Jérémy Berthomieu

Rafael Mohr

Computing Generic Fibres of Polynomial Ideals with FGLM and Hensel Lifting

We describe a version of the FGLM algorithm that can be used to compute generic fibers of positive-dimensional polynomial ideals. It combines the FGLM algorithm with a Hensel lifting strategy. We show that this algorithm has a complexity quasi-linear in the number of lifting steps. Some provided experimental data also demonstrates the practical efficacy of our algorithm. Additionally, we sketch a related Hensel lifting method to compute Gröbner bases using so-called tracers.

Introduction

Scientific Context Gröbner bases lie at the forefront of the algorithmic treatment of polynomial systems and ideals in symbolic computation. They are defined as special generating sets of polynomial ideals which allow to decide the ideal membership problem via a multivariate version of polynomial long division. Given a Gröbner basis for a polynomial ideal, a lot of geometric and algebraic information about the polynomial ideal at hand can be extracted, such as the degree, dimension or Hilbert function. We refer to [START_REF] Becker | Gröbner bases[END_REF] for a comprehensive treatment of the subject. Notably, Gröbner bases depend on two parameters: The polynomial ideal which they generate and a monomial order, i.e. a certain kind of total order on the set of monomials of the underlying polynomial ring. Then, the geometric and ideal-theoretic information that can be extracted from a Gröbner basis depends on the chosen monomial order. For example, elimination orders allow, as the name suggests, to eliminate a chosen subset of variables from the given polynomial ideal (i.e. to project on an affine subspace in a geometric sense). While Gröbner bases for elimination orders are frequently of interest, it has been observed that all algorithms to compute Gröbner bases based on the famous Buchberger algorithm [START_REF] Buchberger | Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem Nulldimensionalen Polynomideal[END_REF], such as F 4 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases (F4)[END_REF] and F 5 [START_REF] Faugère | A new efficient algorithm for computing Gröbner bases without reduction to zero (F5)[END_REF], are substantially more well-behaved when used with non-elimination orders (most notably, the degree reverse lexicographical ≺ drl order). This has motivated the design of numerous change of order algorithms: The task is to convert a given Gröbner basis w.r.t. one order into a Gröbner basis w.r.t. another order. We mention here the Hilbert-driven algorithm by [START_REF] Traverso | Hilbert Functions and the Buchberger Algorithm[END_REF], the Gröbner walk algorithm by Collart, Kalkbrener, and Mall, 1997 and, most notably for this paper, the FGLM algorithm [START_REF] Faugère | Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering[END_REF] and its variants [START_REF] Berthomieu | Faster Change of Order Algorithm for Gröbner Bases under Shape and Stability Assumptions[END_REF][START_REF] Faugère | Sub-cubic change of ordering for Gröbner basis: A probabilistic approach[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF]Neiger & Schost, 2020). Furthermore, most ideal-theoretic operations in commutative algebra (such as saturation and intersection) can be performed using Gröbner bases by writing down a certain ideal associated to the given polynomial ideal, choosing a certain monomial order and computing a Gröbner basis for this associated ideal. Here, Gröbner basis computation is used as a black box. It has recently been observed, partly by the authors of this paper, that it can be (sometimes substantially) more efficient to design dedicated Gröbner basis algorithms for specific ideal-theoretic tasks, see [START_REF] Berthomieu | New efficient algorithms for computing Gröbner bases of saturation ideals (F4SAT) and colon ideals (Sparse-FGLM-colon)[END_REF]Eder, Lairez, Mohr, and Safey El Din, 2023b.

Problem Statement & Contributions

This paper is concerned with the algorithmic treatment of the following problem: Fix a polynomial ring R := K[z, x] in two finite sets of variables x and z over a field K and an ideal I in R. Assume that the map φ : K[z] → K[z, x]/I is injective and has generically finite fiber, i.e. assume that the the generic fiber I gen := IK(z)[x] of I is zero-dimensional. Given a Gröbner basis of I w.r.t. a monomial order ≺ 1 , we want to compute a Gröbner basis G of I gen w.r.t. another monomial order ≺ 2 . The algorithm we design to solve this problem thus relates to the two research directions previously mentioned: It is a dedicated algorithm to perform an ideal-theoretic operation (by computing a representation of the generic fiber of a suitably chosen map) and it performs a change of order (by going from ≺ 1 to ≺ 2). Our proposed solution to this problem can be seen as a combination of the previously mentioned FGLM algorithm with classical Hensel lifting techniques. As such, it can also be immediately transported to the setting where a Gröbner basis G of a zero-dimensional ideal over Q is required: It would extract G out of its images over Z/p k Z, where k ∈ N * and p is a well-chosen prime number. We show that, similar to classical Hensel lifting, our algorithm runs in arithmetic complexity quasi-linear in the precision up to which we need to lift when a "quadratic lifting strategy" is chosen, see Corollary 4.7, which implies in particular the following Theorem 1.1. Let f 1 , . . . , f c be generic polynomials of respective degrees d 1 , . . . ,

d c in K[x 1 , . . . , x c , z 1 , . . . , z n-c]. Assume that the ≺ drl -Gröbner basis of I = ⟨ f 1 , . . . , f c ⟩ is known and that the ≺ 2 -Gröbner basis G of IK(z 1 , . . . , z n-c)[x 1 , . . . , x c
] has coefficients which are rational functions with degrees at most δ in the numerators and denominators. Then, one can compute G up to precision 2δ using O δc(d

1 • • • d c) 3 operations in K.
Note that knowing G up to precision 2δ is enough to recover G by means of Padé approximants, see Lemma 3.2.

