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MOISST: Multimodal Optimization of Implicit Scene for
SpatioTemporal calibration

Quentin Herau1,2, Nathan Piasco1, Moussab Bennehar1, Luis Roldão1, Dzmitry Tsishkou1,
Cyrille Migniot3, Pascal Vasseur4 and Cédric Demonceaux2

Abstract— With the recent advances in autonomous driving
and the decreasing cost of LiDARs, the use of multimodal sensor
systems is on the rise. However, in order to make use of the
information provided by a variety of complimentary sensors, it
is necessary to accurately calibrate them. We take advantage of
recent advances in computer graphics and implicit volumetric
scene representation to tackle the problem of multi-sensor
spatial and temporal calibration. Thanks to a new formulation
of the Neural Radiance Field (NeRF) optimization, we are able
to jointly optimize calibration parameters along with scene rep-
resentation based on radiometric and geometric measurements.
Our method enables accurate and robust calibration from data
captured in uncontrolled and unstructured urban environments,
making our solution more scalable than existing calibration
solutions. We demonstrate the accuracy and robustness of our
method in urban scenes typically encountered in autonomous
driving scenarios.

I. INTRODUCTION

Most robotic and intelligent systems rely heavily on
sensory information to achieve various tasks. Moreover,
commonly encountered sensor setups for autonomous driving
consist of multiple sensors acquiring different data modalities
(e.g. cameras, LiDARs, IMUs, GNSS systems, etc.) which
can greatly improve the performance on different tasks such
as mapping [1], localization [2] and perception [3].

However, to correctly exploit and merge the information
provided by all sensors, it is important to represent their data
in a common reference frame. Spatial extrinsic calibration is
the process that determines the relative geometric transforma-
tion between the sensor poses by considering a 6-DoF rigid-
body transformation. Although accurate spatial calibration is
essential in multi-sensor setups, it is often not sufficient due
to time synchronization issues between the different sensors.
Time synchronization is the process that determines the time
offset between the different sensor measurements, in the case
there is no hardware synchronization which would eliminate
any delay.

Current existing methods commonly require the use of
calibration targets placed in the scene to fuse all sensors in a

1 Noah’s Ark, Huawei Paris Research Center,
France. {Quentin.Herau, Nathan.Piasco,
Moussab.Bennehar, Luis.Roldao,
Dzmitry.Tsishkou}@huawei.com

2 ICB UMR CNRS 6303, Université de Bour-
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Fig. 1. Effect of calibration on novel view synthesis: training positions in
red, ground truth positions in green, reference position in blue. The RGB
images (top) and depth maps (middle) are rendered from an implicit neural
3D scene trained from non-calibrated (left) and calibrated with MOISST
(right) sensors.

common frame [4], [5]. This is unpractical in many cases, es-
pecially for dynamic tasks, where the calibration setup must
be redone regularly. Although some papers offer solutions to
bypass this constraint by detecting salient geometric features
(e.g. edges [6], [7], planes [8]) within acquired scenes, such
features might not be present in all kind of environments.

Furthermore, these methods often do not consider the
possible asynchronization of the sensors. The effect of a
wrongly synchronized rig can have a consequential impact on
the performance depending on the task. Moreover, unconsid-
ered time offsets within calibration can strongly degenerate
extrinsic estimation leading to suboptimal results.

Considering all the issues mentioned above, we introduce
our new method called MOISST: Multimodal Optimization
of Implicit Scene for SpatioTemporal calibration. MOISST
is a novel calibration method which leverages an implicit
neural 3D scene representation known as Neural Radiance
Fields (NeRF) [9]. It can be trained with any kind of sensor
providing radiometric or geometric information on a given
3D scene. This representation is by nature the common ref-
erence frame used for the sensor fusion. We take advantage
of the differentiable property of our scene representation
to simultaneously learn the scene’s geometry and colors,
and the poses given to the neural network. Unlike existing
NeRF-based methods of pose regression [10], [11], [12],
we consider the rigid constraint in the multi-sensor rig to
reduce the number of optimized parameters. By using a time-
parameterized differentiable formulation for the main sensor
trajectory, we can also detect and compensate potential time
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offsets between the sensors. To the best of our knowledge,
tackling the problem of multi-sensor spatiotemporal calibra-
tion using implicit representations has not been proposed
before in the literature.

