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THE SECOND PICARD ITERATION OF NLS ON THE 2D SPHERE DOES
NOT REGULARIZE GAUSSIAN RANDOM INITIAL DATA

NICOLAS BURQ, NICOLAS CAMPS, MICKAËL LATOCCA, CHENMIN SUN, AND NIKOLAY TZVETKOV

Abstract. We consider the Wick ordered cubic Schrödinger equation (NLS) posed on the two-
dimensional sphere, with initial data distributed according to a Gaussian measure. We show
that the second Picard iteration does not improve the regularity of the initial data in the scale
of the classical Sobolev spaces. This is in sharp contrast with the Wick ordered NLS on the
two-dimensional tori, a model for which we know from the work of Bourgain that the second
Picard iteration gains one half derivative. Our proof relies on identifying a singular part of the
nonlinearity. We show that this singular part is responsible for a concentration phenomenon on a
large circle (i.e. a stable closed geodesic), which prevents any regularization in the second Picard
iteration.
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1. Introduction

1.1. Context. The present work is motivated by the study of the influence of the background
geometry on the low regularity well-posedness theory for nonlinear Schrödinger equations (and
more generally for dispersive partial differential equations). Due to infinite propagation speed, even
the short time nonlinear evolution is sensitive to the geometry and (at least for certain geometries
based on the model case of the 2d sphere) high frequencies instabilities occur (see e.g. [12, 15]).
We prove in this work that these instabilities persist for randomized initial data, which exposes a
fundamental obstruction for extending to the 2d sphere the probabilistic well-posedness theory for
NLS that was developed in the case of Euclidean geometries over the past thirty years.

In the case of integrable partial differential equations, the best results concerning low regularity
well-posedness are exploiting fine properties of the Lax pair structures yielding thus results going
beyond the scope of applicability of more traditional PDE techniques. Thomas Kappeler was a
pioneer in the use of integrability techniques in the context of low regularity well-posedness of
dispersive partial differential equations, see [31, 25, 26]. Integrability methods will not be used in
the present paper but we believe that using random data techniques in the context of integrable
partial differential equations is an interesting line of research.

Date: January 23, 2024.
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1.1.1. The nonlinear Schrödinger equation on compact surfaces. Given (M, g) a compact Riemannian
surface without boundary, the cubic Schrödinger equation (NLS) posed on M reads

i∂tu+ ∆gu = λ|u|2u , (t, x) ∈ R×M , (NLS)

where λ ∈ R dictates the attractive (λ < 0) or repulsive (λ > 0) nature of the nonlinear interaction.
When s > 1 the Sobolev embedding and a fixed point argument easily solves the Cauchy problem
associated to (NLS): for every bounded set B ⊂ Hs(M) there exist TB > 0 and a unique solution
map

Φ : u0 ∈ B 7−→ (t 7→ Φt(u0)) ∈ C([−TB, TB];Hs(M)) .

For u0 ∈ B, the mapping t ∈ [−TB, TB] 7→ Φt(u0) solves (NLS) in the integrated form, through the
Duhamel formula, with initial data u0:

Φt(u0) = eit∆ u0 − iλ
∫ t

0
et(t−t

′)∆ |Φt′(u0)|2Φt′(u0)dt′ . (1.1)

Moreover, Φ is uniformly continuous (it is actually analytic). When solving the fixed point problem
(1.1) by a Picard iteration scheme, we write

Φt(u0) = eit∆ u0 − iλ
∫ t

0
ei(t−t

′)∆ | eit′∆ u0|2 eit
′∆ u0 dt′ + higher order expansions. (1.2)

The first nonlinear term is precisely the second Picard iteration.

Motivated by the conservation laws associated with the equation, the main question is to
determine the largest Sobolev space in which the flow map extends (uniformly) continuously. The
Lp- properties of the eigenfunctions of −∆ play a key role in this program.

For general (M, g), the Lp estimates on the eigenfunctions come with some derivative loss. These
estimates are well-known from the works of Hörmander [30] and Sogge [34], and are recalled in (3.4).
They turn out to be optimal for the 2d sphere. Then, motivated by the study of nonlinear waves,
Burq–Gérard–Tzvetkov [13] obtained semiclassical L2

tL
∞
x Strichartz estimates with 1

2 -derivative
loss, and extended the uniform local well-posedness up to Hs(M) with s > 1

2 . So far, it is the
lowest common regularity where uniform local well-posedness is known for all (M, g). Besides, in
the defocusing case (λ > 0), the (coercive) conserved energy combined with the local well-posedness
in H1(M) leads to global well-posedness in Hs(M) for all s ≥ 1. Hani [28] extended the range of
global well-posedness in Hs(M) with s > 2

3 .

In the Euclidean case, when M = T2 is the flat tori Bourgain [4, 5] proved that the scaling-
invariance dictates the well-posedness threshold: the flow map extends uniformly continuously in
Hs(T2) for all s > 0 (see also the very interesting recent work [29] for the global well-posedness in
this range). This fails when s < 0 [21, 20], and the endpoint s = 0 is a challenging open problem.
The Strichartz estimate due to Bourgain–Demeter [8] extends the local well-posedness result for
s > 0 to the case of irrational tori.

Outside the Euclidien case, the only fairly well-understood situation is the case of the 2d sphere
or more generally of a Zoll surface (a surface on which the geodesic flow is periodic, see [3]). In
theses geometries, the Cauchy problem is uniformly well posed [14] up to s > 1

4 and this is optimal
[12, 2].

Firstly, the uniform well-posedness result above H
1
4 (S2) follows from a bilinear refinement of

the Strichartz estimate due to Burq–Gérard–Tzvetkov [14]. This bilinear estimate results from the
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localization of the spectrum of the Laplace operator on a Zoll surface combined with a general
bilinear estimate on the spectral projectors (which is true on any surface).

Conversely, instabilities in Hs(S2) when s ≤ 1
4 arise from eigenfunctions that concentrate on

a stable closed geodesic, such as the equator in the case of the sphere (and more generally on a
surface with a closed stable geodesic [37]). These eigenfunctions are the highest weight spherical
harmonics, and were also used to construct stationary solution in the defocusing case [39]. In
the present paper, we use a broader family of spherical harmonics with high weight to evidence
instabilities in a probabilistic setting.

