprocesses, such as alcoholic fermentation using
the yeast Saccharomyces cerevisiae.

Saccharomyces cerevisiae is a Crabtree positive yeast of great importance for various
biotechnological applications, some of which date back to several thousands of years (Para-
pouli et al., 2020). This yeast strain is commonly used for its capacity to rapidly convert
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sugars to ethanol and carbon dioxide under both aerobic and anaerobic conditions (Hag-
man et al., 2014). Although the Crabtree e�ect has been extensively studied, much remains
to be well understood about this phenomenon. Under aerobic conditions, the alcoholic fer-
mentation process occurs when the glucose concentration exceeds 0.10 - 0.15 g/l (Verduyn
et al., 1984), switching to the respiration process when glucose concentration is below these
values. Once the glucose is depleted, ethanol respiration takes place. Even under aerobic
conditions, the anaerobic metabolic pathway can also be activated when the rate of biologi-
cal oxygen uptake exceeds the rate of oxygen supply, which is identi�able by the production
of glycerol. In the absence of molecular oxygen, S. cerevisiae carries out the anaerobic fer-
mentation process, producing glycerol for the cytosolic redox balance (Bakker et al., 2001).

The above observations con�rm the complexity of yeast metabolism, and its use requires
precise control of the process to obtain maximum productivity and quality products. Mod-
eling has proven to be a powerful ally in explaining yeast metabolism and a useful tool for
optimizing and controlling fermentation processes under aerobic and anaerobic conditions.

Several mechanistic yeast models have been developed using the typical Monod-type ex-
pression (S/(K + S)). This mathematical expression considers the limiting substrates as
glucose, nitrogen and oxygen. Glucose is particularly important to Saccharomyces cere-
visiae, as it is by far the yeast's preferred carbon source. Yeast cells can sense glucose and
utilize it e�ciently over a broad range of concentrations, from a few micromolar to even a
few molars (Johnston and Kim, 2005). Nitrogen is also an essential element in S. cerevisiae
composition, since it is mandatory for protein synthesis and represents 9 % (w/w) of yeast
biomass (Verduyn et al., 1990b). Oxygen is required to regenerate NAD+ used in the gly-
colytic pathway of biomass formation, closing the redox balance for the co-enzyme system
NAD+/NADH. The oxidation of cytosolic NADH into NAD+ can occur through mito-
chondrial respiration with external NADH dehydrogenase (Bakker et al., 2001; Overkamp
et al., 2000). Oxygen is also important for the synthesis of yeast membrane compounds
(sterols and unsaturated fatty acids) (Sablayrolles and Barre, 1986), though this process
could be neglected since the required amount is very weak at between 0.3 and 1.5 mgO2

gDW−1 (Rosenfeld et al., 2003). Saccharomyces cerevisiae is a superb ethanol producer
yet is also sensitive to higher ethanol concentrations, especially under high gravity or very
high gravity fermentation conditions. Ethanol tolerance is associated with the interplay
of complex networks at the genome level. Although signi�cant e�orts have been made to
study ethanol stress response in past decades, mechanisms of ethanol tolerance are not well
known (Ma and Liu, 2010; Sostaric et al., 2021). Eukaryotic cells have developed diverse
strategies to combat the harmful e�ects of a variety of stress conditions. In the model yeast
Saccharomyces cerevisiae, the increased concentration of ethanol as the primary fermen-
tation product will in�uence the membrane �uidity and be toxic to membrane proteins,
leading to cell growth inhibition and ultimately death (Ding et al., 2009).

These limiting substrates and by-products' inhibition e�ect on yeast growth rate should
be considered in any model describing the metabolism of this complex yeast in order to
adequately describe the fermentation process under both aerobic and anaerobic condi-
tions. Each limiting substrate can be easily included in the model with the Monod-like
function, and several alternative expressions exist for the inhibiting by-products' e�ects
(Ghose and Tyagi, 1979; Carteni et al., 2020; Pham et al., 1998; Scheiblauer et al., 2018;
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Veloso et al., 2019; Amenaghawon et al., 2012; Luong, 1985). However, the Monod-like
function and even the conventional expression used by computer scientists to shift from a
limiting substrate to an inhibiting one (K/(K + S)) are not suitable to model the shift
between aerobic fermentation and respiration in the particular case of the Crabtree e�ect.
This phenomenon requires a more precise switching function that allows aerobic fermenta-
tion to be turned o� and glucose respiration to be turned on when glucose concentration
falls under 0.10-0.15 g/l. Several models have already been developed to simulate the
fermentation process with Saccharomyces cerevisiae achieving signi�cant advances in its
metabolism description (Hanly and Henson, 2013; Sulieman et al., 2018; Thierie, 2004,
2019; La et al., 2020; Pham et al., 1998; Sonnleitner and Käppeli, 1986; Scheiblauer et al.,
2018). However, much work remains to be done for increasing the accuracy of the models
in terms of triggering/inhibiting metabolism pathways when the environmental conditions
change.

The main objective of this work is to propose an accurate mechanistic model, capable
of predicting the metabolic shift from glucose aerobic fermentation to glucose respiration
when glucose concentration is lower than 0.10-0.15 g/l and to ethanol respiration once
glucose is depleted. This mechanistic model is developed to be as simple as possible,
easy to use, and adaptable to the conditions of each system. The model can be adapted
to a signi�cant number of existing mutated yeast strains used currently in the industry.
In addition, the model activates/deactivates simultaneous anaerobic fermentation in the
absence/presence of dissolved oxygen, respectively. This integral model will be calibrated
by combining experimental data generated using a commercial yeast strain Saccharomyces
cerevisiae used for wine production and modeling in an inverse method where the metabolic
pathways' stoichiometry and kinetics are determined independently when possible.

2. Materials and methods

2.1. Experimental setup

A Sartorius Biostat B Plus bioreactor (Fig. 1) of 5 liters in batch mode was used for the
experimental tests.
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Figure 1: Experimental setup of the bioreactor.