Related Work

Gröbner bases of generic fibers, as defined in the previous paragraph, are classically computed using elimination monomial orders, see Becker and Weispfenning, 1993, Lemma 8.93. Besides that, morally similar to our algorithm, there is a rich body of literature about multimodular Gröbner basis computations [START_REF] Arnold | Modular algorithms for computing Gröbner bases[END_REF][START_REF] Ebert | Some comments on the modular approach to gröbner-bases[END_REF][START_REF] Pauer | On lucky ideals for Gröbner basis computations[END_REF][START_REF] Traverso | Gröbner trace algorithms[END_REF] and Hensel/modular lifting techniques for Gröbner bases [START_REF] Gräbe | On Lucky Primes[END_REF][START_REF] Schost | P-adic algorithm for bivariate Gröbner bases[END_REF][START_REF] Winkler | A p-adic approach to the computation of Gröbner bases[END_REF]. Outside of the world of Gröbner bases, there are other data structures for algorithmically manipulating polynomial ideals, or the algebraic sets defined by them, which encode polynomial ideals by their generic fiber associated to a well-chosen projection. We mention in particular geometric resolutions, see e.g. [START_REF] Giusti | A Gröbner Free Alternative for Polynomial System Solving[END_REF][START_REF] Schost | Computing parametric geometric resolutions[END_REF], and triangular sets, see e.g. Hubert, 2003 for a survey. Our work also relates to specialization results for Gröbner basis, i.e. results on the question whether a Gröbner basis remains a Gröbner basis after specializing some of the variables, see e.g. [START_REF] Becker | On Gröbner bases under specialization[END_REF][START_REF] Gianni | Properties of Gröbner bases under specializations[END_REF] Outline In Section 2, we give necessary preliminaries both on Gröbner bases and on the needed commutative algebra to state and prove the correctness of our algorithms in Section 3. In Section 4, we transport the complexity statements for the original FGLM algorithm to our setting. Then, in Section 5, we sketch how the concept of Tracers, introduced in Traverso, 1989 for the purpose of multi-modular Gröbner basis computations, can be transported to a modular lifting strategy. We discuss how this could profitably be combined with our main algorithm. Finally we give some benchmarks for a Julia implementation of our main algorithm in Section 6, comparing it to computing generic fibers using just elimination orders.

Preliminaries

Gröbner Bases

In order to be self-contained, we recall some definitions and basic properties related to Gröbner bases of polynomial ideals. For a set of variables x := {x 1 , . . . , x n }, we denote by Mon(x) the set of monomials in x, and for a field K, we let R := K[x] be the multivariate polynomial ring in x over K. Definition 2.1. A monomial order ≺ on x is a total order on Mon(x) which 1. extends the partial order on Mon(x) given by divisibility and 2. is compatible with multiplication i.e. we have

u ≺ v ⇒ wu ≺ wv ∀u, v, w ∈ Mon(x).
Of importance for us is the degree reverse lexicographic order: Definition 2.2. The degree reverse lexicographic ≺ drl order on Mon(x) is defined as follows for u, v ∈ Mon(x): u ≺ drl v iff deg u < deg v or deg u = deg v and the last nonzero exponent of u/v is positive.

We will also need the notion of a block order: Definition 2.3. Let x and z be two finite sets of variables. Write each monomial u ∈ Mon(x ∪ z) uniquely as a product u = u x u z with u x ∈ Mon(x) and u z ∈ Mon(z). Fix a monomial order ≺ 1 on Mon(x) and a monomial order ≺ 2 on Mon(z). The corresponding block order eliminating x is defined as follows:

u ≺ v iff u x ≺ 1 v x or u x = v x and u z ≺ 2 v z for u, v ∈ Mon(x ∪ z).
A monomial order on x yields a notion of leading monomial in R: Definition 2.4. Let ≺ be a monomial order on Mon(x). For a nonzero element f ∈ R the leading monomial of f w.r.t. ≺, denoted lm ≺ (f), is the ≺-largest monomial in the support of f . For a finite set F in R we define lm ≺ (F) := {lm ≺ (f) | f ∈ F}. For an ideal I in R we define the leading monomial ideal of I as lm ≺ (I)

:= ⟨lm ≺ (f) | f ∈ I⟩.
Fixing a monomial order gives normal forms for images of elements in quotient rings of R: Definition 2.5. Let I be an ideal in R and let ≺ be a monomial order Mon(x).

1. The set S I,≺ := {u ∈ Mon(x) | u / ∈ lm ≺ (I)} is called the staircase of I w.r.t. ≺. It naturally forms a K-vector space basis of R/I.

2. The image of every element f ∈ R in R/I can be uniquely written as a K-linear combination of elements in S I,≺ . This linear combination of elements in S I,≺ is called the normal form of f w.r.t. I and ≺. The corresponding vector of coefficients of this linear combination, with the elements in S I,≺ ordered by ≺, will be denoted c I,≺ (f).

We finally define the notion of Gröbner bases.

Definition 2.6. A Gröbner basis of an ideal I ⊂ R w.r.t. a monomial order ≺ is a finite set G ⊂ I such that ⟨lm ≺ (G)⟩ = lm ≺ (I).

A Gröbner basis G of an ideal I ⊂ R w.r.

Points of Good Specialization

We start by fixing some notation. For a ring R and an element f ∈ R we denote by R[f -1] the localization of R at the multiplicatively closed set f k k ∈ N . For a prime ideal p ⊂ R we denote by R p the localization of R at the multiplicatively closed set R \ p.

We further fix a polynomial ring K[z, x] in two finite sets of variables z and x. Let I ⊆ K[z, x] be an ideal. Suppose that the map

K[z] → K[z, x]/I
is injective and has generically finite fiber, i.e. we assume that

I gen := IK(z)[x] ̸ = K(z)[x] is a zero-dimensional ideal.
Definition 2.7. In this setting we call I gen the generic fiber of I.