1.1.2. Statistical approaches to nonlinear waves. In [16], Burq and Lebeau considered a natural
probability measure on the space of spherical harmonics and proved that almost every random
orthonormal basis is uniformly bounded in Lp(S2), when p < +∞, contrasting with the Lp-bounds
discussed above. For instance, the n-th highest weight spherical harmonics have their L4-norm
growing like n

1
8 due to concentration around a large circle. Former works [38, 33, 1] also go in the

direction of improving the Lp-estimates for generic eigenfunctions.

The natural question is whether this enhanced Sobolev embedding for generic functions on the
sphere can lead to probabilistic well-posedness below the deterministic threshold s = 1

4 or not.

When s is small enough such that instabilities are known to occur in Hs for some initial data,
the probabilistic well-posedness theory initiated by Burq–Tzvetkov [17, 18] after the pioneering
work of Bourgain [7], consists in the construction of full-measure subsets of Hs (for some natural
measures) made of initial that lead to strong solutions. In addition, the obtained probabilistic
solution can be seen as the unique limit in Hs of the (deterministic) flow applied to (suitable)
smooth approximations of the initial datum.

Additionally, this approach is motivated by the construction of global recurrent solutions using
the Gibbs invariant measures (supported in ∩ε>0H

−ε(M)) and, more broadly, the study of the
transport of Gaussian measures by nonlinear flows. In the Euclidean setting, or more recently
when the target space is a Riemannian manifold [11] the probabilistic approach has led to several
significant advances. An overview is much beyond the scope of this introduction. Nonetheless, to
motivate our main result, we recall the key mechanism driving the probabilistic method.

In the Euclidean case the probabilistic decoupling between the Fourier modes of the initial datum
leads to nonlinear smoothing effects. Namely, the second Picard iteration gains, say, σ-derivatives
(for some fixed σ > 0) for almost-every initial data (see [7] and Theorem 1.2). The standard
linear-nonlinear decomposition trick consists in solving the fixed-point for the re-centered solution

v(t) := Φt(u0)− eit∆ u0 , v(0) = 0 ,

(formally) solution to (NLS) with a stochastic forcing term (which corresponds to the second Picard
iteration in (1.1)), and mixed terms depending both on v and on eit∆ u0. By understanding the
mixed terms, one may indeed run a fixed point argument for v in Hs+σ, provided s+ σ is greater
than the deterministic regularity threshold.

1.2. Set up and main results of the present work. The current paper is a preliminary step
towards a probabilistic well-posedness theory for the cubic nonlinear Schrödinger equation posed
on a non-Euclidean compact surface. In this work, we consider randomized initial data distributed
according to a Gaussian measure, and we prove that the second Picard iteration does not gain any
regularity. This is in sharp contrast with the case of the torus, and precludes the construction of
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strong solutions by using the Bourgain linear-nonlinear decomposition.

In order to make our statement precise, we introduce some notations. We consider the NLS
equation on S2 with a Wick ordered nonlinearity:

i∂tu− (∆− 1)u =: |u|2u : (t, x) ∈ R× S2 , (NLS)

where ∆ is the Laplace–Beltrami operator on S2 and the renormalized nonlinearity is1

: |u|2u : (x) = (|u(x)|2 − 2‖u‖2L2(S2))u(x) , x ∈ S2 .

The norm L2(S2) is associated to the scalar product

〈f | g〉 =

∫
S2
f(x)g(x)dσ(x) ,

where we the Lebesgue measure on S2 is normalized such that the sphere has volume 1 (see (2.1)).

On the torus T2, the Wick ordering removes the nonlinear interactions that are not regularizing.
Indeed, since the mass is preserved ‖u‖2L2u is a linear term, which is not regularizing. It is more
subtle in the case of the sphere. The reason is that the amplitudes of the eigenfunctions depend in
a complicated way on the physical space variable x, whereas, on flat tori, the plane waves have a
constant amplitude equals to 1. This is point is discussed in Remark 3.4. We stress out that if u is
a solution to (NLS) then

v(t) = e−it(1+2‖u‖2
L2 ) u(t) (1.3)

is a solution to the standard cubic NLS

i∂tv + ∆v = |v|2v . (1.4)

Hence the regularity properties studied in this article also holds for the solutions of (1.4) thanks to
the Gauge transform (1.3). The second Picard iteration of (NLS) reads

IS2(t, u0) =

∫ t

0
ei(t−t

′)(∆−1)
(

: | eit′(∆−1) u0|2 eit
′(∆−1) u0 :

)
dt′ .

Let us turn to the spectral properties of −∆ + 1, as the self-adjoint operator with domain H2(S2).
It has a discrete spectrum with eigenvalues

λ2
n = n2 + n+ 1 , n ∈ N ,

so that λn ∼ n at infinity. The eigenvalues are degenerate in the sense that they have multiplicity
2n+1, and the eigenspace is spanned by the spherical harmonics of degree n, denoted by (Yn,k)|k|≤n.
They are the restriction to S2 of the harmonic homogeneous polynomials of degree n. We recall
some properties in Section 2, and prove a concentration property of many of them on a geodesic
circle.

For n ∈ N, we denote by En the eigenspace

En = ker(−(∆− 1)− λ2
n Id) = spanC{bn,k | |k| ≤ n} ,

1There is another convention of wick cubic power defined formally as
(
|u(x)|2 − 2E‖u‖2L2(S2)

)
u(x). As |u(x)|2 −

E‖u‖2L2(S2) is well-defined for almost all the initial data we shall consider later (distributed according to the Gaussian
free field) these two conventions are equivalent.
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where (bn,k)|k|≤n is a general orthonormal basis of En. This gives a spectral resolution of L2(S2)

L2(S2) =
⊕
n≥0

En , En = πnL
2(S2)

where πn is the orthogonal projector on En defined by

πn =
∑
|k|≤n

〈 · |bn,k〉bn,k .

The Sobolev norm Hs(S2) is equivalent to(∑
n≥0

λ2s
n ‖πnf‖2L2(S2)

) 1
2
.

Given N ∈ N,
P≤Nu =

∑
n :λn≤N

πnu

is the orthogonal projection on the space spanned by the eigenfunctions with eigenvalues ≤ N .