Thanks to our formulation, we are able to propose an
offline targetless solution to spatiotemporal calibration of
multimodal sensors, that is also structureless, as we do not
require specific geometric structures like edges or planes
in the scene for our method. Compared to other methods
and because of the aforementioned characteristics of our
solution, MOISST is especially adapted to perform automatic
re-calibration of a multi-sensor device during the full life-
cycle of the system. MOISST is a simple – it can be run
from acquisition data recorded in any environment – and
inexpensive – it does not require target or external hardware
– calibration solution, which are crucial features for robots
and large scale fleet of autonomous vehicles.

II. RELATED WORK

A. Multimodal extrinsic and temporal calibration

Extrinsic calibration for multimodal sensors is a well
studied subject that can be categorized in two main groups:
target-based and targetless methods.

1) Target-based calibration: Zhang et al. [4] were the
first to introduce the use of a planar checkerboard target for
camera and laser range finder calibration, by using the latter
to determine the checkerboard plane, and the pattern seen
by the camera to calculate its pose. Three pairs of capture
measurements are enough to deduce extrinsic parameters
between both sensors. Geiger et al. [5] propose a solution
to calibrate the sensors with a single capture, by placing
multiple targets in the scene. While these methods provide
satisfactory calibration accuracy, they necessitate the place-
ment of targets in the scene, which might not be available
or practical to place in typical real-world scenarios.

2) Targetless calibration: Targetless methods usually use
the concept of mutual information, by matching correspond-
ing elements obtained through different type of sensors.
This can be edges for visible cameras, depth gradient for
LiDARs [6], [7], or the use of correspondence between image
intensity and surface normals [13]. However, by relying
on specific geometric features, these methods only work
in a well structured scene with noticeable, recognizable
and detectable patterns such as straight lines or edges and
often work only in indoor environments. There is also a
set of deep learning based methods [14], [15], [16], able
to find the transformation between a camera capture and
a LiDAR scan. However, these methods are trained in a
supervised manner, needing a labeled dataset, and are prone
to overfitting, limiting their use to environments reflecting
the training dataset.

Although the previously mentioned methods achieve sat-
isfactory performance given ideal conditions, they suppose a
perfectly time-synchronized set of sensors, which is possible
through specific hardware [17] but is often challenging and
sensor dependant (i.e. most low-cost cameras do not support
such features). There exists some methods tackling temporal

calibration, both target-based [18], or targetless [8], they re-
quire however additional sensors such as calibrated camera-
IMU pair to obtain a precise trajectory. With the methods
proposed by Taylor et al. [19] and Park et al. [20], visual
and LiDAR odometry are used for calculating trajectories for
each sensor and matching them, allowing both spatial and
temporal calibration. Nevertheless, this approach can gener-
ate a progressive drift with the accumulated transformations
between the frames.

Contrary to the previously mentioned methods, MOISST
does not require any targets (i.e. targetless) and determines
both spatial and temporal calibration parameters by only
relying on the poses of a single sensor, avoiding the cumu-
lative errors in the different per-sensor trajectories. At the
same time, we fuse information from all sensors, and thanks
to the use of a dense implicit scene representation, we do
not require specific geometric structure (i.e. structureless).
This approach allows compatibility with a greater variety
of scenes and allows us to scale to almost all real-world
scenarios.

B. Neural 3D scene representation

NeRF [9] is an implicit representation of a 3D scene
primarily used for novel view synthesis. From a set of images
and their corresponding camera poses, the model learns the
3D geometry through differentiable volume rendering. NeRF
provides a continuous representation, resulting in improved
rendering fidelity and compactness compared to classical
explicit scene representations [21]. Beyond the rendering
ability, many recent methods have used these implicit scene
representations for downstream robotics tasks [22], [23],
[24].