Let G be the reduced Gröbner basis of I gen w.r.t. a monomial order ≺. Further, we denote for a monomial u ∈ Mon(z)

m u := ⟨v ∈ Mon(z) | v ≻ drl u⟩ and I u := I + m u , m = ⟨z⟩, as well as next(u) = min {v ∈ Mon(z) | v ≻ drl u}. Suppose that G ⊂ K[z] m [x]. Then, each coefficient of a given g ∈ G has a well-defined image in K[z]/m u for all u ∈ Mon(z). More concretely, write g = ∑ w∈Mon(x)
p w q w w with q w (0) ̸ = 0 for all w ∈ Mon(x) whenever p w ̸ = 0. Then, each p w /q w can be written as a formal power series

p w q w = ∑ v∈Mon(z) r w,v v
and for a monomial u ∈ Mon(z) we define

g u = g mod m u = ∑ w∈Mon(x) ∑ v∈Mon(z) v⪯ drl u r w,v vw,
and the set G u := {g u | g ∈ G}. Our algorithms will work under the assumption that all elements in G have such a well-defined image modulo m u and that, given this image of G modulo m u , we can lift it uniquely to its image modulo m next(u) . In this section we show that both required assumptions are generically satisfied, more precisely that they are satisfied if the origin in the zspace lies outside of a certain hypersurface. Our way of showing this uses Grothendieck's Generic Freeness Lemma (Eisenbud, 1995, Theorem 14.4). We restate it here in a weaker form adapted to our situation:

Theorem 2.8 (Generic Freeness). There exists an element

0 ̸ = f ∈ K[z] such that (K[z, x]/I)[f -1] is a free K[z][f -1]-module.
Both of the requirements of our algorithms are now enclosed by the following definition:

Definition 2.9. Let f be as in Theorem 2.8. If f / ∈ m, then m is called a point of good specialization.

Remark 2.1. If m is not a point of good specialization, or if it is not known a priori that it is, then it can be ensured with probability 1 after a random change of coordinates in the variables z = (z 1 , . . . , z r) (if K is infinite) or with high probability (if K is finite of sufficiently large size) by Theorem 2.8. In particular, if the change of coordinates z i ← z ia i , for 1 ≤ i ≤ r, suits, then m ′ := ⟨z 1a 1 , . . . , z ra r ⟩ was a point of good specialization. Equivalently, instead of performing this change of coordinates, one can use the algorithm with m ′ -adic expansions.

Theorem 2.10. Suppose that m is a point of good specialization. Then, 1. For each u ∈ Mon(z) and z i ∈ z multiplication by z i induces an isomorphism of K-vector spaces:

uK[z, x]/I u → z i uK[z, x]/I z i u . 2. We have G ⊂ K[z] m [x],
in particular the sets G u , u ∈ Mon(z), are well-defined.

3.

Let ≺ 1 be the block order eliminating x with ≺ 1 =≺ drl on Mon(z). Let M u be the (unique) minimal generating set of m u . Then, the reduced ≺ 1 -Gröbner basis of I u is precisely G u ∪ M u .

Proof. We introduce some notation: Write A := K[z] m , K = K(z) for the field of fractions of A and F := A[x]/I. Note that m being a point of good specialization implies that F is a free R-module, necessarily of finite nonzero rank, since I gen is zero-dimensional.

Proof of (1): It is first easy to check that now multiplication by z i induces a surjective, well-defined map of finite-dimensional K-vector spaces

uK[z, x]/I u → z i uK[z, x]/I z i u .
Note that the structure of V u := uK[z, x]/I u as a vector space is induced by the canonical Amodule structure of F, because mV u = 0 and therefore (V u) m = V u . Hence, we have

V u ∼ = (uA/m u) r ∼ = K r .
Therefore multiplication by z i induces an epimorphism between vector spaces of the same dimension, so it must be an isomorphism.

Proof of (2): Let u ∈ L := lm ≺ (I + m) ∩ Mon(x) and let S := S I+m,≺ . Now, modulo I + m, we have a relation of the form

u = ∑ s∈S α s s, α s ∈ K.
By Nakayama's lemma, see Eisenbud, 1995, Corollary 4.8, this gives a relation

u = ∑ s∈S r s s, r s ∈ A (1)
in F and hence also in

F ⊗ A K = K(z)[x]/I gen . This implies that L ⊂ lm ≺ 2 (I gen). But since F is free, we have dim K K(z)[x]/I gen = dim K K[z, x]/(I + m),
which implies L = lm ≺ 2 (I gen). This shows that G is given by all relations of the form (1) and hence lies in A[x] as claimed.

Proof of (3): Let S := S I gen ,≺ . It suffices to show that

S I u ,≺ 1 = S u := v⪯ drl u vS.
Note that the set S u certainly generates K[z, x]/(I + m u) as a K-vector space. As K[z, x]/(I + m u) ∼ = F/m u , and since F is free, a K-dimension count shows that the set S u is K-linearly inde- pendent. Now, let s ∈ S be ≺-minimal such that there exists some v ∈ Mon(z) with vs ∈ lm ≺ 1 (I u).

The ≺ 1 -normal form of vs w.r.t. I u has support in v⪯ drl u {vt | t ≺ s}, contradicting the linear independence of S u and finishing the proof.

We will want to perform finite-dimensional linear algebra akin to the FGLM algorithm in certain staircases of the ideals I u . This will rely on the fact that I 1 is zero-dimensional.

Corollary 2.11. Suppose m is a point of good specialization. Then the ideal I 1 is zero-dimensional. Consequently, for each u ∈ Mon(z), the ideal I u is zero-dimensional.

Proof. This follows immediately from the fact that G specializes to a Gröbner basis of J := IK[z, x]/m. Indeed, this implies that that S J,≺ 2 = S I gen ,≺ 2 is finite and so K[x]/J is a finitedimensional K-vector space.

The Main Algorithm

In this section we give the main algorithm of this paper. We reuse the notation from the last section, in particular let again I u := I + m u for a monomial u ∈ Mon(z). Let G be the reduced Gröbner basis of the zero-dimensional ideal I gen w.r.t. a monomial order ≺ 2 . Suppose that m is a point of good specialization and that we can compute, with some black box, the reduced ≺ 1 -Gröbner basis H u of I u for any u ∈ Mon(z) where ≺ 1 is another monomial order. Our goal is to compute the set G.

Remark 3.1. Note that we have so far required that the partition of the variables of K[z, x] is given.

It can be computationally determined: From any Gröbner basis of I we can determine z as a maximally independent set of I w.r.t ≺ 1 and let x be the set of remaining variables, see Becker and Weispfenning, 1993, Definition 9.22. Then, as in the last section, the map

K[z] → K[z,
x]/I is injective with generically finite fiber, see Becker and Weispfenning, 1993, Corollary 9.28.