We can now define the Gaussian measures. Fix a probability space (Ω,F ,P), an orthonormal
basis (bn,k)n∈N ,|k|≤n made of eigenfunctions of −∆S2 , and i.i.d. complex standard Gaussian random
variables (gn,k)n∈N ,|k|≤n, namely

gn,k(ω) =
1√
2

(gn,k(ω) + ihn,k(ω)) ,

where gn,k and hn,k are independent real-valued standard Gaussian random variables on (Ω,F ,P).
Given α ∈ R, the Gaussian measure µα is the probability measure induced by the mapping

ω ∈ Ω 7−→ φωα =
∑
n≥0

λ−αn
∑
|k|≤n

gn,k(ω)bn,k . (1.5)

The case α = 1 corresponds to the Gaussian free field, which is used to define the formally invariant
Gibbs measure. We detail the properties of functions in the support of µα in Section 3. At this
stage, it is important to note that the law of Gaussian measures does not depend on the choice of
the orthonormal basis (bn,k). Nevertheless, to evidence some instabilities we will work with the
particular basis made of spherical harmonics (Yn,k), presented in Section 2.

Note also that the typical regularity of φωα is Hα−1−0(S2) in the sense that for all ε > 0,

µα(Hα−1−ε(S2)) = 1 , but µα(Hα−1(S2)) = 0 .

According to the Weyl’s law, this regularity property does not depend on the surface M . In the
particular case of the sphere, our main result is that the typical regularity of the second Picard
iteration is not better than the regularity of φωα.

Theorem 1.1. Fix t ≥ 0 and α > 1
2 . There exist N0 ∈ N and η > 0 such that for all N ≥ N0 ,

η|t| ln(N)
1
2 ≤ ‖IS2(t, P≤Nφα(ω))‖L2(Ω;Hα−1(S2)) . (1.6)

We give some comments.
• The logarithmic divergence of theHα−1(S2)-norm should be viewed as a lack of regularization
for the second Picard iteration, contrasting with the case of the tori, rational or irrational
(see Theorem 1.2).
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• More precisely, we proved the divergence of quadratic moment of the Hα−1(S2)-norm of
the second Picard iteration of the frequency truncated initial data. This is likely to yield
the almost sure divergence of this random process, but we do not have a self-contained
elementary proof of this result.
• It is not clear wether the threshold α > 1

2 is technical or not. It appears when we prove that
the fully-paired interaction are regularizing (so that they do not cancel the divergent term).
We refer to [22] for a discussion on a notion of probabilistic criticality, which is heuristically
related with this threshold.

Theorem 1.1 indicates that the linear evolution is not a good approximation of the solution, even
if the initial are randomized. In this light, the structure of the probabilistic solution (if it ever
exists, in a suitable sense) associated to φωα cannot be

u(t) = eit∆φωα + smoother remainder . (1.7)

In the deterministic setting , the consideration of high-frequency limits in [15] also indicates that on
the 2d sphere, when s ≤ 1

4 , the linear evolution of an initial data in Hs(S2) does not approximate
well the solution.

While proving Theorem 1.1, we isolate a singular resonant interaction between high and low
frequencies. This interaction will play a key role in the probabilistic well-posedness theory we
develop in subsequent works. It is now well established that adapted ansatz in the spirit of
paracontrolled calculus allows one to go beyond the linear-nonlinear decomposition of Bourgain [7].
The strategy is to perform an induction on frequency scales, and to absorb the singular high× low
interactions in a linear operator applied to the high-frequency part of the initial data. We refer,
for instance, to the introduction of [10] for discussion on the modern technics, such as the random
averaging operators [22, 36] and the random tensors [23]. The precursors of these methods, for
the wave equation, were [27] and [9]. Finally, we stress out that in both [9, 19] the second Picard
iteration is not smoother than the initial data. This was rigorously proved by Oh [32] in the case of
the Szegő equation which is covered by the result in [19].

In a second result, proved in Appendix 5, we propose a self-contained proof of the gain of
1
2 -derivative of the second Picard iteration in the case of irrational tori, for initial data distributed
according to the Gaussian free field. We define

IT2
β
(t, u0) =

∫ t

0
ei(t−t

′)(∆β−1)
(

: | eit′(∆β−1) u0|2 eit
′(∆β−1) u0 :

)
dt′ ,

where, for β > 0, the rescaled Laplacian −∆β is the rescaled Laplacian:

−∆β := ∂2
x1 + β2∂2

x2 .

On the torus, the Gaussian free field is induced by the random variable

φω1 (x) =
∑
n∈Z2

1

〈n〉
gωn ein·x ,

where 〈n〉 = (1 + Q(n))1/2, with for n = (k,m) ∈ Z2, Q(n) = k2 + β2m2. We have that
φω1 ∈ H0−(T2

β) for almost every ω.

Theorem 1.2 (Regularity of the first iteration on tori). For α = 1, and for all ε > 0 there exists
C > 0 such that for all N ∈ N and t ∈ R,

‖IT2
β
(t, P≤Nφ1(ω))‖

L2
ω(Ω;H

1
2−ε(T2))

≤ C . (1.8)
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This result is implicitly contained in [7] (see also [24]). For completeness and to put Theorem 1.1
into context we give a short proof.

Organization of the article. The proof of Theorem 1.1 in the case of the sphere is given in
Section 4 and mostly relies on a quantitative concentration property, which is proven in Section 2.2.
We also recall or prove preliminary properties on the spherical harmonics in Section 2, and on
Gaussian measures on S2 in Section 3 together with some preparations on the nonlinearity. Finally,
we prove Theorem 1.2 in Section 5.

2. Spherical harmonics

2.1. Spherical harmonics. The polar (colatitudinal) coordinate is θ ∈ (0, π), the azimuthal
(longitudinal) coordinate is ϕ ∈ (0, 2π), and ρ ∈ R+ is the radial distance, so that S2 = {x ∈ R3 |
|ρ| = 1}. We have

(x1, x2, x3) = (ρ sin(θ) cos(ϕ), ρ sin(θ) sin(ϕ), ρ cos(θ)) .

