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ABSTRACT 

The topic of power conversion limits for size-
constrained kinetic energy harvesting systems, and the 
associated optimal design, has mainly been explored for 
monochromatic and stochastic excitations. In this work, we 
present a first extension where we evaluate the absolute 
power conversion bound in the case of bi-chromatic 
vibration inputs. The resulting maximum power limit is 
shown to depend on both the relative amplitude and the 
phase shift of the input harmonics. We then evaluate this 
bound numerically for a near-optimally matched velocity-
damped resonant generator. We show that for some relative 
amplitudes and phase shifts of the input vibration 
harmonics, the converted power drops to 45% of the 
absolute power bound, well below the well-known 79% 
limit that holds for monochromatic inputs.  
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INTRODUCTION 

Various models of small-size, inertial lineic kinetic 
energy harvesters (KEH) have been reported over the last 
two decades. These models describe harvester architectures 
that rely on different transduction mechanisms (e.g., 
electrostatic, or piezoelectric), different mechanical 
designs (e.g., beyond-quadratic potentials [1]), or different 
electrical interfaces (e.g., synchronized switching circuits 
[2]  or charge-pumps [3]), combined in various 
configurations. Several limits on the maximum convertible 
power are obtained from each model: more specific models 
trade wide-range applicability for tighter bounds on 
converted power, and vice-versa. 

Besides the harvester structural model, the other piece 
of information necessary to derive power bounds is the 
input vibration. Each power bound is valid for a specific 
model of input vibration. Many studies in the open 
literature report on the analysis of various harvester models 
under monochromatic harmonic inputs. Other works study 
power bounds for inputs modeled as wideband stochastic 
processes [4]. In all, these two canonical types of 
excitations constitute most of the reported analyses of 
inertial KEH models, with a few exceptions [5, 6]. 

However, it is reasonable to expect that in some 
applications, the harvester can be submitted to other inputs. 
For instance, the vibrations experienced by the KEH are 
often due to the response of a larger host structure to 
external mechanical excitations. These structures can 
exhibit different vibration modes, submitting the harvester 
to multi-chromatic inputs corresponding to each mode [7]. 

Non-monochromatic but regular vibration profiles are also 
encountered in the case of human motion [8]. While in such 
cases, the input vibration to the harvester remains periodic, 
the response to single-chromatic harmonic inputs does not 
define the behavior for multi-chromatic inputs. This is 
fundamentally due to the non-linear nature of inertial 
KEHs. A universal source of nonlinearity for small-scale 
inertial harvesters is the limited displacement allowed for 
the harvester’s mass. Many reported architectures feature 
other sources of nonlinearity, deliberately or not. 

Among all pairs of harvester model and input 
excitation, the displacement-limited velocity-damped 
resonant generator (VDRG) under monochromatic 
vibration was one of the first studied [9]. Since then, the 
VDRG has often served as a benchmark for KEHs. Indeed, 
the VDRG is deemed to be more realistic to implement 
compared to a KEH targeting the input power limit, 
because the VDRG can describe piezoelectric and 
electromagnetic harvesters with good accuracy under the 
right hypotheses. Besides, the maximum power limit of the 
VDRG model is a constant factor 𝜋/4 less than the input 
power limit [10].  

In this work, we explore the power limits of a VDRG 
with displacement limitation for the inertial mass, 
submitted to bi-chromatic input vibrations. The inputs are 
characterized in terms of their harmonics’ relative 
amplitudes and phase. We first highlight the dependence of 
the input power bound on the phase. Using a numerical 
approach, we study the dependence of the VDRG 
maximum converted power and optimal design parameters 
(stiffness, damping) on the input parameters. We show that 
KEHs designed to target the input power bound [11] show 
increasing relative performance with respect to the VDRG 
in the case of multi-chromatic inputs, compared to the 
mono-chromatic case. Indeed, our analysis in the 
remainder of the paper shows that the shortfall in converted 
power of a VDRG architecture drops from 𝜋/4 (»79%) of 
the input power limit for monochromatic inputs, to as low 
as about 45% of the maximum input power with bi-
chromatic inputs. 

