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Abstract: Biointrants constitute a promising opportunity to lower mineral input on rapeseed, char-
acterized by high nutrient requirements. As bio-inoculants, phosphate-solubilizing bacteria (PSB)
could increase the amount of available P in a soil solution. However, the deployment of these bio-
inoculants in fields is not always successful. Disentangling the factors conditioning their reliability is
necessary. Because the activities of microorganisms are particularly subject to nutrient availability,
the N fertilization level could represent a key factor for the success of PSB inoculation in the early
stages of plant growth. In this study, Pfaba (Pseudomonas sp.), a promising plant growth-promoting
rhizobacteria (PGPR) strain isolated from soil, was inoculated on rapeseed grown in rhizotrons under
two N fertilization levels (N160 or N80) in P labile or P complexed conditions. Pfaba confirmed
its PSB potential to solubilize recalcitrant P complexed forms for the benefit of plant growth, but
only when the N supply is adequate (N80). In a P complexed environment, Pfaba tended to increase
root and shoot biomass (respectively, from 2.17 ± 0.47 g for control modality to 2.88 ± 0.85 g, and
from 6.06 ± 1.67 g for control modality to 8.33 ± 1.70 g), increase the P and N contents in roots
(respectively, from 0.15 ± 0.09 mg for control modality to 0.70 ± 0.51 mg, and from 37.90 ± 11.09 mg
for control modality to 41.34 ± 14.16 mg), and restore root length at a comparable level than plants
supplemented with labile P. Conversely, these positive effects were inhibited with lower levels of
N fertilization. Our results highlight the importance of nutrient availability to promote beneficial
interaction between plants and microorganisms. These findings could also contribute to ensuring the
successful deployment of microbial biointrants.

Keywords: biostimulant; plant nutrition; phosphorus; PGPR; rapeseed

1. Introduction

The fine-tuned exploration of the relationships between plants and microorganisms
appears essential to better understanding their involvement in crop productivity and,
therefore, agrosystem functioning. In soil, microorganisms perform crucial agronomic
and environmental functions, particularly organic matter transformation, thus turning
it into available nutrients for plants [1]. Plants construct a real partnership with a rich
diversity of microorganisms, especially within their rhizosphere. This partnership is
recognized as having a major impact on plant growth and health [2–5]. The collective
genome represented by this complex associated microbial community, much larger and
diverse than that of the plant, constitutes its second genome and is of great interest in
terms of the multiple carried functions [2]. The association of the plant and its overall
microbial community is known as a holobiont and represents the great potential of the plant
and its second genome (i.e., the hologenome). The rhizosphere is the location of complex
interactions between plant and microbial populations but also has strong competition
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between microorganisms [6]. This heavily populated environment appears to be a favored
reservoir for potentially beneficial microbial agents, constituting the first battle line of
plants in soil against abiotic and biotic stresses but also contributing to plant nutrition [7].
Manipulating a native soil microbiome in this habitat to promote plant growth and nutrition
represents an interesting, sustainable alternative to chemical intrants [8–10]. The objective
is to shape the composition of microbiomes to enhance beneficial interactions [11] and,
more specifically, to enrich the soil and associated microbiomes with the taxa of plant
growth-promoting rhizobacteria (PGPR) [3,12,13]. Numerous studies have focused on the
use of PGPR as biointrants to sustain crop development [14–17] because of its numerous
well-described beneficial characteristics [18]. Indeed, such PGPR could directly impact
plant growth by contributing to the availability of essential nutrients in the soil, improving
root absorption, enhancing plant growth through phytohormone production, or indirectly
by enhancing plant resistance to abiotic and biotic stresses [19]. Among those PGPR,
phosphate-solubilizing bacteria (PSB) constitute a major group of interest in agriculture.
These bacteria are known for their ability to turn complexed P into an available form for
plants in soil solution. The range of microbial strategies to access recalcitrant P forms is
wide. Indeed, P can be solubilized by soil acidification through direct proton release due to
NH4+ acquisition or secretion of organic acids. Also, P complexed to iron can be solubilized
through siderophore production [20,21]. Regarding this latter mechanism, bacteria aim
to acquire iron, as free iron is scarce in the environment [22]. Finally, organic P can also
represent a variable but non-neglectable proportion of total P in soils (between 20% and
80%) [23]. So, phosphatase and phytase activities can represent desirable traits for an
efficient PSB. Independently of phosphate solubilization, other PGPR traits can also be
helpful to face plant P starvation, such as enhancement of root growth. Indeed, PSB strains
can also possess the capacity to secrete indole-3-acetic acid (IAA), or auxin, a key promotor
of plant growth, in their environments, and others are able to degrade ACC [24]. The
degradation of this precursor of ethylene [25,26] enables plants to increase root length, thus
allowing plants to explore a higher soil volume and maximizing P prospection [27].

