
HAL Id: hal-04440914
https://hal.science/hal-04440914

Preprint submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computing Generic Fibres of Polynomial Ideals with
FGLM and Hensel Lifting
Jérémy Berthomieu, Rafael Mohr

To cite this version:
Jérémy Berthomieu, Rafael Mohr. Computing Generic Fibres of Polynomial Ideals with FGLM and
Hensel Lifting. 2024. �hal-04440914�

https://hal.science/hal-04440914
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computing Generic Fibres of Polynomial Ideals with
FGLM and Hensel Lifting

Jérémy Berthomieu * Rafael Mohr *†

February 5, 2024

Abstract

We describe a version of the FGLM algorithm that can be used to compute generic fibers
of positive-dimensional polynomial ideals. It combines the FGLM algorithm with a Hensel
lifting strategy. We show that this algorithm has a complexity quasi-linear in the number of
lifting steps. Some provided experimental data also demonstrates the practical efficacy of our
algorithm. Additionally, we sketch a related Hensel lifting method to compute Gröbner bases
using so-called tracers.

1 Introduction

Scientific Context Gröbner bases lie at the forefront of the algorithmic treatment of polynomial
systems and ideals in symbolic computation. They are defined as special generating sets of poly-
nomial ideals which allow to decide the ideal membership problem via a multivariate version of
polynomial long division. Given a Gröbner basis for a polynomial ideal, a lot of geometric and
algebraic information about the polynomial ideal at hand can be extracted, such as the degree,
dimension or Hilbert function. We refer to Becker and Weispfenning, 1993 for a comprehensive
treatment of the subject.
Notably, Gröbner bases depend on two parameters: The polynomial ideal which they generate
and a monomial order, i.e. a certain kind of total order on the set of monomials of the underlying
polynomial ring. Then, the geometric and ideal-theoretic information that can be extracted from
a Gröbner basis depends on the chosen monomial order. For example, elimination orders allow, as
the name suggests, to eliminate a chosen subset of variables from the given polynomial ideal (i.e.
to project on an affine subspace in a geometric sense).
While Gröbner bases for elimination orders are frequently of interest, it has been observed that
all algorithms to compute Gröbner bases based on the famous Buchberger algorithm (Buchberger,
1965), such as F4 (Faugère, 1999) and F5 (Faugère, 2002), are substantially more well-behaved
when used with non-elimination orders (most notably, the degree reverse lexicographical ≺drl order).
This has motivated the design of numerous change of order algorithms: The task is to convert a
given Gröbner basis w.r.t. one order into a Gröbner basis w.r.t. another order. We mention here the
Hilbert-driven algorithm by Traverso, 1996, the Gröbner walk algorithm by Collart, Kalkbrener,
and Mall, 1997 and, most notably for this paper, the FGLM algorithm (Faugère, Gianni, Lazard, &
Mora, 1993) and its variants (Berthomieu, Neiger, & Safey El Din, 2022; Faugère, Gaudry, Huot,
& Renault, 2014; Faugère & Mou, 2017; Neiger & Schost, 2020).
Furthermore, most ideal-theoretic operations in commutative algebra (such as saturation and in-
tersection) can be performed using Gröbner bases by writing down a certain ideal associated to
the given polynomial ideal, choosing a certain monomial order and computing a Gröbner basis for
this associated ideal. Here, Gröbner basis computation is used as a black box. It has recently been

*Sorbonne Université, CNRS, LIP6, Paris, France
†RPTU Kaiserslautern-Landau, Germany

1

observed, partly by the authors of this paper, that it can be (sometimes substantially) more effi-
cient to design dedicated Gröbner basis algorithms for specific ideal-theoretic tasks, see Berthomieu,
Eder, and Safey El Din, 2023; Eder, Lairez, Mohr, and Safey El Din, 2023b.

Problem Statement & Contributions This paper is concerned with the algorithmic treatment of
the following problem: Fix a polynomial ring R := K[z, x] in two finite sets of variables x and z
over a field K and an ideal I in R. Assume that the map φ : K[z]→ K[z, x]/I is injective and has
generically finite fiber, i.e. assume that the the generic fiber Igen := IK(z)[x] of I is zero-dimensional.
Given a Gröbner basis of I w.r.t. a monomial order ≺1, we want to compute a Gröbner basis G of
Igen w.r.t. another monomial order ≺2. The algorithm we design to solve this problem thus relates
to the two research directions previously mentioned: It is a dedicated algorithm to perform an
ideal-theoretic operation (by computing a representation of the generic fiber of a suitably chosen
map) and it performs a change of order (by going from ≺1 to ≺2). Our proposed solution to this
problem can be seen as a combination of the previously mentioned FGLM algorithm with classical
Hensel lifting techniques. As such, it can also be immediately transported to the setting where
a Gröbner basis G of a zero-dimensional ideal over Q is required: It would extract G out of its
images over Z/pkZ, where k ∈N∗ and p is a well-chosen prime number. We show that, similar to
classical Hensel lifting, our algorithm runs in arithmetic complexity quasi-linear in the precision
up to which we need to lift when a “quadratic lifting strategy” is chosen, see Corollary 4.7, which
implies in particular the following

Theorem 1.1. Let f1, . . . , fc be generic polynomials of respective degrees d1, . . . , dc in K[x1, . . . , xc, z1, . . . ,
zn−c]. Assume that the ≺drl-Gröbner basis of I = ⟨ f1, . . . , fc⟩ is known and that the ≺2-Gröbner basis
G of IK(z1, . . . , zn−c)[x1, . . . , xc] has coefficients which are rational functions with degrees at most δ in
the numerators and denominators. Then, one can compute G up to precision 2δ using Õ

(
δc(d1 · · · dc)3)

operations in K.

Note that knowing G up to precision 2δ is enough to recover G by means of Padé approximants,
see Lemma 3.2.

Related Work Gröbner bases of generic fibers, as defined in the previous paragraph, are classi-
cally computed using elimination monomial orders, see Becker and Weispfenning, 1993, Lemma 8.93.
Besides that, morally similar to our algorithm, there is a rich body of literature about multi-
modular Gröbner basis computations (Arnold, 2003; Ebert, 1983; Pauer, 1992; Traverso, 1989)
and Hensel/modular lifting techniques for Gröbner bases (Gräbe, 1993; Schost & St-Pierre, 2023;
Winkler, 1988).
Outside of the world of Gröbner bases, there are other data structures for algorithmically manip-
ulating polynomial ideals, or the algebraic sets defined by them, which encode polynomial ideals
by their generic fiber associated to a well-chosen projection. We mention in particular geometric
resolutions, see e.g. (Giusti, Lecerf, & Salvy, 2001; Schost, 2003), and triangular sets, see e.g. Hubert,
2003 for a survey.
Our work also relates to specialization results for Gröbner basis, i.e. results on the question
whether a Gröbner basis remains a Gröbner basis after specializing some of the variables, see
e.g. Becker, 1994; Gianni, 1989.