NeRF stores all the color and density information of the
scene in a multilayer perceptron (MLP), and allows any
rendering resolution as the representation is continuous. The
model takes as input a 3D coordinate and a direction vector,
outputs a color and density information for this 3D point,
and is trained through a differentiable rendering procedure.
A sinusoidal encoding [25] of the input coordinate maps
the low dimensional 3D position and direction to a higher
dimension representation, allowing the rendering of a highly
detailed scene representation. To speed-up convergence, In-
stant Neural Graphics Primitives (Instant-NGP) [26] was
introduced, allowing much faster convergence with higher
quality rendering. It uses a multi-resolution hash encoding
instead of sinusoidal encoding, considerably reducing the
size of the trained MLP.

The training of NeRF requires mainly RGB images from
cameras, optionally depth information such as point clouds
from LiDARs [27], along with registered poses for each
sensor frame. The final rendering quality is highly dependant
on the precision of these poses, as seen in Fig. 1, where the
result without optimization has incorrect geometry, produces
low quality novel views and is not usable. As an answer to
this limitation, NeRF−− [10] exploits the fully differentiable
structure of NeRF to not only train the NeRF model, but also
to optimize the camera poses. This makes the model robust



to noisy poses, as it is able to optimize both the camera
poses alongside the NeRF model. SCNeRF [11] uses the
first two columns of the rotation matrix to formulate rotations
instead of Rodrigues formula to achieve better convergence,
and BARF [12] improves upon these methods by using low-
to-high frequency release for the input positional encoding,
avoiding local minima during pose optimization.

In our proposal, because we focus on multi-sensor calibra-
tion, we only optimize the extrinsic transformation between
the sensors instead of optimizing each pose of each frame
independently. Indeed, in a rigid sensor setup, sensors are
not allowed to move freely relative to each other. Com-
pared to aforementioned methods, this novel and calibration-
focused formulation reduces the number of parameters to
be optimized and is more robust to outliers thanks to the
rigidity constraint imposed on each pose. The proposed
formulation also allow us to optimize the time offset between
sensors, which is often hard to be achieved within the
same optimization framework and may require additional
information.

III. METHOD

A. Notations and background

1) Notations: We consider a multi-sensor system with S
sensors with r ∈ [1, S] being our reference sensor and each
sensor is either a camera or a LiDAR. We use the following
notations to describe our method:

• {Ni}i∈[1,S] : set of number of frames captured by each
sensor,

• ni, n ∈ [1, Ni]: index of frames captured by sensor i,
• tni ∈ R+: the absolute timestamp of frame ni relative

to the sensor i clock,
• δi ∈ R: the time offset between the reference frame

clock and the sensor i clock,
• wT

i(t) ∈ R4×4: the pose transformation matrix of
sensor i at time t (time relative to sensor i clock) in
the world reference,

• jT
i ∈ R4×4: the extrinsic homogeneous transformation

matrix from sensor i to sensor j.
We aim to calibrate our system according to the reference

sensor. The goal is to obtain the transformation matrices jT
i

and time offsets δi between the sensors to calibrate and the
reference one. We consider that we know the pose of sensor
r in a global frame, which could be easily obtained through
SLAM [28] or Structure-from-Motion [29]. We also consider
its clock as the reference clock, δr = 0. From poses of refer-
ence sensor, wT

r(tnr ), nr ∈ [1, Nr], we build a continuous
trajectory. We do that by interpolating between the existing
poses, and extrapolating outside the defined temporal bounds
by extending the transformations at the beginning and the
end of the sequence. This modeling process is very similar
to what is defined in [20]. For the interpolation functions,
we used spherical linear interpolation (SLERP) [30] for the
rotation, and linear interpolation (LERP) for the translation.
We denote this interpolation function as Tr:

wT
r(t) = Tr(t). (1)

2) Spatiotemporal calibration: Given the spatial extrinsic
calibration and the time offset of the other sensors regarding
our reference sensor, we can compute the pose of sensor i
in a global frame with the formula:

wT
i(tni + δi) = Tr(tni + δi) iT

r. (2)

3) Implicit neural scene representation: An implicit neu-
ral representation models a scene with a neural network
by mapping coordinates as inputs to quantities of interests,
such as color or density, as outputs. By evaluating points
along camera rays and composing their densities and colors
through volumetric rendering, such methods can synthesize
RGB images and depth maps1 from an arbitrary sensor pose.

