
HAL Id: hal-04440914
https://hal.science/hal-04440914v2

Submitted on 11 Sep 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computing Generic Fibers of Polynomial Ideals with
FGLM and Hensel Lifting
Jérémy Berthomieu, Rafael Mohr

To cite this version:
Jérémy Berthomieu, Rafael Mohr. Computing Generic Fibers of Polynomial Ideals with FGLM and
Hensel Lifting. 49th International Symposium on Symbolic and Algebraic Computation, Jul 2024,
Raleigh, NC, United States. pp.307-315, �10.1145/3666000.3669703�. �hal-04440914v2�

https://hal.science/hal-04440914v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computing Generic Fibers of Polynomial Ideals

with FGLM and Hensel Lifting

Jérémy Berthomieu
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France
jeremy.berthomieu@lip6.fr

Rafael Mohr
Sorbonne Université, CNRS, LIP6

F-75005 Paris, France
Rheinland-Pfälzische Technische Universität

Kaiserslautern-Landau, Fachbereich Mathematik
G-67663 Kaiserslautern, Germany

rafael.mohr@lip6.fr

ABSTRACT
We describe a version of the FGLM algorithm that can be used to
compute generic fibers of positive-dimensional polynomial ideals.
It combines the FGLM algorithm with a Hensel lifting strategy. In
analogy with Hensel lifting, we show that this algorithm has a
complexity quasi-linear in the number of terms of certain 𝔪-adic
expansions we compute. Some provided experimental data also
demonstrates the practical efficacy of our algorithm.

CCS CONCEPTS
• Computing methodologies→ Algebraic algorithms; • The-
ory of computation→ Design and analysis of algorithms.

KEYWORDS
Gröbner basis; polynomial system solving; change of monomial
order; Hensel lifting

ACM Reference Format:
Jérémy Berthomieu and Rafael Mohr. 20NN. Computing Generic Fibers of
Polynomial Ideals with FGLM and Hensel Lifting. In Proceedings of the 20NN
International Symposium on Symbolic and Algebraic Computation (ISSAC

’NN), July XX–YY, 20NN, City, ZZ, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx

1 INTRODUCTION
Scientific Context. Gröbner bases lie at the forefront of the algo-
rithmic treatment of polynomial systems and ideals in symbolic
computation. They are defined as special generating sets of polyno-
mial ideals which allow to decide the ideal membership problem via

The authors are supported by the joint ANR-FWFANR-19-CE48-0015 ECARP and ANR-
22-CE91-0007 EAGLES projects, ANR-19-CE40-0018 De Rerum Natura project, DFG
Sonderforschungsbereich TRR 195 project and grants DIMRFSI 2021-02–C21/1131
of the Paris Île-de-France Region, FA8665-20-1-7029 of the EOARD-AFOSR, and
Forschungsinitiative Rheinland-Pfalz. We thank the referees for their valuable com-
ments on the paper and Ch. Eder, P. Lairez, V. Neiger and M. Safey El Din for fruitful
discussions.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSAC ’NN, July XX–YY, 20NN, City, ZZ, USA

© 20NN Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN xxx-x-xxxx-xxxx-x/xx/xx. . . $yy.00
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx

a multivariate version of polynomial long division. Given a Gröb-
ner basis for a polynomial ideal, a lot of geometric and algebraic
information about the polynomial ideal at hand can be extracted,
such as the degree, dimension or Hilbert function. We refer to [3]
for a comprehensive treatment of the subject.
Notably, Gröbner bases depend on two parameters: The polynomial
ideal which they generate and a monomial order, i.e. a certain kind
of total order on the set of monomials of the underlying polynomial
ring. Then, the geometric and ideal-theoretic information that can
be extracted from a Gröbner basis depends on the chosen monomial
order. For example, elimination orders allow, as the name suggests,
to eliminate a chosen subset of variables from the given polynomial
ideal (i.e. to project on an affine subspace in a geometric sense).
While Gröbner bases for elimination orders are frequently of inter-
est, it has been observed that all algorithms to compute Gröbner
bases based on the famous Buchberger algorithm [10], such as
F4 [17] and F5 [18], are substantially more well-behaved when
used with non-elimination orders (most notably, the degree reverse
lexicographical ≺drl order).
This has motivated the design of numerous change of order algo-
rithms: The task is to convert a given Gröbner basis w.r.t. one
order into a Gröbner basis w.r.t. another order. We mention here
the Hilbert-driven algorithm by [38], the Gröbner walk algorithm
by [11] and, most notably for this paper, the FGLM algorithm [20]
and its variants [6, 19, 21, 31].
Furthermore, most ideal-theoretic operations in commutative alge-
bra (such as saturation and intersection) can be performed using
Gröbner bases by writing down a certain ideal associated to the
given polynomial ideal, choosing a certain monomial order and
computing a Gröbner basis for this associated ideal. Here, Gröb-
ner basis computation is used as a black box. It has recently been
observed, partly by the authors of this paper, that it can be (some-
times substantially) more efficient to design dedicated Gröbner basis
algorithms for specific ideal-theoretic tasks, see [5, 16].

Problem Statement & Contributions. This paper is concerned with
the algorithmic treatment of the following problem: Fix a polyno-
mial ring 𝑅 B K[z, x] in two finite sets of variables x and z over
a field K and an ideal 𝐼 in 𝑅. Assume that the map 𝜑 : K[z] →
K[z, x]/𝐼 is injective and has generically finite fiber, i.e. assume that
the the generic fiber 𝐼gen B 𝐼 · K(z) [x] of 𝐼 is zero-dimensional.
Given a Gröbner basis of 𝐼 w.r.t. a monomial order ≺in, we want to
compute a Gröbner basis 𝐺 of 𝐼gen w.r.t. another monomial order
≺out. One key motivation to solve this problem is that, when ≺out
is a suitable elimination order, the Gröbner basis 𝐺 can be used to

https://doi.org/10.xxxx/xxxxxxx.xxxxxxx
https://doi.org/10.xxxx/xxxxxxx.xxxxxxx

compute a primary decomposition of the ideal 𝐼 (or an irreducible
decomposition of the algebraic set defined by 𝐼), see [3] for details.
Being able to compute such decompositions has numerous appli-
cations, we mention for example the algorithm presented in [27]
which uses primary decompositions to compute so-called Whitney
stratifications of singular varieties.
The algorithm we design to solve this problem relates to the two re-
search directions previously mentioned: It is a dedicated algorithm
to perform an ideal-theoretic operation (by computing a representa-
tion of the generic fiber of a suitably chosen map) and it performs a
change of order (by going from ≺in to ≺out). Our proposed solution
to this problem can be seen as a combination of the previously men-
tioned FGLM algorithm with classical Hensel lifting techniques.
More precisely, if we let 𝔪 B ⟨z⟩, then, under some assumptions
which are detailed in this paper, we will compute 𝐺 by computing
its image in (K[z]/𝔪) [x] ≃ K[x] and then lifting it modulo higher
and higher powers of 𝔪. This lifting step uses the same core idea
as the FGLM algorithm. With this approach, we expect that our
algorithm can be transported without much difficulty to the setting
where a Gröbner basis 𝐺 of a zero-dimensional ideal in Q[x] is
required: Given 𝑝 a well-chosen prime number and 𝑘 ∈ N∗ suffi-
ciently large, it would extract 𝐺 from its image in (Z/𝑝Z) [x] and
then lift it modulo 𝑝𝑘 . We show that, similar to classical Hensel
lifting, our algorithm runs in arithmetic complexity quasi-linear in
the number of terms of degree at most the precision up to which
we need to lift when a “quadratic lifting strategy” is chosen, see
Corollary 4.7, which implies in particular the following

Theorem 1.1. Let 𝑓1, . . . , 𝑓𝑐 be generic polynomials of respective

degrees 𝑑1, . . . , 𝑑𝑐 in K[z, x]. Assume that the ≺drl-Gröbner basis
of 𝐼 = ⟨𝑓1, . . . , 𝑓𝑐 ⟩ is known and that the ≺out-Gröbner basis 𝐺 of

𝐼 · K(z) [x] has coefficients which are rational functions with degrees

at most 𝛿 in the numerators and denominators. Letm2𝛿 be the number

of monomials in z up to degree 2𝛿 . Then, one can compute 𝐺 up to

precision 2𝛿 using 𝑂
(
m2𝛿𝑐 (𝑑1 · · ·𝑑𝑐)3

)
operations in K.

Note that knowing 𝐺 up to precision 2𝛿 is enough to recover 𝐺 by
means of Padé approximants, see Lemma 3.6.

Related Work. Gröbner bases of generic fibers, as defined in the
previous paragraph, are classically computed using block monomial

orders, see e.g. [3, Lemma 8.93]. Besides that, morally similar to our
algorithm, there is a rich body of literature about multi-modular
Gröbner basis computations [1, 14, 32, 37] and Hensel/modular
lifting techniques for Gröbner bases [25, 34, 39].
Outside of the world of Gröbner bases, there are other data struc-
tures for algorithmically manipulating polynomial ideals, or the
algebraic sets defined by them, which encode polynomial ideals
by their generic fiber associated to a well-chosen projection. We
mention in particular geometric resolutions, see e.g. [24, 33], and
triangular sets, see e.g. [28] for a survey.
Our work also relates to specialization results for Gröbner basis, i.e.
results on the question whether a Gröbner basis remains a Gröbner
basis after specializing some of the variables, see [2, 23, 29].

Outline. In Section 2, we give necessary preliminaries both on Gröb-
ner bases and on the needed commutative algebra to state and prove
the correctness of our algorithms in Section 3. In Section 4, we trans-
port the complexity statements for the original FGLM algorithm

to our setting. Finally we give some benchmarks for a Julia im-
plementation of our main algorithm in Section 5, comparing it to
computing generic fibers using just elimination orders.