Outline In Section 2, we give necessary preliminaries both on Gröbner bases and on the needed
commutative algebra to state and prove the correctness of our algorithms in Section 3. In Section 4,
we transport the complexity statements for the original FGLM algorithm to our setting. Then, in
Section 5, we sketch how the concept of Tracers, introduced in Traverso, 1989 for the purpose
of multi-modular Gröbner basis computations, can be transported to a modular lifting strategy.
We discuss how this could profitably be combined with our main algorithm. Finally we give
some benchmarks for a Julia implementation of our main algorithm in Section 6, comparing it
to computing generic fibers using just elimination orders.

2

2 Preliminaries

2.1 Gröbner Bases

In order to be self-contained, we recall some definitions and basic properties related to Gröbner
bases of polynomial ideals.
For a set of variables x := {x1, . . . , xn}, we denote by Mon(x) the set of monomials in x, and for a
field K, we let R := K[x] be the multivariate polynomial ring in x over K.

Definition 2.1. A monomial order ≺ on x is a total order on Mon(x) which

1. extends the partial order on Mon(x) given by divisibility and

2. is compatible with multiplication i.e. we have

u ≺ v ⇒ wu ≺ wv ∀u, v, w ∈ Mon(x).

Of importance for us is the degree reverse lexicographic order:

Definition 2.2. The degree reverse lexicographic ≺drl order on Mon(x) is defined as follows for
u, v ∈ Mon(x): u ≺drl v iff deg u < deg v or deg u = deg v and the last nonzero exponent of u/v
is positive.

We will also need the notion of a block order:

Definition 2.3. Let x and z be two finite sets of variables. Write each monomial u ∈ Mon(x ∪ z)
uniquely as a product u = uxuz with ux ∈ Mon(x) and uz ∈ Mon(z). Fix a monomial order ≺1
on Mon(x) and a monomial order ≺2 on Mon(z). The corresponding block order eliminating x is
defined as follows: u ≺ v iff ux ≺1 vx or ux = vx and uz ≺2 vz for u, v ∈ Mon(x ∪ z).

A monomial order on x yields a notion of leading monomial in R:

Definition 2.4. Let ≺ be a monomial order on Mon(x). For a nonzero element f ∈ R the leading
monomial of f w.r.t. ≺, denoted lm≺(f), is the ≺-largest monomial in the support of f . For a
finite set F in R we define lm≺(F) := {lm≺(f) | f ∈ F}. For an ideal I in R we define the leading
monomial ideal of I as lm≺(I) := ⟨lm≺(f) | f ∈ I⟩.

Fixing a monomial order gives normal forms for images of elements in quotient rings of R:

Definition 2.5. Let I be an ideal in R and let ≺ be a monomial order Mon(x).

1. The set SI,≺ := {u ∈ Mon(x) | u /∈ lm≺(I)} is called the staircase of I w.r.t. ≺. It naturally
forms a K-vector space basis of R/I.

2. The image of every element f ∈ R in R/I can be uniquely written as a K-linear combination
of elements in SI,≺. This linear combination of elements in SI,≺ is called the normal form of f
w.r.t. I and ≺. The corresponding vector of coefficients of this linear combination, with the
elements in SI,≺ ordered by ≺, will be denoted cI,≺(f).

We finally define the notion of Gröbner bases.

Definition 2.6. A Gröbner basis of an ideal I ⊂ R w.r.t. a monomial order ≺ is a finite set G ⊂ I
such that ⟨lm≺(G)⟩ = lm≺(I).

A Gröbner basis G of an ideal I ⊂ R w.r.t. a monomial order ≺ enables the computation of normal
forms w.r.t. I and ≺ via a straightforward multivariate generalization of polynomial long division,
see e.g. Becker and Weispfenning, 1993, Table 5.1. This, in particular, yields an ideal membership
test for I. Indeed, an element f ∈ R is contained in I if and only if its normal form w.r.t. I and ≺
is zero.

3

2.2 Points of Good Specialization

We start by fixing some notation. For a ring R and an element f ∈ R we denote by R[f−1] the

localization of R at the multiplicatively closed set
{

f k
∣∣∣ k ∈N

}
. For a prime ideal p ⊂ R we

denote by Rp the localization of R at the multiplicatively closed set R \ p.
We further fix a polynomial ring K[z, x] in two finite sets of variables z and x. Let I ⊆ K[z, x] be
an ideal. Suppose that the map

K[z]→ K[z, x]/I

is injective and has generically finite fiber, i.e. we assume that Igen := IK(z)[x] ̸= K(z)[x] is a
zero-dimensional ideal.

Definition 2.7. In this setting we call Igen the generic fiber of I.

Let G be the reduced Gröbner basis of Igen w.r.t. a monomial order ≺. Further, we denote for a
monomial u ∈ Mon(z)

mu := ⟨v ∈ Mon(z) | v ≻drl u⟩ and Iu := I +mu,

m = ⟨z⟩, as well as next(u) = min {v ∈ Mon(z) | v ≻drl u}.
Suppose that G ⊂ K[z]m[x]. Then, each coefficient of a given g ∈ G has a well-defined image in
K[z]/mu for all u ∈ Mon(z). More concretely, write

g = ∑
w∈Mon(x)

pw

qw
w

with qw(0) ̸= 0 for all w ∈ Mon(x) whenever pw ̸= 0. Then, each pw/qw can be written as a
formal power series

pw

qw
= ∑

v∈Mon(z)
rw,vv

and for a monomial u ∈ Mon(z) we define

gu = g mod mu = ∑
w∈Mon(x)

∑
v∈Mon(z)

v⪯drlu

rw,vvw,

and the set Gu := {gu | g ∈ G}. Our algorithms will work under the assumption that all elements
in G have such a well-defined image modulo mu and that, given this image of G modulo mu,
we can lift it uniquely to its image modulo mnext(u). In this section we show that both required
assumptions are generically satisfied, more precisely that they are satisfied if the origin in the z-
space lies outside of a certain hypersurface. Our way of showing this uses Grothendieck’s Generic
Freeness Lemma (Eisenbud, 1995, Theorem 14.4). We restate it here in a weaker form adapted to
our situation:

Theorem 2.8 (Generic Freeness). There exists an element 0 ̸= f ∈ K[z] such that (K[z, x]/I)[f−1] is
a free K[z][f−1]-module.

Both of the requirements of our algorithms are now enclosed by the following definition:

Definition 2.9. Let f be as in Theorem 2.8. If f /∈ m, then m is called a point of good specialization.

Remark 2.1. If m is not a point of good specialization, or if it is not known a priori that it is,
then it can be ensured with probability 1 after a random change of coordinates in the variables
z = (z1, . . . , zr) (if K is infinite) or with high probability (if K is finite of sufficiently large size)
by Theorem 2.8. In particular, if the change of coordinates zi ← zi − ai, for 1 ≤ i ≤ r, suits, then
m′ := ⟨z1 − a1, . . . , zr − ar⟩ was a point of good specialization. Equivalently, instead of performing
this change of coordinates, one can use the algorithm with m′-adic expansions.

4

Theorem 2.10. Suppose that m is a point of good specialization. Then,

1. For each u ∈ Mon(z) and zi ∈ z multiplication by zi induces an isomorphism of K-vector spaces:

uK[z, x]/Iu → ziuK[z, x]/Iziu.