Despite this interesting arsenal to sustain plant nutrition, PSB and, more globally,
PGPR inoculation often encounter failures when applied in the field [28]. Indeed, as
a prerequisite, microbial inoculants must survive, colonize root surfaces, and express
their potential to actually sustain plant health and growth. Dialogue between plants
and microorganisms inhabiting the rhizosphere is also primordial to act synergistically
as a functional holobiont, i.e., considering the plant host and microorganism as a super-
individual [29]. Unraveling the factors of success of PGPR application thus represents a
challenge to improving the ecological performance of rapeseed.

Numerous factors could compel microbial inoculants’ efficiency in agricultural soil
conditions [19,30]. Among abiotic factors, soil temperature has important consequences on
microbial biomass development but could also act on their metabolism, particularly gene
expression, and so finally could deeply affect their efficacy [31,32]. Schindlbacher et al. [33]
showed that warming significantly modulated microbial respiration in soil. Similarly, soil
pH could also strongly affect major functions of microbial cells, leading to metabolism
modifications such as enzymatic activities [34]. Nadeem et al. [35] showed the great
potential of three PGPR strains (Pseudomonas fluorescens, Bacillus megaterium, and Variovorax
paradoxus) provided through seed coating to mitigate the alteration of cucumber growth
due to salinity stress, particularly shoot length, with nevertheless a substantial variation
in observed efficiency. The authors highlighted differences in bacterial competence to
colonize rhizospheres as well as a significant modulation of several PGPR trait expressions
(IAA production, siderophores production, phosphate solubilization, ACC deaminase
activity) according to salinity level. The tested P. fluorescens, with the greatest efficiency on
cucumber growth, showed a high capacity to maintain in vitro PGPR characteristics and
root colonization, whatever the salinity levels, contrary to Bacillus megaterium and Variovorax
paradoxus. Similarly, nutrient availability could be an important factor in ensuring PGPR
efficiency for plant growth promotion. Indeed, nutrient depletion could be prejudicial to
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rhizosphere colonization by the added PGPR, compelling the efficiency of bio-inoculants
in soil. Indeed, nutrient limitation is well known to impact microbial biomass in soil [36].
Aldén et al. [37] showed that nitrogen deprivation constrained microbial growth and
activities in soil. Nitrogen availability could also influence the expression of PGPR traits [19].
Martinez et al. [38] showed that the level and nature of the N supply significantly modified
PGPR functions, such as the potentiality of P solubilization of the four tested Bacillus,
Enterobacter, Pseudomonas, and Serratia strains. Nitrogen limitation in soil could be an
obstacle to the large-scale deployment of sustainable microbial biosolutions to support
crop production by directly affecting the establishment of beneficial plant–microorganism
interactions.

Rapeseed is a major oleoproteaginous crop, spread worldwide and characterized
by high phosphorus and nitrogen requirements [39,40], leading to the supply of high
amounts of fertilizers, often in mineral forms. These inputs are responsible for numerous
environmental degradations through leaching or volatilization [41]. Particularly, P is
generally quickly complexed to the soils’ organomineral particles after application and
remains unavailable for plants [42]. The promising potential of promoting beneficial plant–
microorganism interactions to sustain rapeseed growth and nutrition while limiting mineral
input leads to great interest in expanding sustainable agricultural practices. Previously,
Amy et al. [24] showed that rapeseed rhizospheres host an important proportion of PSB
strains with a high potential for P solubilization. This specificity of microbial recruitment
appears to meet plant nutrient requirements [43]. The benefit of using PSB inoculants
to sustain rapeseed growth is gaining more and more attention [44]. Amy et al. [45]
described the benefits of applying a PSB strain (Pseudomonas sp.), isolated for a faba bean
rhizosphere and inoculated at the dose of 1 × 107 cells per shoot in a clay–limestone P-poor
soil, to promote rapeseed shoot and root biomasses under a half-reduced P fertilization
modality. The authors showed that the inoculation of this Pseudomonas strain allowed
the maintenance of a P nutrition of rapeseed equivalent to complete fertilization. The
added PSB also led to a shift of the associated microbial community in the rhizosphere,
with stimulation of Bradyrhizobium and Thiobacillus populations, with even more potential
to facilitate plant nutrition (respectively, nitrogen and sulfur cycles). However, in such
experiments with native soil, it could sometimes be difficult to disentangle a direct impact
on P solubilization because of several PGPR traits carried by the PSB strain, as well as the
observed modifications induced on the associated microbiome.