Recall that m 1 = m. We start by computing the ≺ 1 -Gröbner basis H 1 of I 1 = I + m. Then, we run the FGLM algorithm [START_REF] Faugère | Efficient Computation of Zero-dimensional Gröbner Bases by Change of Ordering[END_REF] with H 1 to obtain the reduced ≺ 2 -Gröbner basis of I 1 . A given g ∈ G may be written as

g = ∑ w∈Mon(x)
p w q w w, with p w /q w ∈ K[z] m . By Theorem 2.10 the reduced ≺ 2 -Gröbner basis of I 1 , considered as an ideal in K[x], will now consist of

G 1 :=    ∑ w∈Mon(x) p w (0) q w (0) w = g mod m g := ∑ w∈Mon(x) p w q w w ∈ G    .
Note again that each coefficient of a given g ∈ G has a well-defined image in K[z]/m u for all u ∈ Mon(z). For a monomial u ∈ Mon(z), let v := next(u). Starting with u = 1 and g 1 , we will lift g u to g v by performing linear algebra in the finite-dimensional K-vector space vK[z, x]/I v , using the ≺ 1 -Gröbner basis H v . This will rely on the second statement of Theorem 2.10.

Remark 3.2. In this section we treat the computation of the required Gröbner bases H u , u ∈ Mon(z) as a black box. We recall in Section 4 that these sets may be obtained free of arithmetic operations from an ≺ 1 -Gröbner basis of I when ≺ 1 =≺ drl and I is a generic complete intersection. In Section 5, we sketch a method to compute them efficiently when ≺ 1 is a suitable block order, without any extra assumption on I.

This lifting step is now given by Algorithm 1.

Algorithm 1 The Lifting Algorithm

Input A monomial u ∈ Mon(z), g u ∈ G u , v := next(u), the reduced Gröbner basis H v of I v w.r.t. ≺ 1 , the set S ≺ 2 . Output The corresponding element g v ∈ G v . 1 function lift(g u , H v , S ≺ 2) 2 c ← c I v ,≺ 1 (g u) [computed via H v] 3 if c = 0 then return g u 4 compute c = ∑ v∈S ≺ 2 α v c I v ,≺ 1 (uv) [computed via H v] 5 return g u -∑ v∈S ≺ 2 α v uv
Theorem 3.1. Algorithm 1 terminates and is correct in that it satisfies its output specification.

Proof. We use the notation from the pseudocode of the algorithm.

The termination of the algorithm is clear.

For the correctness of the algorithm, note that the vectors c I v ,≺ 1 (uv) in ?? 4 are linearly independent thanks to the second item of Theorem 2.10. Thus, there exists at most one choice of coefficients

α v , v ∈ S ≺ 2 such that c = ∑ v∈S ≺ 2 α v c I v ,≺ 1 (uv)
. Furthermore, the element g ∈ G corresponding to g u provides such a choice of coefficients, implying that there exists at least one solution to this linear system. This proves the correctness.

Denote again G u := {g u | g ∈ G}. The above algorithm is only able to compute the set G u for a monomial u ∈ Mon(z), i.e. it "approximates" the set G up to order u. A natural question is then how to extract the actual set G out of G u . For this, we may use the classical technique of Padé approximants. Having computed the set G u , we have computed the element g u as

g u = ∑ w∈Mon(x) ∑ v⪯ drl u r w,v vw.
Now we have for the coefficient p w /q w of w in g

p w -q w ∑ v⪯ drl u r w,v v = 0 mod m u , (2)
which determines a set of linear equations in the unknown coefficients of p w and q w . Let

d := deg u. Suppose that deg next(u) = d + 1, so that m u = m d+1 . Fix
g cand = g v mod m v .
Based on this, we now obtain Algorithm 2 for computing the set G probabilistically. We state this algorithm in an informal way. In ?? 7 by "lifting G lift to degree d" we mean that we compute the set G u where u is the ≺ drl -maximal monomial of degree d. Clearly, by Theorem 3.1 and Lemma 3.2, this algorithm returns the correct result if the computed Padé approximants are of sufficiently large degree.

Remark 3.3. Note that Algorithm 1 works also if we replace v by any monomial larger than u:

In this case we just have to write c as a linear combination of all the vectors c I v ,≺ 1 (uv ′) where u ≺ drl v ′ ⪯ drl v.

Complexity Estimates

In this section, we analyze the arithmetic complexity of a version of our algorithm more akin to the original FGLM algorithm as presented in Faugère, Gianni, Lazard, and Mora, 1993. More precisely, suppose that ≺ 1 is a block order eliminating x. We will reuse the notation from the last section. Here, we analyze the number of arithmetic operations in K required to obtain the desired ≺ 2 -Gröbner basis G using the same strategy as in Algorithm 2, but with a more optimized lifting step.

Our cost analysis will require measuring the cost of performing certain linear algebra operations on structured matrices. The matrices that will appear in the analysis are block-Toeplitz:

Algorithm 2 Computing the generic fiber Input A generating set F of I, a monomial order ≺ 1 , a monomial order ≺ 2 .

Output A guess for the set G.

1 function genfglm(F, ≺ 1 , ≺ 2) 2 H ← reduced ≺ 1 -Gröbner basis of I 1 [using F] 3 G lift , S ≺ 2 ← fglm(H, ≺ 2) 4 G result ← ∅ 5 d ← 2 6 while G lift ̸ = ∅ 7 G lift ← lift G lift to
K D×D is called block-Toeplitz of type (k, D) if M pq = M p ′ q ′ whenever p -q = p ′ -q ′ . We say that M is Toeplitz when D = 1.
If M is block-Toeplitz of type (k, D) then we will need the arithmetic complexity of computing a matrix vector product Mv, v ∈ K kD , and of inverting M. For this we need the concept of displacement rank of a matrix, see e.g. Bostan, Jeannerod, Mouilleron, and Schost, 2017:

Definition 4.2. Let Z ∈ K n×n be the matrix defined by

Z := (δ i-1,j) 1≤i,j≤n ,
where δ i-1,j is the Kronecker delta and let Z T be the transpose of Z. The displacement rank of a matrix M ∈ K n×n is α(M) := rank(M -ZMZ T).