In order to train said neural network on a specific scene,
it is necessary to have a training set with sensor information
and a pose associated. This information may be an RGB
image in the case of visible camera, or a point cloud in
the case of a LiDAR. We aim to find the parameters of the
neural network Θ that minimizes the difference between the
provided information (Ini - image ni of sensor i - or Dni -
depth information ni of sensor i) and the rendered result by
the model defined as:

RI

(
wT

i(tni) | Θ
)
, (3)

RD

(
wT

i(tni) | Θ
)
, (4)

with RI being the model inference and ray composition
function that returns a RGB image prediction of frame ni

for sensor i and RD being equivalent to RI but returning
rays depth instead of colors. By minimising the loss Ltotal

defined as:

Ltotal = λCLC + λDLD, (5)

LC =

S∑
i=1

Ni∑
ni=1

∥∥RI

(
wT

i(tni) | Θ
)
− Ini

∥∥2
2
, (6)

LD =

S∑
i=1

Ni∑
ni=1

∥∥RD

(
wT

i(tni) | Θ
)
−Dni

∥∥2
2
, (7)

with λC , λD weighting hyper-parameters, we can estimate
the optimal network parameters Θ̂ satisfying:

Θ̂ = argmin
Θ

(Ltotal). (8)

As explained by Wang et al. [10], because the scene
representation we use is fully differentiable, it is possible to
optimize the input poses with gradient descent jointly with
the radiance field parameters. The optimization objective
becomes the following:{

Θ̂,wT̂
i
}
= argmin

Θ,wT i

(Ltotal). (9)

1We can estimate depth of ray with alpha composition of distances from
the center of the ray to the sampled points.
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Fig. 2. Overview of MOISST optimization framework. First, the model is initialized with rays generated using rough spatial and temporal calibration
priors in addition to the reference frame trajectory. After each optimization step, the rays are regenerated and fed to the NeRF model. We then render
RGB images and depth maps which are used along the ground truth ones to compute the losses and propagate the gradients. Gradient descent algorithm
is finally used to optimize both NeRF and calibration parameters.

B. MOISST Optimization formulation

In this section, we introduce our novel optimization for-
mulation for multi-sensor system spatiotemporal calibration.
Considering a multi-sensor system such as a robot or an
autonomous car, we know that the poses of each sensor
observation are not independent, as there exists a rigid
transformation between each sensor. Because we know the
trajectory Tr of the reference sensor r, we can express the
absolute pose of each remaining sensor according to sensor
r (see equation 2). Substituting wT

i in equation 3 leads to
the following formulation:

RI (Tr(tni + δi) iT
r | Θ) . (10)

Similar reasoning can be made for depth rendering function
RD. Our new formulation of the rendering functions can be
integrated in the color loss of equation 6:

LC =

S∑
i=1

Ni∑
ni=1

∥RI (Tr(tni + δi) iT
r | Θ)− Ini∥22 . (11)

We can replace the depth rendering function in the same
manner in equation 7. This leads to our new optimization
formulation: {

Θ̂, iT̂
r, δ̂i

}
= argmin

Θ,iT
r,δi

(Ltotal), (12)

with iT̂
r and δ̂i the only parameters to optimize along with

the network weights. As the trajectory Tr is continuous over
time, we can also optimize the time offsets δi. With the
proposed method, we only have to optimize the extrinsic
transformation between all sensors and the reference sensor,
reducing the number of optimized parameters compared to
the full set of frame poses as in equation 9. A summary of
our proposal is shown in Fig. 2.