2 PRELIMINARIES
2.1 Gröbner Bases
In order to be self-contained, we recall some definitions and basic
properties related to Gröbner bases of polynomial ideals.
For a set of variables x B {𝑥1, . . . , 𝑥𝑛}, we denote by Mon(x) the
set of monomials in x, and for a field K, we let 𝑅 B K[x] be the
multivariate polynomial ring in x over K.

Definition 2.1. A monomial order ≺ on x is a total order onMon(x)
(1) extending the partial order onMon(x) given by divisibility and
(2) compatible with multiplication, i.e. we have

𝑢 ≺ 𝑣 ⇒ 𝑤𝑢 ≺ 𝑤𝑣 ∀𝑢, 𝑣,𝑤 ∈ Mon(x).

Of importance for us is the degree reverse lexicographic order:

Definition 2.2. The degree reverse lexicographic≺drl order onMon(x)
is defined as follows for 𝑢, 𝑣 ∈ Mon(x): 𝑢 ≺drl 𝑣 iff deg𝑢 < deg 𝑣 or
deg𝑢 = deg 𝑣 and the last nonzero exponent of 𝑢/𝑣 is positive.

We will also need the notion of a block order :

Definition 2.3. Let x and z be two finite sets of variables. Write
each monomial 𝑢 ∈ Mon(x ∪ z) uniquely as a product 𝑢 = 𝑢x𝑢z
with 𝑢x ∈ Mon(x) and 𝑢z ∈ Mon(z). Fix a monomial order ≺x on
Mon(x) and a monomial order ≺z onMon(z). The corresponding
block order eliminating x is defined as follows: 𝑢 ≺ 𝑣 iff 𝑢x ≺x 𝑣x or
𝑢x = 𝑣x and 𝑢z ≺z 𝑣z for 𝑢, 𝑣 ∈ Mon(x ∪ z).

A monomial order on x yields a notion of leading monomial in 𝑅:

Definition 2.4. Let ≺ be a monomial order onMon(x). For a nonzero
element 𝑓 ∈ 𝑅 the leading monomial of 𝑓 w.r.t. ≺, denoted lm≺ (𝑓),
is the ≺-largest monomial in the support of 𝑓 . For a finite set 𝐹 in 𝑅
we define lm≺ (𝐹) B {lm≺ (𝑓) | 𝑓 ∈ 𝐹 }. For an ideal 𝐼 in𝑅we define
the leading monomial ideal of 𝐼 as lm≺ (𝐼) B ⟨lm≺ (𝑓) | 𝑓 ∈ 𝐼 ⟩.

Fixing a monomial order gives normal forms for images of elements
in quotient rings of 𝑅:

Definition 2.5. Let 𝐼 be an ideal in 𝑅 and let ≺ be a monomial order
on Mon(x).
(1) The set 𝑆𝐼 ,≺ B {𝑢 ∈ Mon(x) | 𝑢 ∉ lm≺ (𝐼)} is the staircase of 𝐼

w.r.t. ≺. It naturally forms a K-vector space basis of 𝑅/𝐼 .
(2) The image of every element 𝑓 ∈ 𝑅 in 𝑅/𝐼 can be uniquely

written as a K-linear combination of elements in 𝑆𝐼 ,≺ . This
linear combination of elements in 𝑆𝐼 ,≺ is called the normal form

of 𝑓 w.r.t. 𝐼 and ≺. The corresponding vector of coefficients of
this linear combination, with the elements in 𝑆𝐼 ,≺ ordered by
≺, will be denoted nf𝐼 ,≺ (𝑓).

We finally define the notion of Gröbner bases.

Definition 2.6. A Gröbner basis of an ideal 𝐼 ⊂ 𝑅 w.r.t. a monomial
order ≺ is a finite set 𝐺 ⊂ 𝐼 such that ⟨lm≺ (𝐺)⟩ = lm≺ (𝐼). A
Gröbner basis is called reduced if, for any 𝑔 ∈ 𝐺 , no monomial in
the support of 𝑔 is divisible by any element in lm≺ (𝐺 \ {𝑔}).

A Gröbner basis 𝐺 of an ideal 𝐼 ⊂ 𝑅 w.r.t. a monomial order ≺ en-
ables the computation of normal forms w.r.t. 𝐼 and ≺ via a straight-
forward multivariate generalization of polynomial long division,
see e.g. [3, Table 5.1]. This, in particular, yields an ideal membership
test for 𝐼 . Indeed, an element 𝑓 ∈ 𝑅 is contained in 𝐼 if and only if
its normal form w.r.t. 𝐼 and ≺ is zero. Finally, recall that reduced
Gröbner bases are unique for a given ideal and monomial order.
2.2 Points of Good Specialization
We start by fixing some notation. For an element 𝑓 ∈ 𝑅 we de-
note by 𝑅 [𝑓 −1] the localization of 𝑅 at the multiplicatively closed
set

{
𝑓 𝑘

��� 𝑘 ∈ N}. For a prime ideal 𝔭 ⊂ 𝑅 we denote by 𝑅𝔭 the
localization of 𝑅 at the multiplicatively closed set 𝑅 \ 𝔭.
We further fix a polynomial ring K[z, x] in two finite sets of vari-
ables z and x. Let 𝐼 ⊆ K[z, x] be an ideal. Suppose that the map

K[z] → K[z, x]/𝐼
is injective and has generically finite fiber, i.e. we assume that 𝐼gen B
𝐼 · K(z) [x] ≠ K(z) [x] is a zero-dimensional ideal.

Definition 2.7. In this setting we call 𝐼gen the generic fiber of 𝐼 .

Let us introduce some further notation.

Definition 2.8. We denote for a monomial 𝑢 ∈ Mon(z)
𝔪𝑢 B ⟨𝑣 ∈ Mon(z) | 𝑣 ≻drl 𝑢⟩ and 𝐼𝑢 B 𝐼 +𝔪𝑢 ,

𝔪 B 𝔪1 = ⟨z⟩, as well as next(𝑢) = min {𝑣 ∈ Mon(z) | 𝑣 ≻drl 𝑢}.

Definition 2.9. Let 𝑔 ∈ K[z]𝔪 [x]. Write

𝑔 =
∑︁

𝑤∈Mon(x)

𝑝𝑤

𝑞𝑤
𝑤

with 𝑝𝑤 , 𝑞𝑤 ∈ K[z] and 𝑞𝑤 (0) ≠ 0 for all 𝑤 ∈ Mon(x) whenever
𝑝𝑤 ≠ 0. Then, each 𝑝𝑤/𝑞𝑤 can be written as a formal power series

𝑝𝑤

𝑞𝑤
=

∑︁
𝑣∈Mon(z)

𝑟𝑤,𝑣𝑣 ∈ K[[z]]

and for a monomial 𝑢 ∈ Mon(z) we denote

𝑔𝑢 B
∑︁

𝑤∈Mon(x)

∑︁
𝑣∈Mon(z)
𝑣⪯drl𝑢

𝑟𝑤,𝑣𝑣𝑤 = 𝑔 mod 𝔪𝑢

For a set 𝐺 ⊂ K[z]𝔪 [x] we define 𝐺𝑢 B {𝑔𝑢 | 𝑔 ∈ 𝐺}.

Let 𝐺 ⊂ K(z) [x] be the reduced Gröbner basis of 𝐼gen w.r.t. a
monomial order ≺x on Mon(x). Our algorithms will work under
the assumption that 𝐺 ⊂ K[z]𝔪 [x] and that given the set 𝐺𝑢 we
can lift𝐺𝑢 uniquely to𝐺next(𝑢) . In fact the condition𝐺 ⊂ K[z]𝔪 [x]
turns out to be sufficient. We capture this in a definition:

Definition 2.10. We say that 𝔪 is a point of good specialization (for
≺x) if 𝐺 ⊂ K[z]𝔪 [x].

Remark 2.11. By definition, being a point of good specialization is

a Zariski-open condition, so that, if K is infinite, it is ensured with

probability 1 after replacing each 𝑧𝑖 ∈ z by 𝑧𝑖−𝑎𝑖 for randomly chosen

𝑎𝑖 ∈ K. In Remark 4.11 we point out a situation in which an upper

bound for the probability that 𝔪 is a point of good specialization can

be given intrinsically in terms of 𝐼 if K is finite.

First we show

Theorem 2.12. If the ideal 𝔪 is a point of good specialization, then

the K[z]𝔪-module K[z]𝔪 [x]/𝐼 is free of finite rank.

Proof. Write 𝐴 B K[z]𝔪 , 𝐾 = K(z) for the field of fractions of 𝐴
and 𝐹 B 𝐴[x]/𝐼 .
Suppose that 𝔪 is a point of good specialization so that 𝐺 ⊂ 𝐴[x].
Let 𝑆 B 𝑆𝐼 gen,≺x , note that 𝑆 is finite. We first show that 𝑆 gen-
erates 𝐹 as an 𝐴-module. Let 𝑢 ∈ Mon(x) with 𝑢 ∉ 𝑆 so that
𝑢 ∈ lm≺x (𝐼gen). Then there exists 𝑔 ∈ 𝐺 and 𝑣 ∈ Mon(x) such that
lm≺x (𝑣𝑔) = 𝑢 and therefore such that lm≺x (𝑢 − 𝑣𝑔) ≺x 𝑢.
Reducing further the expression𝑢−𝑣𝑔 by𝐺 is done with arithmetic
over 𝐴 only and hence shows that, in 𝐹 , we can write 𝑢 =

∑
𝑠∈𝑆 𝑟𝑠𝑠

with 𝑟𝑠 ∈ 𝐴. This shows that 𝑆 generates the 𝐴-module 𝐹 . Now,
to prove that 𝐹 is free over 𝐴, it suffices to show that there are no
non-trivial 𝐴-relations between the elements of 𝑆 . Suppose that for
certain 𝑠1, . . . , 𝑠𝑡 ∈ 𝑆 , there is a relation

𝑡∑︁
𝑖=1

𝑟𝑖𝑠𝑖 = 0

in 𝐹 with 𝑟𝑖 ∈ 𝐴 \ {0} for all 𝑖 . This gives in particular a relation
between the 𝑠𝑖 over 𝐾 . Hence, if 𝑗 is such that 𝑠 𝑗 is ≺x-maximal
among the 𝑠𝑖 , then 𝑠 𝑗 ∈ 𝐿, but 𝐿 ∩ 𝑆 = ∅, a contradiction. □

We now give some further properties regarding points of good
specializations. Item 1 in the theorem below will be used to show
the correctness of our lifting algorithm in Section 3 whereas Item 2
will be used for our complexity analysis in Section 4.