In this study, part of a PhD work [46], we aimed to evaluate the direct effects of this
Pseudomonas PSB strain, previously isolated from faba bean rhizosphere, on early stages
of rapeseed growth in a rhizotron system, confronted with two levels of N fertilization
and two forms of P (P applied in labile or complexed form). The principal objective was
to demonstrate the effective promotion of plant nutrition and growth through direct P
solubilization. As bacteria can modulate their metabolism to nutrient availability following
microbial economics [47], we also evaluate if the N supply could play a role in the expression
of desirable traits of inoculated PSB and, therefore, be a determinant for beneficial plant–
microorganism interactions.

2. Materials and Methods
2.1. PSB Screening and Application in Plants

In a previous study [24], a PSB screening was performed from soils of three crops:
rapeseed, winter pea, and faba bean. Several classical PSB and PGPR traits of interest were
determined: solubilization on Pikovskaya and NBRIP media [48,49], phytate utilization,
siderophore, HCN and IAA production, and ACC deaminase activity as described by Amy
et al. [24]. Three of these PSB strains, showing higher in vitro performances, were also
previously tested on rapeseed growth in the first greenhouse experiment [45]. Based on this
previous in planta screening, we have selected the Pfaba strain, isolated from soil under
the influence of a faba bean culture that belongs to the Pseudomonas genus, for further
analysis of its effects on root traits and rapeseed growth in axenic conditions. For plant
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application, Pfaba was cultured for 24 h at 30 ◦C in Luria broth. Bacterial concentration was
evaluated by optical density measure at 580 nm. The bacterial culture was then centrifuged,
and a pellet containing bacterial cells was resuspended in NaCl 0.9% in order to inoculate
1 × 106 bacteria in 1 mL directly around the crown of plants. Control plants received 1 mL
of NaCl 0.9%.

2.2. Greenhouse Experiment

Rapeseeds (Brassica napus L. cv Aviso) were sown directly in rhizotrons (30 × 20 × 1 cm,
1 plant per rhizotron, 5 replicates per modality) filled with autoclaved sand previously
sieved at 200 µm and moisturized at 10% with distilled water. Rhizotrons were placed in
bins with top apertures, allowing them to remain inclined at 30◦. Details of the fertiliza-
tion modalities are summarized in the experimental design given in Figure 1. The plants
received two levels of NH4NO3: a high N fertilization (N160: 160 mg of N per plant) or a
limited N fertilization (N80: 80 mg of N per plant). The plants also received 56 mg of P in
a labile form (LP: KH2PO4) or in a complexed form (CP: 10% KH2PO4, 2% phytate, 55%
Ca3(PO4)2, 23% FePO4, and 10% AlPO4). Half of the plants received 1 mL of a suspension
of 1 × 106 bacteria mL−1 of the PSB strain Pfaba. The control plants received 1 mL of
NaCl 0.9%. Additionally, a total of 3.6 L of modified Hoagland solution, containing neither
N nor P, was brought per rhizotrons in bins, allowing percolation of nutrient solution
(0.5 mM MgSO4, 0.2 mM EDTA+ 2 NaFe, 1.25 mM CaCl2, 1.5 mM KCl, 14 µM H3BO3, 5 µM
MnSO4, 0.765 µM ZnSO4, 0.316 µM CuSO4, and 0.5 µM (NH4)6Mo7O24, and 0.1 µM CoCl2).
Thirty milliliters of percolated nutritive solution were distributed from bins to the top of
rhizotrons in a closed circuit three times per day. The surface of the rhizotrons was covered
with a strip of Whatman paper in order to ensure a homogenous horizontal distribution of
the solution. Natural light was complemented, if necessary, to maintain photosynthetically
active radiation of 400 µmol s−1 m−2 at the canopy by high-pressure sodium lamps.
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Figure 1. Experimental design of the rhizotrons experiments. Two N fertilization levels were
applied: a high (N160: 160 mg per plant) and a lower (N80: 80 mg per plant) N fertilization. For
each N fertilization level, P (56 mg per plant) was applied in a complexed or a labile form. Every
combination of N and P fertilizations was inoculated with the Pfaba strain or received NaCl 0.9% as
the control treatment.