C. Optimization details

1) Additional losses for geometric consistency: We add
two more losses using image patches to further improve

the geometry of the NeRF model and the proper estimation
of calibration parameters. The first loss is the structural
dissimilarity (DSSIM) LSSIM [31], which minimizes the
difference in local 2D structures between the rendered and
the input image [32]. The second is the depth smoothness
loss LDS , also used by RegNeRF [33], which regularizes the
depth variation in randomly selected patches of the images
to reduce variation of the predicted depth. Our final loss
function becomes as follows:

Ltotal = λCLC +λDLD+λSSIMLSSIM +λDSLDS (13)

with λC , λD, λSSIM , λDS the weight factor for each loss.
2) Network architecture: We use an implicit scene rep-

resentation similar to the nerfacto model of Nerfstudio2

open source framework. It is inspired by the proposal net-
work introduced in MipNeRF 360 [34] with two proposal
radiance fields and one final radiance field that outputs
the color and density for the volumetric rendering. The
proposals are used to samples points along the rays where
the density is high. We use the hash grid introduced in instant
NGP [26] for positional encoding and spherical harmonics
for directional encoding. We found this model to be a good
trade-off between speed and accuracy for our spatiotemporal
calibration problem.

3) Regularization: In BARF [12], the idea of low-to-
high frequency release for the positional encoding allows
smoothness in the scene, which helps the optimization of
the poses to avoid local minima. With our architecture using
the instant-NGP backbone, we do not have a sinusoidal
positional encoding, but a multi-resolution hash grid instead.
In order to mimic BARF, we introduce a weight decay to the
hash encoder for a few epochs, before removing it, allowing
higher frequency information to be learned afterwards. We
also wait a few epochs before applying the depth loss LD, as
we found that initializing the geometry solely through visual
supervision helps the whole system to converge better.

2https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html



TABLE I
SPATIAL CALIBRATION ACCURACY.

Front-right camera LiDAR

Sequence Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)
0 2.3 ± 0.6 0.09 ± 0.02 8.2 ± 1.8 0.21 ± 0.08

1 1.6 ± 0.4 0.09 ± 0.02 7.3 ± 2.1 0.41 ± 0.08

2 1.2 ± 0.6 0.04 ± 0.03 13.5 ± 1.8 0.18 ± 0.10

4 2.2 ± 0.7 0.08 ± 0.06 9.9 ± 2.6 0.30 ± 0.10

4) Spatiotemporal priors: We use spatial calibration pri-
ors to initialize the extrinsic parameters of the sensors. For
the temporal shift, we set the initial estimate to 0 as we found
that our solution was very robust to temporal calibration.
Ablation on the sensibility of our method to initial prior is
provided in section IV-E.

IV. EXPERIMENTS

We evaluate MOISST on the NVS training set from
the recent KITTI-360 dataset [35] which involves difficult
static outdoor scenarios with 2 forward and 2 side facing
cameras and a top-mounted Velodyne HDL-64E LiDAR
sensor. The Lidar scans provided by the KITTI-360 dataset
are undistorted using motion compensation. We report results
on sequences 0, 1, 2 and 4 and consider the front-left camera
as our reference sensor r for all experiments3. We apply ±50
cm translation and ±5◦ rotation offsets on all axes and ±100
ms time offset to simulate spatial and temporal calibration
errors, respectively. The geodesic distance and the classical
L2-norm are used to report the rotation and translation errors
along all axes, and the average error over the last 10 epochs
is reported for fairness. Each training takes between 1 and 4
hours depending on the number of selected sensors.

Implementation details: Given the sparser supervision sig-
nal from re-projected LiDAR depth maps, color and depth
losses are balanced by λC = 1 and λD = 20. Furthermore,
as radiance fields require initial optimization to learn depth
through color supervision, depth loss is applied after two
epochs. Geometric consistency losses are empirically bal-
anced by λSSIM = 0.1 and λDS = 0.0001. We use the
Adam optimizer and train our network during 50 epochs for

3Experiments are not performed on Sequence 3 as it has missing captures
of LiDAR scans.