Theorem 2.13. Suppose that 𝔪 is a point of good specialization.

(1) For each 𝑢 ∈ Mon(z) and 𝑧𝑖 ∈ z, the multiplication by 𝑧𝑖 induces

an isomorphism of K-vector spaces:

𝑢K[z, x]/𝐼𝑢 → 𝑧𝑖𝑢K[z, x]/𝐼𝑧𝑖𝑢 .
(2) Let ≺ be the block order eliminating xwith ≺=≺x onMon(x) and
≺=≺drl onMon(z). Let𝑀𝑢 be the (unique) minimal generating

set of 𝔪𝑢 . Then, the reduced ≺-Gröbner basis of 𝐼𝑢 is precisely

𝐺𝑢 ∪𝑀𝑢 .

Proof. We reuse the notation from the proof of Theorem 2.12. By
Theorem 2.12, 𝔪 being a point of good specialization implies that
𝐹 is a free 𝑅-module of finite rank.
Proof of (1): It is first easy to check that now multiplication by
𝑧𝑖 induces a surjective, well-defined map of finite-dimensional K-
vector spaces

𝑢K[z, x]/𝐼𝑢 → 𝑧𝑖𝑢K[z, x]/𝐼𝑧𝑖𝑢 .
Note that the structure of 𝑉𝑢 B 𝑢K[z, x]/𝐼𝑢 as a vector space is
induced by the canonical𝐴-module structure of 𝐹 , because𝔪𝑉𝑢 = 0
and therefore (𝑉𝑢)𝔪 = 𝑉𝑢 . Hence, if 𝐹 � 𝐴𝑟 , we have,

𝑉𝑢 ≃ (𝑢𝐴/𝔪𝑢)𝑟 ≃ K𝑟 .
Therefore multiplication by 𝑧𝑖 induces an epimorphism between
vector spaces of the same dimension, so it must be an isomorphism.
Proof of (2): Let 𝑆 B 𝑆𝐼 gen,≺x . It suffices to show that

𝑆𝐼𝑢 ,≺ = 𝑆𝑢 B
⋃

𝑣⪯drl𝑢
𝑣𝑆.

Note that the set 𝑆𝑢 certainly generates K[z, x]/(𝐼 + 𝔪𝑢) as a K-
vector space. As K[z, x]/(𝐼 + 𝔪𝑢) ≃ 𝐹/𝔪𝑢 , and since 𝐹 is free, a

K-dimension count shows that the set 𝑆𝑢 is K-linearly independent.
Now, let 𝑠 ∈ 𝑆 be ≺x-minimal such that there exists some 𝑤 ∈
Mon(z),𝑤 ⪯drl 𝑢 with𝑤𝑠 ∈ lm≺ (𝐼𝑢). By minimality, the ≺-normal
form of𝑤𝑠 w.r.t. 𝐼𝑢 has support in

⋃
𝑣⪯drl𝑢 {𝑣𝑡 | 𝑡 ≺x 𝑠, 𝑡 ∈ 𝑆} ⊂ 𝑆𝑢 ,

therefore inducing a linear dependence between the elements of
𝑆𝑢 , a contradiction. □

We will want to perform finite-dimensional linear algebra akin to
the FGLM algorithm in certain staircases of the ideals 𝐼𝑢 . This will
rely on the fact that 𝐼1 is zero-dimensional.

Corollary 2.14. Suppose 𝔪 is a point of good specialization. Then

for each 𝑢 ∈ Mon(z), the ideal 𝐼𝑢 is zero-dimensional.

Proof. Note that Item 2 in Theorem 2.13 implies that a K-basis of
K[z, x]/𝐼𝑢 is given by

⋃
𝑣⪯drl𝑢 𝑣𝑆𝐼 gen,≺x which is a finite set. □

3 THE MAIN ALGORITHM
As in the last section, we fix an ideal 𝐼 ⊂ K[z, x] with generically
finite fiber over K[z], we will use the notation introduced in Defini-
tion 2.8 and Definition 2.9. We now further fix any monomial order
≺out onMon(x) and another monomial order ≺in onMon(x ∪ z).
We suppose that 𝔪 is a point of good specialization for ≺out.
Suppose that we can compute, with some black box, the reduced
≺in-Gröbner basis 𝐻𝑢 of 𝐼𝑢 for any 𝑢 ∈ Mon(z). Our goal is to use
this data to compute the reduced ≺out-Gröbner basis 𝐺 of 𝐼gen.

Remark 3.1. Note that we have so far required that the partition of

the variables ofK[z, x] is given. It can be computationally determined:

From any Gröbner basis of 𝐼 we can determine z as a maximally inde-
pendent set of 𝐼 and let x be the set of remaining variables, see [3, Def-

inition 9.22]. Then, as in the last section, the map K[z] → K[z, x]/𝐼
is injective with generically finite fiber, see [3, Corollary 9.28].

Let us sketch our strategy. By the assumption that 𝔪 is a point of
good specialization, we have 𝐺 ⊂ K[z]𝔪 [x]. Recall that 𝔪1 = 𝔪.
We start by computing the ≺in-Gröbner basis𝐻1 of 𝐼1 = 𝐼 +𝔪. Then,
we run the FGLM algorithm [20] with 𝐻1 to obtain the reduced
≺out-Gröbner basis of the image of 𝐼 in (K[z]/𝔪) [x] ≃ K[x]. By
Theorem 2.13 this Gröbner basis will now precisely be the set 𝐺1
in the notation introduced in Definition 2.9.
For a monomial 𝑢 ∈ Mon(z), let 𝑣 B next(𝑢). Starting with 𝑢 = 1
and a given 𝑔1 ∈ 𝐺1, we will lift 𝑔𝑢 to 𝑔𝑣 by performing linear
algebra in the finite-dimensional, see Corollary 2.14,K-vector space
𝑣K[z, x]/𝐼𝑣 , using the ≺in-Gröbner basis𝐻𝑣 . This will rely on Item 1
in Theorem 2.13.

Remark 3.2. In this section we treat the computation of the required

Gröbner bases 𝐻𝑢 , 𝑢 ∈ Mon(z) as a black box. We recall in Section 4

that these sets may be obtained free of arithmetic operations from

an ≺in-Gröbner basis of 𝐼 when ≺in=≺drl and 𝐼 satisfies a certain

genericity assumption. Under the assumption that ≺in is a suitable

block order and that 𝔪 is also a point of good specialization for ≺in
restricted to Mon(x) one can give a tracer-based [37] method to

compute the sets 𝐻𝑢 . This will be the subject of a future paper.

This lifting step is now given by Algorithm 1.

Theorem 3.3. If 𝔪 is a point of good specialization for ≺out, then
Algorithm 1 terminates and is correct in that it satisfies its output

specification.

Algorithm 1 The Lifting Algorithm

Input A monomial 𝑢 ∈ Mon(z), 𝑔𝑢 ∈ 𝐺𝑢 , 𝑣 B next(𝑢), the
reduced Gröbner basis 𝐻𝑣 of 𝐼𝑣 w.r.t. ≺in, the set 𝑆𝐼1,≺out .

Output The corresponding element 𝑔𝑣 ∈ 𝐺𝑣 .
1 function lift (𝑔𝑢 , 𝐻𝑣, 𝑆≺out)
2 𝑐 ← nf𝐼𝑣 ,≺in (𝑔𝑢) [via 𝐻𝑣]
3 if 𝑐 = 0 return 𝑔𝑢
4 else
5 find (𝛼𝑤)𝑤∈𝑆𝐼1,≺out s.t. 𝑐 =

∑
𝑤∈𝑆𝐼1,≺out

𝛼𝑤 nf𝐼𝑣 ,≺in (𝑢𝑤) [via 𝐻𝑣]

6 return 𝑔𝑢 −
∑

𝑤∈𝑆𝐼1,≺out 𝛼𝑤𝑢𝑤

Proof. We use the notation from the pseudocode of the algorithm.
The termination of the algorithm is clear. For the correctness of the
algorithm, note that the vectors nf𝐼𝑣 ,≺in (𝑢𝑤) in line 5 are linearly
independent thanks to Item 1 of Theorem 2.13. Thus, there exists
at most one choice of coefficients 𝛼𝑤 ,𝑤 ∈ 𝑆𝐼1,≺out , such that 𝑐 =∑

𝑤∈𝑆𝐼1,≺out 𝛼𝑤 nf𝐼𝑣 ,≺in (𝑢𝑤). Furthermore, since𝔪 is a point of good
specialization, the element 𝑔 ∈ 𝐺 corresponding to 𝑔𝑢 provides
such a choice of coefficients, implying that there exists at least one
solution to this linear system. This proves the correctness. □

Remark 3.4. We want to emphasize that our algorithms never verify

deterministically (and cannot verify deterministically) whether 𝔪

is a point of good specialization, this is a probabilistic assumption.