With this coordinates system, the Lebesgue measure is

dσ =
1

4π
sin(θ)dθdϕ , (2.1)

and the Hermitian scalar product is

〈f | g〉L2(S2) =
1

4π

∫ 2π

0

∫ π

0
f(θ, ϕ)g(θ, ϕ) sin(θ)dθdϕ . (2.2)

With this normalization S2 has volume 1. Note that this system of coordinate is singular on the
axis (Ox3). The (shifted) Laplace-Beltrami operator on the sphere reads

−∆S2 + 1 = − 1

sin2 θ

∂2

∂ϕ2
− 1

sin θ

∂

∂θ
(sin θ

∂

∂θ
) + 1 . (2.3)

It is a selfadjoint operator with domain H2(S2) and it has discrete spectrum. The eigenvalues are

λ2
n = n2 + n+ 1 , n ∈ N ,

with multiplicity 2n+ 1. The normalized spherical harmonics, defined as the restrictions to S2 of
the harmonic homogeneous polynomials, form a particular orthonormal basis of eigenfunction. For
n ∈ N and k ∈ {−n, . . . , n}, we denote by Yn,k the spherical harmonics of degree n and order k. In
spherical coordinates, we have

Yn,k(θ, ϕ) = eikϕ vn,k(θ), vn,k(θ) = cn,kLn,k(cos(θ)) , (2.4)

where Ln,k(cos(θ)) is the associated Legendre function of degree n and order k, and cn,k is a
normalization constant:

cn,k =

√
(2n+ 1)

(n− k)!

(n+ k)!
.

Proposition 2.1. Spherical harmonics (Yn,k)1≤n ,|k|≤n form an orthonormal basis of L2(S2) made
of eigenfunctions of the Laplace operator on S2. They satisfy

(−∆S2 + 1)Yn,k = λ2
nYn,k, n ∈ N∗, k ∈ {−n, . . . , n},

with λ2
n = n2 + n+ 1.

We refer to [34] and [35], Chapter IV, for a detailed analysis of the spherical harmonics.
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2.2. Concentration of spherical harmonics with high order. It follows from the expression
of the Laplace operator on the sphere (2.3) that vn,k is solution on (0, π) to

− (sin(θ)
d

dθ
)2vn,k(θ) + (k2 − n(n+ 1) sin2(θ))vn,k(θ) = 0. (2.5)

The next Proposition claims that in the high frequency regime n→∞ a large family of spherical
harmonics with high weights (when |k| is close to n) concentrate their mass near the equator
(corresponding to the region θ = π

2 ). Given δ ∈ (0, 1), we denote

Cδ :=
{
x = (θ, ϕ) ∈ S2 | δ < | cos(θ)|

}
. (2.6)

Proposition 2.2. For all δ > 0, n ≥ 1 and k ∈ Z such that

n(n+ 1)(1− δ2) ≤ k2 ≤ n2 , (2.7)

we have
‖1C2δ

(x)Yn,k(x)‖L2
x(S2) .δ

1

n
.

The proof relies on utilizing semiclassical functional calculus in the high-frequency regime to
quantitatively exploit the ellipticity of the equation (2.5) away from the equator.

Proof. In order to use semiclassical functional calculus and prove this proposition, we shall extend
vn,k to a function defined on the whole real line R. For this purpose, we make the change of variable

f : (0, π) −→ R

θ 7−→ tanh−1(cos(θ)) .

Note that f is a C∞-diffeomorphism and that we have the identity: for all θ ∈ (0, π),

sin2(θ) = 1− cos2(θ) = 1− tanh2(f(θ)) =
1

(cosh ◦f(θ))2
.

This yields

f ′(θ) = − 1

sin(θ)
, (f−1)′(y) = − 1

cosh(y)
, (2.8)

which in turn implies that∫ ∞
−∞

1

cosh(y)2
|vn,k ◦ f−1(y))|2dy =

∫ π

0
|vn,k(θ)|2 sin(θ)dθ =

1

2π
. (2.9)

We set
ṽn,k(y) = (2π)

1
2

1

cosh(y)
vn,k ◦ f−1(y) , y ∈ R ,

so that ∫ ∞
−∞
|ṽn,k(y)|2dy = 1 .

In what follows we may abuse notations and write θ = f−1(y) for y ∈ R. We have from the chain
rule and from (2.8) that

d

dy
ṽn,k(y) = − tanh(y)ṽn,k(y)− 1

cosh(y)
sin(θ)

d

dθ
vn,k(θ) . (2.10)

We deduce from this that
‖ d

dy
ṽn,k‖L2(R) . 1 . (2.11)



LACK OF SMOOTHING FOR NLS ON S2 9

Indeed,
‖ tanh ṽn,k‖L2(R) ≤ ‖ṽn,k‖L2(R) ≤ 1 ,

and ∥∥∥ 1

cosh(y)
sin(θ)

d

dθ
vn,k(θ)

∥∥∥2

L2(R)
=

∫
R

sin2(θ)
1

cosh(y)
|v′n,k ◦ f−1(y)|2|(f−1)′(y)|dy

=

∫ π

0
sin3(θ)|v′n,k(θ)|2dθ . 1 .

Moreover, we deduce from (2.10) that

d2

dy2
ṽn,k(y) = (tanh2(y)− 1)ṽn,k(y)− tanh(y)

d

dy
ṽn,k(y)

+
1

cosh(y)

(
2 cos(θ) sin(θ)

d

dθ
vn,k(θ) + sin2(θ)

d2

dθ2
vn,k(θ)

)
.

Plugging in the expression (2.10), we deduce that

d2

dy2
ṽn,k(y) = −(1 + 2 cos(θ)

d

dy
)ṽn,k(y) +

1

cosh(y)
(sin(θ)

d

dθ
)2vn,k(θ) .

Therefore, we conclude form (2.5) that ṽn,k ∈ C∞(R) solves

d2

dy2
ṽn,k + (1 + 2 cos(θ)

d

dy
)ṽn,k − (k2 − n(n+ 1) sin2(θ))ṽn,k = 0 . (2.12)

We can now introduce the semiclassical parameter in the high-frequency regime n→∞:

h := (n(n+ 1))−
1
2 , h ∼n→∞ n−1 .

Multiplying the above equation by h2 and introducing the parameter α = |k|h gives

− h2 d2

dy2
ṽn,k(y) + (α2 − sin2(θ(y)))ṽn,k(y)− 2h2 cos(θ(y))

d

dy
ṽn,k(y)− h2 = 0 . (2.13)

We reformulate (2.13) as follows:

(2.13) ⇐⇒ Pα(y, hDy)(ṽn,k) = 2h2 cos(θ(y))
d

dy
ṽn,k(y) + h2 ,

where Pα is a differential operator of order 2 with symbol

pα(y, ξ) = ξ2 + α2 − sin2(θ(y)) .