The yeast used in this study is a strain commercialized by the Institut Oenologique de
Champagne under the name IOC Fizz+. This yeast strain is presented in the form of
Active Dry Yeast (ADY). It is a Saccharomyces cerevisiae yeast resistant to alcohol up to
14 % vol. (approximately 110 g/l of ethanol) and possessing the killer factor (K2). These
properties allow it to grow while blocking wild yeasts that do not possess this K2 factor.
After rehydration, the number of living yeast is more than 10 billion cells/g with a purity
of less than 10 wild yeasts per million cells. The culture medium was composed of glucose
(10-35 g/l), peptone (20 g/l), yeast extract (20 g/l), and silicone antifoaming. The initial
temperature was set at 25 ◦C. The bioreactor was continuously stirred at 295 rpm. It was
operated under aerobic and anaerobic conditions ensured by continuous injection of 500
ccm of sterilized air and nitrogen gas �ow respectively. A cooling �nger was installed on
the gas output to reduce the ethanol and water losses caused by vaporization. The pH
and dissolved oxygen values in the liquid phase were continuously measured using internal
Hamilton electrodes, while a Pt100 probe was used for temperature measurement.

2.2. Analytical methods

2.2.1. Yeast, glucose, ethanol and glycerol concentration measurements

The yeast concentration was determined using samples of known volumes taken from the
bioreactor. These samples were centrifuged in a Centrifuge 5804 R Eppendorf at 2 ◦C and
5800 g during ten minutes, dried in a Memmert oven at 105 ◦C during seven days, and
weighed. Glucose, ethanol, and glycerol concentrations were measured by high-pressure
liquid chromatography with refractive index detection. A Thermo Scienti�c UltiMate 3000
(HPLC-RI) equipped with a Bio-Rad Aminex HPX-87H column performed the measure-
ments. The mobile phase had a �owrate of 0.5 ml/min with 2 mM H2SO4, and the column
temperature was controlled at 30 �. The supernatants were �ltered by HPLC-Certi�ed
Syringe Filter Whatman Spartan 0.20 µm/30 mm of regenerated cellulose before the HPLC
analysis.
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2.2.2. Determination of parameter kLa

The procedure proposed by Garcia-Ochoa and Gomez (2009) was used for the kLa deter-
mination, which consisted in �lling the bioreactor with the culture medium without yeast
inoculation. The dynamic technique of absorption consists of producing the elimination
of oxygen in the liquid phase by means of bubbling nitrogen until the oxygen concentra-
tion is equal to zero. Bubbling was then changed to air, and the time-increase of oxygen
concentration was recorded. The kLa value can be calculated as the slope of the resulting

straight line representing the ln

(
S∗
O2

− SO2

S∗
O2

)
versus time:

ln

(
S∗
O2

− SO2

S∗
O2

)
= −kLa · t (1)

3. Theoretical formulation

We applied the following assumptions in our model:

1. A perfectly stirred bioreactor.

2. Constant yeast kinetics parameter values without considering the temperature e�ect.

3. Constant stoichiometric parameter values.

4. A constant chemical composition of yeast, independent of the metabolic process and
substrate nature (glucose or ethanol). The yeast elementary composition obtained
by Rieger et al. (1983) expressed per mol of carbon (CαHβNγOω, in which α = 1,
β = 1.79, γ = 0.15 and ω = 0.57) was used.

5. Glycerol and ethanol formation pathways which are included; however, pathways for
the production of other by-products, such as fusel alcohols, were not considered.

6. A constant oxygen transfer rate coe�cient kLa without including the in�uence of
medium properties variation throughout the study.

3.1. Stoichiometry

In the absence of molecular oxygen, S. cerevisiae carries out anaerobic fermentation (Eq.
2), producing glycerol for the cytosolic redox balance (Bakker et al., 2001).

C6H12O6 + γc1NH3 → d1CαHβNγOω + e1C2H6O + f1C3H8O + g1CO2 + h1H2O (2)

It is well known that S. cerevisiae is a Crabtree positive yeast that exhibits fermentation
in aerobic conditions producing ethanol (Eq. 3) when the glucose concentration exceeds
0.10 - 0.15 g/l (Verduyn et al., 1984).

C6H12O6 + b2O2 + γc2NH3 → d2CαHβNγOω + e1C2H6O + g2CO2 + h2H2O (3)
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Figure 2: Metabolic pathways of Saccharomyces cerevisiae considering the Crabtree e�ect. (1) Aerobic
fermentation (glucose concentration > 0.10 - 0.15 g/l), (2) Respiration based on glucose (glucose concen-
tration <0.10 - 0.15 g/l), (3) Anaerobic fermentation and (4) Respiration based on ethanol.

Once the glucose concentration reaches values below this threshold, the metabolism switches
from aerobic fermentation to respiration (Eq. 4):

C6H12O6 + b3O2 + γc3NH3 → d3CαHβNγOω + g3CO2 + h3H2O (4)

Even when aerobic conditions are established in our model, the anaerobic fermentation
pathway is still included. In some cases, the speci�c respiration rate in a bioreactor is
limited by low concentrations of dissolved oxygen. The anaerobic fermentation pathway is
then partly activated, in which case both ethanol and glycerol are produced. In anaerobic
cultures of wild-type Saccharomyces cerevisiae, glycerol production is essential to reoxidize
NADH produced in biosynthetic processes. Glycerol consequently becomes a major by-
product during anaerobic production of ethanol by S. cerevisiae, the largest fermentation
process in industrial biotechnology (Nissen et al., 2000; Medina et al., 2010).
Once glucose is completely depleted, ethanol degradation by yeast occurs under aerobic
conditions:

C2H6O + b4O2 + γc4NH3 → d4CαHβNγOω + g4CO2 + h4H2O (5)