Nonetheless, running Algorithm 1 can sometimes detect when 𝔪 is

not a point of good specialization, namely if there exists no or more

than one solution to the linear system in line 5 of Algorithm 1. In this

case one would apply a random change of coordinates 𝑧𝑖 ← 𝑧𝑖 − 𝑎𝑖
for each 𝑧𝑖 ∈ z and restart the computation.

Example 3.5. Let us unroll Algorithm 1 o,n the following example.
We work over the polynomial ring F11 [𝑧, 𝑥1, 𝑥2, 𝑥3], where F11 is
the finite field with eleven elements. Our ideal 𝐼 is generated by

(𝑧 + 8) + 𝑥1 + 𝑥2 + 𝑥3, (𝑧 + 8)𝑥1 + 𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥3 (𝑧 + 8),
(𝑧 + 8)𝑥1𝑥2 + 𝑥1𝑥2𝑥3 + 𝑥2𝑥3 (𝑧 + 8) + 𝑥3 (𝑧 + 8)𝑥1,(𝑧 + 8)𝑥1𝑥2𝑥3 − 1.
Following Remark 3.1, one verifies that F11 [𝑧] → F11 [𝑧, 𝑥1, 𝑥2, 𝑥3]/𝐼
is injective with generically finite fiber.
Readers may recognize this example as the Cyclic 4 polynomial
system where we have replaced the variable 𝑧 by the random choice
𝑧 + 8 to ensure, probabilistically, that 𝔪 = ⟨𝑧⟩ is a point of good
specialization.
For our orders we choose ≺in=≺drl on Mon(x ∪ {𝑧}) and ≺out as
the lexicographic order onMon(x). Now, the set 𝐺1 is given by

𝐺1 B {𝑥23 + 6, 𝑥2 + 8, 𝑥1 + 𝑥3}.
Hence 𝑆𝐼1,≺out = {1, 𝑥3}. Assuming that 𝑔1 B 𝑥23 + 6 is the image of
some element 𝑔 in the target Gröbner basis𝐺 ⊂ F11 (𝑧) [x], we now
try to lift 𝑔1 to 𝑔𝑧 , i.e. the image of 𝑔 modulo 𝔪𝑧 = ⟨𝑧2⟩, so that, in
the notation of Algorithm 1, we have 𝑢 = 1 and 𝑣 = 𝑧.
If such a 𝑔 exists, there must now exist, by Item 1 in Theorem 2.13,
unique scalars 𝛼1, 𝛼𝑥3 ∈ F11 such that

𝑔𝑧 = 𝑔1 + 𝛼1𝑧 + 𝛼𝑥3𝑧𝑥3 = 0 mod 𝐼𝑧 = 𝐼 + ⟨𝑧2⟩,
and Algorithm 1 attempts to compute these scalars by finding a
linear relation between the normal forms w.r.t. ≺in of 𝑔1, 𝑧 and 𝑧𝑥3

modulo 𝐼𝑧 . Using an ≺in-Gröbner basis of 𝐼𝑧 , we find that 𝑆𝐼𝑧 ,≺in =

{1, 𝑧, 𝑥3, 𝑧𝑥3} and we compute, using normal form computations

nf𝐼2,≺in (𝑔1) = (0, 7, 0, 0)
nf𝐼2,≺in (𝑧) = (0, 1, 0, 0)

nf𝐼2,≺in (𝑧𝑥3) = (0, 0, 0, 1)

so that finally, 𝛼1 = 6 and 𝛼𝑥3 = 0 which yields for 𝑔𝑧 the unique
candidate 𝑔𝑧 = 𝑥23 + (4𝑧 + 6), finishing the example.

Algorithm 1 is only able to compute the set 𝐺𝑢 for a monomial
𝑢 ∈ Mon(z), i.e. it “approximates” the set𝐺 up to order𝑢. A natural
question is then how to extract the actual set 𝐺 out of 𝐺𝑢 . For this,
we may use the classical technique of Padé approximants. Having
computed the set 𝐺𝑢 , we have computed the image 𝑔𝑢 of a given
element 𝑔 ∈ 𝐺 as

𝑔𝑢 =
∑︁

𝑤∈Mon(x)

∑︁
𝑣⪯drl𝑢

𝑟𝑤,𝑣𝑣𝑤.

Now we have for the coefficient 𝑝𝑤/𝑞𝑤 ∈ K(z) of𝑤 in 𝑔

𝑝𝑤 − 𝑞𝑤
∑︁

𝑣⪯drl𝑢
𝑟𝑤,𝑣𝑣 = 0 mod 𝔪𝑢 , (1)

which determines a set of linear equations in the unknown coef-
ficients of 𝑝𝑤 and 𝑞𝑤 . Let 𝑑 B deg𝑢. Suppose that deg next(𝑢) =
𝑑 + 1, so that 𝔪𝑢 = 𝔪𝑑+1. Fix 𝑑1 and 𝑑2 with 𝑑1 + 𝑑2 = 𝑑 and let
𝑛 be the cardinality of the set z. If we impose that deg𝑝𝑤 ≤ 𝑑1
and deg𝑞𝑤 ≤ 𝑑2, then the linear system (1) has a finite set of
unknowns and equations. Let us say that any solution to this lin-
ear system of equations is a Padé approximant of order (𝑑1, 𝑑2) of
𝜆𝑤 B

∑
deg 𝑣<𝑑+1 𝑟𝑤,𝑣𝑣 . If 𝑑1 and 𝑑2 are large enough then any

Padé approximant of order (𝑑1, 𝑑2) of 𝜆𝑤 is equal to 𝑝𝑤/𝑞𝑤 , see
e.g. [26, Proposition 2.1]:

Lemma 3.6. Let 𝑝/𝑞 be a Padé approximant of order (𝑑1, 𝑑2) of 𝜆𝑤 .
If 𝑑1 ≥ deg𝑝𝑤 and 𝑑2 ≥ deg𝑞𝑤 then 𝑝/𝑞 = 𝑝𝑤/𝑞𝑤 .

By solving this linear systemwe obtain an algorithm pade(𝑔𝑢 , 𝑑1, 𝑑2)
which computes a candidate 𝑔cand ∈ K(z) [x] whose coefficients
are Padé approximants of the coefficients of 𝑔𝑢 of order (𝑑1, 𝑑2)
regarded as a polynomial in the variables x. Let us say that 𝑔𝑢 has
stable Padé approximation if for 𝑣 B next(𝑢) we have

𝑔cand = 𝑔𝑣 mod 𝔪𝑣 .

Based on this, we now obtain Algorithm 2 for computing the set
𝐺 probabilistically. We state this algorithm in an informal way. In
Line 7 by “lifting 𝐺lift to degree 𝑑” we mean that we compute the
set 𝐺𝑢 where 𝑢 is the ≺drl-maximal monomial of degree 𝑑 .
Clearly, by Theorem 3.3 and Lemma 3.6, this algorithm returns the
correct result if the computed Padé approximants are of sufficiently
large degree and 𝔪 is a point of good specialization.

Remark 3.7. Note that Algorithm 1 works also if we replace 𝑣 by any

monomial larger than𝑢: In this case we just have to write 𝑐 as a linear

combination of all the vectors 𝑐𝐼𝑣 ,≺in (𝑢𝑣 ′) where 𝑢 ≺drl 𝑣 ′ ⪯drl 𝑣 .

Example 3.8 (Example 3.5 continued). Let us try to see how Al-
gorithm 2 recovers the element denoted 𝑔 in Example 3.5. First,
Algorithm 2 lifts the element 𝑔1 = 𝑥23 + 6 to degree 𝑑 = 2, i.e. we

Algorithm 2 Computing the generic fiber
Input A generating set 𝐹 of 𝐼 , a monomial order ≺in, a monomial

order ≺out.
Output A guess for the set 𝐺 .
1 function genfglm(𝐹, ≺in, ≺out)
2 𝐻1 ← reduced ≺in-Gröbner basis of 𝐼1 [using 𝐹]
3 𝐺lift, 𝑆≺out ← fglm(𝐻1, ≺out)
4 𝐺result ← ∅
5 𝑑 ← 2
6 while 𝐺lift ≠ ∅
7 𝐺lift ← lift 𝐺lift to degree 𝑑 using Algorithm 1
8 Run pade(𝑔,𝑑/2, 𝑑/2) for all 𝑔 ∈ 𝐺lift
9 Lift 𝐺lift one monomial higher
10 add to 𝐺result all elements with stable Padé approx.
11 remove the corresponding elements from 𝐺lift
12 𝑑 ← 2𝑑
13 return 𝐺result

compute the image of 𝑔 modulo 𝑧3 (line 7 in Algorithm 2). This
yields, in our usual notation,

𝑔2 = 𝑥
2
3 + (2𝑧

2 + 4𝑧 + 6).

Nowwe attempt (line 8 in Algorithm 2) to find a Padé approximation
of order (1, 1) for 𝑔, i.e., here, 𝑝, 𝑞 ∈ F11 [𝑧] of degree at most one
such that 𝑝/𝑞 = 2𝑧2 + 4𝑧 + 6 mod 𝑧3 by solving a linear system as
outlined above. This yields the candidate

𝑔cand = 𝑥23 +
𝑧 + 6
5𝑧 + 1

which satisfies 𝑔cand = 𝑔2 mod 𝑧3. Next, in line 9, we lift 𝑔 one
monomial higher, i.e. modulo 𝑧4. This yields

𝑔3 = 𝑥
2
3 + (7𝑧

3 + 2𝑧2 + 4𝑧 + 6),

But 𝑝/𝑞 has now the truncated power series 𝑧3 + 2𝑧2 + 4𝑧 + 6, so
that 𝑔2 does not have stable Padé approximation. Hence we double
𝑑 to 4 and lift 𝑔3 to 𝑔4, i.e. from modulo 𝑧4 to modulo 𝑧5, and
attempt another Padé approximation. This time, computing a Padé
approximation of order (2, 2), this yields the candidate

𝑔cand = 𝑥23 +
1

10𝑧2 + 6𝑧 + 2
.