After two months of culture, the plants were harvested, and aerial biomass and roots
were separated. Half of the rooting system was conserved in a solution composed of 100 mL
95◦ ethanol, 50 mL acetic acid, and 850 mL distilled water at +4 ◦C for further root traits
analyses. Leaf area was determined using a Li-Cor3100 area meter (Li-Cor Inc., Lincoln,
NE, USA). Aerial parts and roots were dried in an oven at 60 ◦C, weighed, and ground
using the Retsch MM200 (RETSCH, Eragny sur Oise, France) to a fine powder for further
elemental analyses.
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2.3. Elemental Analyses in Plants

Phosphorus content in shoots and roots was directly measured on powders using
X-ray Fluorescence (XRF, S1 Titan, Bruker, Kalkar, Germany). Shoots or root samples
were placed in sample cups, and element concentrations were determined with an XRF
analyzer. Quantification of P was performed using an external standard calibration curve,
and concentrations were expressed in ppm. For the standard calibration curve, linear
regression and correlation were assessed by Pearson’s test using XLSTAT 2021.3.1 software
(Addinsoft, Quebec, QC, Canada) between XRF data and analysis of P concentration given
by a high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS, Thermo
Scientific, Element 2TM, Bremen, Germany) [50].

2.4. Determination of Root Traits Using WinRhizo™

Previously conserved roots were placed in transparent tanks filled with distilled water
and were disentangled before analysis. Tanks were placed in a scanner (Epson Expression
10,000 XL) coupled to the WinRhizo™ version 2007d software (Regent Instruments Inc.,
Quebec, QC, Canada) to obtain root length, average root diameter, root area, and root
length per volume.

2.5. Statistical Analyses

All data were analyzed using R software (4.0.2 version). One-way analysis of variance
(ANOVA) of the “multcomp” package was performed for all assay and plant measurements,
followed by a posthoc LSD Fisher test using the function LSD.test from the R package
“agricolae”. Two-way ANOVA tests were performed to assess the effects of PSB application,
N fertilization level, P fertilization form, and interaction of these three parameters using
the AOV function of the multcomp package. p-values < 0.05 were considered as significant.
Principal component analysis (PCA) of plant profiles was obtained using the Factoshiny
package. Missing data were imputed through a two-dimensional PCA model.

3. Results
3.1. Characterization of PGPR and PSB Traits of the Strain Pfaba

In vitro, the solubilization abilities of the Pfaba strain (Table S1) showed a solubiliza-
tion index (SI) of 2.3 in the Pikovskaya medium and 1.4 in the NBRIP medium. Quantifi-
cation of solubilization performance was 152.1 µg P mL−1 in liquid Pikovskaya medium,
associated with a pH of 6.7 ± 0.1, and 49.3 µg P mL−1 in liquid NBRIP medium associated
with a wide pH decrease (3.8 ± 0.2). The Pfaba strain was able to produce gluconic acid in
both media (11.0 µmol. mL −1 in Pikovskaya medium and 8.3 ± 0.1 µmol. mL−1 in NBRIP
medium). Pfaba was also able to solubilize phytate and showed a SI of 3.5 on PSM medium
(Phytate Screening Medium, [24]). Moreover, this strain produced siderophores in CAS
medium (Chrome Azurol S, [24]), IAA (on average 18.8 ± 3.7 ng µL−1), and showed an
ACC deaminase activity. In contrast, no HCN production could be highlighted.