These four metabolic pathways are included in the model shown in �gure 2. Depending
on the growth conditions, each pathway can be inhibited or partially/fully activated. The
following section describes the activation/deactivation of these metabolic pathways via
kinetics expressions.
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3.2. Kinetics

As the YPD medium used here supplies enough nitrogen, no nitrogen limitation was taken
into account in the metabolic pathways. For the other substrates, the limiting e�ect on
speci�c growth rate was described as the product of the switching mathematical expressions
proposed by Monod, which is represented in the �rst product term of Eq. 6. In contrast
the inhibiting by-products' e�ect and the metabolism switching from aerobic to anaerobic
conditions and glucose to ethanol respiration were described as a product of a conventional
mathematical expression used in most of the biological models, which is represented in the
second product term of Eq. 6

dXY

dt
= µmax(i)

n∏
j=1

S(j)

KS(j) + S(j)

k∏
j=n+1

Kinh
S(j)

Kinh
S(j) + Sinh

(j)

XY , (6)

where µmax(i) is the maximum growth rate for process −i, S(j) is the limiting substrate −j,

KS(j) is the half-saturation coe�cient for the limiting substrate S(j), S
inh
(j) is the inhibiting

by-product −j, and Kinh
S(j) is the half-saturation coe�cient for the inhibiting by-product

Sinh
(j) .

In the Monod-like function, SGlc, is a generic substrate concentration, KGlc de�nes the
steepness of the function near zero, and the rate is divided by 2 when SGlc = KGlc.
As the Monod-like function is not suitable to model the shift between fermentation and
respiration, a smoothed C∞ stepwise function proposed by La et al. (2020) was used
instead:

λr =
1 + tanh(α(SGlc/SGlc,c − 1))

2
(7)

The stepwise function is de�ned by two parameters: the shift value SGlc,c de�nes the
concentration value at which transition occurs, and the α parameter de�nes the sharpness
of this transition. In this case, taking α = 150 and SGlc,c=0.125 g/l (the mean value of the
glucose transition range), the metabolism transition occurs in the interval 0.10-0.15 g/l of
glucose (Fig. 3).
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Figure 3: Shift function used to obtain a metabolism transition between aerobic fermentation and respi-
ration processes over the glucose concentration range of 0.10 - 0.15 g/l.

3.3. Matrix model representation

A detailed description of the stoichiometry and kinetics of the model's biological processes
is shown in Table 1.

Table 1: Matrix representation of the biological model

Component→ j 1 2 3 4 5
i ↓ Process SGlc SO2 SE SGly XY Rate

1 Anaerobic fermentation
based on glucose

− MGlc

d1MXY

e1ME

d1MXY

f1MGly

d1MXY

1 R1

2 Aerobic fermentation
based on glucose

− MGlc

d2MXY

− b2MO2

d2MXY

e2ME

d2MXY

1 R2

3 Respiration based on
glucose

− MGlc

d3MXY

− b3MO2

d3MXY

1 R3

4 Respiration based on
ethanol

− b4MO2

d4MXY

− ME

d4MXY

1 R4

5 Aeration 1 R5

The process expression rates are shown in Appendix A

The system of di�erential equations that describes the biological system is represented in
matrix form, establishing the corresponding balance equations

dC(j)

dt
=

5∑
i=1

5∑
j=1

υ(i,j)R(i), (8)
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where C(j) is the concentration of component −j, υ(i,j) the stoichiometric coe�cient corre-
sponding to biological process −i and component −j, and R(i) is the rate of the biological
process −i.

3.4. Model calibration

The yeast stoichiometry and kinetics of each metabolic pathway were studied indepen-
dently to the extent that was possible. Experiments with the injection of nitrogen or air
were performed to achieve complete anaerobic fermentation (anaerobic sub-model) or aer-
obic conditions (aerobic sub-model) respectively (step 1, Fig. 4). Six batch fermentation
experiments (A-F, Table 2) with di�erent initial glucose, ethanol and yeast concentrations
were performed to observe the e�ect of glucose, and ethanol on the yeast kinetics dur-
ing calibration, while experiment G was used to test the calibrated model. The initial
conditions of the batch experiments are shown in Table 2.

Table 2: Initial conditions of batch fermentation experiments performed under anaerobic and aerobic
conditions

Exp. SGlc

(g/l)
SO2

(mg/l)
SE

(g/l)
SGly

(g/l)
XY

(g/l)
T (◦C) Conditions

A 13.75 - 52.13 0.26 2.43 26.10 N2 injection

B 15.37 - 10.60 0.12 0.30 25.20 N2 injection

C 31.06 - 10.99 0.15 0.81 26.50 N2 injection

D 10.24 6.08 49.44 0.16 0.81 24.60 Air injection

E 15.93 5.84 9.11 0.10 0.50 26.10 Air injection

F 30.79 2.86 9.84 0.25 1.31 25.20 Air injection

G 12.41 - 1.27 0.15 0.40 23.80 -

Most of model parameters in this work were experimentally determined to the extent
that was possible. The remaining model parameters were taken either from the litera-
ture or estimated by inverse analysis using the particle swarm optimization method. The
oxygen and ethanol half-saturation coe�cients were considered the same for all aerobic
metabolic pathways. However, for the �rst time to our knowledge, di�erent glucose a�n-
ity and ethanol tolerance for aerobic and anaerobic conditions were applied in the model,
establishing di�erent half-saturation coe�cients for glucose and ethanol inhibition. This
modeling process was guided by the identi�cation procedure and is notably di�erent from
what the literature reports, i.e., that average values of these parameters are used for all
metabolic pathways and both for aerobic and anaerobic conditions. The modeling strat-
egy used in the calibration of the developed model is explained in �gure 4. This strategy
requires advancing step by step towards maximum complexity, starting with the analysis
of experiments under nitrogen injection, which ensures that one single metabolic pathway
exists (Eq. 2).
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Figure 4: Modeling strategy.