 
HARVESTER MODEL 

We consider in this paper a harvester following the 
velocity-damped resonant generator model (VDRG). To 
review, this is a lineic harvester built around a linear 
mechanical resonator of natural angular frequency 𝜔!, 
comprised of an inertial mass 𝑚 allowed to move along the 
(𝑂𝑥) axis, and of a linear mechanical stiffness 𝑘. Two 
exogenous forces act upon the inertial mass: the input force 
𝐹 = 𝑚𝐴(𝑡), i.e., the inertial force from the acceleration of 
the harvester defined as −𝐴(𝑡), and the harvester force, 



which, for the VDRG harvester, is supposed to be a linear 
dashpot. We quantify its effect in terms of a finite quality 
factor 𝑄 for the resonator. It is assumed that the work 
associated with this linear dashpot represents the energy 
converted from the mechanical into the electrical domain. 
The position of the mass 𝑥(𝑡) is referenced to be zero at the 
minimum of the quadratic potential. In addition, the model 
features a displacement limit 𝐿, beyond which the 
dynamics are not defined within this model: all trajectories 
must satisfy this constraint. In all, the model takes the form: 

{
𝑥̈ + 𝜔0

2𝑥 + 𝜔0
𝑄

𝑥̇ = 𝐴(𝑡)

|𝑥(𝑡)| ≤ 𝐿.
 

For the rest of this study, we consider general 
bichromatic vibrations: 

𝐴(𝑡) = 𝐴0(𝜉 cos(𝜔𝑡) + √1 − 𝜉2 cos(2𝜔𝑡 + 𝜑)) 
with 0 ≤ 𝜉 ≤ 1. Note that it is customary to include an 
additional damping term to model air friction. We neglect 
this effect in the following to focus on the effect of the 
displacement limitation. This damping merely adds 
multiples regimes of operation, some of which are not 
displacement constrained. Furthermore, the assumption of 
negligible damping can be considered realistic in the cases 
of cautious harvester packaging to reduce the impact of 
friction, or when the input levels are sufficiently large (to 
wit, when the ratio 𝐿𝜔2/𝐴0 is sufficiently small). 

The analysis for the remainder of the paper is done on 
a non-dimensional form of the model: 

{
𝑦̈ + 𝜅2𝑦 + 𝜅

𝑄
𝑦̇ = 𝑓(𝑡),

|𝑦(𝑡)| ≤ 𝜆
 

where we have defined 𝑦(𝑡) ≜ 𝑥(𝑡/𝜔) × 𝜔2/𝐴0, 𝜅 ≜
𝜔0/𝜔, 𝜆 ≜ 𝐿𝜔2/𝐴0, and 𝑓(𝑡) ≜ 𝐴(𝑡)/𝐴0. 
 
INPUT POWER LIMIT 

There is an upper bound on the input energy that holds 
for any lineic, inertial KEH with displacement limitation, 
and for arbitrary input vibration. It is reached when the 
mass follows the toggling trajectory described in [12]. 
When the transducer force is set to implement this 
trajectory, the converted energy is maximized in the 

absence of damping phenomena. The corresponding 
energy is equal, up to constant terms, to the sum of local 
maxima, minus the local minima of the input force [11]. 
Thus, the upper bound on the average power for periodic 
forcing of period 𝑇 = 1/𝑓  is: 

𝑃max = 2𝑚𝑓𝐿 ∑ 𝐺𝑖 − 𝑔𝑖𝑖
 

where the (𝐺𝑖)𝑖 are all local maxima of 𝐴(𝑡) in one period 
and (𝑔𝑖)𝑖 are the local minima. Applied to the case of 
harmonic 𝐴(𝑡) of amplitude 𝐴0 and frequency 𝑓 = 𝜔/2𝜋, 
this limit evaluates to 𝑃max