3.2. Morphometric Traits of Rapeseed Plants According to N Fertilization, P Forms, and
Pfaba Inoculation

After two months, significant differences were found regarding shoot and root dry
biomasses (Figure 2). These differences were strongly influenced by N fertilization (Table 1),
and despite not being significant from two-way ANOVA tests, they tended to be rein-
forced by Pfaba inoculation. As expected, shoot dry biomass was lower for N80 (on
average 4.29 ± 1.40 g, Figure 2A) compared to N160 (on average 6.89 ± 2.01 g). Moreover,
Pfaba adjunction combined with N160 showed significantly higher shoot dry biomass
(p-value < 0.05) compared to all N80 modalities, regardless of the P forms of P applied
(on average, 7.61 ± 2.02 g). Interestingly, considering the Pfaba addition combined with
N160 treatments, shoot dry biomass tended to be higher than without the Pfaba strain,
particularly in the case of complexed P forms (Figure 2A). Similarly, root dry biomass
was lower for all N80 modalities (on average, 1.47 ± 0.53 g) compared to N160 modalities
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(on average, 2.39 ± 0.64 g), particularly with the Pfaba addition. As previously described,
considering the Pfaba application combined with N160 treatments, root dry biomass tended
to be higher than without Pfaba, particularly when P was added in a complexed form
(2.88 ± 0.85 g, Table S2) (Figure 2B). Leaf areas were lower for N80 modalities compared
to N160 (on average, 253.89 cm2 and 418.39 cm2, respectively, Supplemental Table S2,
Figure S1). No difference could be observed for plants inoculated with the Pfaba strain.
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application. ANOVA was performed using the aov function of the multcomp package of R (4.0.2)
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P amount 0.124 0.082 0.067 0.056 0.661 0.120 0.142
N content 0.037 0.728 0.966 0.676 0.334 0.204 0.521
N amount 0.703 0.831 <0.001 0.393 0.891 0.778 0.449
C content 0.712 0.138 0.661 0.227 0.554 0.750 0.027
C content 0.135 0.323 <0.001 0.284 0.332 0.446 0.204
Length 0.043 0.063 0.365 0.104 0.634 0.246 0.546
Area 0.001 0.171 0.001 0.088 0.407 0.088 0.137
Diameter 0.052 0.536 0.001 0.556 0.958 0.621 0.254
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3.3. P and N Status of Rapeseed Plants according to N Fertilization, P Forms, and the
Pfaba Inoculation

P content and amount in shoots were obviously impacted by the form of applied P
(Figure 3, Table 1). The P content in shoots was lower when P was applied in a complex
form (on average 0.16 ± 0.15%) compared to the labile P form (0.61 ± 0.22%) (Figure 3A).
This effect was also observed even when the PSB strain was applied (Figure 3A). In the
same way, the P amount in shoots was lower when P was in complexed forms (on average
0.79 ± 0.49 mg vs. 2.98 ± 0.85 mg for the labile P, Figure 3B). Nevertheless, in N160
fertilization, the addition of Pfaba tended to increase the P amount in shoots slightly
in the labile P condition (2.88 ± 0.67 mg for control compared to 3.42 ± 0.54 mg with
Pfaba, Table S2) and more widely in complexed P (0.47 ± 0.10 mg for control compared
to 1.28 ± 0.71 mg with Pfaba, Table S2). No such tendencies were found for N80. Roots
responded differently than shoots in their P content and amounts. As previously described
in shoots, the P content was mainly influenced by the P form but also in interaction with
PSB application and N fertilization (Table 1). The highest P content in roots was found
for the control labile P + N80 (0.28 ± 0.06%; Figure 4A and Table S2), and the lowest one
was found in plants receiving N160, combined with P in complexed form and no PSB
(0.07 ± 0.04%). Whatever the level of N fertilization and the P form, the Pfaba application
allowed plants to restore a P content in roots similar to P labile control plants (Figure 4A).
Regarding the roots’ P amounts, for N160 treatments, higher values were observed when
P was supplied in labile form, with an average of 0.52 ± 0.14 mg (Figure 4B) compared
with those observed with complexed P with no PSB inoculation (0.15 ± 0.09 mg) (Table S2).
Interestingly, when plants were subjected to N160 and complexed P form, Pfaba adjunction
increased more than four-fold the P amount in roots compared to control and were able to
reach the same values as with labile P (on average, 0.59 mg, Figure 4B).
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Figure 3. Relative P content (A) and P amount (B) in shoots according to the high (N160, red) or low
(N80, blue) N fertilization with P fertilization added in complexed or labile form, without (Ctrl) or
with Pfaba inoculation (Pfaba). Letters indicate significant differences obtained by the posthoc LSD
Fischer test from the R package “agricolae” (4.0.2 version) (p-value < 0.05).
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Relative N content in shoots was similar across all N and P fertilizations (around
0.93 ± 0.09%), except in N160–labile P control, which shows the highest value (1.31 ± 0.33%,
Figure 5A, Table S2). As expected, a clear effect of the N fertilization level was found on
the N amount in shoots (Table 1). Indeed, the N amount was significantly higher in N160
compared to N80 (73.48 ± 19.80 mg and 36.71 ± 13.14 mg, respectively, Figure 5B). No
impact of the Pfaba addition could be noticeably highlighted. On the contrary, the N
content in roots (Figure 6A) tended to be slightly influenced by PSB application (Table 1).
Indeed, in N160 modalities, Pfaba inoculation led to a decrease of N content compared to
control treatments and even in a significant way for labile P (control: 2.06 ± 0.54% and
Pfaba: 1.48 ± 0.42%). When comparing the N amounts in roots, as observed in shoots, the
N fertilization effect was predominant (Table 1). The roots’ N amount was significantly
higher in N160 compared to N80 (39.78 ± 12.07 mg and 24.59 ± 8.92 mg, respectively,
Figure 6B).