We deduce from (2.11) that
‖Pα(y, hDy)ṽn,k‖L2(R) . h

2 . (2.14)
Consider

Char(Pα) =
{

(y, ξ) ∈ R2 | pα(y, ξ) = 0
}

=
{

(y, ξ) ∈ R2 | ξ2 + α2 − sin2(θ(y)) = 0
}
,

and set, for δ ∈ (0, 1),

C̃δ :=
{
y ∈ R | δ < | cos(θ(y))|

}
. (2.15)

Observe that for all δ ∈ (0, 1),√
1− δ2 ≤ α =⇒ Char(Pα) ⊂ R \ C̃δ .
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Indeed,{ √
1− δ2 ≤ α ,

ξ2 + α2 − sin2(θ) = 0
=⇒ 1− δ2 ≤ sin2(θ(y)) =⇒ | cos(θ(y))| ≤ δ .

Hence, in the regime where
√

1− δ2 ≤ α, Char(Pα) concentrates near the equator as δ goes to 0.
By the use of semiclassical functional calculus, we will deduce from this that ṽn,k also concentrates
its mass near the equator in this regime.

Lemma 2.3. Let δ ∈ (0, 1), and suppose that
√

1− δ2 ≤ α. Then, for all χ ∈ C∞c (R) such that

χ ≡ 1 on C̃2δ , suppχ ⊂ C̃ 3
2
δ ,

where C̃δ is defined in (2.15), there exists a bounded operator Qα,h such that for all h ∈ (0, 1),

‖Qα,h ‖L2(R)→L2(R) .δ 1 ,

and
‖Qα,h ◦Pα(y, hDy)− χ(y)‖L2(R)→L2(R) .δ h . (2.16)

Proof. Fix δ ∈ (0, 1) and suppose that
√

1− δ2 ≤ α. The key point is that Pα(y, hDy) is elliptic in
the region C̃2δ and the proof follows from the standard parametrix construction of elliptic operators.
Since we only need to invert Pα(y, hDy) in the elliptic region up to order 1 in h, we propose a
self-contained proof.

We introduce the symbol

q(y, ξ;α) :=
χ(y)

pα(y, ξ)
.

Recall that for all y ∈ supp(χ), ξ ∈ R and
√

1− δ2 ≤ α we have

pα(y, ξ) = ξ2 + α2 − sin2(θ(y))

≥ 1− δ2 − sin2(θ(y))

= cos2(θ(y))− δ2

≥ δ2 .

(2.17)

The semiclassical pseudodifferential operator Qα(y, hDy) associated with q is defined via its Schwartz
kernel

Qα(y, hDy)[f ](y) =

∫
R
K(y, z)f(z)dz, K(y, z) =

1

2πh

∫
R

e
i(y−z)ξ

h q(y, ξ;α)dξ .

Observe that
(y − z)e

i(y−z)ξ
h = −ih∂ξ(e

i(y−z)ξ
h ) . (2.18)

Hence, integrating by parts twice yields that

(y − z)2K(y, z) = − h

2π

∫
R

e
i(y−z)ξ

h ∂2
ξ q(y, ξ;α)dξ ,

It follows from (2.17) that for all k ∈ N, α, δ such that
√

1− δ2 < α ≤ 1 and for all ξ ∈ R,

sup
y∈R
|∂kξ q(y, ξ, α)| .k δ−2k〈ξ〉−2k. (2.19)
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Hence,

sup
(y,z)∈R2

(y − z)2|K(y, z)| . hδ−4
(∫

R
〈ξ〉−4dξ

)
. hδ−4 .

Moreover, we have the trivial bound

sup
(y,z)∈R2

|K(y, z)| ≤ h−1δ−2
(∫

R
〈ξ〉−2dξ

)
. h−1δ−4 .

Therefore,

sup
z∈R

∫
R
|K(y, z)|dy . δ−4 sup

z∈R

∫
R

min
( h

(y − z)2
,

1

h

)
dy

. δ−4
(∫
|s|≤h

1

h
ds+

∫
|s|>h

h

s2
ds
)

. δ−4 .

Since the computations are the same when changing the role of y and z, we prove that when√
1− δ2 ≤ α then

sup
y∈R

∫
R
|K(y, z)|dz + sup

z∈R

∫
R
|K(y, z)|dy . δ−4 ,

uniformly in h ∈ (0, 1). It follows from Schur’s test that Qα(y, hDy) is bounded on L2(R), uniformly
in h ∈ (0, 1), with

‖Qα(y, hDy)‖L2(R)→L2(R) . δ
−4 . (2.20)

The Schwartz kernel of the operator

Rα(y, hDy) := Qα(y, hDy) ◦ Pα(y, hDy)− χ(y)

is given by

K(y, z) = (φ(z)− φ(y))χ(y)

∫
R

e
i(y−z)ξ

h
1

pα(y, ξ)

dξ

2πh
.

where
φ(y) := sin2(θ(y)) .

We write

ϕ(y, z) :=

∫ 1

0
φ′(tz + (1− t)y)dt ,

so that
φ(y)− φ(z) = (y − z)ϕ(y, z) .

It follows from (2.18) and integration by parts that

K(y, z) = −iϕ(y, z)χ(y)

∫
R
∂ξ
( 1

pα(y, ξ)

)
e
i(y−z)ξ

h
dξ

2π
.

We proceed as for the estimate on the kernel of Qα and and we integrate by parts twice (using
(2.18)) to get

|K(y, z)| . δ−6 min(1,
h2

|y − z|2
) .

We deduce
sup
z∈R

∫
R
|K(y, z)|dy + sup

y∈R

∫
R
|K(y, z)|dz . δ−6h
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and we conclude from the Schur’s test that

‖Rh‖L2→L2 . δ−6h .

This concludes the proof of Lemma 2.3 with an implicit constant . δ−6. �

We now complete the proof of Proposition 2.2 as follows. It follows from Lemma 2.3, , from
(2.20) and from (2.14) that

‖χṽn,k‖L2(R) = ‖QhP0,hṽn,k −Rhṽn,k‖L2(R) .δ h .

Hence, according to (2.9),

‖Yn,k‖L2(C2δ) = ‖ṽn,k‖L2(C̃2δ)
≤ ‖χṽn,k‖L2(R) ≤ Cδh ,

which completes the proof of Proposition 2.2. �

3. Preparations

3.1. Gaussian measures. Recall that the Gaussian measure µα of parameter α ∈ R is defined in
(1.5). To present some properties of the random functions φα(ω) in the support of µα, we need to
first recall the local Weyl law for −∆S2 :

Lemma 3.1 (Local Weyl’s law). For every n ∈ N, every orthonormal basis (bn,k) of En and every
x ∈ S2, we have

1

2n+ 1

∑
|k|≤n

|bn,k(x)|2 = 1 . (3.1)

We detail the very concise proof of this Lemma.