The procedure varies according to the speci�c metabolic pathway:
Anaerobic fermentation process

The stoichiometry of the anaerobic fermentation process was initially determined experi-
mentally using three experiments (A, B, and C). Kinetics parameters (maximum growth
rate, half-saturation coe�cients for glucose and ethanol inhibition under anaerobic condi-
tions) were then estimated by inverse analysis (step 2, Fig. 4).

Aerobic fermentation processes

Three experiments (D, E, and F) were used to determine the stoichiometry and kinetics
of the di�erent aerobic metabolic pathways. The inverse analysis was performed, apply-
ing the previously calibrated anaerobic sub-model. This application was required, since
anaerobic conditions were observed during the aerobic fermentation process when the rate
of biological oxygen uptake was higher than the rate of oxygen dissolution provided by the
aeration process (step 3, Fig. 4).

� For the aerobic fermentation process (SGlc > 0.10−0.15g/l), all stoichiometric coe�-
cients were determined experimentally, with the exception of the oxygen stoichiomet-
ric coe�cient determined by inverse analysis. The inverse analysis was required due
to the impossibility of performing mass balances caused by the lack of information
about the speci�c form of nitrogen assimilated by the biomass, as supplied by the
YPD medium. Some kinetics parameters such as oxygen and glucose half-saturation
coe�cients under aerobic conditions were taken from the literature (Fig. 4), while
the maximum growth rate and half-saturation coe�cient for ethanol inhibition under
aerobic conditions were determined by inverse analysis.

� As the glucose respiration process (SGlc < 0.10 − 0.15g/l) has a short duration
involving low values of glucose concentration, it is sometimes di�cult to estimate its
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stoichiometry and kinetics experimentally. Therefore, these parameters were taken
entirely from the literature (step 3, Fig. 4).

� The stoichiometry of the ethanol respiration process was also experimentally deter-
mined using the three experiments. The oxygen stoichiometric coe�cient is also
di�cult to determine experimentally; this coe�cient was also taken from the litera-
ture, as was the half-saturation coe�cient for ethanol. The maximum growth rate
was obtained by inverse analysis (step 3, Fig. 4).

The inverse analysis was performed by means of an optimization procedure using the mean
relative error as the objective function between the experimental data (yeast, ethanol,
glycerol, and glucose concentrations) and the model prediction

MRE =
1

lmn

ℓ∑
i=1

m∑
j=1

n∑
k=1

∣∣∣∣∣∣
y
(i)
e(k,j) − y

(i)
m(k,j)

y
(i)
e(k,j)

∣∣∣∣∣∣ , (9)

where y
(i)
e(j,k) is the experimental data value −k of variable −j in experiment −i and y

(i)
m(j,k)

is the model output data value −k of variable −j in experiment −i.
The model was implemented in Python, where the ODE system was numerically solved
using the solve_ivp method from the integrate SciPy package. The LSODA integration
method was used for solving the ODE system; this method is a wrapper of the Fortran
solver from ODEPACK that consists of an Adams/BDF method with automatic sti�ness
detection and switching (Hindmarsh, 1982; Petzold, 1983).
The calibration process was carried out using the Particle Swarm Optimization (PSO)
method from PySwarm package. The PSO algorithm is based on a simpli�ed social model
that is closely tied to swarming theory. A physical analogy for the PSO algorithm might be
a swarm of birds searching for a food source. In this analogy, each bird (referred to as the
particle) makes use of its own memory as well as knowledge gained by the swarm as a whole
to �nd the best available food source (Venter and Sobieszczanski-Sobieski, 2003). This
algorithm is mainly described by the relative weights of three di�erent mechanisms (interia,
memory and socialization), which in this case were set to 0.6, 0.5, and 0.5 respectively,
leading to fast convergence. The calibration parameter ranges were de�ned using the values
reported in the literature.
The quality of the model in terms of experimental data �tting was also evaluated by esti-
mating Pearson's correlation. This correlation was computed using the pearsonr method
from the stats SciPy package in Python.

4. Results and discussion

4.1. Modeling yeast activity under completely anaerobic conditions

Table 3 summarizes the stoichiometry and kinetics parameters of the biological model
under completely anaerobic conditions (anaerobic sub-model), which were obtained from
the calibration procedure. As explained above, stoichiometry was obtained experimentally
under completely anaerobic conditions, while kinetics was determined by inverse analysis.
The inverse analysis combining experimental data and modeling, using three experimental
data sets obtained for di�erent glucose, ethanol and yeast concentrations (experiments A,
B, and C).
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Table 3: Stoichiometry and kinetics parameters of the biological model under complete anaerobic condi-
tions

Parameters name Symbol Value Source

Yeast stoichiometric coe�cient in anaero-
bic fermentation process (mol)

d1 1.05±0.04 Experimental

Ethanol stoichiometric coe�cient in
anaerobic fermentation process (mol)

e1 1.70±0.01 Experimental

Glycerol stoichiometric coe�cient in
anaerobic fermentation process (mol)

f1 0.10±0.00 Experimental

Half-saturation coe�cient for glucose un-
der anaerobic conditions (g/l)

KGlc,Ax 1.72±0.01 Calibrated

Half-saturation coe�cient for ethanol in-
hibition under anaerobic conditions (g/l)

Kinh
E,Ax 202.83±0.97 Calibrated

Maximum growth rate for anaerobic fer-
mentation process (h−1)

µmax1 0.31±0.00 Calibrated

The optimization process using the PSO method converged to a unique minimum, which
is demonstrated by the low standard deviation values obtained for each parameter during
the optimization process (below 0.5 %, as can be seen in Table 3). Using the optimal
parameters, the model was able to reproduce all the experiments with mean relative errors
under 7 % and with a unique set of parameters (Table 4).