Note that the displacement rank of a Toeplitz matrix is upper bounded by 2. The concept of displacement rank can be used as a general method to utilize "Toeplitz-like" structures in algorithmic linear algebra. In this vain, we have Proposition 4.3. Let M be block-Toeplitz of type (k, D) and let v ∈ K kD . Then 1. Mv can be computed in O kD 2 arithmetic operations in K;

2. M can be inverted in O (kD ω).

Proof. For any matrix M ∈ K n×n , according to Bostan, Jeannerod, Mouilleron, and Schost, 2017, a matrix-vector product Mv can be computed in time O (α(M)n) and M can be inverted in time O α(M) ω-1 n . Using a series of rows and column swaps, more precisely sending row pD + i to ik + p (resp. column qD + j to jk + q), we may transform a block-Toeplitz matrix M of type (k, D) into a matrix N = (N ij) 0≤i,j<D ∈ K kD×kD where each N ij lies in K k×k and is Toeplitz. Now, N -ZNZ T has D dense columns and (k -1)D columns with potentially nonzero coefficients in positions iD for all i. Only D of these latter columns can be linearly independent so that α(M) ≤ 2D, proving both claims.

Our cost analysis follows closely the one of the original FGLM algorithm. To this end, we give the following definition:

Definition 4.4 (Multiplication Tensor). Let I be a zero-dimensional ideal in a polynomial ring K[x] and let ≺ be a monomial order. Let S := S I,≺ . The multiplication tensor of I w.r.t. ≺ is defined as the 3-tensor

M(I, ≺) = (c I,≺ (x i u)) x i ∈x,u∈S ,
where the vectors of coefficients are in the basis S.

It turns out that computing these multiplication tensors dominates the cost of the original FGLM algorithm and similarly it dominates the cost of our algorithm. To simplify the notation, we assume from here on out that the set z = {z} consists of a single variable. It will be clear from the proofs that our theorem translates accordingly to the more general setting where z consists of several variables. We denote by D the degree of I gen , i.e. the K(z)-dimension of K(z)[x]/I gen . Note that this degree is upper-bounded by that of I. We also denote I k := I z k-1 and similarly H k and G k . In our assumed setting, we obtain the following statement for computing multiplication tensors: Proof. Let S := S I 1 ,≺ 1 . Then, by the third item of Theorem 2.10, since ≺ 1 eliminates x, for any ℓ ∈ N,

S I ℓ ,≺ 1 = ℓ-1 i=0 z i S.
Let us now describe the structure of the multiplication matrices of I 2k , i.e. the matrices

M(I 2k , ≺ 1) y := (c I 2k ,≺ 1 (yu)) u∈S I 2k ,≺ 1 , for y ∈ x ∪ z.
The matrix (c

I 2k ,≺ 1 (zu)) u∈S I 2k ,≺ 1 of the multiplication by z is      S zS . . . z 2k-1 S S zS Id z 2k-1 S Id     
and so is extracted without any arithmetic operations. Further, denote S 0 := k-1 i=0 z i S and S 1 := 2k-1 i=k z i S = z k S 0 . Now, for x i ∈ x the multiplication matrix M x i by x i is determined by two matrices

M x i ,0 , M x i ,1 ∈ K D×D as follows M x i = S 0 S 1 S 0 M x i ,0 S 1 M x i ,1 M x i ,0 ,
where each M x i ,i is easily seen to be block-Toeplitz of type (k, D) and M x i ,0 is known as part of the ≺ 1 -multiplication tensor of I k . Thanks to the block-Toeplitz structure, it now suffices to compute the columns of M x i ,1 coming from the normal forms of the set xS, which is of cardinality at most cD. Now, we proceed as follows: Sort the set xS by the monomial order ≺ 1 . Choose u ∈ xS and suppose that the normal forms of all elements less than u in xS are known. Two easy cases can arise:

1. u ∈ S, in which case the normal form of u is computed without any arithmetic operations;

2. u ∈ lm(H 2k), in which case the normal form of u is computed without any arithmetic operations, it is just given by the tail of the corresponding element in H 2k .

Lastly, it can happen that u ∈ lm(I 2k) but u / ∈ lm(H 2k). In this case there exists v ∈ xS and x j ∈ x with u = x j v. By assumption the normal form of v is known and so is the normal form of each element x j b with b ∈ S and b ≺ 1 v. Since M x j has the same structure as M x i , we can now compute the required column of M x i ,1 as the sum of two matrix-vector products where each of the two matrices is block-Toeplitz of type (k, D). This is done in time O kD 2 thanks to Proposition 4.3, concluding the proof, since xS has cardinality at most cD. Now, we can estimate the complexity of lifting the set G k : Corollary 4.6. Let k ∈ N. Let c be the cardinality of x. Suppose that we are given the set H 2k , the multiplication tensor of I k w.r.t. ≺ 1 , the ≺ 1 -normal forms of the ≺ 2 -staircase of I 1 w.r.t. I k and the ≺ 1normal forms of the minimal ≺ 2 -leading monomials of I 0 w.r.t. I k . Then G 2k is computed in arithmetic complexity O kcD 3 . Proof. By Theorem 4.5, the ≺ 1 -multiplication tensor of I 2k can be computed in arithmetic complexity O kcD 3 . Having computed this tensor, we proceed as follows: let S be the ≺ 1 -staircase of I 1 = I + ⟨z⟩, T be the ≺ 2 -staircase of I 1 and L be the set of minimal ≺ 2 -leading terms of I 1 , with z removed. Denoting S 0 and S 1 as in the proof of the preceding theorem, and similarly T 0 and T 1 , now we first compute the ≺ 1 -normal forms of each element in T ∪ L w.r.t. I 2k , this will yield a tableau of the form

C := T 0 T 1 L S 0 C 0 D 0 S 1 C 1 C 0 D 1 .
Note that by assumption the matrix C 0 is already known by the ≺ 1 -normal forms of T w.r.t. I 1 and the matrix D 0 is given by the ≺ 1 -normal forms of L w.r.t. I 1 . Note also that C 0 and C 1 are again block-Toeplitz of type (k, D).