1h = 𝑃0 ≜ 4𝑚𝑓𝐿𝐴0. 
For the bi-chromatic inputs characterized by 

parameters 𝜉 and 𝜑, this quantity can be computed in closed 
form, although the expressions are cumbersome as they 
involve roots of a general fourth-order polynomial. Plots of 
a normalized 𝑃max

2h (𝜉, 𝜑) for the bi-chromatic input are 
depicted in Fig. 1. The plots show, for each value of 𝜉, the 
value of the power vs. 𝜑, each normalized by the maximum 
power for that specific 𝜉. It is therefore apparent that the 
phase has an impact on the maximum power that can be 
converted. The impact depends on the relative amplitudes 
of the harmonics as set by 𝜉. The impact is greater roughly 
in the region 𝜉 ∈ [0.8; 1.0(, as shown in the rightmost part 
of the figure. There, the phase shift between the input 
harmonics can induce up to about 10.5% of shortfall in 
converted power when 𝜑 = 0 or 𝜑 = 𝜋 compared to the 
most favorable case where 𝜑 = 𝜋/2. 

An obvious consequence of dependence of the input 
power limit on the phase 𝜑 is that the size and mass of the 
harvester being given, the power spectral density of the 
input does not characterize the maximum harvestable 
power in general. 
 
VDRG POWER LIMIT 

We now study the power limits for the VDRG. The 
problem of interest is, for given (𝜉, 𝜑, 𝜆): 

⎩{
⎨
{⎧ max

(𝜅,𝑄)∈{1,2}×ℝ>0
+

𝑝𝜆(𝜅, 𝑄) ≜
𝜅

𝜆𝑄
(𝑦1

2 + 4𝑦2
2)

subject to max
𝑡∈[0;2𝜋)

|𝑦1 cos(𝑡) + 𝑦2 cos(2𝑡 + 𝜃)| ≤ 𝜆
 

Here, 𝑦1 and 𝑦2 denote the amplitudes of the steady-state 
response to the first and second harmonic of the input, 

 
Figure 1: Input power limit for bi-chromatic inputs of varying relative amplitudes 𝜉 and phases 𝜑. Each curve is normalized by 
the maximum power reached for the specific amplitude ratio. The plot on the right focuses on the region of 𝜉 where the variation 
is the most pronounced. 

 



respectively, and 𝜃 denotes the phase shift between these 
two responses. The dependence of the solution upon (𝜉, 𝜑) 
is via these three quantities. The objective function is the 
non-dimensional power 𝑝𝜆. It is related to the physical 
VDRG converted power 𝑃𝜆 = 𝑚𝜔𝜔0

2𝜋𝑄 ∫ 𝑥2̇ d𝑡2𝜋/𝜔
0

 by 𝑝𝜆 =
𝑃𝜆/(𝜋

4 𝑃0). In the following, we consider that the factor 𝑃0 
fixed, i.e., that (𝜅, 𝑄) can be chosen independently of it. 
 
Monochromatic input case 

For the monochromatic case at unit frequency (this is 
the case 𝜉 = 1), the limit in converted power under 
constrained displacement is readily found analytically: the 
condition reduces to 𝑦1 ≤ 𝜆, and 𝑦1’s expression is 
standard linear resonator theory. The optimization can then 
be done, e.g., by augmenting the objective function with a 
Lagrange multiplier. In all, one finds that the maximum 
power is reached for optimal parameters of (𝜅∗, 𝑄∗) =
(1, 𝜆), and evaluates to 𝑝"∗ = 1. Or, in physical dimensions, 
𝑃𝜆

∗ = 𝜋𝑚𝑓𝐴0𝐿. This is the well-known result of [9] for 
large excitation amplitudes. This maximum amounts to a 
fraction 𝜋/4 ≈ 79% of the input power limit 𝑃max

1h , as was 
already noted in previous studies [10]. 
 