Finally, we lift 𝑔4 to 𝑔5 and find that 𝑔5 = 𝑔cand mod 𝑧6. So 𝑔4
has stable Padé approximation and we terminate with 𝑔 B 𝑔cand.
Computing the ≺out-Gröbner basis𝐺 of 𝐼gen using block orders as
in [2, Lemma 8.93] shows that 𝑔 is indeed the correct element.

4 COMPLEXITY ESTIMATES
In this section, we analyze the arithmetic complexity of a version
of our algorithm more akin to the original FGLM algorithm as
presented in [20]. We will reuse the notation from the last section.
We now add the additional assumption that ≺in is a block order
eliminating x with ≺in=≺drl on Mon(z) and that 𝔪 is a point of
good specialization for both ≺in and ≺out. Here, we analyze the
number of arithmetic operations in K required to obtain the sought
≺out-Gröbner basis 𝐺 using the same strategy as in Algorithm 2,
but with a more optimized lifting step.

Our cost analysis will require measuring the cost of performing cer-
tain linear algebra operations on structured matrices. The matrices
that will appear in the analysis are block-Toeplitz:

Definition 4.1. Let 𝑘, 𝐷 ∈ N. A block matrix 𝑀 = (𝑀𝑝𝑞)0≤𝑝,𝑞<𝑘 ∈
K𝑘𝐷×𝑘𝐷 where each𝑀𝑝𝑞 is inK𝐷×𝐷 is called block-Toeplitz of type
(𝑘, 𝐷) if𝑀𝑝𝑞 = 𝑀𝑝′𝑞′ whenever 𝑝 − 𝑞 = 𝑝′ − 𝑞′. We say that𝑀 is
Toeplitz when 𝐷 = 1.

If𝑀 is block-Toeplitz of type (𝑘, 𝐷) then wewill need the arithmetic
complexity of computing a matrix vector product 𝑀𝑣 , 𝑣 ∈ K𝑘𝐷 ,
and of inverting𝑀 . For this we need the concept of displacement

rank of a matrix, see e.g. [9]:

Definition 4.2. Let 𝑍 ∈ K𝑛×𝑛 be the matrix defined by

𝑍 B (𝛿𝑖−1, 𝑗)1≤𝑖, 𝑗≤𝑛,

where 𝛿𝑖−1, 𝑗 is the Kronecker delta and let 𝑍T be the transpose of
𝑍 . The displacement rank of a matrix𝑀 ∈ K𝑛×𝑛 is

𝛼 (𝑀) B rank(𝑀 − 𝑍𝑀𝑍T).

Note that the displacement rank of a Toeplitz matrix is upper
bounded by 2. The concept of displacement rank can be used as a
general method to utilize “Toeplitz-like” structures in algorithmic
linear algebra. In this vein, we have

Proposition 4.3. Let 𝑀 be block-Toeplitz of type (𝑘, 𝐷) and let

𝑣 ∈ K𝑘𝐷 . Then
(1) 𝑀𝑣 can be computed in 𝑂

(
𝑘𝐷2)

arithmetic operations in K;

(2) 𝑀 can be inverted in 𝑂 (𝑘𝐷𝜔).

Proof. For anymatrix𝑀 ∈ K𝑛×𝑛 , according to [9], a matrix-vector
product 𝑀𝑣 can be computed in time 𝑂 (𝛼 (𝑀)𝑛) and 𝑀 can be
inverted in time𝑂

(
𝛼 (𝑀)𝜔−1𝑛

)
. Using a series of rows and column

swaps, more precisely sending row 𝑝𝐷 + 𝑖 to 𝑖𝑘 + 𝑝 (resp. column
𝑞𝐷+ 𝑗 to 𝑗𝑘+𝑞), wemay transform a block-Toeplitz matrix𝑀 of type
(𝑘, 𝐷) into a matrix 𝑁 = (𝑁𝑖 𝑗)0≤𝑖, 𝑗<𝐷 ∈ K𝑘𝐷×𝑘𝐷 where each 𝑁𝑖 𝑗

lies in K𝑘×𝑘 and is Toeplitz. Now, 𝑁 −𝑍𝑁𝑍T has 𝐷 dense columns
and (𝑘 − 1)𝐷 columns with potentially nonzero coefficients in
positions 𝑖𝐷 for all 𝑖 . Only 𝐷 of these latter columns can be linearly
independent so that 𝛼 (𝑀) ≤ 2𝐷 , proving both claims. □

Our cost analysis follows closely the one of the original FGLM
algorithm. To this end, we give the following definition:

Definition 4.4 (Multiplication Tensor). Let 𝐼 be a zero-dimensional
ideal in a polynomial ring K[x] and let ≺ be a monomial order. Let
𝑆 B 𝑆𝐼 ,≺ . The multiplication tensor of 𝐼 w.r.t. ≺ is defined as the
3-tensor

𝑀 (𝐼 , ≺) = (nf𝐼 ,≺ (𝑥𝑖𝑢))𝑥𝑖 ∈x,𝑢∈𝑆 ,
where the vectors of coefficients are in the basis 𝑆 .

It turns out that computing these multiplication tensors dominates
the cost of the original FGLM algorithm and similarly it dominates
the cost of our algorithm. In this section, we denote by𝐷 the degree
of 𝐼gen, i.e. the K(𝑧)-dimension of K(𝑧) [x]/𝐼gen. Note that this
degree is upper-bounded by that of 𝐼 . For𝑢 ∈ Mon(x) ≺drl-maximal
of degree 𝑘 , we also denote 𝐼𝑘 B 𝐼𝑢 and similarly 𝐻𝑘 B 𝐻𝑢 and
𝐺𝑘 B 𝐺𝑢 with these sets defined as in the last section.

To simplify the notation, we assume in the following two proofs,
that the set z = {𝑧} consists of a single variable. It will be clear
from the proofs that they translate accordingly to the more general
setting where z consists of several variables.
In our assumed setting, we obtain the following statement for com-
puting multiplication tensors:

Theorem 4.5. Let 𝑘 ∈ N and m𝑘 be the number of monomials in

z up to degree 𝑘 . Let 𝑐 be the cardinality of x. Suppose that we are
given the set 𝐻2𝑘 and the multiplication tensor of 𝐼𝑘 w.r.t. ≺in. Then
the multiplication tensor of 𝐼2𝑘 w.r.t. ≺in is computed in arithmetic

complexity 𝑂
(
m𝑘𝑐𝐷

3)
.

Proof. Let 𝑆 B 𝑆𝐼1,≺in . Applying the third item of Theorem 2.13
with ≺in instead of ≺, since ≺in eliminates x, for any ℓ ∈ N, yields

𝑆𝐼ℓ ,≺in =

ℓ−1⋃
𝑖=0

𝑧𝑖𝑆.

Let us now describe the structure of the multiplication matrices of
𝐼2𝑘 , i.e. the matrices

𝑀 (𝐼2𝑘 , ≺in)𝑦 B (𝑐𝐼2𝑘 ,≺in (𝑦𝑢))𝑢∈𝑆𝐼2𝑘 ,≺in , for 𝑦 ∈ x ∪ z.

The matrix (𝑐𝐼2𝑘 ,≺in (𝑧𝑢))𝑢∈𝑆𝐼2𝑘 ,≺in of the multiplication by 𝑧 is

𝑆 𝑧𝑆 . . . 𝑧2𝑘−1𝑆

𝑆

𝑧𝑆 Id
.
.
.

. . .

𝑧2𝑘−1𝑆 Id

and so is extracted without any arithmetic operations. Further,

denote 𝑆0 B
𝑘−1⋃
𝑖=0

𝑧𝑖𝑆 and 𝑆1 B
2𝑘−1⋃
𝑖=𝑘

𝑧𝑖𝑆 = 𝑧𝑘𝑆0. Now, for 𝑥𝑖 ∈ x

the multiplication matrix𝑀𝑥𝑖 by 𝑥𝑖 is determined by two matrices
𝑀𝑥𝑖 ,0, 𝑀𝑥𝑖 ,1 ∈ K𝐷×𝐷 as follows

𝑀𝑥𝑖 =

[𝑆0 𝑆1
𝑆0 𝑀𝑥𝑖 ,0
𝑆1 𝑀𝑥𝑖 ,1 𝑀𝑥𝑖 ,0

]
,

where each𝑀𝑥𝑖 ,𝑖 is easily seen to be block-Toeplitz of type (m𝑘 , 𝐷)
and 𝑀𝑥𝑖 ,0 is known as part of the ≺in-multiplication tensor of 𝐼𝑘 .
Thanks to the block-Toeplitz structure, it now suffices to compute
the columns of𝑀𝑥𝑖 ,1 coming from the normal forms of the set x𝑆 ,
which is of cardinality at most 𝑐𝐷 . Now, we proceed as follows: Sort
the set x𝑆 by the monomial order ≺in. Choose 𝑢 ∈ x𝑆 and suppose
that the normal forms of all elements less than 𝑢 in x𝑆 are known.
Two easy cases can arise:
(1) 𝑢 ∈ 𝑆 , in which case the normal form of 𝑢 is computed without

any arithmetic operations;
(2) 𝑢 ∈ lm(𝐻2𝑘), in which case the normal form of 𝑢 is computed

without any arithmetic operations, it is just given by the tail of
the corresponding element in 𝐻2𝑘 .