2. We have G ⊂ K[z]m[x], in particular the sets Gu, u ∈ Mon(z), are well-defined.

3. Let ≺1 be the block order eliminating x with ≺1=≺drl on Mon(z). Let Mu be the (unique) minimal
generating set of mu. Then, the reduced ≺1-Gröbner basis of Iu is precisely Gu ∪Mu.

Proof. We introduce some notation: Write A := K[z]m, K = K(z) for the field of fractions of A and
F := A[x]/I. Note that m being a point of good specialization implies that F is a free R-module,
necessarily of finite nonzero rank, since Igen is zero-dimensional.
Proof of (1): It is first easy to check that now multiplication by zi induces a surjective, well-defined
map of finite-dimensional K-vector spaces

uK[z, x]/Iu → ziuK[z, x]/Iziu.

Note that the structure of Vu := uK[z, x]/Iu as a vector space is induced by the canonical A-
module structure of F, because mVu = 0 and therefore (Vu)m = Vu. Hence, we have

Vu ∼= (uA/mu)
r ∼= Kr.

Therefore multiplication by zi induces an epimorphism between vector spaces of the same dimen-
sion, so it must be an isomorphism.
Proof of (2): Let u ∈ L := lm≺(I +m) ∩Mon(x) and let S := SI+m,≺. Now, modulo I +m, we have
a relation of the form

u = ∑
s∈S

αss, αs ∈ K.

By Nakayama’s lemma, see Eisenbud, 1995, Corollary 4.8, this gives a relation

u = ∑
s∈S

rss, rs ∈ A (1)

in F and hence also in F ⊗A K = K(z)[x]/Igen. This implies that L ⊂ lm≺2(Igen). But since F is
free, we have

dimK K(z)[x]/Igen = dimK K[z, x]/(I +m),

which implies L = lm≺2(Igen). This shows that G is given by all relations of the form (1) and
hence lies in A[x] as claimed.
Proof of (3): Let S := SIgen,≺. It suffices to show that

SIu ,≺1 = Su :=
⋃

v⪯drlu
vS.

Note that the set Su certainly generates K[z, x]/(I + mu) as a K-vector space. As K[z, x]/(I +
mu) ∼= F/mu, and since F is free, a K-dimension count shows that the set Su is K-linearly inde-
pendent. Now, let s ∈ S be ≺-minimal such that there exists some v ∈ Mon(z) with vs ∈ lm≺1(Iu).
The ≺1-normal form of vs w.r.t. Iu has support in

⋃
v⪯drlu {vt | t ≺ s}, contradicting the linear in-

dependence of Su and finishing the proof.

We will want to perform finite-dimensional linear algebra akin to the FGLM algorithm in certain
staircases of the ideals Iu. This will rely on the fact that I1 is zero-dimensional.

Corollary 2.11. Suppose m is a point of good specialization. Then the ideal I1 is zero-dimensional. Conse-
quently, for each u ∈ Mon(z), the ideal Iu is zero-dimensional.

Proof. This follows immediately from the fact that G specializes to a Gröbner basis of J :=
IK[z, x]/m. Indeed, this implies that that SJ,≺2 = SIgen,≺2 is finite and so K[x]/J is a finite-
dimensional K-vector space.

5

3 The Main Algorithm

In this section we give the main algorithm of this paper.
We reuse the notation from the last section, in particular let again Iu := I +mu for a monomial
u ∈ Mon(z). Let G be the reduced Gröbner basis of the zero-dimensional ideal Igen w.r.t. a
monomial order ≺2. Suppose that m is a point of good specialization and that we can compute,
with some black box, the reduced ≺1-Gröbner basis Hu of Iu for any u ∈ Mon(z) where ≺1 is
another monomial order. Our goal is to compute the set G.

Remark 3.1. Note that we have so far required that the partition of the variables of K[z, x] is given.
It can be computationally determined: From any Gröbner basis of I we can determine z as a
maximally independent set of I w.r.t ≺1 and let x be the set of remaining variables, see Becker and
Weispfenning, 1993, Definition 9.22. Then, as in the last section, the map K[z] → K[z, x]/I is
injective with generically finite fiber, see Becker and Weispfenning, 1993, Corollary 9.28.

Recall that m1 = m. We start by computing the ≺1-Gröbner basis H1 of I1 = I + m. Then, we
run the FGLM algorithm (Faugère, Gianni, Lazard, & Mora, 1993) with H1 to obtain the reduced
≺2-Gröbner basis of I1. A given g ∈ G may be written as

g = ∑
w∈Mon(x)

pw

qw
w,

with pw/qw ∈ K[z]m. By Theorem 2.10 the reduced ≺2-Gröbner basis of I1, considered as an ideal
in K[x], will now consist of

G1 :=

 ∑
w∈Mon(x)

pw(0)
qw(0)

w = g mod m

∣∣∣∣∣∣ g := ∑
w∈Mon(x)

pw

qw
w ∈ G

 .

Note again that each coefficient of a given g ∈ G has a well-defined image in K[z]/mu for all
u ∈ Mon(z). For a monomial u ∈ Mon(z), let v := next(u). Starting with u = 1 and g1, we
will lift gu to gv by performing linear algebra in the finite-dimensional K-vector space vK[z, x]/Iv,
using the ≺1-Gröbner basis Hv. This will rely on the second statement of Theorem 2.10.

Remark 3.2. In this section we treat the computation of the required Gröbner bases Hu, u ∈ Mon(z)
as a black box. We recall in Section 4 that these sets may be obtained free of arithmetic operations
from an≺1-Gröbner basis of I when≺1=≺drl and I is a generic complete intersection. In Section 5,
we sketch a method to compute them efficiently when ≺1 is a suitable block order, without any
extra assumption on I.

This lifting step is now given by Algorithm 1.

Algorithm 1 The Lifting Algorithm
Input A monomial u ∈ Mon(z), gu ∈ Gu, v := next(u), the reduced Gröbner basis Hv of Iv w.r.t.

≺1, the set S≺2 .

Output The corresponding element gv ∈ Gv.

1 function lift(gu, Hv, S≺2)
2 c← cIv ,≺1(gu) [computed via Hv]
3 if c = 0 then return gu
4 compute c = ∑v∈S≺2

αvcIv ,≺1(uv) [computed via Hv]

5 return gu −∑v∈S≺2
αvuv

Theorem 3.1. Algorithm 1 terminates and is correct in that it satisfies its output specification.

Proof. We use the notation from the pseudocode of the algorithm.

6

The termination of the algorithm is clear.
For the correctness of the algorithm, note that the vectors cIv ,≺1(uv) in ?? 4 are linearly independent
thanks to the second item of Theorem 2.10. Thus, there exists at most one choice of coefficients
αv, v ∈ S≺2 such that c = ∑v∈S≺2

αvcIv ,≺1(uv). Furthermore, the element g ∈ G corresponding to
gu provides such a choice of coefficients, implying that there exists at least one solution to this
linear system. This proves the correctness.