TABLE II
TEMPORAL CALIBRATION ACCURACY.

Front-right camera LiDAR

Sequence Initial error (ms) Temporal error (ms) Temporal error (ms)

0
100 0.7 ± 0.3 7.6 ± 1.0

200 0.5 ± 0.3 6.2 ± 2.0

1
100 0.2 ± 0.2 1.5 ± 1.1

200 0.5 ± 0.3 1.1 ± 0.5

2
100 1.0 ± 0.3 14.0 ± 1.8

200 1.1 ± 0.3 13.8 ± 1.2

4
100 0.6 ± 0.3 3.4 ± 1.5

200 0.7 ± 0.3 14.2 ± 1.5

all experiments. We start with a learning rate of 1 × 10−2

for the network parameters and 5× 10−5 for the spatial and
temporal parameters, and exponentially decay to a factor of
1 × 10−2 of the original learning rate. We apply a weight
decay of 1× 10−6 on the network parameters, including the
hash grid, then remove the weight decay of the hash grid
after 5 epochs as explained in section III-C.3.

We perform extensive evaluation of our solution upon
three different conditions: in section IV-A with a scenario
where we consider only spatial extrinsic noise, in section IV-
B with only temporal miscalibration and finally in section IV-
C by taking into account both spatial and temporal calibration
parameters.

A. Spatial Calibration

In this section, we only consider a spatial error, and
remove the time offsets. We only optimize spatial parameters.
As we can see in Table I, MOISST estimates calibration
parameters with low rotation error, below 1° in all sequences.
As for translation, we are able to reach around 2 cm of error
on the front-right camera, and between 7 cm and 14 cm for
the LiDAR. The higher error in LiDAR translation calibration
needs to be mitigated because of the relative precision of the
provided ground truth, as explained in section IV-D.2.

B. Temporal Calibration

In this section, we only consider a temporal error, and
remove the initial spatial error. We only optimize temporal
parameters. As shown by the results in Table II, our method
in able to temporally calibrate the front-right camera with
a precision under 1 ms, despite the high initial time offset
of 100 ms or 200 ms, knowing the camera is capturing at
around 10 fps. The LiDAR’s final temporal error is more
variable depending on the scene, reaching around 15 ms at
maximum. As mentioned previously, this higher error might
partially explain by the relative precision of the provided
ground truth (see section IV-D.2).

C. Combined Calibration

In this section, we consider the full initial error as de-
scribed in section IV. We run MOISST on all four cameras
and the LiDAR of the KITTI-360 dataset. We can see in
Table III that our method is able to calibrate the 2 side
cameras, looking in completely different directions than our
reference sensor. The performance is variable depending on
the sequence. For example, the sequence 0 is captured in



Camera pose (real image) LiDAR pose (synthetic image)
KITTI extrinsic Our extrinsic KITTI extrinsic Our extrinsic

Fig. 3. Limitation on KITTI-360 LiDAR ground truth calibration: we compare the alignment of re-projected 3D points from the LiDAR on the front
image using KITTI extrinsic calibration and our optimized extrinsic calibration. We also re-project the 3D points on a synthetic image generated with the
same pose as the LiDAR on the vehicle, in order to avoid parallax effect.

TABLE III
SPATIOTEMPORAL CALIBRATION ACCURACY.