Proof. Given n ∈ N and (bn,k)|k|≤n an orthonormal basis of En, the integral kernel of the orthogonal
projector πn onto En is

Kn(x, y) =
∑
|k|≤n

bn,k(x)bn,k(y) , (x, y) ∈ (S2)2 .

It follows from the rotational invariance of the operator −∆S2 that for all R ∈ SO3,

πn ◦R = R ◦ πn ,

which in turns implies that for every (x, y) ∈ (S2)2 and R ∈ SO3

Kn(Rx, y) = Kn(x,R−1y) ,

In particular, for all x ∈ S2

Kn(Rx,Rx) = Kn(x, x) .

Since SO3 acts transitively on S2, we deduce that

x ∈ S2 7→ Kn(x, x) =
∑
|k|≤n

|bn,k(x)|2

is a constant function. Integrating over x ∈ S2 and using the assumption that the spherical
harmonics are normalized, we conclude the proof of the identity (3.1). �
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Let us now reorganize the terms in the series (1.5), which defines the Gaussian measure µα.
Given an orthonormal basis (bn,k), we group the eigenfunctions in clusters of same eigenvalue, with
multiplicity 2n+ 1, and write

φα(ω) =
∑
n≥0

λ−αn
∑
|k|≤n

gn,k(ω)bn,k =
∑
n≥0

λ̃
−(α− 1

2
)

n eωn ,

where, for n ∈ N,
eωn =

1√
2n+ 1

∑
|k|≤n

gn,k(ω)bn,k . (3.2)

and λ̃n = λn(2n+1
λn

)
1
2 . Since λn and λ̃n have the same asymptotic up to a factor 2, we abuse

notations and we keep writing
λn ≈ λ̃n .

For every n ≥ 0, eωn can be seen as a Gaussian vector on En, with

E(eωn) = 0 , Cov(eωn) =
1

2n+ 1
IdEn ,

where Cov(eωn) is the covariance matrix of the Gaussian vector eωn. We recall in the next Lemma
that the law of a complex standard Gaussian vector is invariant under the action of the unitary
group:

Lemma 3.2. For all X ∼ NC(0, 1
2n+1 IdEn) and A ∈ U(En), the unitary group of En, we have

L (AX) = L (X) .

Proof. For Y a random variable we denote by ϕY its characteristic function. For all ξ ∈ En,

ϕAX(ξ) = E[ei〈ξ|AX〉] = E[ei〈A
∗ξ|X〉] = ϕX(A∗ξ) = e−

1
2n+1

‖A∗ξ‖2
L2 = e−

1
2n+1

‖ξ‖2
L2 = ϕX(ξ) .

�

A consequence of the above Lemma is that the law of eωn — and therefore the law µα — does
not depend on the choice of the orthonormal eigenbasis of En. Alternatively, we could fix x and
view eωn(x) as a complex standard Gaussian random variable. Indeed, E[eωn(x)] = 0 and, according
to (3.1),

Var(eωn(x)) =
1

2n+ 1

∑
|k|≤n

|bn,k(x)|2 = 1 . (3.3)

In particular, the law of eωn(x) does not depend on the point x on the sphere.

3.2. Lp-bounds. We recall the eigenfunctions estimates due to Sogge [34]. There exists C > 0
such that for all n ≥ 0 and f ∈ L2(S2),

‖πnf‖Lp(S2) ≤ C‖πnf‖L2(S2)

λ
1
2

(
1
2
− 1
p

)
n , 2 ≤ p ≤ 6

λ
1
2
− 2
p

n , 6 ≤ p ≤ ∞.
(3.4)

In contrast, we prove the Lp(S2)-norm of a L2(S2)-normalized Gaussian spherical harmonic eωn
has its moment of order p uniformly bounded in n.

Lemma 3.3. There exists C > 0 such that for all p ≥ 2 and n ≥ 0,

‖eωn‖Lpω(Ω;Lpx(S2) ≤ C
√
p . (3.5)
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Proof. Recall that from Lemma 3.1, for fixed n ≥ 0 and x ∈ S2, eωn(x) is a complex standard
Gaussian random variable. In particular, there exists C > 0 such that for all n ≥ 0, x ∈ S2 and
p ≥ 2

‖eωn(x)‖Lpω(Ω) ≤ C
√
p .

Subsequently, we deduce from the Fubini’s Theorem that

E
[
‖eωn‖

p
Lpx(S2)

] 1
p

= (

∫
S2
‖eωn(x)‖p

Lpω
dx)

1
p ≤ C vol(S2)

1
p
√
p = C

√
p ,

since we normalized the Lebesgue measure such that vol(S2) = 1. This concludes the proof of
Lemma (3.3). �

In [16] the authors prove some more precise large deviation estimates, using the concentration of
the measure.

3.3. Decomposition of the nonlinearity. We decompose the Wick cubic power into three parts:

: |u|2u : = |u|2u− 2‖u‖2L2(S2)u

= N1(u) +N2(u) +N3(u)

where

N1(u) =
∑

n1,n2,n3

1n2 6=n1,n2 6=n3πn1uπn2uπn3u,

N2(u) = 2
∑
n1,n2

1n1 6=n2

(
|πn2u|2 − ‖πn2u‖2L2(S2)

)
πn1u

N3(u) =
∑
n

|πnu|2πnu− 2‖πnu‖2L2(S2)πnu .

We isolate the resonant interaction from N2:

N2,res(u) := 2
∑
n1,n2

1n1 6=n2πn1

(
πn1u(|πn2u|2 − ‖πn2u‖2L2(S2))

)
. (3.6)

As we will see in the next Section, the term N2,res is responsible for the divergence of the second
Picard iteration (1.6) claimed in our main Theorem.