Denote again Gu := {gu | g ∈ G}. The above algorithm is only able to compute the set Gu for a
monomial u ∈ Mon(z), i.e. it “approximates” the set G up to order u. A natural question is then
how to extract the actual set G out of Gu. For this, we may use the classical technique of Padé
approximants. Having computed the set Gu, we have computed the element gu as

gu = ∑
w∈Mon(x)

∑
v⪯drlu

rw,vvw.

Now we have for the coefficient pw/qw of w in g

pw − qw ∑
v⪯drlu

rw,vv = 0 mod mu, (2)

which determines a set of linear equations in the unknown coefficients of pw and qw. Let d :=
deg u. Suppose that deg next(u) = d + 1, so that mu = md+1. Fix d1 and d2 with d1 + d2 = d and
let n be the cardinality of the set z. If we impose that deg pw ≤ d1 and deg qw ≤ d2 then the linear
system (2) has a finite set of unknowns and equations. Let us say that any solution to this linear
system of equations is a Padé approximant of order d of λw := ∑deg v<d+1 rw,vv. If d1 and d2 are large
enough then any Padé approximant of order d of λw is equal to pw/qw, see e.g. Guillaume and
Huard, 2000, Proposition 2.1:

Lemma 3.2. Let p/q be a Padé approximant of order d = d1 + d2 of λw. If d1 ≥ deg pw and d2 ≥ deg qw
then p/q = pw/qw.

By solving this linear system we obtain an algorithm pade(gu, d1, d2) which computes a candidate
gcand ∈ K(z)[x] whose coefficients are Padé approximants of the coefficients of gu of order d1 + d2
regarded as a polynomial in the variables x. Let us say that gu has stable Padé approximation if for
v := next(u) we have

gcand = gv mod mv.

Based on this, we now obtain Algorithm 2 for computing the set G probabilistically. We state this
algorithm in an informal way. In ?? 7 by “lifting Glift to degree d” we mean that we compute the
set Gu where u is the ≺drl-maximal monomial of degree d.
Clearly, by Theorem 3.1 and Lemma 3.2, this algorithm returns the correct result if the computed
Padé approximants are of sufficiently large degree.

Remark 3.3. Note that Algorithm 1 works also if we replace v by any monomial larger than u:
In this case we just have to write c as a linear combination of all the vectors cIv ,≺1(uv′) where
u ≺drl v′ ⪯drl v.

4 Complexity Estimates

In this section, we analyze the arithmetic complexity of a version of our algorithm more akin to
the original FGLM algorithm as presented in Faugère, Gianni, Lazard, and Mora, 1993. More
precisely, suppose that ≺1 is a block order eliminating x. We will reuse the notation from the last
section. Here, we analyze the number of arithmetic operations in K required to obtain the desired
≺2-Gröbner basis G using the same strategy as in Algorithm 2, but with a more optimized lifting
step.
Our cost analysis will require measuring the cost of performing certain linear algebra operations
on structured matrices. The matrices that will appear in the analysis are block-Toeplitz:

7

Algorithm 2 Computing the generic fiber
Input A generating set F of I, a monomial order ≺1, a monomial order ≺2.

Output A guess for the set G.

1 function genfglm(F,≺1,≺2)
2 H ← reduced ≺1-Gröbner basis of I1 [using F]
3 Glift, S≺2 ← fglm(H,≺2)
4 Gresult ← ∅
5 d← 2
6 while Glift ̸= ∅
7 Glift ← lift Glift to degree d using Algorithm 1
8 Compute Padé approx. for all elements in Glift
9 Lift Glift one monomial higher

10 add to Gresult all elements with stable Padé approx.
11 remove the corresponding elements from Glift
12 d← 2d
13 return Gresult

Definition 4.1. Let k, D ∈ N. A block matrix M = (Mpq)0≤p,q<k ∈ KkD×kD where each Mpq is in
KD×D is called block-Toeplitz of type (k, D) if Mpq = Mp′q′ whenever p− q = p′ − q′. We say that
M is Toeplitz when D = 1.

If M is block-Toeplitz of type (k, D) then we will need the arithmetic complexity of computing
a matrix vector product Mv, v ∈ KkD, and of inverting M. For this we need the concept of
displacement rank of a matrix, see e.g. Bostan, Jeannerod, Mouilleron, and Schost, 2017:

Definition 4.2. Let Z ∈ Kn×n be the matrix defined by

Z := (δi−1,j)1≤i,j≤n,

where δi−1,j is the Kronecker delta and let ZT be the transpose of Z. The displacement rank of a
matrix M ∈ Kn×n is

α(M) := rank(M− ZMZT).

Note that the displacement rank of a Toeplitz matrix is upper bounded by 2. The concept of dis-
placement rank can be used as a general method to utilize “Toeplitz-like” structures in algorithmic
linear algebra. In this vain, we have

Proposition 4.3. Let M be block-Toeplitz of type (k, D) and let v ∈ KkD. Then

1. Mv can be computed in Õ
(
kD2) arithmetic operations in K;

2. M can be inverted in Õ (kDω).

Proof. For any matrix M ∈ Kn×n, according to Bostan, Jeannerod, Mouilleron, and Schost, 2017,
a matrix-vector product Mv can be computed in time Õ (α(M)n) and M can be inverted in time
Õ
(
α(M)ω−1n

)
. Using a series of rows and column swaps, more precisely sending row pD + i

to ik + p (resp. column qD + j to jk + q), we may transform a block-Toeplitz matrix M of type
(k, D) into a matrix N = (Nij)0≤i,j<D ∈ KkD×kD where each Nij lies in Kk×k and is Toeplitz. Now,
N − ZNZT has D dense columns and (k − 1)D columns with potentially nonzero coefficients
in positions iD for all i. Only D of these latter columns can be linearly independent so that
α(M) ≤ 2D, proving both claims.

Our cost analysis follows closely the one of the original FGLM algorithm. To this end, we give the
following definition:

8

Definition 4.4 (Multiplication Tensor). Let I be a zero-dimensional ideal in a polynomial ring K[x]
and let ≺ be a monomial order. Let S := SI,≺. The multiplication tensor of I w.r.t. ≺ is defined as
the 3-tensor

M(I,≺) = (cI,≺(xiu))xi∈x,u∈S,

where the vectors of coefficients are in the basis S.

It turns out that computing these multiplication tensors dominates the cost of the original FGLM
algorithm and similarly it dominates the cost of our algorithm. To simplify the notation, we
assume from here on out that the set z = {z} consists of a single variable. It will be clear from
the proofs that our theorem translates accordingly to the more general setting where z consists of
several variables.
We denote by D the degree of Igen, i.e. the K(z)-dimension of K(z)[x]/Igen. Note that this degree
is upper-bounded by that of I. We also denote Ik := Izk−1 and similarly Hk and Gk. In our assumed
setting, we obtain the following statement for computing multiplication tensors:

Theorem 4.5. Let k ∈ N. Let c be the cardinality of x. Suppose that we are given the set H2k and
the multiplication tensor of Ik w.r.t. ≺1. Then the multiplication tensor of I2k w.r.t. ≺1 is computed in
arithmetic complexity Õ

(
kcD3).