Front-Right Camera Left-side Camera

Sequence Translation error (cm) Rotation error (°) Temporal error (ms) Translation error (cm) Rotation error (°) Temporal error (ms)
0 1.1 ± 0.3 0.08 ± 0.02 0.5 ± 0.3 10.0 ± 0.7 0.41 ± 0.24 0.5 ± 0.2

1 2.0 ± 0.3 0.09 ± 0.02 0.9 ± 0.3 1.6 ± 0.6 0.16 ± 0.03 0.5 ± 0.3

2 1.8 ± 1.0 0.09 ± 0.05 0.5 ± 0.4 3.0 ± 0.6 0.06 ± 0.05 2.1 ± 0.3

4 1.9 ± 0.7 0.05 ± 0.01 1.3 ± 0.6 2.7 ± 0.4 0.05 ± 0.25 0.6 ± 0.5

Right-side Camera LiDAR
0 5.2 ± 0.7 0.12 ± 0.02 1.4 ± 0.4 9.3 ± 2.3 0.50 ± 0.17 0.04 ± 0.02

1 8.4 ± 0.7 0.26 ± 0.02 1.5 ± 0.4 10.6 ± 3.0 0.59 ± 0.08 6.9 ± 2.1

2 3.0 ± 0.9 0.07 ± 0.05 1.5 ± 0.6 15.8 ± 2.9 0.23 ± 0.11 2.3 ± 1.7

4 7.1 ± 0.6 0.08 ± 0.03 6.3 ± 0.8 14.0 ± 2.1 0.37 ± 0.09 22.4 ± 1.8

TABLE IV
CALIBRATION ACCURACY WITH SOLELY ROTATION OR TRANSLATION ERROR.

Front-Right Camera LiDAR

Error type Initial error Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)

Rotation all axes
2° 1.6 ± 0.3 0.09 ± 0.01 9.2 ± 1.9 0.39 ± 0.09

5° 1.7 ± 0.5 0.07 ± 0.05 9.9 ± 2.3 0.4 ± 0.14

10° 127.2 ± 0.6 15.81 ± 0.02 104.4 ± 1.7 17.07 ± 0.13

Translation all axes
20cm 1.8 ± 0.4 0.09 ± 0.02 8.7 ± 1.5 0.46 ± 0.1

50cm 1.7 ± 0.5 0.09 ± 0.02 7.8 ± 1.2 0.5 ± 0.06

100cm 1.7 ± 0.3 0.09 ± 0.02 8.8 ± 2.4 0.43 ± 0.08

a very narrow road, giving the side cameras a small FOV,
reducing the overlap and causing a drop in accuracy.

D. Discussions

1) Comparison with structure-based methods: We wanted
to compare our camera-LiDAR calibration results with the
structure-based method from Yuan et al. [7], but we could
only obtain subpar results with their method on the dataset
we use (we obtained a mean translation error of 60 cm
and 4.08° of rotational error starting from a translation and
rotational error of 50 cm and 5°, respectively, on all axes).
We found that it needed a denser point cloud from the LiDAR
than what was provided in the KITTI-360 dataset in order to
find reliable edge features in the scene. In addition, compared
to our solution, this method is not able to do camera/camera

and LiDAR/LiDAR calibration, or calibrate temporally.

2) Limitation of KITTI-360 LiDAR ground truth calibra-
tion: In our experiments, we found that the extrinsic calibra-
tion between the front camera and the LiDAR provided by
KITTI-360 might be accurate only up to a few centimeters.
To show this, we performed the following experiment: we
re-projected the LiDAR points into the images captured by
the front camera according to: 1) the provided ground truth
calibration, 2) the extrinsic calibration we obtained after
optimizing the spatiotemporal parameters. We also provided
alignment comparison using NeRF generated images at the
same location as the LiDAR position on the vehicle to avoid
parallax effect. The LiDAR is positioned on top of the
camera: some points re-projected on the images should not



TABLE V
ABLATION STUDY ON OPTIMIZED PARAMETERS.

Front-Right Camera LiDAR

Optimized parameters Translation error (cm) Rotation error (°) Temporal error (ms) Translation error (cm) Rotation error (°) Temporal error (ms)
Only spatial 103.0 ± 1.0 1.03 ± 0.03 – 104.8 ± 2.3 0.35 ± 0.07 –
Only temporal – – 89.6 ± 0.2 – – 100.9 ± 0.8

Spatial & temporal 1.9 ± 0.6 0.08 ± 0.01 1.2 ± 0.3 11.5 ± 2.1 0.44 ± 0.07 10.1 ± 1.3

TABLE VI
POSES ACCURACY FOR DIFFERENT OPTIMIZED PARAMETERS.