Table 4: Mean relative errors reported between model output and experimental data under completely
anaerobic conditions

No. Experiment SGlc(%) SE(%) SGly(%) XY (%) Mean value(%)

1 A 21.37 1.14 0.96 2.65 6.53

2 B 9.76 3.55 5.19 7.94 6.61

3 C 17.44 3.74 4.07 4.32 7.39

Mean value(%) 16.19 2.81 3.41 4.97 6.84

Interestingly, the maximum growth rate obtained during the calibration process is the same
reported by Verduyn et al. (1990a) (0.31 h−1), which validates the quality of the calibration
process. On the other hand, the value of the half-saturation coe�cient obtained for glucose
(1.72 g/l) reveals a larger need for this source of carbon in relation to what is reported in
the literature (1x10−3 to 0.5 g/l)(Hanly and Henson, 2013; Sulieman et al., 2018; Thierie,
2004, 2019; La et al., 2020; Pham et al., 1998; Sonnleitner and Käppeli, 1986; Scheiblauer
et al., 2018). Similarly, the high value obtained for the half-saturation coe�cient for ethanol
inhibition (202.83 g/l) indicates that S. cerevisiae has a high tolerance to ethanol under
anaerobic conditions, signi�cantly higher than those reported in the literature (10-26.97
g/l)(Scheiblauer et al., 2018; Pham et al., 1998).
The model provides very good results in the prediction of the variables behavior (Table
4, Fig. 5); however the half-saturation coe�cient for ethanol inhibition obtained in this
model might not be adequate to simulate anaerobic fermentation processes when dealing
with higher ethanol concentrations. According to the inhibition function used in the model
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and the value of the half-saturation coe�cient found for ethanol inhibition, the growth rate
would be divided by a factor of two for an ethanol concentration of 202.83 g/l. Yet according
to Arroyo-López et al. (2010), no yeast activity should be observed at this concentration.
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Figure 5: Yeast activity simulation under complete anaerobic conditions. Comparison between model
output and experimental data.

The high value of half-saturation coe�cient for ethanol inhibition results from the combi-
nation of both the experimental range of ethanol tested here and the shape of the inhibition
function, which is too loose to account for toxicity. This problem could be solved with a
recalibration process using a wider ethanol concentration range and a di�erent mathemat-
ical expression for the inhibition function. For example, applying the λr function (Eq.
7), would involve a critical value (the ethanol concentration value above which no yeast
activity is observed) and the range of inhibitory e�ect (α). This approach could be useful
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for future modeling research.

In general, the values obtained for the half-saturation coe�cients for glucose and ethanol
inhibition through the inverse analysis are outside the ranges reported in the literature.
Yet these values describe very well the behavior of the main variables of the model. This
is an interesting result since it is the �rst time, to our knowledge, that these parameters
are di�erentiated in yeast metabolic models for aerobic and anaerobic conditions. The
model is consequently more accurate in describing the phenomena, since it uses di�erent
substrate a�nities and inhibitions for each operating condition.

The accuracy of the model for predicting the experimental data was quite good, reporting
the highest MRE in predicting glucose concentration and satisfying the adequate descrip-
tion of the trends of all variables in the experimental data (Table 4, Fig. 5).
In addition, the correlation analysis between the experimental data and the output vari-
ables of the model performed in this study is statistically signi�cant, as its p-values are less
than 1x10−3%, which is well below what is expected to achieve acceptable quality (p≤5%).
Fig. 5 con�rms that the model is able to reproduce the behavior of the main experimental
variables very well, thus validating the description of the phenomena considered in the
model. Even the lowest MRE value obtained for ethanol, the worst variable trend of the
model reporting the lowest R-squared value, is still good (Fig. 5).
In general, the agreement between the three sets of experimental data and the model
outputs is very strong, reporting an overall MRE value in the prediction of all the variables
studied of less than 7 %. In addition the model is able to predict yeast metabolism under
fully anaerobic conditions at di�erent concentrations of glucose, ethanol, and yeast. These
results con�rm the robustness of the model and the quality of the calibration method.

4.2. Modeling yeast activity under aerobic conditions

Modeling the fermentation process under aerobic conditions is more complex, since it in-
volves di�erent metabolic pathways such as aerobic fermentation and respiration processes,
typical of a Crabtree e�ect positive yeast. Anaerobic fermentation pathway could be also
included: even under aerobic conditions, the oxygen uptake can be larger than the rate
of dissolved oxygen, partially triggering the anaerobic pathway. This metabolic pathway
is veri�ed by the data concerning glycerol production. Dissolved oxygen de�ciency also
worsens with time due to decreased oxygen solubility in the medium, which is caused by
an increased temperature resulting from metabolic heat release and the increase in yeast
population. Fortunately, the model accounts for these two e�ects of the anaerobic path-
way and the in�uence of temperature on dissolved oxygen. Di�erent glucose a�nity and
ethanol inhibition coe�cients under aerobic and anaerobic conditions were established in
the model, assuming that yeast tolerance to ethanol and a�nity for glucose is di�erent
under aerobic and anaerobic conditions.

Three test combinations with di�erent initial concentrations of glucose, ethanol, and yeast
were performed to consider their in�uence on yeast kinetics (experiments D, E, and F).
Most of the model parameters were taken from the literature, so only four parameters had
to be calibrated, considerably simplifying the model calibration process. This simpli�ed
calibration process demonstrates the phenomenological character of the model, its univer-
sality, and its versatility for use in production.
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The optimization process using the PSO method converged to a single minimum (Table
5), reporting a standard deviation in parameter optimization less than 0.25 %.