Proof. Let S := SI1,≺1 . Then, by the third item of Theorem 2.10, since ≺1 eliminates x, for any
ℓ ∈N,

SIℓ,≺1 =
ℓ−1⋃
i=0

ziS.

Let us now describe the structure of the multiplication matrices of I2k, i.e. the matrices

M(I2k,≺1)y := (cI2k ,≺1(yu))u∈SI2k ,≺1
, for y ∈ x ∪ z.

The matrix (cI2k ,≺1(zu))u∈SI2k ,≺1
of the multiplication by z is


S zS . . . z2k−1S

S
zS Id
...

. . .
z2k−1S Id


and so is extracted without any arithmetic operations. Further, denote S0 :=

k−1⋃
i=0

ziS and S1 :=

2k−1⋃
i=k

ziS = zkS0. Now, for xi ∈ x the multiplication matrix Mxi by xi is determined by two matrices

Mxi ,0, Mxi ,1 ∈ KD×D as follows

Mxi =

[S0 S1

S0 Mxi ,0
S1 Mxi ,1 Mxi ,0

]
,

where each Mxi ,i is easily seen to be block-Toeplitz of type (k, D) and Mxi ,0 is known as part of the
≺1-multiplication tensor of Ik. Thanks to the block-Toeplitz structure, it now suffices to compute
the columns of Mxi ,1 coming from the normal forms of the set xS, which is of cardinality at most
cD. Now, we proceed as follows: Sort the set xS by the monomial order ≺1. Choose u ∈ xS and
suppose that the normal forms of all elements less than u in xS are known. Two easy cases can
arise:

1. u ∈ S, in which case the normal form of u is computed without any arithmetic operations;

2. u ∈ lm(H2k), in which case the normal form of u is computed without any arithmetic
operations, it is just given by the tail of the corresponding element in H2k.

9

Lastly, it can happen that u ∈ lm(I2k) but u /∈ lm(H2k). In this case there exists v ∈ xS and xj ∈ x
with u = xjv. By assumption the normal form of v is known and so is the normal form of each
element xjb with b ∈ S and b ≺1 v. Since Mxj has the same structure as Mxi , we can now compute
the required column of Mxi ,1 as the sum of two matrix-vector products where each of the two
matrices is block-Toeplitz of type (k, D). This is done in time Õ

(
kD2) thanks to Proposition 4.3,

concluding the proof, since xS has cardinality at most cD.

Now, we can estimate the complexity of lifting the set Gk:

Corollary 4.6. Let k ∈ N. Let c be the cardinality of x. Suppose that we are given the set H2k, the
multiplication tensor of Ik w.r.t. ≺1, the ≺1-normal forms of the ≺2-staircase of I1 w.r.t. Ik and the ≺1-
normal forms of the minimal ≺2-leading monomials of I0 w.r.t. Ik. Then G2k is computed in arithmetic
complexity Õ

(
kcD3).

Proof. By Theorem 4.5, the ≺1-multiplication tensor of I2k can be computed in arithmetic com-
plexity O

(
kcD3). Having computed this tensor, we proceed as follows: let S be the ≺1-staircase

of I1 = I + ⟨z⟩, T be the ≺2-staircase of I1 and L be the set of minimal ≺2-leading terms of I1, with
z removed. Denoting S0 and S1 as in the proof of the preceding theorem, and similarly T0 and
T1, now we first compute the ≺1-normal forms of each element in T ∪ L w.r.t. I2k, this will yield a
tableau of the form

C :=
[T0 T1 L

S0 C0 D0
S1 C1 C0 D1

]
.

Note that by assumption the matrix C0 is already known by the ≺1-normal forms of T w.r.t. I1
and the matrix D0 is given by the ≺1-normal forms of L w.r.t. I1. Note also that C0 and C1 are
again block-Toeplitz of type (k, D).
The required matrices C1 and D1 can be computed by using the ≺1-multiplication tensor of I2k
, enumerating the monomials in Mon(x) in order of ≺2 and computing their normal forms via
matrix-vector multiplications similar to the proof of the preceding theorem. Combining this with
the block-Toeplitz structure of the multiplication matrices of I2k w.r.t. ≺1, this can again be done in
time Õ

(
kcD3). Finally, to compute the set G2k, we have to write each column in C corresponding

to an element in L as a K-linear combination of the columns corresponding to T0 ∪ T1, i.e. by
solving the linear system [

C0
C1 C0

] [
X0
X2

]
=

[
L0
L1

]
,

where X0 is known via Gk. Hence this requires

• inverting the submatrix C0 which, by Proposition 4.3, is done in time Õ (kDω);

• computing the product C−1
0 D2.

Note that C−1
0 has displacement rank bounded above by 2D + 2, see Bostan, Chyzak, Giusti,

Lebreton, Lecerf, Salvy, and Schost, 2017, Proposition 10.10 and Theorem 10.11, and that the
cardinality of L is upper bounded by cD. Thus, for the second step above, we have to compute at
most cD matrix-vector products of the form C−1

0 v. Again, thanks to Proposition 4.3, this is done
in time Õ

(
kcD3). This finally yields the desired complexity.

The following corollary gives the complexity of computing successively the sets G2i from H2i until
i is large enough to recover G, like in Algorithm 2.

Corollary 4.7. Let δ− 1 be the maximum degree of all numerators and denominators of all coefficients of
G. Further, let ℓ be minimal such that 2ℓ ≥ 2δ.
Given H2ℓ , computing successively the sets G2i , for i = 1, . . . , ℓ, can be done in arithmetic complexity

Õ
(

2ℓcD3
)
= Õ

(
δcD3).

10

Proof. Note that the sets H2i , for i = 1, . . . , ℓ, are obtained from H2ℓ free of arithmetic opera-
tions. By Corollary 4.6, the computation of G2i requires Õ

(
2iCD3) operations. Summing these

complexities for i from 1 to ℓ yields the desired complexity.

Note that going up to degree 2ℓ suffices to recover the coefficients of G by Padé approximation
thanks to Lemma 3.2.

Remark 4.1. In a follow-up paper, we plan to study the complexity of our algorithm using variants
of FGLM, such as Berthomieu, Neiger, and Safey El Din, 2022; Faugère, Gaudry, Huot, and
Renault, 2014; Faugère and Mou, 2017; Neiger and Schost, 2020.

We close this section by pointing out a well-known case in which ≺1 is the ≺drl order, the required
Gröbner bases Hu of I +mu are extracted without any arithmetic operations of the ≺drl-Gröbner
basis H of I and the ≺drl-staircase of I +mu behaves the same as in the above case when ≺1 is a
block order. We start with

Definition 4.8. Let y be an extra variable and let Ihom ⊂ K[z, x, y] be the homogenization of I w.r.t
y. Suppose that Ihom is Cohen-Macaulay. We say that I is in projective generic position if {y} ∪ z is
a maximal homogeneous regular sequence in K[z, x, y]/Ihom.

Supposing that Ihom is Cohen-Macaulay we now have the following statement, see e.g. Lejeune-
Jalabert, 1986. This statement has frequently been used in the complexity analysis of Gröbner
basis algorithms.