Remark 3.4. In the case of the torus T2 where the plane waves ein·x have constant amplitude, we
have that for all n ∈ Z2 and x ∈ T2

|ein·x|2 − ‖ein·x‖2L2(Td) = 0 ,

so that the term N2 does not exit after the Wick ordering. On the sphere, however, the variable x
in the physical space has a role to play and pointwise in x, the Wick square

|eωn(x)|2 − ‖eωn‖2L2(S)

has no reason to vanish. Still, it does vanish on average (both in space and in probability measure):∫
S2
|eωn(x)|2 − ‖eωn‖2L2(S)dσ(x) =

∫
Ω
|eωn(x)|2 − ‖eωn‖2L2(S)dP(ω) = 0 .
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3.4. The second Picard iteration. Fix α ∈ R, and recall that the Gaussian measure µα is
induced by the random variable

φωα =
∑
n≥0

λ
−(α− 1

2
)

n eωn ,

where the Gaussian spherical harmonics eωn are defined in (3.2). We denote uω(t) the linear evolution

uω(t, x) = eit(∆−1) φωα =
∑
n≥0

λ
−(α− 1

2
)

n eitλ
2
n eωn(x) . (3.7)

In order to make sense to the series in L∞(R;Hs(S2)) for any s ∈ R, we also consider the finite
dimensional approximation

P≤Nu
ω(t, x) =

∑
n : λn≤N

eitλ
2
nλ
−(α− 1

2
)

n eωn(x) .

For N ∈ N, dyadic, set

ΓN =
{
~n = (n0, n1, n2, n3) ∈ N4 | ni ≤ N for i ∈ {1, 2, 3}

}
and

Γ
(1)
N := {~n ∈ ΓN | n2 6= n1 , n2 6= n3} ,

Γ
(2)
N := {~n ∈ ΓN | n2 = n3 , n2 6= n1} ,

Γ
(3)
N := {~n ∈ ΓN | n1 = n2 = n3} .

For ~n ∈ ΓN we denote the resonance function

Ω(~n) = λ2
n0
− λ2

n1
+ λ2

n2
− λ2

n3
.

Then, we have

IS2(t, P≤Nu
ω) = −i

∫ t

0
ei(t−t

′)(∆−1)N (P≤Nu
ω(t′))dt′

= −i
∫ t

0
ei(t−t

′)(∆−1)
(
N1(P≤Nu

ω(t′)) +N2(P≤Nu
ω(t′)) +N3(P≤Nu

ω(t′))
)

dt′

= I + II + III , (3.8)

where

IN (t, x) =
∑
~n∈Γ

(1)
N

(e−itΩ(~n)−1

Ω(~n)

)
(λn1λn2λn3)−(α− 1

2
)πn0

(
eωn1

eωn2
eωn3

)
, (3.9)

IIN (t, x) =
∑
~n∈Γ

(2)
N

(e−itΩ(~n)−1

Ω(~n)

)
(λn1λ

2
n2

)−(α− 1
2

)πn0

(
eωn1

(|eωn2
|2 − ‖eωn2

‖2L2S2)
)

(3.10)

IIIN (t, x) =
∑
~n∈Γ

(3)
N

(e−itΩ(~n)−1

Ω(~n)

)
λ
−3(α− 1

2
)

n1 πn0

(
|eωn1
|2eωn1

)
− 2

∑
n≥0

λ
−3(α− 1

2
)

n ‖eωn‖2L2(S2)e
ω
n . (3.11)

4. Proof of the main Theorem

Given α ∈ R our goal is to show a logarithmic divergence in N of the Hα−1(S2)-norm of (3.8).
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4.1. Isolating the divergent term. We first isolate the singular contribution (3.10) from (3.9)
by using probabilistic independence.

Lemma 4.1. For every α, N and t, we have∣∣∣‖IIN (t)‖L2(Ω;Hα−1(S2)) − ‖IIIN (t)‖L2(Ω;Hα−1(S2))

∣∣∣ ≤ ‖IS2(t, P≤Nu
ω)‖L2(Ω;Hα−1(S2)) , (4.1)

where the notations are introduced in Section 3.4

Proof. For simplicity we consider the case α = 1. The other cases are the same up to applying
〈∆〉

α−1
2 to every term. We have

‖IS2(t, P≤Nu
ω)‖2L2(Ω;L2(S2)) = ‖IN (t)‖2L2(Ω;L2(S2)) + ‖IIN (t) + IIIN (t)‖2L2(Ω;L2(S2))

+ 2E[〈IN (t)|IIN (t) + IIIN (t)〉L2(S2)] .

We show that for every t and N ,

E[〈IN (t)|IIN (t)〉L2(S2)] = E[〈IN (t)|IIIN (t)〉L2(S2)] = 0 . (4.2)

Expanding the scalar product, we have

E[〈IN (t)|IIN (t)〉L2(S2)] =
∑
~n∈Γ

(1)
N

∑
~n′∈Γ

(2)
N

1n0=n′0
E
[〈
πn0(eωn1

eωn2
eωn3

)
∣∣∣ eωn′1(|eωn′2 |

2−‖eωn′2‖
2
L2(S2))

〉
L2(S2)

]
(e−itΩ(~n)−1

Ω(~n)

)
(λn1λn2λn3)−(α− 1

2
)
(eitΩ(~n′)−1

Ω(~n′)

)
(λn′1λ

2
n′2

)−(α− 1
2

) .

Using the integral kernel Kn0 of πn0 we observe that for every (~n, ~n′) ∈ (Γ
(1)
N × Γ

(2)
N ),

E
[〈
πn0(eωn1

eωn2
eωn3

)
∣∣∣ eωn′1(|eωn2

|2 − ‖eωn2
‖2L2(S2))

〉
L2(S2)

]
=

∫
(S2)2

Kn0(x, y)E
[
eωn1

(x)eωn2
(x)eωn3

(x)en′1(y)(|eωn′2(y)|2 − ‖eωn′2‖
2
L2(S2))

]
dσ(x)dσ(y) .

We see from the non-pairing condition n2 6= n1, n3 of ~n ∈ Γ
(1)
N that, for fixed x and y,

E
[
eωn1

(x)eωn2
(x)eωn3

(x)en′1(y)(|eωn′2(y)|2 − ‖eωn′2‖
2
L2(S2))

]
= 0 .

This gives the first equality in (4.2). The second follows analogously, using that for all ~n ∈ Γ
(1)
N and

~n′ ∈ Γ
(3)
N , and for all x, y in S2,

E
[
eωn1

(x)eωn2
(x)eωn3

(x)eωn′1
(y)|eωn′1(y)|2

]
= E

[
eωn1

(x)eωn2
(x)eωn3

(x)eωn′1
(y)‖eωn′1(y)‖2L2(S2)

]
= 0 .