3.4. Rapeseed Root Traits according to N Fertilization, P Forms, and the Pfaba Inoculation

Root length was significantly influenced by PSB application (Table 1). In either N160
or N80 fertilization, PSB application led to decreased root lengths, reaching similar values
to the P labile control (Figure 7A). In complexed P forms without the Pfaba inoculant, an
increase in root length was observed for both N fertilization levels (Figure 7A, Table S3).

Root average diameters varied according to the level of N fertilization (Table 1).
Indeed, root diameters decreased when N80 fertilization was applied (0.41 ± 0.05 mm
vs. 0.50 ± 0.08 mm for N160, Figure 7B). For N80 treatments, Pfaba inoculation tended
to decrease root diameters when P was supplied in a complexed form (0.36 ± 0.02 mm)
compared to other N80 treatments with labile P (0.43 mm on average).

The root area was independently influenced by both PSB application and N fertilization
(Table 1). N80 fertilization decreased root area (511.00 ± 155.38 cm2) compared to N160
(670.38 ± 112.25 cm2, Figure 8). For N80, Pfaba application significantly decreased root
surface when P was in its unavailable complexed form (412.12 vs. 749.73 cm2 for the
control), reaching a similar value as plants grown with labile P (Table S3, Figure 8).
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Figure 6. Relative N content (A) and N amount (B) in roots according to the high (N160, red) or low
(N80, blue) N fertilization with P fertilization added in complexed or labile form, without (Ctrl) or
with Pfaba inoculation (Pfaba). Letters indicate significant differences obtained by the posthoc LSD
Fischer test from the R package “agricolae” (4.0.2 version) (p-value < 0.05).
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3.5. General Plant Profiles 
PCA of overall plant traits (Figure 9) showed that plants grown in labile P conditions 

were grouped at the top of individual topology (Figure 9A). As expected, these plants 

Figure 7. Root length (A) and average root diameter (B) according to the high (N160, red) or low
(N80, blue) N fertilization with P fertilization added in complexed or labile form, without (Ctrl) or
with Pfaba inoculation (Pfaba). Letters indicate significant differences obtained by the posthoc LSD
Fischer test from the R package “agricolae” (4.0.2 version) (p-value < 0.05).
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Figure 8. Root surface according to the high (N160, red) or low (N80, blue) N fertilization with P
fertilization added in complexed or labile form, without (Ctrl) or with Pfaba inoculation (Pfaba).
Letters indicate significant differences obtained by the posthoc LSD Fischer test from the R package
“agricolae” (4.0.2 version) (p-value < 0.05).

