

L'arbre des coupes multi-échelles pour une meilleure représentation dans l'imagerie immunohistochimique multiplex

Romain Perrin, Aurélie Leborgne, Nicolas Passat, Benoît Naegel, Cédric

Wemmert

▶ To cite this version:

Romain Perrin, Aurélie Leborgne, Nicolas Passat, Benoît Naegel, Cédric Wemmert. L'arbre des coupes multi-échelles pour une meilleure représentation dans l'imagerie immunohistochimique multiplex. Colloque Français d'Intelligence Artificielle en Imagerie Biomédicale (IABM), Mar 2024, Grenoble, France. hal-04440939

HAL Id: hal-04440939 https://hal.science/hal-04440939

Submitted on 2 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

L'ARBRE DES COUPES MULTI-ÉCHELLES POUR UNE **MEILLEURE REPRÉSENTATION DANS L'IMAGERIE IMMUNOHISTOCHIMIQUE MULTIPLEX**

Romain PERRIN ⁽¹⁾, Aurélie LEBORGNE ⁽¹⁾, Nicolas PASSAT ⁽²⁾, Benoît NAEGEL ⁽¹⁾, Cédric WEMMERT ⁽¹⁾

(1) ICube UMR 7357, Université de Strasbourg (2) CReSTIC UR 3804, Université de Reims Champagne-Ardenne

Colloque Français d'Intelligence Artificielle en Imagerie Biomédicale Maison Minatec, Grenoble, 25-27 mars 2024

Problématique

L'imagerie immunohistopathologique multiplex regroupe des techniques novatrices de **marquage simultané** de plusieurs biomarqueurs au sein d'un même tissu. L'analyse de ce type d'images complexes reste cependant un défi pour les méthodes d'apprentissage automatique. Il peut être intéressant de passer par une **structure de données** permettant une représentation **efficace** des images. L'arbre des coupes multi-échelle est une structure hiérarchique morphologique offrant un stockage compact des images à travers plusieurs échelles. Nous illustrons les possibilités offertes par cette structure sur des images de glioblastomes en s'inspirant de la manière dont les pathologistes abordent ces données.

(a) image f

(d) $f \ge 128$

Université

iCU3E

Laboratoire des sciences de l'ingénieu de l'informatique et de l'imagerie

de Strasbourg

Images multiplex

Les données utilisées sont issues d'un projet collaboratif autour du glioblastome, une tumeur cérébrale maligne au faible pronostic, avec des neuropathologistes de la Hannover Medical School. 62 images provenant de 22 patients ont été obtenues (sections de 3 µm, grossissement x20, résolution 0.49 µm/pixel). Des régions allant du cœur de la tumeur au tissu sain ont été choisies manuellement et colorées multispectralement avec une résolution de 0.25 µm/pixel (Figure 1).

L'arbre des coupes (max-tree) [1] est un modèle morphologique hiérarchique basé sur les graphes permettant un encodage efficace des images pour une complexité algorithmique faible [2]. L'arbre des coupes encode les relations d'inclusion entre les composantes connexes issues de seuillages successifs (Figure 2.b-f) d'une image en niveaux de gris. Sa racine est la composante connexe maximale contenant l'entièreté de l'image (À) et ses feuilles sont les zones plates des valeurs correspondant aux maxima locaux de l'image (C, H, I, J et K). Le graphe obtenu est un arbre dit arbre des coupes (Figure 2).

Arbre des coupes

L'arbre des coupes multi-échelles (MSCT) [5] est une extension de l'arbre des coupes [1] dont les nœuds peuvent contenir des zones plates composées de pixels à de multiples échelles. Le MSCT est construit à partir d'un ensemble d'images souséchantillonnées. Un premier arbre des coupes est calculé sur l'image la plus sous-résolue. Itérativement, des nœuds de l'arbre sont sélectionnés selon un critère basé sur les Maximally Stable Extremal Regions (MSER) [3]. Des arbres des coupes partiels sont calculés sur ces régions en utilisant une image sur-résolue, puis sont fusionnés au MSCT en remplacement des zones sous-échantillonnées (Figure 5). Ce processus est répété k-1 fois jusqu'à atteindre l'échelle d'origine (Figure 4). Grâce à sa dimension multi-échelles, le MSCT permet de générer un nombre de nœuds largement inférieur à un arbre des coupes (Figure 6.a) et produit un **stockage efficace** des pixels de l'image (Figure 6.b).

(n) Projection CD34 (m) projection CD68

Figure 7: Principe de construction d'un vecteur de caractéristiques à partir d'une image multiplex (a) par extraction des objets (d) et projection sur les canaux (e-n).

Un MSCT est construit pour chaque image multiplex (Figure 7.a-c). Les composantes connexes contenant les noyaux de cellules sont extraites par filtrage du MSCT (Figure 7.d-e). Les masques des objets sont projetés sur les canaux sémantiques restants (Figure 7.f). Pour chaque composante connexe n_p , sur chaque canal f autre que le DAPI (f°) , les valeurs des pixels f(p) sont sommées. Le vecteur de caractéristiques final c_i d'un objet sous-jacent n_i est composé des k-1 sommes des mesures physiques associées aux biomarqueurs des canaux 1 à k-1 (Figure 7.g-n). Autrement dit, $c_i = \left| \sum f^j(p) \mid p \in n_i \right|$

Références

1] P. Salembier, A. Oliveras, L. Garrido, Anti-extensive connected operators for image and sequence processing, IEEE Transactions on Image Processing, vol. 7, pp. 555-570, 1998.

- [2] E. Carlinet, T. Géraud, A comparative review of component tree computation algorithms, IEEE Transactions on Image Processing, vol. 23, pp. 3885-3895, 2014.
- [3] J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, Image and Vision Computing, vol. 22, pp. 761-767, 2004.
- [4] T. Zou, T. Pan, M. Taylor, H. Stern, Recognition of overlapping elliptical objects in a binary image, Pattern Analysis and Applications, vol. 24, pp. 1193-1206, 2021.
- [5] R. Perrin, A. Leborgne, N. Passat, B. Naegel, C. Wemmert, Multi-Scale Component-Tree: An Hierarchical Representation of Sparse Objects, IAPR Third International Conference on Discrete Geometry and Mathematical Morphology (DGMM), Florence, Italy, april 2024. [6] R. Perrin, A. Leborgne, N. Passat, B. Naegel, C. Wemmert, Multi-Scale Component Trees for Enhanced Representation in Multiplex Immunohistochemistry Imaging, IEEE International Symposium on Biomedical Imaging (ISBI), Athens, Greece, may 2024.

Perspectives

Les vecteurs de caractéristiques calculés à partir du MSCT peuvent être utilisés pour effectuer des tâches de classification non supervisées. Une image multiplex à k canaux produit des vecteurs en k dimensions. Une étape de réduction par ACP peut être appliquée afin de projeter ces vecteurs en deux dimensions. Un seuil peut être choisi afin d'effectuer une classification binaire de la forme cellule immunitaire/tumorale (Figure 10). Le pouvoir expressif de ces vecteurs est insuffisant pour une classification complète (lymphocyte, macrophage...). D'autres attributs pourrait être combinés (compacité, circularité, densité optique...).