The required matrices C 1 and D 1 can be computed by using the ≺ 1 -multiplication tensor of I 2k , enumerating the monomials in Mon(x) in order of ≺ 2 and computing their normal forms via matrix-vector multiplications similar to the proof of the preceding theorem. Combining this with the block-Toeplitz structure of the multiplication matrices of I 2k w.r.t. ≺ 1 , this can again be done in time O kcD 3 . Finally, to compute the set G 2k , we have to write each column in C corresponding to an element in L as a K-linear combination of the columns corresponding to T 0 ∪ T 1 , i.e. by solving the linear system

C 0 C 1 C 0 X 0 X 2 = L 0 L 1 ,
where X 0 is known via G k . Hence this requires

• inverting the submatrix C 0 which, by Proposition 4.3, is done in time O (kD ω);

• computing the product C -1 0 D 2 .

Note that C -1 0 has displacement rank bounded above by 2D + 2, see Bostan, Chyzak, Giusti, Lebreton, Lecerf, Salvy, and Schost, 2017, Proposition 10.10 and Theorem 10.11, and that the cardinality of L is upper bounded by cD. Thus, for the second step above, we have to compute at most cD matrix-vector products of the form C -1 0 v. Again, thanks to Proposition 4.3, this is done in time O kcD 3 . This finally yields the desired complexity.

The following corollary gives the complexity of computing successively the sets G 2 i from H 2 i until i is large enough to recover G, like in Algorithm 2.

Corollary 4.7. Let δ -1 be the maximum degree of all numerators and denominators of all coefficients of G. Further, let ℓ be minimal such that 2 ℓ ≥ 2δ. Given H 2 ℓ , computing successively the sets G 2 i , for i = 1, . . . , ℓ, can be done in arithmetic complexity O 2 ℓ cD 3 = O δcD 3 . compute the Gröbner basis H 1 over K[z]/m ∼ = K with F 4 , we can "remember" the computations that where performed and repeat the exact same computations over K[z]/m u for any choice of u ∈ Mon(z) to obtain the set H u . This is formalized by the the concept of tracers, introduced by Traverso, 1989 for the purpose of multi-modular Gröbner basis computations.

Tracers

We start by recalling the definition of Macaulay matrices.

Definition 5.1. Let F = { f 1 , . . . , f r } be a finite set of polynomials in K[x]. Let U 1 , . . . , U r be finite sets of monomials in Mon(x) and denote U := {U 1 , . . . , U r }. Write U i = {u i1 , . . . , u ir i }. The Macaulay matrix M F,U determined by F and U is the matrix with rows indexed by r i=1 r i j=1 u ij f i and columns indexed by the union of all supports of u ij f i whose entry in row u ij f i and column v is the coefficient of v in u ij f i .

The previously mentioned F 4 algorithm, introduced in Faugère, 1999, uses echelonization of Macaulay matrices to compute Gröbner bases. In this algorithm, the columns in each appearing Macaulay matrix are sorted descendingly by the monomial order for which one is computing a Gröbner basis and swapping columns is not allowed. During the computation, the rows of a given Macaulay matrix whose leading term changes during the echelonization are added to the Gröbner basis in spe. We can store a run of the F 4 algorithm using the following data structure: Definition 5.2. A tracer T for a system of polynomials f 1 , . . . , f r consists in a finite sequence of finite sets of integers I 1 , . . . , I s together with a finite sequence of finite sets of monomials U 1 , . . . , U s .

Given such a tracer T, we can try to follow it to recover a Gröbner basis of ⟨ f 1 , . . . , f r ⟩ using Algorithm 3.

Algorithm 3 Following a Tracer

Input A system of polynomials F := { f 1 , . . . , f r }, a tracer T for F, a monomial order ≺.

Output A finite set of polynomials G.

1 function trace(F, T, ≺) 2 G ← F 3 for k from 1 up to s 4 G k ← {G[i] | i ∈ I k } 5 M k ← M G k ,U k [

Lifting of LU-factorization

To simplify the presentation we again assume, as in the proofs in Section 4, that z = {z} is a single variable. The method proposed here will however immediately transport to the setting where z consists in several variables. Let us denote R := K[z] and Q := K(z). In this section, we want to lift an echelonization of a matrix, or in other words a LU-like decomposition (say for instance PLUQ, PLEQ, . . .), from the field R/m to R/m k+1 for some k ≥ 0. As previously, we assume that the steps of the computation of this decomposition over R/m are exactly those over Q projected onto R/m, in particular this implies that no nonzero entry p/q ∈ Q with p, q ∈ R is such that p / ∈ m and q ∈ m. Again to simplify the presentation, we restrict ourselves to an exact LU-factorization of a full-rank matrix. Let A ∈ Q n×m be a matrix with LU-factorization A = LU with L ∈ Q n×n and U ∈ Q n×m . We assume that A, L and U have coefficients in R m . In that case we have matrices A k , L k and U k with coefficients in R/m k+1 and

A = A k mod m k+1 , L = L k mod m k+1 , U = U k mod m k+1 .
We also have

A k = L k U k mod m k+1 .
Theorem 5.4. Given A, L -1 0 and L k , U k there is an algorithm which computes L k+1 and U k+1 in O mn 2 arithmetic operations in K.

Proof. Recall that L k is invertible and that L -1 k = L -1 0 mod m. Thus,

A = L k U k + f k+1 δ A mod m k+2 = L k U k + f k+1 L -1 k δ A mod m k+2 = L k U k + f k+1 L -1 0 δ A mod m k+2 ,
and we define B := U k + f k+1 L -1 0 δ A . As L -1 0 mod m has already been computed, L -1 0 δ A is computed in O mn 2 arithmetic operations in K. It now suffices to prove that we can compute an LU-factorization of B over R/m k+2 in O mn 2 operations in K. Note that we can write

B = U 0 + f U ′ 1 + • • • + f k U ′ k + f k+1 V, where U ′ i = 1 f i (U i -U i-1
) is upper triangular with coefficients in R/m, for all 1 ≤ i ≤ k, and V = 1 f k+1 (B -U k) ∈ K n×n . Echelonizing B comes down to reducing the rows of V with the rows of B above. In particular, since b i,1 = f k+1 v i,1 for i > 1, it can be reduced using the pivot b 1,1 , which is invertible in R/m k+1 by assumption. Thus, the row operation

b i,j ← b i,j -f k+1 b i,1 b 1,1 b 1,j mod m k+2 = f k+1 (v i,j - v i,1 u ′ 0,1,1 u ′ 0,1,j mod m)
consists only in performing row operations on the layer of valuation k + 1 in B.