Table 5: Stoichiometry and kinetics parameters of the biological model under aerobic conditions

Parameters name Symbol Value Source

Oxygen stoichiometric coe�cient in aero-
bic fermentation process (mol)

b2 0.37±0.00 Calibrated

Yeast stoichiometric coe�cient in aerobic
fermentation process (mol)

d2 1.40±0.25 Experimental

Ethanol stoichiometric coe�cient in aero-
bic fermentation process (mol)

e2 1.26±0.20 Experimental

Oxygen stoichiometric coe�cient in glu-
cose respiration process (mol)

b3 2.50±0.06 Thierie (2004)

Yeast stoichiometric coe�cient in glucose
respiration process

d3 3.33±0.06 Thierie (2004)

Oxygen stoichiometric coe�cient in
ethanol respiration process (mol)

b4 1.61±0.10 Scheiblauer et al.
(2018)

Yeast stoichiometric coe�cient in ethanol
respiration process (mol)

d4 1.17±0.29 Experimental

Half-saturation coe�cient for oxygen
(mg/l)

KO2 0.10 Sonnleitner and
Käppeli (1986)

Half-saturation coe�cient for glucose un-
der aerobic conditions (g/l)

KGlc,Ox 1x10−3 Thierie (2004)

Half-saturation coe�cient for ethanol
(g/l)

KE 0.10 Sonnleitner and
Käppeli (1986)

Half-saturation coe�cient for ethanol in-
hibition under aerobic conditions(g/l)

Kinh
E,Ox 19.70±0.01 Calibrated

Maximum growth rate for aerobic fermen-
tation process (h−1)

µmax2 0.51±0.00 Calibrated

Maximum growth rate for glucose respira-
tion process (h−1)

µmax3 0.20 Thierie (2004)

Maximum growth rate for ethanol respira-
tion process (h−1)

µmax4 0.11±0.00 Calibrated

Overall oxygen transfer rate (h−1) kLa 27.27±0.42 Experimental

Stoichiometric parameters for the respiration process were taken as the mean values reported by Thierie
(2004) using three glucose concentrations values (5, 15 and 30 g/l) for the respiration process at the
maximum growth rate of 0.20 h−1.

The model was able to reproduce all experiments with mean relative errors of less than
11 % (Table 6). In this case, a half-saturation coe�cient for ethanol inhibition (19.70
g/l) was obtained under aerobic conditions, which was lower than the same value of half-
saturation coe�cient for ethanol inhibition under anaerobic conditions. The di�erences
between these values supports this work's assumption, i.e., yeast tolerance to ethanol is
di�erent under anaerobic and aerobic conditions (10-fold more tolerant under anaerobic
conditions). Arroyo-López et al. (2010) studied the inhibitory e�ect of ethanol using the
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Lambert and Pearson (2000) methodology for the estimation of the Minimum Inhibitory
Concentration (MIC) and Non-Inhibitory Concentration (NIC) of a compound using Op-
tical Density (OD) measurements. MIC is related to the resistance or tolerance of the
microorganism to the compound and is the lowest concentration which results in main-
tenance or reduction of an inoculum's viability (marks the concentration above which no
growth is observed). In contrast, NIC is related to the susceptibility of the microorganism
to the compound, and it is the concentration above which the inhibitor begins to have
a progressive and negative e�ect on growth (Lambert and Pearson, 2000). The authors
studied some yeast strains, and in the particular case of S. cerevisiae they obtained values
of NIC and MIC in the ranges of (36.7-73.9 g/l) and (95.6 - 141.4 g/l), respectively. In
our experiments, the ethanol inhibition e�ect was only observed in the data set in which
an initial ethanol concentration over 50 g/l concentration was used, which lies well within
inhibitory concentration ranges reported by Arroyo-López et al. (2010).
According to the stoichiometry and kinetics obtained in the present study, the aerobic
fermentation process has a lower ethanol production yield, a higher yeast yield, and a
higher growth rate than the anaerobic fermentation process. According to Thierie (2004),
stoichiometry varies as a function of the speci�c growth rate of the yeast. In contrast,
our work uses constant stoichiometric parameters corresponding to the mean values of the
experiments performed for the individual metabolic pathways under aerobic and anaerobic
conditions (Tables 3 and 5). Yet in all batch fermentation processes carried out in this
study, the apparent stoichiometry varies, due to the varying partition of the metabolic
pathways (Fig. 7). Accounting for the varying metabolic pathways partition confers a
much better predictive capability on the model. Our model thus has the potential to
increase ethanol yield with reduced consumption of time and resources, which would be
useful for all ethanol producers.

Table 6: Mean relative errors reported between model output and experimental data under aerobic condi-
tions

No. Experiment SGlc(%) SO2(%) SE (%) SGly(%) XY (%) Mean
value(%)

1 D 7.77 9.95 0.83 24.19 4.56 9.46

2 E 11.13 17.19 3.87 10.96 7.36 10.10

3 F 9.23 14.27 4.70 22.70 7.09 11.60

Mean value(%) 9.38 13.80 3.13 19.28 6.34 10.39

Figure 6 summarizes the results obtained with the �nal set of parameters.
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Figure 6: Yeast activity simulation under aerobic conditions. Comparison between model output and
experimental data.

In most cases, the model is able to predict the concentrations over time with accuracy. The
highest MRE values and the lowest R-squared values were found for glycerol (experiment
D, 24.19 % and 93.40 %, respectively)(Table 6, Fig. 6). Once again, the correlation
analysis between the experimental data and the output variables of the model performed
in this study is statistically signi�cant, as its p-values are less than 1x10−6%. As S.
cerevisiae has already been shown to grow by using glycerol as a carbon source under
aerobic conditions at low speci�c growth rates (0.01-0.20 h−1) (Ochoa-Estopier et al.,
2011). Interestingly glycerol consumption was observed in experiments E and F beyond 6
hours. Yeast growth based on glycerol under aerobic conditions was not included in the
model, which might signi�cantly a�ect the model balance. Improving this yeast model
by including this metabolic pathway would be a novel approach, and would require the
identi�cation of its main metabolites, their stoichiometry, and kinetics.
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4.2.1. Individual metabolic pathways contribution under aerobic conditions

As stated in section 4.2, all metabolic pathways are always kept in the model. However,
their relative importance is triggered during the culture as a function of growth conditions.
The rates of all these pathways can then be obtained from the simulation. The relative
rates of each metabolic pathway as integrated over time during the process are depicted in
Fig. 7 for glucose and ethanol consumption. In the model, ethanol production and utiliza-
tion are expressed with positive and negative rate values, respectively, because ethanol is
a fermentation product that becomes a carbon source for yeast when glucose is depleted.
In all cases, the aerobic alcoholic fermentation process is the predominant metabolic path-
way.
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Figure 7: Individual metabolic pathways contribution to glucose and ethanol (Line graphs). Stoichiometry
of glucose utilization and ethanol production during glucose degradation process (Pie graphs).