3.5. General Plant Profiles

PCA of overall plant traits (Figure 9) showed that plants grown in labile P conditions
were grouped at the top of individual topology (Figure 9A). As expected, these plants
were characterized by high values in P content and amounts in both belowground and
aboveground parts. On the contrary, plants grown in complexed P conditions showed
low values in these variables and were characterized by higher values in root length and
area. No clear separation between control plants and those with Pfaba inoculation could be
found. However, interestingly, when P was supplied in complexed forms, plants tended to
reach a similar profile to plants grown in labile P conditions, particularly for N160.
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4. Discussion

In this study, Pfaba inoculation confirmed its PGPR potential on rapeseed growth and,
more particularly, its PSB ability by providing plants with access to nonavailable phosphate.
Indeed, our data showed that Pfaba is able to synthesize IAA and degrade ACC. These
PGPR traits could modify the IAA: ethylene ratio in favor of auxin, sustaining the growth
of inoculated plants. Nevertheless, this increase in biomass is explained neither by a higher
number of leaves nor by longer or thicker roots.

Evidence of phosphate solubilization was found, considering the higher P content
and P amount in roots for Pfaba treatments compared to uninoculated control (Figure 4).
Furthermore, for both levels of N fertilization, root length was reduced to the level observed
in labile P conditions. Indeed, P starvation is known to modify root traits and particularly
root elongation, allowing the plant to prospect a wider soil volume [51]. This phenotype
of the elongated root was observed in uninoculated controls when P was supplied in
complexed form, but it returned to a phenotype close to plants receiving a labile P source
when Pfaba was inoculated (Figure 4).

Regarding N uptake, the benefit of deploying Pfaba appeared to be more tenuous. As
N content was quite similar between all modalities, the principal effect to explain the higher
N amount in the presence of Pfaba appeared to be a higher shoot biomass. Similarly, root
biomass decreased while the N amount remained stable, leading to an apparent decrease
in the N content with Pfaba inoculation. But this decrease in N content is probably mainly
due to a dilution phenomenon rather than to an adverse effect of the PSB strain or to
competition for N uptake. Indirectly, by helping adequate P uptake in a nonavailable P
situation, inoculation with Pfaba allowed the N uptake to be maintained in an equilibrium
of the ratio N:P [52].

These overall results thus confirm the promising potential of using Pfaba as a PGPR
and, more interestingly, as a PSB strain to sustain rapeseed nutrition in low phosphorus
conditions through direct processes linked to phosphorus solubilization, as previously
hypothesized by Amy et al. [43]. These results are consistent with previous studies con-
cerning the deployment of such microbial biointrants on numerous plant species [53–58],
confirming the powerful potential of PGPR/PSB utilization. This study also demonstrates
that beneficial effects observed on plants are directly due to Pfaba inoculation, as rapeseed
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was grown in axenic conditions and independent of associated soil microbial community
structure in the soil surrounding the roots.

In addition to the direct effect of the Pfaba strain on P uptake, a possible positive effect
linked to classical PGPR traits on inherent P acquisition mechanisms could not be totally
excluded. For example, plants are able to exude organic acids to access an insoluble P
pool or to increase phosphatase activity [59,60]. Such abilities could be promoted through
simple PGPR action.

N Availability as a Key Factor of Success of Plant-PSB Association

In this study, the already well-known effects of N fertilization level were observed on
rapeseed growth and N uptake. Indeed, a decrease in N fertilization led to smaller plants
and lower N amounts, as frequently reported in previous studies [61–63].

Unexpected results were observed regarding Pfaba’s performance in sustaining the
growth of rapeseed. Indeed, as positive results were found with N160, a lower level of N
fertilization negatively impacted the expression of PGPR/PSB traits. All of the positive
effects on plant biomass and N and P uptake observed at N160 were not observed in the
N-deprived condition. However, Pfaba inoculation allowed the reduction of root diameter,
root length, and root surface. In the same way as P starvation, N limitation leads to an
increase in root length, thickness, and volume [64], which was not observed here with
Pfaba adjunction or with labile P.