Lemma 4.9. Let I be in projective generic position with Ihom Cohen-Macaulay. Let H be the reduced
≺drl-Gröbner basis of I (with the variables in z considered smaller as those in x). Then

lm(H) ⊂ Mon(x).

In particular, if S is the ≺drl-staircase of I1 := I +m, then the ⪯drl-staircase of I +mu is given by

Su :=
⋃

v⪯drlu
vS.

Proof. Note that the reduced ≺drl-Gröbner basis of Igen is precisely given by the homogenization
of H, with the variable y considered the smallest. All statements made in this lemma now follow
easily from Eisenbud, 1995, Theorem 15.13.

This implies that when I is such that Ihom is Cohen-Macaulay and is in projective generic po-
sition then we can replace ≺1 with ≺drl and Hu with H in the statements of Theorem 4.5 and
Corollary 4.6. Now we are ready to prove:

Proof of Theorem 1.1. The genericity assumption on f1, . . . , fc implies that they form a Cohen-
Macaulay ideal in projective generic position and that the ideal has degree D = d1 · · · dc. Thus,
Algorithm 2 can be called on { f1, . . . , fc}, ≺drl and ≺lex in order to compute the reduced ≺drl-
Gröbner basis of I = ⟨ f1, . . . , fc⟩ and then the reduced ≺2-Gröbner basis of IK(z1, . . . , zn−c)[x1, . . . ,
xc]. Finally, using Corollaries 4.6 and 4.7, we obtain the desired complexity.

5 Using Tracers for Gröbner Basis Lifting

Again reusing the notation from Sections 2 and 3, recall that Algorithm 2 requires the ≺1-Gröbner
bases Hu of the ideals I + mu. In this section, we will show how these Gröbner bases can be
computed more optimally when ≺1 is a block order on Mon(x ∪ z) eliminating x. Recall that
under the additional assumption that m is a point of good specialization, by Theorem 2.10, the
reduced ≺1-Gröbner basis of Iu is given by Hu ∪Mu, where H is the reduced ≺1-Gröbner basis
of Igen and Mu is the minimal generating set of mu. If, in addition, the origin in the z-space lies
outside a suitably chosen Zariski-closed subset in the z-space, then all coefficients that appear
when computing H with an algorithm like F4 lie in K[z]m. This means, conversely, that when we

11

compute the Gröbner basis H1 over K[z]/m ∼= K with F4, we can “remember” the computations
that where performed and repeat the exact same computations over K[z]/mu for any choice of
u ∈ Mon(z) to obtain the set Hu.
This is formalized by the the concept of tracers, introduced by Traverso, 1989 for the purpose of
multi-modular Gröbner basis computations.

5.1 Tracers

We start by recalling the definition of Macaulay matrices.

Definition 5.1. Let F = { f1, . . . , fr} be a finite set of polynomials in K[x]. Let U1, . . . , Ur be finite
sets of monomials in Mon(x) and denote U := {U1, . . . , Ur}. Write Ui = {ui1, . . . , uiri}. The
Macaulay matrix MF,U determined by F and U is the matrix with rows indexed by

⋃r
i=1

⋃ri
j=1 uij fi

and columns indexed by the union of all supports of uij fi whose entry in row uij fi and column v
is the coefficient of v in uij fi.

The previously mentioned F4 algorithm, introduced in Faugère, 1999, uses echelonization of
Macaulay matrices to compute Gröbner bases. In this algorithm, the columns in each appear-
ing Macaulay matrix are sorted descendingly by the monomial order for which one is computing
a Gröbner basis and swapping columns is not allowed. During the computation, the rows of a
given Macaulay matrix whose leading term changes during the echelonization are added to the
Gröbner basis in spe. We can store a run of the F4 algorithm using the following data structure:

Definition 5.2. A tracer T for a system of polynomials f1, . . . , fr consists in a finite sequence of fi-
nite sets of integers I1, . . . , Is together with a finite sequence of finite sets of monomials U1, . . . , Us.

Given such a tracer T, we can try to follow it to recover a Gröbner basis of ⟨ f1, . . . , fr⟩ using
Algorithm 3.

Algorithm 3 Following a Tracer
Input A system of polynomials F := { f1, . . . , fr}, a tracer T for F, a monomial order ≺.

Output A finite set of polynomials G.

1 function trace(F, T,≺)
2 G ← F
3 for k from 1 up to s
4 Gk ← {G[i] | i ∈ Ik}
5 Mk ← MGk ,Uk [with decreasing col. labels w.r.t. ≺]
6 M′k ← echelonization of Mk
7 add all rows with changed leading term to G
8 return G

Definition 5.3. A tracer T for F := { f1, . . . , fr} and ≺ is called good if running Algorithm 3

is well-defined (i.e. there are no out-of-bounds accesses during its run) and if the output G of
trace(F, T,≺) is a ≺-Gröbner basis of ⟨F⟩.

Going back to our setting, as in the beginning of this section, Let us assume that the origin in the
z-space lies outside of a suitably chosen Zariski-closed subset. Let us assume further that T is a
good tracer for ≺1 and the image in (K[z]/m)[x] ≃ K[x] of a given generating set of I. Then,
applying T to ≺1 and the image in K[z]/mu of the same generating set, for any u ∈ Mon(z),
yields the set Hu.
Going further, if we have computed Hu using a good tracer and Algorithm 2 requires us to
compute Hv for some v ∈ Mon(z) with u ≺drl v, then we can obtain the needed echelonizations
of the Macaulay matrices over K[z]/mv by lifting the ones previously computed over K[z]/mu.
Let us sketch how to do this in the next subsection.

12

5.2 Lifting of LU-factorization

To simplify the presentation we again assume, as in the proofs in Section 4, that z = {z} is a single
variable. The method proposed here will however immediately transport to the setting where z
consists in several variables. Let us denote R := K[z] and Q := K(z). In this section, we want
to lift an echelonization of a matrix, or in other words a LU-like decomposition (say for instance
PLUQ, PLEQ, . . .), from the field R/m to R/mk+1 for some k ≥ 0. As previously, we assume that
the steps of the computation of this decomposition over R/m are exactly those over Q projected
onto R/m, in particular this implies that no nonzero entry p/q ∈ Q with p, q ∈ R is such that
p /∈ m and q ∈ m.
Again to simplify the presentation, we restrict ourselves to an exact LU-factorization of a full-rank
matrix. Let A ∈ Qn×m be a matrix with LU-factorization A = LU with L ∈ Qn×n and U ∈ Qn×m.
We assume that A, L and U have coefficients in Rm. In that case we have matrices Ak, Lk and Uk
with coefficients in R/mk+1 and

A = Ak mod mk+1, L = Lk mod mk+1, U = Uk mod mk+1.

We also have Ak = LkUk mod mk+1.

Theorem 5.4. Given A, L−1
0 and Lk, Uk there is an algorithm which computes Lk+1 and Uk+1 in O

(
mn2)

arithmetic operations in K.