In other words, if

L ′ =      1 -v 2,1 /u ′ 0,1,1 f k+1 1 -v n,1 /u ′ 0,1,1 f k+1 1      then L ′ B can be written L ′ B = U ′ 0 + f U ′ 1 + • • • + f k U ′ k + f k+1 V ′ where we have v ′
i,1 = 0 for all i ≥ 2. Proceeding with further row operations like this, we thus triangularize B. This clearly has the same complexity as echelonizing a matrix in K n×m .

Remark 5.1. Theorem 5.4 and its proof are also valid for R = Z, Q = Q, m = p a good prime and K = F p . We refer to [START_REF] Arnold | Modular algorithms for computing Gröbner bases[END_REF][START_REF] Vaccon | Matrix-f5 algorithms over finite-precision complete discrete valuation fields[END_REF][START_REF] Vaccon | Matrix-f5 algorithms over finite-precision complete discrete valuation fields[END_REF][START_REF] Winkler | A p-adic approach to the computation of Gröbner bases[END_REF] where lifting Gröbner bases over p-adic numbers is performed and e.g. to [START_REF] Dixon | Exact solution of linear equations using p-adic expansions[END_REF][START_REF] Haramoto | A p-adic algorithm for computing the inverse of integer matrices[END_REF][START_REF] Pan | Nearly optimal solution of rational linear systems of equations with symbolic lifting and numerical initialization[END_REF] for methods in p-adic linear algebra.

Benchmarks

In this section, we provide benchmarks for a proof-of-concept implementation of Algorithm 2. We first give a brief description thereof. This implementation is written using the computer algebra system OSCAR (The OSCAR team, 2022) which itself is written in Julia [START_REF] Bezanson | Julia: A fresh approach to numerical computing[END_REF]. All required Gröbner basis computations use the Gröbner basis library Groebner.jl, also written in Julia, see Demin and Gowda, 2023. The main step in Algorithm 2, Algorithm 1, was implemented naively, close to the provided pseudocode, i.e. without the use of multiplication tensors to compute normal forms as described in Section 4. For the below benchmarks, the following computations were performed, keeping the notation from the last sections:

1. Compute a ≺ drl -Gröbner basis for the polynomial ideal I in question.

2. Use this ≺ drl -Gröbner basis to compute a maximally independent set of variables modulo I, this gives us the partition of the variables into the subsets x and z as above.

3. If z = {z 1 , . . . , z n-c }, choose random a 1 , . . . , a n-c ∈ K and make the coordinate substitution z i ← z ia i , as in Remark 2.1.

4.

Choose ≺ 1 as the block order eliminating x with ≺ drl on both blocks of variables.

5. If x = {x 1 , . . . , x c }, choose ≺ 2 as the block order on Mon(x) eliminating {x 1 , . . . , x c-1 } with ≺ drl on this block.

6. Then the target Gröbner basis G contains a single polynomial g x c in the univariate polynomial ring K(z)[x c].

7. Use Algorithm 2 to compute g x c (rather than the full set G).

In a certain generic situation (more precisely, when the variable x c is "generic"), the computed polynomial g x c can be used for a primary decomposition of I, see e.g. Becker and Weispfenning, 1993, Sections 8.6 and 8.7, this motivates our choice of ≺ 2 . We never directly computed the reduced Gröbner basis H of I w.r.t. ≺ 1 , but only the reduced ≺ 1 -Gröbner basis H u of the ideals I + m u . When doing this, we found that the computations were better-behaved when choosing ≺ 1 as above rather than ≺ 1 =≺ drl . All computations were performed with K = Z/pZ where p was a randomly chosen prime of 16 bits. We compared the time this computation took with the computation of the set G using the C library msolve [START_REF] Berthomieu | msolve: A Library for Solving Polynomial Systems[END_REF] (which just runs the F4 algorithm with ≺ 2). These timings are given in Table 1 in the Appendix. In this table, "OOM" means that the computation used more than the 100 GB memory limit that we set. The polynomial systems used for these benchmarks are:

• ED(3,3) encodes the parametric euclidean distance problem for a hypersurface of degree 3 in 3 variables, see Draisma, Horobeţ, Ottaviani, Sturmfels, and Thomas, 2016;

• R1, R2, R3 come from a problem in Robotics, see García Fontán, Nayak, Briot, and Safey El Din, 2022;

• M2 and M3 are certain jacobian ideals of single multivariate polynomials which define singular hypersurfaces;

Theorem 4. 5 .

 5 Let k ∈ N. Let c be the cardinality of x. Suppose that we are given the set H 2k and the multiplication tensor of I k w.r.t. ≺ 1 . Then the multiplication tensor of I 2k w.r.t. ≺ 1 is computed in arithmetic complexity O kcD 3 .

 d 1 and d 2 with d 1 + d 2 = d and let n be the cardinality of the set z. If we impose that deg p w ≤ d 1 and deg q w ≤ d 2 then the linear system (2) has a finite set of unknowns and equations. Let us say that any solution to this linear system of equations is a Padé approximant of order d of λ

w := ∑ deg v<d+1 r w,v v. If d 1 and d 2 are large enough then any Padé approximant of order d of λ w is equal to p w /q w , see e.g.

[START_REF] Guillaume | Multivariate Padé approximation[END_REF]

, Proposition 2.1:

Lemma 3.2. Let p/q be a Padé approximant of order d = d 1 + d 2 of λ w . If d 1 ≥ deg p w and d 2 ≥ deg q w then p/q = p w /q w .