Lastly, it can happen that 𝑢 ∈ lm(𝐼2𝑘) but 𝑢 ∉ lm(𝐻2𝑘). In this
case there exists 𝑣 ∈ x𝑆 and 𝑥 𝑗 ∈ x with 𝑢 = 𝑥 𝑗𝑣 . By assumption
the normal form of 𝑣 is known and so is the normal form of each
element 𝑥 𝑗𝑏 with 𝑏 ∈ 𝑆 and 𝑏 ≺in 𝑣 . Since 𝑀𝑥 𝑗

has the same
structure as 𝑀𝑥𝑖 , we can now compute the required column of

𝑀𝑥𝑖 ,1 as the sum of two matrix-vector products where each of the
two matrices is block-Toeplitz of type (m𝑘 , 𝐷). This is done in time
𝑂
(
m𝑘𝐷

2) thanks to Proposition 4.3, concluding the proof, since x𝑆
has cardinality at most 𝑐𝐷 . □

Now, we can estimate the complexity of lifting the set 𝐺𝑘 :
Corollary 4.6. Let 𝑘 ∈ N and m𝑘 be the number of monomials in z
up to degree 𝑘 . Let 𝑐 be the cardinality of x. Suppose that we are given
the set 𝐻2𝑘 , the multiplication tensor of 𝐼𝑘 w.r.t. ≺in, the ≺in-normal

forms of the ≺out-staircase of 𝐼1 w.r.t. 𝐼𝑘 and the ≺in-normal forms

of the minimal ≺out-leading monomials of 𝐼0 w.r.t. 𝐼𝑘 . Then 𝐺2𝑘 is

computed in arithmetic complexity 𝑂
(
m𝑘𝑐𝐷

3)
.

Proof. By Theorem 4.5, the ≺in-multiplication tensor of 𝐼2𝑘 can be
computed in arithmetic complexity 𝑂

(
m𝑘𝑐𝐷

3) . Having computed
this tensor, we proceed as follows: let 𝑆 be the ≺in-staircase of
𝐼1 = 𝐼 + ⟨𝑧⟩,𝑇 be the ≺out-staircase of 𝐼1 and 𝐿 be the set of minimal
≺out-leading terms of 𝐼1, with 𝑧 removed. Denoting 𝑆0 and 𝑆1 as in
the proof of the preceding theorem, and similarly 𝑇0 and 𝑇1, now
we first compute the ≺in-normal forms of each element in 𝑇 ∪ 𝐿
w.r.t. 𝐼2𝑘 , this will yield a tableau of the form

𝐶 B

[𝑇0 𝑇1 𝐿

𝑆0 𝐶0 𝐷0
𝑆1 𝐶1 𝐶0 𝐷1

]
.

Note that by assumption the matrix 𝐶0 is already known by the
≺in-normal forms of 𝑇 w.r.t. 𝐼1 and the matrix 𝐷0 is given by the
≺in-normal forms of 𝐿 w.r.t. 𝐼1. Note also that 𝐶0 and 𝐶1 are again
block-Toeplitz of type (m𝑘 , 𝐷).
The required matrices 𝐶1 and 𝐷1 can be computed by using the
≺in-multiplication tensor of 𝐼2𝑘 , enumerating the monomials in
Mon(x) in order of ≺out and computing their normal forms via
matrix-vector multiplications similar to the proof of the preceding
theorem. Combining this with the block-Toeplitz structure of the
multiplication matrices of 𝐼2𝑘 w.r.t. ≺in, this can again be done in
time 𝑂

(
m𝑘𝑐𝐷

3) . Finally, to compute the set 𝐺2𝑘 , we have to write
each column in 𝐶 corresponding to an element in 𝐿 as a K-linear
combination of the columns corresponding to𝑇0∪𝑇1, i.e. by solving
the linear system [

𝐶0
𝐶1 𝐶0

] [
𝑋0
𝑋1

]
=

[
𝐷0
𝐷1

]
,

where 𝑋0 is known via 𝐺𝑘 . Hence this requires
• inverting the submatrix 𝐶0 which, by Proposition 4.3, is done
in time 𝑂 (m𝑘𝐷

𝜔);
• computing the product 𝐶−10 (𝐷1 −𝐶1𝑋0).

Note that 𝐶−10 has displacement rank bounded above by 2𝐷 + 2,
see [8, Proposition 10.10 and Theorem 10.11], and that the cardinal-
ity of 𝐿 is upper bounded by 𝑐𝐷 . Thus, for the second step above,
we have to compute at most 𝑐𝐷 matrix-vector products of the form
𝐶−10 𝑣 and 𝑐𝐷 matrix-vector products of the form𝐶1𝑣 . Again, thanks
to Proposition 4.3, this is done in time 𝑂

(
m𝑘𝑐𝐷

3) . This finally
yields the desired complexity. □

The following corollary now gives the complexity of computing
successively the sets𝐺2𝑖 from 𝐻2𝑖 until 𝑖 is large enough to recover
𝐺 , like in Algorithm 2.

Corollary 4.7. For 𝑘 ∈ N, let m𝑘 be the number of monomials in z
up to degree 𝑘 . Let 𝑐 be the cardinality of x. Let 𝛿 − 1 be the maximum

degree of all numerators and denominators of all coefficients of 𝐺 .

Further, let ℓ be minimal such that 2ℓ ≥ 2𝛿 .
Given 𝐻2ℓ , computing successively the sets 𝐺2𝑖 , for 𝑖 = 1, . . . , ℓ , can
be done in arithmetic complexity 𝑂

(
m2ℓ 𝑐𝐷

3) = 𝑂 (
m𝛿𝑐𝐷

3)
.

Proof. Note that the sets𝐻2𝑖 , for 𝑖 = 1, . . . , ℓ , are obtained from𝐻2ℓ
free of arithmetic operations. By Corollary 4.6, the computation
of 𝐺2𝑖 requires 𝑂

(
m2𝑖𝑐𝐷

3) operations. Since m2𝑖 =
(𝑛−𝑐+2𝑖

𝑛−𝑐
)
=

𝑂

(
2(𝑛−𝑐)𝑖

)
, where 𝑛 is the total number of variables, and thus 𝑛−𝑐

the cardinality of z, summing these complexities for 𝑖 from 1 to ℓ
yields the desired complexity. □

Note that going up to degree 2ℓ suffices to recover the coefficients
of 𝐺 by Padé approximation thanks to Lemma 3.6.

Remark 4.8. In a follow-up paper, we plan to study the complexity

of our algorithm using variants of FGLM, such as [6, 19, 21, 31].

We close this section by pointing out a well-known case in which
≺in is the ≺drl order, the required Gröbner bases 𝐻𝑢 of 𝐼 +𝔪𝑢 are
extracted without any arithmetic operations of the ≺drl-Gröbner
basis 𝐻 of 𝐼 and the ≺drl-staircase of 𝐼 +𝔪𝑢 behaves the same as in
the above case when ≺in is a block order. We start with

Definition 4.9. Let 𝑦 be an extra variable and let 𝐼hom ⊂ K[z, x, 𝑦]
be the homogenization of 𝐼 w.r.t 𝑦. Suppose that 𝐼hom is Cohen-
Macaulay. We say that 𝐼 is in projective generic position if {𝑦} ∪ z is
a maximal homogeneous regular sequence in K[z, x, 𝑦]/𝐼hom.

Supposing that 𝐼hom is Cohen-Macaulay we now have the following
statement, see e.g. [30]. This statement has frequently been used in
the complexity analysis of Gröbner basis algorithms.

Lemma 4.10. Let 𝐼 be in projective generic position with 𝐼hom Cohen-

Macaulay. Let 𝐻 be the reduced ≺drl-Gröbner basis of 𝐼 (with the

variables in z considered smaller as those in x). Then

lm(𝐻) ⊂ Mon(x) .
In particular, if 𝑆 is the ≺drl-staircase of 𝐼1 B 𝐼 +𝔪, then the ⪯drl-
staircase of 𝐼 +𝔪𝑢 is given by

𝑆𝑢 B
⋃

𝑣⪯drl𝑢
𝑣𝑆 .

This implies that when 𝐼 is such that 𝐼hom is Cohen-Macaulay and
is in projective generic position then we can replace ≺in with ≺drl
and 𝐻𝑢 with 𝐻 in the statements of Theorem 4.5 and Corollary 4.6.
Now we are ready to prove:

Proof of Theorem 1.1. The genericity assumption on 𝑓1, . . . , 𝑓𝑐
implies that they form a Cohen-Macaulay ideal in projective generic
position and that the ideal has degree 𝐷 = 𝑑1 · · ·𝑑𝑐 . Thus, Algo-
rithm 2 can be called on {𝑓1, . . . , 𝑓𝑐 }, ≺drl and the chosen ≺out in
order to compute the the reduced ≺out-Gröbner basis of 𝐼 ·K(z) [x]
up to precision 2𝛿 . Finally, using Corollaries 4.6 and 4.7, we obtain
the desired complexity. □

Remark 4.11. Let us close this section with a remark on the prob-

ability of 𝔪 being a point of good specialization in the situation of

Theorem 1.1 if ≺out=≺lex, the lexicographic order onMon(x). If 𝐼gen
is in shape position, then the reduced ≺lex-Gröbner basis of 𝐼gen is of

the form

{𝑔𝑐 (z, 𝑥𝑐), 𝑥1 − 𝑔1 (z, 𝑥𝑐), . . . , 𝑥𝑐−1 − 𝑔𝑐−1 (z, 𝑥𝑐)}

with 𝑔𝑐 (z, 𝑥𝑐) ∈ K[z, 𝑥𝑐] of total degree 𝐷 . One can then show, using

[33], that the degree of the lcm of the denominators of the coefficients

of 𝑔1, . . . , 𝑔𝑐−1 is bounded by 𝐷2
where 𝐷 B 𝑑1 · · ·𝑑𝑐 is the Bézout

bound of our system. Then, if K = F𝑞 for a prime power 𝑞, the

Schwartz-Zippel lemma [35] implies that the probability of 𝔪 not

being a point of good specialization is bounded by 𝐷2/𝑞 which goes

to zero as 𝑞 increases.