Proof. Recall that Lk is invertible and that L−1
k = L−1

0 mod m. Thus,

A = LkUk + f k+1δA mod mk+2

= Lk

(
Uk + f k+1L−1

k δA

)
mod mk+2

= Lk

(
Uk + f k+1L−1

0 δA

)
mod mk+2,

and we define B := Uk + f k+1L−1
0 δA. As L−1

0 mod m has already been computed, L−1
0 δA is com-

puted in O
(
mn2) arithmetic operations in K. It now suffices to prove that we can compute an

LU-factorization of B over R/mk+2 in O
(
mn2) operations in K. Note that we can write

B = U0 + f U′1 + · · ·+ f kU′k + f k+1V,

where U′i = 1
f i (Ui −Ui−1) is upper triangular with coefficients in R/m, for all 1 ≤ i ≤ k, and

V = 1
f k+1 (B−Uk) ∈ Kn×n. Echelonizing B comes down to reducing the rows of V with the rows

of B above. In particular, since bi,1 = f k+1vi,1 for i > 1, it can be reduced using the pivot b1,1,
which is invertible in R/mk+1 by assumption. Thus, the row operation

bi,j ← bi,j − f k+1 bi,1

b1,1
b1,j mod mk+2

= f k+1(vi,j −
vi,1

u′0,1,1
u′0,1,j mod m)

consists only in performing row operations on the layer of valuation k + 1 in B.
In other words, if

L′ =


1

−v2,1/u′0,1,1 f k+1 1
...

. . .
−vn,1/u′0,1,1 f k+1 1


then L′B can be written

L′B = U′0 + f U′1 + · · ·+ f kU′k + f k+1V′

where we have v′i,1 = 0 for all i ≥ 2. Proceeding with further row operations like this, we thus
triangularize B. This clearly has the same complexity as echelonizing a matrix in Kn×m.

13

Remark 5.1. Theorem 5.4 and its proof are also valid for R = Z, Q = Q, m = p a good prime and
K = Fp. We refer to Arnold, 2003; Vaccon, 2014, 2017; Winkler, 1988 where lifting Gröbner bases
over p-adic numbers is performed and e.g. to Dixon, 1982; Haramoto and Matsumoto, 2009; Pan,
2011 for methods in p-adic linear algebra.

6 Benchmarks

In this section, we provide benchmarks for a proof-of-concept implementation of Algorithm 2. We
first give a brief description thereof.
This implementation is written using the computer algebra system OSCAR (The OSCAR team,
2022) which itself is written in Julia (Bezanson, Edelman, Karpinski, & Shah, 2017). All required
Gröbner basis computations use the Gröbner basis library Groebner.jl, also written in Julia,
see Demin and Gowda, 2023. The main step in Algorithm 2, Algorithm 1, was implemented
naively, close to the provided pseudocode, i.e. without the use of multiplication tensors to compute
normal forms as described in Section 4.
For the below benchmarks, the following computations were performed, keeping the notation
from the last sections:

1. Compute a ≺drl-Gröbner basis for the polynomial ideal I in question.

2. Use this ≺drl-Gröbner basis to compute a maximally independent set of variables modulo I,
this gives us the partition of the variables into the subsets x and z as above.

3. If z = {z1, . . . , zn−c}, choose random a1, . . . , an−c ∈ K and make the coordinate substitution
zi ← zi − ai, as in Remark 2.1.

4. Choose ≺1 as the block order eliminating x with ≺drl on both blocks of variables.

5. If x = {x1, . . . , xc}, choose ≺2 as the block order on Mon(x) eliminating {x1, . . . , xc−1} with
≺drl on this block.

6. Then the target Gröbner basis G contains a single polynomial gxc in the univariate polyno-
mial ring K(z)[xc].

7. Use Algorithm 2 to compute gxc (rather than the full set G).

In a certain generic situation (more precisely, when the variable xc is “generic”), the computed
polynomial gxc can be used for a primary decomposition of I, see e.g. Becker and Weispfenning,
1993, Sections 8.6 and 8.7, this motivates our choice of ≺2. We never directly computed the
reduced Gröbner basis H of I w.r.t. ≺1, but only the reduced ≺1-Gröbner basis Hu of the ideals
I +mu. When doing this, we found that the computations were better-behaved when choosing ≺1
as above rather than ≺1=≺drl. All computations were performed with K = Z/pZ where p was a
randomly chosen prime of 16 bits.
We compared the time this computation took with the computation of the set G using the C library
msolve (Berthomieu, Eder, & Safey El Din, 2021) (which just runs the F4 algorithm with ≺2). These
timings are given in Table 1 in the Appendix. In this table, “OOM” means that the computation
used more than the 100 GB memory limit that we set.
The polynomial systems used for these benchmarks are:

• ED(3,3) encodes the parametric euclidean distance problem for a hypersurface of degree 3 in
3 variables, see Draisma, Horobeţ, Ottaviani, Sturmfels, and Thomas, 2016;

• R1, R2, R3 come from a problem in Robotics, see García Fontán, Nayak, Briot, and Safey
El Din, 2022;

• M2 and M3 are certain jacobian ideals of single multivariate polynomials which define sin-
gular hypersurfaces;

14

• The “PS”, “Sing” and “SOS” systems are all critical loci of certain projections, see Eder,
Lairez, Mohr, and Safey El Din, 2023a for a more detailed description;

• The RD(d) systems are randomly generated sequences of 3 polynomials of degree d in 4
variables.

All computations were performed on an Intel Xeon Gold 6244 CPU @ 3.60 GHz with 1.5 TB of
memory.

Appendix

Table 1: Benchmarks for Algorithm 2

Algorithm 2 msolve using ≺2
Polynomial System Timing (in s) Timing (in s)
ED(3,3) 121.34 OOM
R1 1.84 0.01

R2 2.74 0.01

R3 2.74 0.01

M2 152.81 6.54

M3 3.11 OOM
PS(2,10) 5.56 1251.94

PS(2,12) 120.10 OOM
Sing(2,10) 3.04 4.25

SOS(5,4) 21.56 18.98

SOS(6,4) 114.88 11366.36

SOS(6,5) 120.1 OOM
RD(3) 3.31 0.11

RD(4) 9.77 28.72

RD(5) 385.31 2277.56

Acknowledgments

The authors are supported by the joint ANR-FWF ANR-19-CE48-0015 ECARP and ANR-22-CE91-
0007 EAGLES projects, ANR-19-CE40-0018 De Rerum Natura project, DFG Sonderforschungs-
bereich TRR 195 project and grants DIMRFSI 2021-02–C21/1131 of the Paris Île-de-France Region,
FA8665-20-1-7029 of the EOARD-AFOSR, and Forschungsinitiative Rheinland-Pfalz. We thank
Ch. Eder, P. Lairez, V. Neiger and M. Safey El Din for fruitful discussions.