Nevertheless, soil with N availability appeared essential to ensuring the deployment
of the PGPR/PSB arsenal of the Pfaba strain and, thus, the pursued interaction with the
plant. Indeed, most of PGPR mechanisms rely on amino acid transformation and depend
on N availability. More precisely, IAA can be synthesized from tryptophan or its precursors
by microorganisms [26]. Tryptophan can be exuded by plants [65] or directly synthesized
by Pseudomonas [66]. In the same way, pyoverdine, a common siderophore in Pseudomonas,
is composed of a chromophore derived from 2,3 di-aminodihydroxyquinoline, on which
is attached a peptidic functional group containing 6–12 amino acids. In Pseudomonas, py-
overdin production is a multistep process comprising more than 11 different proteins [67].
Finally, ACC exuded by plants in the rhizosphere is synthesized from S-adenosyl methion-
ine derived from methionin, a sulfur (S) amino acid [25]. As access to N is more limited
in N80, its use by both plants and microorganisms could be preferentially oriented in
protein synthesis, plant growth, and maintenance of bacterial multiplication rather than
in exudation and expression of PGPR traits. As exudation reflects the nutritional status
of plants [68], cooperation and establishment of beneficial interaction between rapeseed
and beneficial microorganisms could have been prevented. Moreover, Carvalhais et al. [69]
showed a decrease in amino acid exudation in maize in N-deprivation conditions. As
amino acids provide an N, C, and S source to microorganisms, additional repression of
PGPR/PSB traits could be due to a C allocation to growth or survival mechanisms.

Moreover, N limitation could impede the process of P solubilization. Thus, for example,
a N effect has been demonstrated on phytase activities in lichens [70]. Authors have shown a
decrease in phytase activity along with the N availability in these complex microorganisms,
for which phytate degradation is generally attributed to the fungal part of lichens. We can
here hypothesize that this could be similar to bacterial phytase activity. Taken together,
these results highlight the primordial role of N on PGPR/PSB efficiency and possibly on the
cooperation between plants and bacteria. Indeed, lower N availability could have turned
plant–bacteria mutualism into individual behaviors by both protagonists.

Low N fertilization could also have only limited the multiplication of Pfaba in the
culture substrate after inoculation. Indeed, N limitation constitutes a substantial factor
that could repress bacterial growth in soil [37,71]. Here, the induced low density of the
Pfaba population would not have reached a sufficient threshold for which the expression
of associated specific PSB and PGPR traits could efficiently sustain plant growth. Because
colonization of the rhizosphere by the required beneficial bacterial agent is a critical pre-
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requisite, thus conditioning the success of biointrant inoculation [31], nutrient supply to
microbial communities should be taken into account.

More generally, the present results highlighted the necessity at the field scale to
consider the effects of fertilization practices for ensuring the success of PGPR/PSB de-
ployment and rhizosphere colonization but also more generally on the perennity of the
plants–microorganisms’ dialogue. These observations pointed out the importance of crop
production and fertilization practices, not just by considering plant needs alone, but from a
more holistic point of view and thus in a holobiont’s functioning [72]. For example, consid-
ering that one of the several proposed solubilization mechanisms relies on proton excretion
accompanying ammonia respiration of some PGPR, including Pseudomonas strains [21], and
that rapeseed preferentially absorbs nitrate [73], the use of ammonitrate can be a relevant
fertilization practice for the global holobiont.

Further work is now needed to focus on the comprehension of in situ mechanisms
that sustain the plants–microorganisms’ cooperation through the exploration of rapeseed
exudates by tracing the Pfaba strain and with in situ evaluation of relevant microbial
activities, such as siderophore production or determination of phosphatase and phytase
activities by zymography [74–76].

5. Conclusions

In this study, the Pfaba strain, a previously tested Pseudomonas PSB, was inoculated on
rapeseed grown in rhizotrons with contrasted N fertilization levels and P applied under
labile or complexed forms. When combined with a higher N fertilization level, Pfaba
confirmed its potential as a PGPR and PSB strain by enhancing biomass and root P content,
contrary to results observed with a lower level of N fertilization. Whatever the level of
N fertilization, in a P complexed situation, Pfaba inoculation allowed a return to a non-
P-starved roots phenotype (i.e., to shorten root length, similarly to plants fed with labile
P). N limitation seemed to represent an important factor in limiting the competitive issue
of resource sharing between plants and microorganisms. These results also suggest that
soil N/P balance is a key factor in the establishment of beneficial cooperation between
rapeseed and microorganisms, probably through the modulation of the full expression of
PGPR/PSB potentialities.
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to high (N160, red) or low (N80, blue) N fertilization, with P fertilization added in complexed or
labile form, and without or with Pfaba inoculation; Table S1: In vitro characterization of PGPR traits
for the tested PSB isolate; Table S2: Morphometric and elemental NP plants profiles, according to the
level of N fertilization (N160 or N80), P added in complexed or labile form and without or with Pfaba
inoculation; Table S3: Root traits according to the level of N fertilization (N160 or N80) and P added
in complexed or labile form.
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