The highest glucose consumption rates were predicted by the model for experiment F,
in which the maximum initial concentrations of glucose and yeast were used. Indeed, an
increase in the initial yeast concentration with a constant air supply rate favors the anaero-
bic fermentation pathway because it increases oxygen consumption rates above the oxygen
supply rate, generating anaerobic conditions. However, although a higher initial yeast
concentration was used in experiment D than in experiment E, the anaerobic fermentation
pathway was activated to a lesser extent in experiment D. These di�erences are explained
by the higher initial ethanol concentration, which inhibits the aerobic fermentation path-
way and thus reduces the rate of oxygen consumption. The glucose respiration process in
our experiments was almost negligible compared to the other metabolic pathways.

4.3. Model validation: yeast culture without gas injection

Our model was validated using a batch fermentation process without gas injection (ex-
periment G) instead of the experiments from the learning database. In this experiment,
the gas headspace of the bioreactor was maintained at a constant atmospheric pressure.
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Even without air injection, oxygen is still transferred from the bioreactor gas headspace
to the liquid volume through the agitation process. This oxygen transfer occurs through
the oxygen concentration gradient maintained by the biological oxygen consumption in
the liquid phase. Consequently, both anaerobic and aerobic metabolic pathways take place
simultaneously. In the simulation, the kLa value was replaced by the oxygen transfer mass
from the gas headspace, taking the value already estimated by La et al. (2020) for the
same installation and operations conditions (2× 10−4 s−1).

Table 7: Model validation: mean relative errors reported between model output and experimental data for
fermentation without gas injection

No. Experiment SGlc(%) SE (%) SGly(%) XY (%) Mean
value(%)

1 G 10.69 5.19 8.60 3.65 7.03
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Figure 8: Model validation: yeast activity simulation without gas injection. Comparison between model
output and experimental data.

As can be seen in Table 7 and Fig. 8, the model performs very nicely for this validation test.
It allows all variables' evolution to be predicted with a MRE less than 11 %, reporting a
global MRE for all variables of 7 %. The trends of all variables were well described, showing
a very good correlation coe�cient value above 99 % (Fig. 8), results that are statistically
signi�cant, as their p-values are less than 1x10−6%. The model also provides an excellent
prediction of glycerol production. These results validate the quality, applicability, and
accuracy of the model, even under di�erent operating conditions.
Fig. 9 depicts the individual metabolic pathway contributions during glucose consumption
and ethanol production without gas injection.
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Figure 9: Model validation: individual metabolic pathways contribution to glucose and ethanol in the
absence of gas injection (Line graph). Stoichiometry of glucose utilization and ethanol production during
glucose degradation process (Pie graph) (Experiment G).

Even without gas injection, the aerobic metabolic pathway was partly activated thanks
to the oxygen transfer from the gas headspace. This limited mass transfer explains the
low activation of the aerobic metabolic pathway compared to the dominant metabolism
of the anaerobic pathway. Most of the glucose consumption and ethanol production were
associated with the anaerobic metabolic pathway (94.3 % and 95.8 %, respectively). No
ethanol consumption was observed during the experiment, as Fig. 9 con�rmes.

Indeed, this particular case of yeast culture without gas injection more closely resembles
real world scenarios, where alcoholic fermentation processes are partially carried out under
anaerobic conditions. Certain designs of bioreactors can allow, the oxygen in the gas
headspace to be continuously renewed if atmospheric air is allowed to enter, for example,
through �lters. The pie graphs in Fig. 9 prove that the model is able to activate/deactivate
the corresponding metabolic pathways according to the medium conditions and, more
importantly, under di�erent operating conditions than those used for model calibration.
The results obtained allow a better understanding of the phenomena occurring in partial
anaerobic systems in order to improve process control and optimize operating conditions
according to the conditions of the medium.