References

Arnold, E. A. (2003). Modular algorithms for computing Gröbner bases. Journal of Symbolic Com-
putation, 35(4), 403–419.
Becker, T. (1994). On Gröbner bases under specialization. Applicable Algebra in Engineering, Com-
munication and Computing, 5(1), 1–8.
Becker, T., & Weispfenning, V. (1993). Gröbner bases (Vol. 141). Springer-Verlag, New York.
Berthomieu, J., Eder, C., & Safey El Din, M. (2021). msolve: A Library for Solving Polynomial
Systems. Proceedings of the 2021 on International Symposium on Symbolic and Algebraic Computation,
51–58.
Berthomieu, J., Eder, C., & Safey El Din, M. (2023). New efficient algorithms for computing Gröb-
ner bases of saturation ideals (F4SAT) and colon ideals (Sparse-FGLM-colon). arXiv: 2202.13387

[cs, math]

15

https://arxiv.org/abs/2202.13387
https://arxiv.org/abs/2202.13387

Berthomieu, J., Neiger, V., & Safey El Din, M. (2022). Faster Change of Order Algorithm for Gröb-
ner Bases under Shape and Stability Assumptions. Proceedings of the 2022 International Symposium
on Symbolic and Algebraic Computation, 409–418.
Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to numerical
computing. SIAM review, 59(1), 65–98.
Bostan, A., Jeannerod, C.-P., Mouilleron, C., & Schost, É. (2017). On Matrices With Displacement
Structure: Generalized Operators and Faster Algorithms. SIAM Journal on Matrix Analysis and
Applications, 38(3), 733–775.
Bostan, A., Chyzak, F., Giusti, M., Lebreton, R., Lecerf, G., Salvy, B., & Schost, É. (2017). Algorithmes
Efficaces en Calcul Formel. Frédéric Chyzak (auto-édit.)
Buchberger, B. (1965). Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach
einem Nulldimensionalen Polynomideal [Doctoral dissertation, Universität Innsbruck].
Collart, S., Kalkbrener, M., & Mall, D. (1997). Converting Bases with the Gröbner Walk. Journal of
Symbolic Computation, 24(3), 465–469.
Demin, A., & Gowda, S. (2023). Groebner.jl: A Package for Gröbner Bases Computations in Julia.
Dixon, J. D. (1982). Exact solution of linear equations using p-adic expansions. Numerische Mathe-
matik, 40(1), 137–141.
Draisma, J., Horobeţ, E., Ottaviani, G., Sturmfels, B., & Thomas, R. R. (2016). The Euclidean dis-
tance degree of an algebraic variety. Found. Comput. Math., 16(1), 99–149.
Ebert, G. L. (1983). Some comments on the modular approach to gröbner-bases. SIGSAM Bull.,
17(2), 28–32

Eder, C., Lairez, P., Mohr, R., & Safey El Din, M. (2023a). A Direttissimo Algorithm for Equidi-
mensional Decomposition. Proceedings of the 2023 International Symposium on Symbolic and Algebraic
Computation, 260–269.
Eder, C., Lairez, P., Mohr, R., & Safey El Din, M. (2023b). A signature-based algorithm for com-
puting the nondegenerate locus of a polynomial system. Journal of Symbolic Computation, 119, 1–
21.
Eisenbud, D. (1995). Commutative algebra: With a view toward algebraic geometry. Springer New York.
Faugère, J.-C. (1999). A new efficient algorithm for computing Gröbner bases (F4). Journal of Pure
and Applied Algebra, 139(1), 61–88.
Faugère, J.-C. (2002). A new efficient algorithm for computing Gröbner bases without reduction
to zero (F5). Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation,
75–83.
Faugère, J.-C., Gaudry, P., Huot, L., & Renault, G. (2014). Sub-cubic change of ordering for Gröbner
basis: A probabilistic approach. Proceedings of the 39th International Symposium on Symbolic and
Algebraic Computation, 170–177.
Faugère, J.-C., Gianni, P., Lazard, D., & Mora, T. (1993). Efficient Computation of Zero-dimensional
Gröbner Bases by Change of Ordering. Journal of Symbolic Computation, 16(4), 329–344.
Faugère, J.-C., & Mou, C. (2017). Sparse FGLM algorithms. Journal of Symbolic Computation, 80,
538–569.
García Fontán, J., Nayak, A., Briot, S., & Safey El Din, M. (2022). Singularity Analysis for the
Perspective-Four and Five-Line Problems. International Journal of Computer Vision, 130(4), 909–932.
Gianni, P. (1989). Properties of Gröbner bases under specializations. In J. H. Davenport (Ed.),
Eurocal ’87 (pp. 293–297). Springer.
Giusti, M., Lecerf, G., & Salvy, B. (2001). A Gröbner Free Alternative for Polynomial System Solv-
ing. Journal of Complexity, 17(1), 154–211.
Gräbe, H.-G. (1993). On Lucky Primes. Journal of Symbolic Computation, 15(2), 199–209.
Guillaume, P., & Huard, A. (2000). Multivariate Padé approximation. Journal of Computational and
Applied Mathematics, 121(1), 197–219.
Haramoto, H., & Matsumoto, M. (2009). A p-adic algorithm for computing the inverse of integer
matrices. Journal of Computational and Applied Mathematics, 225(1), 320–322

Hubert, E. (2003). Notes on Triangular Sets and Triangulation-Decomposition Algorithms I. Sym-
bolic and Numerical Scientific Computation, 1–39.

16

Lejeune-Jalabert, M. (1986). Effectivité de calculs polynomiaux. Cours de D.E.A. Laboratoire de Math-
ématiques associé au C. N. R. S.
Neiger, V., & Schost, É. (2020). Computing syzygies in finite dimension using fast linear algebra.
Journal of Complexity, 60, 101502.
Pan, V. Y. (2011). Nearly optimal solution of rational linear systems of equations with symbolic
lifting and numerical initialization. Computers & Mathematics with Applications, 62(4), 1685–1706

Pauer, F. (1992). On lucky ideals for Gröbner basis computations. Journal of Symbolic Computation,
14(5), 471–482.
Schost, É. (2003). Computing parametric geometric resolutions. Appl. Algebra Engrg. Comm. Com-
put., 13(5), 349–393

Schost, É., & St-Pierre, C. (2023). P-adic algorithm for bivariate Gröbner bases. Proceedings of the
2023 International Symposium on Symbolic and Algebraic Computation, 508–516.
The OSCAR team. (2022). OSCAR – Open Source Computer Algebra Research System.
Traverso, C. (1989). Gröbner trace algorithms. In P. Gianni (Ed.), Symbolic and Algebraic Computation
(pp. 125–138). Springer.
Traverso, C. (1996). Hilbert Functions and the Buchberger Algorithm. Journal of Symbolic Computa-
tion, 22(4), 355–376.
Vaccon, T. (2014). Matrix-f5 algorithms over finite-precision complete discrete valuation fields.
Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, 397–404.
Vaccon, T. (2017). Matrix-f5 algorithms over finite-precision complete discrete valuation fields.
Journal of Symbolic Computation, 80, 329–350.
Winkler, F. (1988). A p-adic approach to the computation of Gröbner bases. Journal of Symbolic
Computation, 6(2), 287–304.

17

	Introduction
	Preliminaries
	Gröbner Bases
	Points of Good Specialization

	The Main Algorithm
	Complexity Estimates
	Using Tracers for Gröbner Basis Lifting
	Tracers
	Lifting of LU-factorization

	Benchmarks