By solving this linear system we obtain an algorithm pade(g u , d 1 , d 2) which computes a candidate g cand ∈ K(z)[x] whose coefficients are Padé approximants of the coefficients of g u of order d 1 + d 2 regarded as a polynomial in the variables x. Let us say that g u has stable Padé approximation if for v := next(u) we have

echelonization of M k 7 add all rows with changed leading term to G

 with decreasing col. labels w.r.t. ≺] A tracer T for F := { f 1 , . . . , f r } and ≺ is called good if running Algorithm 3 is well-defined (i.e. there are no out-of-bounds accesses during its run) and if the output G of trace(F, T, ≺) is a ≺-Gröbner basis of ⟨F⟩. back to our setting, as in the beginning of this section, Let us assume that the origin in the z-space lies outside of a suitably chosen Zariski-closed subset. Let us assume further that T is a good tracer for ≺ 1 and the image in (K[z]/m)[x] ≃ K[x] of a given generating set of I. Then, applying T to ≺ 1 and the image in K[z]/m u of the same generating set, for any u ∈ Mon(z), yields the set H u . Going further, if we have computed H u using a good tracer and Algorithm 2 requires us to compute H v for some v ∈ Mon(z) with u ≺ drl v, then we can obtain the needed echelonizations

	6 k ← 8 M ′ return G
	Definition 5.3. Going

of the Macaulay matrices over K[z]/m v by lifting the ones previously computed over K[z]/m u . Let us sketch how to do this in the next subsection.

Acknowledgments

The authors are supported by the joint ANR-FWF ANR-19-CE48-0015 ECARP and ANR-22-CE91-0007 EAGLES projects, ANR-19-CE40-0018 De Rerum Natura project, DFG Sonderforschungsbereich TRR 195 project and grants DIMRFSI 2021-02-C21/1131 of the Paris Île-de-France Region, FA8665-20-1-7029 of the EOARD-AFOSR, and Forschungsinitiative Rheinland-Pfalz. We thank Ch. Eder, P. Lairez, V. Neiger and M. Safey El Din for fruitful discussions.

Proof. Note that the sets H 2 i , for i = 1, . . . , ℓ, are obtained from H 2 ℓ free of arithmetic opera- tions. By Corollary 4.6, the computation of G 2 i requires O 2 i CD 3 operations. Summing these complexities for i from 1 to ℓ yields the desired complexity.

Note that going up to degree 2 ℓ suffices to recover the coefficients of G by Padé approximation thanks to Lemma 3.2.

Remark 4.1. In a follow-up paper, we plan to study the complexity of our algorithm using variants of FGLM, such as [START_REF] Berthomieu | Faster Change of Order Algorithm for Gröbner Bases under Shape and Stability Assumptions[END_REF][START_REF] Faugère | Sub-cubic change of ordering for Gröbner basis: A probabilistic approach[END_REF][START_REF] Faugère | Sparse FGLM algorithms[END_REF]Neiger and Schost, 2020. We close this section by pointing out a well-known case in which ≺ 1 is the ≺ drl order, the required Gröbner bases H u of I + m u are extracted without any arithmetic operations of the ≺ drl -Gröbner basis H of I and the ≺ drl -staircase of I + m u behaves the same as in the above case when ≺ 1 is a block order. We start with Definition 4.8. Let y be an extra variable and let I hom ⊂ K[z, x, y] be the homogenization of I w.r.t y. Suppose that I hom is Cohen-Macaulay. We say that I is in projective generic position if {y} ∪ z is a maximal homogeneous regular sequence in K[z, x, y]/I hom .

Supposing that I hom is Cohen-Macaulay we now have the following statement, see e.g. [START_REF] Lejeune-Jalabert | Effectivité de calculs polynomiaux. Cours de D.E.A. Laboratoire de Mathématiques associé[END_REF]. This statement has frequently been used in the complexity analysis of Gröbner basis algorithms. Lemma 4.9. Let I be in projective generic position with I hom Cohen-Macaulay. Let H be the reduced ≺ drl -Gröbner basis of I (with the variables in z considered smaller as those in x). Then lm(H) ⊂ Mon(x).

In particular, if S is the ≺ drl -staircase of I 1 := I + m, then the ⪯ drl -staircase of I + m u is given by S u := v⪯ drl u vS.

Proof. Note that the reduced ≺ drl -Gröbner basis of I gen is precisely given by the homogenization of H, with the variable y considered the smallest. All statements made in this lemma now follow easily from Eisenbud, 1995, Theorem 15.13. This implies that when I is such that I hom is Cohen-Macaulay and is in projective generic position then we can replace ≺ 1 with ≺ drl and H u with H in the statements of Theorem 4.5 and Corollary 4.6. Now we are ready to prove:

Proof of Theorem 1.1. The genericity assumption on f 1 , . . . , f c implies that they form a Cohen-Macaulay ideal in projective generic position and that the ideal has degree D = d 1 • • • d c . Thus, Algorithm 2 can be called on { f 1 , . . . , f c }, ≺ drl and ≺ lex in order to compute the reduced ≺ drl -Gröbner basis of I = ⟨ f 1 , . . . , f c ⟩ and then the reduced ≺ 2 -Gröbner basis of IK(z 1 , . . . , z n-c)[x 1 , . . . , x c]. Finally, using Corollaries 4.6 and 4.7, we obtain the desired complexity.

Using Tracers for Gröbner Basis Lifting

Again reusing the notation from Sections 2 and 3, recall that Algorithm 2 requires the ≺ 1 -Gröbner bases H u of the ideals I + m u . In this section, we will show how these Gröbner bases can be computed more optimally when ≺ 1 is a block order on Mon(x ∪ z) eliminating x. Recall that under the additional assumption that m is a point of good specialization, by Theorem 2.10, the reduced ≺ 1 -Gröbner basis of I u is given by H u ∪ M u , where H is the reduced ≺ 1 -Gröbner basis of I gen and M u is the minimal generating set of m u . If, in addition, the origin in the z-space lies outside a suitably chosen Zariski-closed subset in the z-space, then all coefficients that appear when computing H with an algorithm like F 4 lie in K[z] m . This means, conversely, that when we • The "PS", "Sing" and "SOS" systems are all critical loci of certain projections, see Eder, Lairez, Mohr, and Safey El Din, 2023a for a more detailed description;

• The RD(d) systems are randomly generated sequences of 3 polynomials of degree d in 4 variables.

All computations were performed on an Intel Xeon Gold 6244 CPU @ 3.60 GHz with 1.5 TB of memory.

Appendix