5 BENCHMARKS
In this section, we provide benchmarks for a proof-of-concept imple-
mentation of Algorithm 2. We first give a brief description thereof.
This implementation is written using the computer algebra system
OSCAR [36] which itself is written in Julia [7]. All required Gröbner
basis computations use the Gröbner basis libraries msolve [4] via
its Julia-interface AlgebraicSolving.jl or Groebner.jl [12],
also written in Julia. The main step in Algorithm 2, Algorithm 1,
was implemented naively, close to the provided pseudocode, i.e.
without the use of multiplication tensors to compute normal forms
as described in Section 4. The implementation is available at https:
//gitlab.lip6.fr/mohr/genfglm. For the below benchmarks, the fol-
lowing computations were performed, keeping the notation from
the last sections:
(1) Compute a ≺drl-Gröbner basis for the polynomial ideal 𝐼 in

question.
(2) Use this ≺drl-Gröbner basis to compute a maximally indepen-

dent set of variables modulo 𝐼 , this gives us the partition of the
variables into the subsets x and z as above.

(3) If z = {𝑧1, . . . , 𝑧𝑛−𝑐 }, choose random 𝑎1, . . . , 𝑎𝑛−𝑐 ∈ K and
make the coordinate substitution 𝑧𝑖 ← 𝑧𝑖 − 𝑎𝑖 .

(4) Choose ≺in as the block order on Mon(z, x) eliminating x with
≺drl on both blocks of variables.

(5) If x = {𝑥1, . . . , 𝑥𝑐 }, choose ≺out as a block order on Mon(x)
eliminating x′ B {𝑥1, . . . , 𝑥𝑐−1} with ≺drl on x′ and ≺ on {𝑥𝑐 }.

(6) By the elimination property of block orders, the target Gröb-
ner basis 𝐺 contains a single polynomial 𝑔𝑐 in the univariate
polynomial ring K(z) [𝑥𝑐].

(7) Use Algorithm 2 to compute only the polynomial 𝑔𝑐 , ignoring
the rest of the set 𝐺 . Note that this is indeed possible, in line 7
of Algorithm 2 we may choose which of the elements in 𝐺lift
to actually keep and lift and ignore the rest.

In a certain generic situation (more precisely, when the variable 𝑥𝑐
is “generic”), the computed polynomial 𝑔𝑐 can be used for a primary
decomposition of 𝐼 , see e.g. [3, Sections 8.6 and 8.7], this motivates
our choice of ≺out. We should emphasize however that we did not
verify whether this generic situation is met in the examples below.
In the context of primary decomposition, it suffices to know just
the polynomial 𝑔𝑐 in𝐺 , the rest of the Gröbner basis can be ignored.
This is a potential advantage our algorithm has over the classical
way of computing Gröbner bases of generic fibers using elimination
orders for which there is no way of getting around computing the
entire set 𝐺 .

Table 1: Benchmarks for Algorithm 2

Algorithm 2 msolve with ≺out
System Timing (in s) Memory Timing (in s)
ED(3,3) 237.9 95.47 GB 43521.43
R1 0.01 140.49 GB 0.01
R2 0.01 251.95 MB 0.01
R3 0.01 248.93 MB 0.01
M2 2.75 1.56 GB 0.03
M3 0.19 410.09 MB 0.01
PS(2,10) 0.8 417.63 MB 0.3
PS(2,12) 44.82 1.38 GB 7.3
Sing(2,10) 0.2 275.17 MB 0.1
SOS(5,4) 1.2 1.2 GB 0.3
SOS(6,4) 11.97 1.07 GB 30.35
SOS(6,5) 22.19 954.41 MB 26.61
RD(3) 4.29 650.98 MB 0.11
RD(4) 33.42 10.46 GB 13.43
RD(5) 729.51 185.87 GB 780.92

We never directly computed the reduced Gröbner basis 𝐻 of 𝐼
w.r.t. ≺in, but only the reduced ≺in-Gröbner basis 𝐻𝑢 of the ideals
𝐼 + 𝔪𝑢 . When doing this, we found that the computations were
better-behaved when choosing ≺in as above rather than ≺in=≺drl.
All computations were performed with K = Z/𝑝Z where 𝑝 was a
randomly chosen prime of 16 bits.
We compared the time this computation took with the computation
of the set 𝐺 using msolve and which, in this case, just runs the F4
algorithm with a suitable block order on Mon(z, x). These timings
are given in Table 1.
The polynomial systems used for these benchmarks are:
• ED(3,3) encodes the parametric euclidean distance problem for
a hypersurface of degree 3 in 3 variables, see [13];
• R1, R2, R3 come from a problem in Robotics, see [22];
• M2 and M3 are certain jacobian ideals of single multivariate
polynomials which define singular hypersurfaces;
• The “PS”, “Sing” and “SOS” systems are all critical loci of certain
projections, see [15] for a more detailed description;
• The RD(𝑑) systems are randomly generated sequences of 3
polynomials of degree 𝑑 in 4 variables.

All computations were performed on an Intel Xeon Gold 6244 CPU
@ 3.60 GHz with 1.5 TB of memory. To illustrate the memory usage
of our algorithm, we give in addition the total memory allocated
by our implementation.
On most small examples in Table 1, we achieve a comparable timing
with msolve, with the exception of PS(2,12). On the larger example
RD(5) we have a small improvement, while on ED(3,3) we achieve a
much better timing. We should mention that our implementation is
not yet optimized (for example, we observed that the linear systems
to be solved in Algorithm 1 are very sparse, yet our implementa-
tion relies on dense representations and arithmetic) and does not
incorporate the idea mentioned in Remark 3.2.

Example 5.1. Continuing Example 3.8, we provide a detailed log
file with explanatory comments for running our implementation
on the Cyclic 8 polynomial system at https://polsys.lip6.fr/~mohr/
assets/fglm_log.txt.

https://gitlab.lip6.fr/mohr/genfglm
https://gitlab.lip6.fr/mohr/genfglm
https://polsys.lip6.fr/~mohr/assets/fglm_log.txt
https://polsys.lip6.fr/~mohr/assets/fglm_log.txt

REFERENCES
[1] Elizabeth A. Arnold. 2003. Modular Algorithms for Computing Gröbner Bases.

Journal of Symbolic Computation 35, 4 (2003), 403–419. https://doi.org/10.1016/
S0747-7171(02)00140-2

[2] Thomas Becker. 1994. On Gröbner Bases under Specialization. Applicable Algebra
in Engineering, Communication and Computing 5, 1 (1994), 1–8. https://doi.org/
10.1007/BF01196621

[3] Thomas Becker and Volker Weispfenning. 1993. Gröbner Bases. Graduate Texts in
Mathematics, Vol. 141. Springer-Verlag, New York. https://doi.org/10.1007/978-
1-4612-0913-3

[4] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. 2021. msolve: A
Library for Solving Polynomial Systems. In Proceedings of the 2021 on Interna-

tional Symposium on Symbolic and Algebraic Computation (Virtual Event, Russian
Federation) (ISSAC ’21). Association for Computing Machinery, New York, NY,
USA, 51–58. https://doi.org/10.1145/3452143.3465545

[5] Jérémy Berthomieu, Christian Eder, and Mohab Safey El Din. 2023. New Effi-
cient Algorithms for Computing Gröbner Bases of Saturation Ideals (F4SAT) and
Colon Ideals (Sparse-FGLM-colon). https://doi.org/10.48550/arXiv.2202.13387
arXiv:2202.13387 [cs, math]

[6] Jérémy Berthomieu, Vincent Neiger, andMohab Safey El Din. 2022. Faster Change
of Order Algorithm for Gröbner Bases under Shape and Stability Assumptions.
In Proceedings of the 2022 International Symposium on Symbolic and Algebraic

Computation (ISSAC ’22). Association for Computing Machinery, New York, NY,
USA, 409–418. https://doi.org/10.1145/3476446.3535484

[7] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. 2017. Julia: A
Fresh Approach to Numerical Computing. SIAM review 59, 1 (2017), 65–98.

[8] Alin Bostan, Frédéric Chyzak, Marc Giusti, Romain Lebreton, Grégoire Lecerf,
Bruno Salvy, and Éric Schost. 2017. Algorithmes Efficaces en Calcul Formel.
Frédéric Chyzak (auto-édit.), Palaiseau.

[9] Alin Bostan, Claude-Pierre Jeannerod, Christophe Mouilleron, and Éric Schost.
2017. On Matrices With Displacement Structure: Generalized Operators and
Faster Algorithms. SIAM J. Matrix Anal. Appl. 38, 3 (2017), 733–775. https:
//doi.org/10.1137/16M1062855

[10] Bruno Buchberger. 1965. Ein Algorithmus Zum Auffinden Der Basiselemente Des

Restklassenringes Nach Einem Nulldimensionalen Polynomideal. Ph. D. Disserta-
tion. Universität Innsbruck.