Bi-chromatic input case 

For the case of bi-chromatic inputs, we follow a 
numerical optimization procedure to find power-
maximizing values of the stiffness and dashpot coefficient. 
For each (𝜉, 𝜑, 𝜆), the solution is numerically evaluated on 

one period (using 𝑦1, 𝑦2 and 𝜃’s expressions from linear 
resonator theory). The solution is discarded if there exists 
𝑡 ∈ [0; 2𝜋) such that |𝑦(𝑡)| > 𝜆. The maximum 𝑝𝜆

∗  across 
(𝜅, 𝑄) is then sought among the remaining 𝑝𝜆’s, by a 
simple grid search on 𝑄 ∈ [ 𝜆

10 ; 10𝜆] of size 10000 
(repeated for each value of 𝜅). The results are obtained 
with a linear grid of size 1000×1000 for (𝜉, 𝜑). 

The resulting ratios 𝑃𝜆
∗/𝑃max

2h  vs. parameters (𝜉, 𝜑) are 
displayed in Fig. 2, for different values of 𝜆. The 
corresponding values of optimal 𝜅 ∈ {1,2} and 𝑄 are 
depicted in Fig. 3. 

On Fig. 2, a slight phase dependence can be noted. 
Perhaps more notably, the results in Fig. 2 show that the 
ratio of 𝜋/4 is a maximum (it is reached in the plots for the 
monochromatic limits 𝜉 = 0 and 𝜉 = 1). Hence, the 
performance of the VDRG relatively to the input power 
limit is degraded for any bi-chromatic input compared to 
the monochromatic case. The most important decrease 
occurs roughly for 𝜉 ∈ [0.4; 0.8], where the relative 
maximum power drops below 50%, for all three values of 
𝜆, reaching 45% at the lowest. 

Let us insist on the fact that the optimal 𝜅 is sought in 
{1,2}, instead of a continuous space. This is a limitation of 
this work. Further work can explore optimization of 𝜅 
across a continuous parameter space, especially for small 
𝜆’s. This optimization might improve the 45% power drop 
figure that was reported above. 
 

 

 
Figure 2: Plots of 𝑃𝜆

∗(𝜉, 𝜑)/𝑃max
2h (𝜉, 𝜑), for bi-chromatic inputs characterized in terms of relative amplitudes 𝜉 and phase 𝜑, and 

for different displacement constraints 𝜆. 

 

 
Figure 3: Optimal (𝜅∗, 𝑄∗) ∈ {1,2} × ℝ>0

+   for which the VDRG power is maximized, for different displacement constraints 𝜆. 
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CONCLUSION 
This work is a contribution to the systematic study of 

various harvesters under realistic models of vibration 
inputs, beyond those usually studied. It was shown that the 
limit in input power for a lineic inertial KEH under bi-
chromatic vibration is a function of both the relative 
amplitudes and the phase between the input’s harmonics. 
The power limits of a displacement constrained VDRG 
harvester under this same excitation were then evaluated. 
The ratio of the maximum VDRG power to maximum input 
power is found to decrease from about 79% with 
monochromatic input, to as low as 45% with bi-chromatic 
inputs, the exact decrease ratio depending on the 
parameters on the input. 

The example studied in this paper is the size-
constrained VDRG (admittedly one of the simplest 
harvester models) submitted to bi-chromatic inputs 
(admittedly the simplest multi-chromatic input). This 
configuration already shows that it is necessary to think of 
optimal design as that of the pair (harvester, input), and that 
performance for harmonic inputs is not necessarily a 
meaningful optimization target depending on the 
application. Actively controlled KEHs that explicitly aim 
for the input power limit might be a path worth pursuing to 
target vibrations occurring in some applications [11-14], 
especially when the size of the device is limited. 

Future studies are required to investigate the effect of 
allowing for arbitrary mechanical stiffnesses, most 
importantly for very small displacement constraints. It is 
also natural to consider extensions of this work to other 
harvester models, or to inputs with larger number of 
harmonics. 
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