4.4. Potential application of this model

Producers and scientists currently consider modeling to be a promising tool for enhancing
bio-production. To this end, databases, mechanistic models, and machine learning need to
work in synergy for online process monitoring. This approach is known as hybrid modeling
and o�ers a promising route in the general quest of the digital twin in bio-production
(Muldbak et al., 2022; Sokolov et al., 2021; Babi et al., 2022). For this approach to be
e�cient, the mechanistic model needs to be as predictive as possible. The mechanistic
model could be improved either inline by real-time tuning some key parameters or online,
using a dynamic learning database.
Even though the mechanistic model was applied to a speci�c commercial strain of Saccha-
romyces cerevisiae, the general modeling approach proposed in this study is a perfect brick
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for hybrid modeling for any application of bio-production. Our model is constructed for
this commercial strain by including the main metabolic pathways of mutant and wild-type
yeast strains used for ethanol or yeast production reported in the literature. The model
was successfully calibrated and validated for the commercial yeast strain provided by the
Institut Oenologique de Champagne under the name IOC Fizz+, thus demonstrating its
applicability and universality in ethanol or yeast production systems. It is important to
note that, for predicting the metabolism of other yeast strains, model calibration alone may
be su�cient if the mutated yeast strain exhibits the same metabolic pathways described
in the model. The structural basis of the model can allow other metabolic pathways to be
easily included or removed when describing the metabolism of the microorganisms that do
not exhibit the same metabolic pathways more accurately.
The predictive model proposed in this paper is valuable not only for alcoholic fermentation
but also for other processes, such as the production of chemicals, fuels, foods, and pharma-
ceuticals, as yeast is one of the most widely used hosts for synthetic biology (Vieira Gomes
et al., 2018). One of the disadvantages of the Crabtree e�ect is the carbon loss due to
the ethanol production under aerobic conditions, which leads to a lower biomass formation
and consequently a lower production of recombinant proteins (Mattanovich et al., 2012).
Therefore, the structural base of the developed model could be adapted or serve as a basis
for the modeling of other Crabtree-positive yeasts used for the production of therapeutic
proteins. The model could then be used as a tool for achieving a better understanding,
control, and optimization of the production process.
Beyond the huge domain of engineered yeast strains, the formulation proposed in this
work can also be applied to other strains. In particular, the proposed functions that
account for activation or inhibition of pathways and sudden shifts of pathways are universal.
For example, our team is currently using this framework to model the Chinese Hamster
Ovary (CHO) cell metabolism to produce antibodies. CHO cells are analogous with the
Crabtree e�ect in that they exhibit a phenomenon known as the Warburg e�ect, where
glucose is fermented to produce lactate even in the presence of oxygen (Potter et al., 2016).
Even in the presence of oxygen, this �rst stage of lactic fermentation corresponds to a
peak of exponential cell growth, followed by a metabolic shift from net production to net
consumption of lactate (known as stationary phase) during which proteins are produced.
The similarity between the systems mentioned above suggests that our mechanistic models
has the potential to predict the metabolic shift observed for CHO cells, which has the
possibility of considerably improving the current state of CHO cells modeling.
Finally, bringing together mechanistic modeling and machine learning can better explain
system phenomena that are traditionally di�cult to describe. For instance, well-established
theoretical knowledge can be formulated as explicit equations, while parameters which
cannot be derived from �rst principles or space-time-varying (latent) states are estimated
via a machine learning approach (Reichstein et al., 2022). The development of online
sensors using the Raman spectroscopy mechanistic and machine learning models and their
hybridization variants have considerably increased their application in bioprocess retro-
control, allowing maximum productivity with lower resource consumption.

5. Conclusions

In this study, a robust and predictive yeast model was developed and successfully vali-
dated with experimental data from experiments with a commercial yeast strain used for
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wine production. The model includes a comprehensive set of metabolic pathways that
are always present in the model but are more or less activated depending on the growth
conditions. A general framework is proposed for the formulation, including functions that
account for activation, inhibition, and shift of metabolic pathways. The model parameters
were determined by a blend of literature data and experimental data. The inverse anal-
ysis method was used to determine parameters that could not be directly obtained from
literature and experiments. Once the model was calibrated, its quality and robustness
were again con�rmed with an additional experiment performed without gas injection, and
the model describes the main process variables with an overall mean relative error of 7%.
The complete formulation and set of parameters are provided in the document so that the
reader can implement them for their own needs.

The model is able to switch between aerobic fermentation and glucose-based respiration
when the glucose reaches values below 0.10-0.15 g/l. It is also able to activate the anaerobic
fermentation metabolic pathway even under aerobic conditions when the rate of oxygen
uptake is higher than the rate of dissolved oxygen, as supplied by aeration. Once glucose
is depleted under aerobic conditions, the model automatically switches to ethanol degra-
dation. The results provided in this work give new insights towards the behavior of S.
cerevisiae. For example the model better informs the emerging nature of the global sto-
ichiometry and di�erences in ethanol tolerances, which depend on the evolution of yeast
growth conditions and the active metabolic pathway.

Beyond the application to the yeast strain studied here, this work gives a general framework
of mechanistic modeling able to predict the coexistence of several metabolic pathways and
their shift along the growth conditions. This framework can be used as a building block of
a digital twin of any bio-production.
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Appendix A. Biological rate expressions

Anaerobic fermentation based on glucose

R1 = µmax1
SGlc

KGlc,Ax + SGlc

KO2

KO2 + SO2

Kinh
E,Ax

Kinh
E,Ax + SE

XY (A.1)

Aerobic fermentation based on glucose

R2 = µmax2λr
SGlc

KGlc,Ox + SGlc

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY (A.2)

Respiration based on glucose

R3 = µmax3(1− λr)
SGlc

KGlc,Ox + SGlc

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY (A.3)

Respiration based on ethanol

R4 = µmax4
δKGlc,Ox

δKGlc,Ox + SGlc

SE

KE + SE

SO2

KO2 + SO2

Kinh
E,Ox

Kinh
E,Ox + SE

XY , (A.4)

where δ is a safety coe�cient to guarantee low values of the mean saturation coe�cient in
the switching function for the activation of ethanol respiration process without conditioning
the value of the glucose saturation coe�cient, with a value of 1x10−3.

Aeration

R5 = kLa(MO2H(T )PO2 − SO2) (A.5)

The constant Henry's value as function of temperature is estimated using Eq. A.6:

H(T ) = X(T )ρw(T ), (A.6)

where X is the mole fraction of the oxygen dissolved in water when the oxygen partial pres-
sure is 1 atm and where X was estimated using a correlation (Eq. A.7) for the temperature
range of 273 to 333 K taken from Green and Perry (2008):

lnX(T ) = −171.2542 + 8391.24/T + 23.24323lnT (A.7)

The water density ρw(T ) in (mol/l) was estimated using a correlation (Eq. A.8) for water
over the entire temperature range of 273.16 to 647.096 K taken from Green and Perry
(2008):
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ρw(T ) = 17.863 + 58.606τ0.35 − 95.396τ2/3 + 213.89τ − 141.26τ4/3 (A.8)

τ = 1− T/647.096 (A.9)
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