[11] S. Collart, M. Kalkbrener, and D. Mall. 1997. Converting Bases with the Gröbner
Walk. Journal of Symbolic Computation 24, 3 (1997), 465–469. https://doi.org/10.
1006/jsco.1996.0145

[12] Alexander Demin and Shashi Gowda. 2023. Groebner.jl: A Package for Gröbner
Bases Computations in Julia. https://doi.org/10.48550/arXiv.2304.06935

[13] Jan Draisma, Emil Horobeţ, Giorgio Ottaviani, Bernd Sturmfels, and Rekha R.
Thomas. 2016. The Euclidean distance degree of an algebraic variety. Found.
Comput. Math. 16, 1 (2016), 99–149. https://doi.org/10.1007/s10208-014-9240-x

[14] Gary L. Ebert. 1983. Some comments on the modular approach to Gröbner-bases.
SIGSAM Bull. 17, 2 (1983), 28–32. https://doi.org/10.1145/1089330.1089336

[15] Christian Eder, Pierre Lairez, Rafael Mohr, and Mohab Safey El Din. 2023. A
Direttissimo Algorithm for Equidimensional Decomposition. In Proceedings of

the 2023 International Symposium on Symbolic and Algebraic Computation (ISSAC

’23). Association for Computing Machinery, New York, NY, USA, 260–269. https:
//doi.org/10.1145/3597066.3597069

[16] Christian Eder, Pierre Lairez, Rafael Mohr, and Mohab Safey El Din. 2023. A
Signature-Based Algorithm for Computing the Nondegenerate Locus of a Poly-
nomial System. Journal of Symbolic Computation 119 (2023), 1–21. https:
//doi.org/10.1016/j.jsc.2023.02.001

[17] Jean-Charles Faugère. 1999. A New Efficient Algorithm for Computing Gröbner
Bases (F4). Journal of Pure and Applied Algebra 139, 1 (1999), 61–88. https:
//doi.org/10.1016/S0022-4049(99)00005-5

[18] Jean-Charles Faugère. 2002. A new efficient algorithm for computing Gröbner
bases without reduction to zero (F5). In Proceedings of the 2002 International

Symposium on Symbolic and Algebraic Computation (Lille, France) (ISSAC ’02).
Association for Computing Machinery, New York, NY, USA, 75–83. https://doi.
org/10.1145/780506.780516

[19] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault. 2014.
Sub-Cubic Change of Ordering for Gröbner Basis: A Probabilistic Approach.
In Proceedings of the 39th International Symposium on Symbolic and Algebraic

Computation (ISSAC ’14). Association for Computing Machinery, New York, NY,
USA, 170–177. https://doi.org/10.1145/2608628.2608669

[20] Jean-Charles Faugère, Patrizia Gianni, Daniel Lazard, and Teo Mora. 1993. Effi-
cient Computation of Zero-dimensional Gröbner Bases by Change of Ordering.
Journal of Symbolic Computation 16, 4 (1993), 329–344. https://doi.org/10.1006/
jsco.1993.1051

[21] Jean-Charles Faugère and Chenqi Mou. 2017. Sparse FGLM Algorithms. Journal
of Symbolic Computation 80 (2017), 538–569. https://doi.org/10.1016/j.jsc.2016.
07.025

[22] Jorge García Fontán, Abhilash Nayak, Sébastien Briot, and Mohab Safey El Din.
2022. Singularity Analysis for the Perspective-Four and Five-Line Problems.

International Journal of Computer Vision 130, 4 (2022), 909–932. https://doi.org/
10.1007/s11263-021-01567-4

[23] Patrizia Gianni. 1989. Properties of Gröbner Bases under Specializations. In Eu-

rocal ’87 (Lecture Notes in Computer Science), James H. Davenport (Ed.). Springer,
Berlin, Heidelberg, 293–297. https://doi.org/10.1007/3-540-51517-8_128

[24] Marc Giusti, Grégoire Lecerf, and Bruno Salvy. 2001. A Gröbner Free Alternative
for Polynomial System Solving. Journal of Complexity 17, 1 (2001), 154–211.
https://doi.org/10.1006/jcom.2000.0571

[25] Hans-Gert Gräbe. 1993. On Lucky Primes. Journal of Symbolic Computation 15, 2
(1993), 199–209. https://doi.org/10.1006/jsco.1993.1014

[26] Philippe Guillaume and Alain Huard. 2000. Multivariate Padé Approximation.
J. Comput. Appl. Math. 121, 1 (2000), 197–219. https://doi.org/10.1016/S0377-
0427(00)00337-X

[27] Martin Helmer and Vidit Nanda. 2023. Conormal Spaces and Whitney Stratifica-
tions. Foundations of Computational Mathematics 23, 5 (Oct. 2023), 1745–1780.
https://doi.org/10.1007/s10208-022-09574-8 arXiv:2106.14555 [cs, math]

[28] EvelyneHubert. 2003. Notes on Triangular Sets and Triangulation-Decomposition
Algorithms I. In Symbolic and Numerical Scientific Computation (Lecture Notes in

Computer Science). Springer, 1–39. https://doi.org/10.1007/3-540-45084-X_1
[29] Michael Kalkbrener. 1989. Solving Systems of Algebraic Equations by Using Gröb-

ner Bases. In Eurocal ’87, James H. Davenport (Ed.). Springer, Berlin, Heidelberg,
282–292. https://doi.org/10.1007/3-540-51517-8_127

[30] Monique Lejeune-Jalabert. 1986. Effectivité de calculs polynomiaux. Cours de

D.E.A. Laboratoire de Mathématiques associé au C. N. R. S.
[31] Vincent Neiger and Éric Schost. 2020. Computing Syzygies in Finite Dimension

Using Fast Linear Algebra. Journal of Complexity 60 (2020), 101502. https:
//doi.org/10.1016/j.jco.2020.101502

[32] Franz Pauer. 1992. On Lucky Ideals for Gröbner Basis Computations. Journal
of Symbolic Computation 14, 5 (1992), 471–482. https://doi.org/10.1016/0747-
7171(92)90018-Y

[33] Éric Schost. 2003. Computing parametric geometric resolutions. Appl. Algebra
Engrg. Comm. Comput. 13, 5 (2003), 349–393. https://doi.org/10.1007/s00200-
002-0109-x

[34] Éric Schost and Catherine St-Pierre. 2023. P-Adic Algorithm for Bivariate Gröb-
ner Bases. In Proceedings of the 2023 International Symposium on Symbolic and

Algebraic Computation (ISSAC ’23). Association for Computing Machinery, New
York, NY, USA, 508–516. https://doi.org/10.1145/3597066.3597086

[35] J. T. Schwartz. 1980. Fast Probabilistic Algorithms for Verification of Polynomial
Identities. J. ACM 27, 4 (Oct. 1980), 701–717. https://doi.org/10.1145/322217.
322225

[36] The OSCAR team. 2022. OSCAR – Open Source Computer Algebra Research
System.

[37] Carlo Traverso. 1989. Gröbner Trace Algorithms. In Symbolic and Algebraic

Computation (Lecture Notes in Computer Science), P. Gianni (Ed.). Springer, Berlin,
Heidelberg, 125–138. https://doi.org/10.1007/3-540-51084-2_12

[38] Carlo Traverso. 1996. Hilbert Functions and the Buchberger Algorithm. Journal
of Symbolic Computation 22, 4 (1996), 355–376. https://doi.org/10.1006/jsco.1996.
0056

[39] Franz Winkler. 1988. A p-adic Approach to the Computation of Gröbner Bases.
Journal of Symbolic Computation 6, 2 (1988), 287–304. https://doi.org/10.1016/
S0747-7171(88)80049-X

https://doi.org/10.1016/S0747-7171(02)00140-2
https://doi.org/10.1016/S0747-7171(02)00140-2
https://doi.org/10.1007/BF01196621
https://doi.org/10.1007/BF01196621
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1007/978-1-4612-0913-3
https://doi.org/10.1145/3452143.3465545
https://doi.org/10.48550/arXiv.2202.13387
https://arxiv.org/abs/2202.13387
https://doi.org/10.1145/3476446.3535484
https://doi.org/10.1137/16M1062855
https://doi.org/10.1137/16M1062855
https://doi.org/10.1006/jsco.1996.0145
https://doi.org/10.1006/jsco.1996.0145
https://doi.org/10.48550/arXiv.2304.06935
https://doi.org/10.1007/s10208-014-9240-x
https://doi.org/10.1145/1089330.1089336
https://doi.org/10.1145/3597066.3597069
https://doi.org/10.1145/3597066.3597069
https://doi.org/10.1016/j.jsc.2023.02.001
https://doi.org/10.1016/j.jsc.2023.02.001
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1016/S0022-4049(99)00005-5
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/780506.780516
https://doi.org/10.1145/2608628.2608669
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1006/jsco.1993.1051
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/10.1016/j.jsc.2016.07.025
https://doi.org/10.1007/s11263-021-01567-4
https://doi.org/10.1007/s11263-021-01567-4
https://doi.org/10.1007/3-540-51517-8_128
https://doi.org/10.1006/jcom.2000.0571
https://doi.org/10.1006/jsco.1993.1014
https://doi.org/10.1016/S0377-0427(00)00337-X
https://doi.org/10.1016/S0377-0427(00)00337-X
https://doi.org/10.1007/s10208-022-09574-8
https://arxiv.org/abs/2106.14555
https://doi.org/10.1007/3-540-45084-X_1
https://doi.org/10.1007/3-540-51517-8_127
https://doi.org/10.1016/j.jco.2020.101502
https://doi.org/10.1016/j.jco.2020.101502
https://doi.org/10.1016/0747-7171(92)90018-Y
https://doi.org/10.1016/0747-7171(92)90018-Y
https://doi.org/10.1007/s00200-002-0109-x
https://doi.org/10.1007/s00200-002-0109-x
https://doi.org/10.1145/3597066.3597086
https://doi.org/10.1145/322217.322225
https://doi.org/10.1145/322217.322225
https://doi.org/10.1007/3-540-51084-2_12
https://doi.org/10.1006/jsco.1996.0056
https://doi.org/10.1006/jsco.1996.0056
https://doi.org/10.1016/S0747-7171(88)80049-X
https://doi.org/10.1016/S0747-7171(88)80049-X

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Gröbner Bases
	2.2 Points of Good Specialization

	3 The Main Algorithm
	4 Complexity Estimates
	5 Benchmarks
	References