Front-Right Camera LiDAR

Optimized parameters Translation error (cm) Rotation error (°) Translation error (cm) Rotation error (°)
Only spatial 9.2 ± 1.2 0.44 ± 0.09 12.6 ± 1.7 0.54 ± 0.08

Only temporal 74.8 ± 0.8 8.8 ± 0.0 90.4 ± 1.1 8.8 ± 0.0

Spatial & temporal 2.0 ± 0.4 0.09 ± 0.02 8.9 ± 3.2 0.42 ± 0.09

be visible from the camera position. Results are presented in
Fig. 3 (more results in the supplementary video). Comparing
the alignment between the re-projected 3D points on the
real and synthetic images, we clearly see that our extrinsic
calibration seems more accurate than the ground truth we
use to compare our results with in this paper.

E. Ablation studies

For the ablation studies, we only run our experiments on
sequence 1.

1) Rotation vs Translation error: By running the training
with solely rotation or translation errors of varying levels,
we could observe that the initial rotation error has more
impact on the final accuracy, as we did not get a satisfactory
calibration when we introduced 10° rotation error on all axis.
The results are shown in Table IV. On the contrary, the
translation error is well-handled, even with 100 cm error set
initially on all axis.

2) Spatiotemporal coupling: We run an ablation study on
the optimized parameters and report the results in Table V
and Table VI. It shows that if there is spatial and temporal
errors and only one of them is optimized, it is not possible
to obtain a correct calibration. Which means it is necessary
to take into account both type of error. We can observe in
Table VI that optimizing only the spatial parameters allows
decent pose errors, showing that they are partly compensating
the time offsets. This is possible because sequence 1 is
mostly a straight line with the car driving at almost constant
speed.

TABLE VII
ABLATION STUDY ON LOSSES WITH SPATIOTEMPORAL CALIBRATION

(BEST AND SECOND BEST).

Translation error Rotation error Temporal error
Loss (cm) (°) (ms)
LC + LD 7.4 ± 1.2 0.31 ± 0.06 4.4 ± 1.0

LC + LD + SSIM 6.9 ± 1.3 0.30 ± 0.04 1.9 ± 0.6

LC + LD + DS 14.4 ± 2.1 0.31 ± 0.14 4.4 ± 0.8

LC + LD + SSIM+DS 6.8 ± 1.0 0.28 ± 0.06 2.8 ± 0.6

3) Ablation on additional losses: In Table VII, we demon-
strate that the overall accuracy of our method increases when
LSSIM and LDS are used. LSSIM has the largest impact on
the performance as it help the implicit scene representation
to learn a proper and sharp geometry from radiometric
signals. It makes sense that better scene geometry improves
the calibration accuracy, especially between LiDARs and
cameras.

V. CONCLUSIONS AND FUTURE WORK

We presented in this paper MOISST, a novel approach
based on implicit neural scene representation to spatially
and temporally calibrate a multi-sensor system. The proposed
approach has the advantage of being scalable to any number
of cameras and LiDARs by relying on the trajectory of a
single reference sensor. The proposed approach does not
require any targets, or specific geometric structure within
the scene to achieve accurate results. It is fully automatic
and relies on gradient descent to optimize the calibration
parameters. In the future, we expect to address some lim-
itations of the method by calculating the poses of the
reference sensor automatically instead of relying on the given
ground truth, and by finding a way to bypass the need of
priors for the other sensors. We would also like to add
larger compatibility to other types of sensor, such as rolling
shutter cameras or distorted LiDARs, and the optimization
of intrinsic parameters. Finally, we would implement the
multi-scene optimization, which should improve robustness
by relying on more varied scenes to optimize a specific multi-
sensor system, as well as the ability to manage dynamic
elements in the scene, which are not considered currently.
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