This proves (4.2). We deduce that

‖IS2(t, P≤Nu
ω)‖2L2(Ω;L2(S2)) = ‖IN (t)‖2L2(Ω;L2(S2)) + ‖IIN (t) + IIIN (t)‖2L2(Ω;L2(S2)) ,

and we conclude from the triangle inequality that

‖IS2(t, P≤Nu
ω)‖L2(Ω;L2(S2)) ≥ ‖IIN (t) + IIIN (t)‖L2(Ω;L2(S2))

≥
∣∣∣‖IIN (t)‖L2(Ω;Hα−1(S2)) − ‖IIIN (t)‖L2(Ω;Hα−1(S2))

∣∣∣ .
This concludes the proof of Lemma 4.1. �
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Let us now show that the term IIIN , written in (3.11), gains one derivative with respect to the
initial data φα. This implies in particular that it is bounded in L2(Ω;Hα−1(S2)) uniformly in N .

Lemma 4.2. For every α and s such that s < 3α− 1
2 ,

sup
N

E
[
‖IIIN (t)‖2Hs(S2)

]
< +∞ .

In particular, when α > 1
2 then

sup
N

E
[
‖IIIN (t)‖2Hα−1(S2)

]
< +∞ .

Proof. Fix N ∈ 2N. By Minkowski and the structure of IIIN (t), we have(
E
[
‖IIIN (t)‖2Hs(S2)

]) 1
2 ≤

∑
K≤N
Kdyadic

(
E
[
‖III(PK uω)(t)‖2Hs(S2)

]) 1
2
.

It suffices to show that there exists δ > 0, depending on s and α, such that for all K,

E
[
‖IIIN (PK u

ω)(t)‖2Hs(S2)

]
. K−δ .

We have

E
[
‖IIIN (PK u

ω)(t)‖2Hs(S2)

]
=
∑
n0

λ2s
n0
E
[∥∥∥πn0

∑
n1∼K

(eit(λ
2
n0
−λ2n1 )−1

λ2
n0
− λ2

n1

)
λ
−3(α− 1

2
)

n1 |eωn1
|2eωn1

∥∥∥2

L2(S2)

]
. (4.3)

By some degree considerations we see that the terms contribute only when n0 ≤ 3n1. Moreover,
expanding the square we see that

|(4.3)| .
∑

λn0.K

∑
n1,n′1∼K

λ2s
n0

(λn1λn′1)−3(α− 1
2

)

∣∣∣ ∫
(S2)2

Kn0(x, y)E[eωn1
(x)|eωn1

(x)|2eωn′1(y)|eωn′1(y)|2]dσ(x)dσ(y)
∣∣∣

Using the independence of en1(x) and en′1(y) when n1 6= n′1, we see that only the terms with
n1 = n′1 contribute. Hence,

|(4.3)| . K2s
∑
n0.K

∑
n1∼K

λ
−6(α− 1

2
)

n1

∣∣∣E[ ∫
(S2)2

Kn0(x, y)|eωn1
(x)|2|eωn1

(y)|2eωn1
(x)eωn1

(y)dσ(x)dσ(y)
]∣∣∣

. K2s
∑
n0.K

∑
n1∼K

λ
−6(α− 1

2
)

n1 E‖πn0(|eωn1
|2eωn1

)‖2L2(S2)]

. K2s
∑
n1∼K

λ
−6(α− 1

2
)

n1 E‖eωn1
‖6L6(S2) .

According to (3.5) we conclude that

|(4.3)| . K2s
∑
n1∼K

λ
−6(α− 1

2
)

n1 . K2s+1−6(α− 1
2

) ,
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which is conclusive when
s < 3α− 2 = α− 1 + 2(α− 1

2
) .

This concludes the proof of Lemma 4.2. �

At this stage, we proved in Lemma 4.1 and in Lemma 4.2 that there exists C > 0 such that for
all N ≥ 1, α > 1

2 , t ∈ R and s ≤ 3α− 2,

‖ IIN (t)‖L2(Ω;Hα−1(S2)) − C ≤ ‖IS2(t, P≤Nu
ω
α)‖L2(Ω;Hα−1(S2)) . (4.4)

It remains to show the divergence of the term on the left-hand-side.

4.2. Proof of the divergence claimed in Theorem 1.1. In order to demonstrate the divergence
asserted in Theorem 1.1, we exploit the concentration property associated with high-order spherical
harmonics, as written in Proposition 2.2.

Proposition 4.3. There exist η > 0 and N0 ≥ 0 such that for all N ≥ N0 and t ∈ R we have

|t|η log(N)
1
2 ≤ ‖ IIN (t)‖L2(Ω;Hα−1(S2)) . (4.5)

Proof. Recall that we defined in (3.10)

IIN (t, x) =
∑
~n∈Γ

(2)
N

(e−itΩ(~n)−1

Ω(~n)

)
(λn1λ

2
n2

)−(α− 1
2

)πn0

(
eωn1

(|eωn2
|2 − ‖eωn2

‖2L2S2)
)
.

Note that when ~n = (n, n1, n2, n3) ∈ Γ
(2)
N then the resonant function is Ω(~n) = λ2

n − λ2
n1
. We

expand IIN (t) on the orthonormal basis of L2(S2) made of spherical harmonics :

IIN (t) =
∑
n.N

∑
|k|≤n

Yn,k

∑
n1,n2≤N

1n1 6=n2(λn1λ
2
n2

)−(α− 1
2

) e
it(λ2n−λ2n1 ) − 1

i(λ2
n − λ2

n1
)

(∫
S2
eωn1

(x)(|eωn2
(x)|2 − ‖eωn2

‖2L2(S2))Yn,k(x)dx
)
.

Remark 4.4. Note that since we truncated the initial data at frequency N , we can deduce from
degree considerations on the spherical harmonics that only the modes with n . N contribute to
the above sum.

By applying the Plancherel formula and using the fact that eit(∆S2−1) is a unitary operator on
L2(S2), we obtain

‖ IIN (t)‖2Hα−1(S2) =
∑
n.N

λ2(α−1)
n

∑
|k|≤n

∣∣∣ ∑
n1,n2≤N

1n1 6=n2(λn1λ
2
n2

)−(α− 1
2

) e
it(λ2n−λ2n1 ) − 1

i(λ2
n − λ2

n1
)(∫

S2
eωn1

(x)(|eωn2
(x)|2 − ‖eωn2

‖2L2(S2))Yn,k(x)dx
)∣∣∣2. (4.6)

Recall that

E(gn,k) = 0, E(g2
n,k) = 0, E(|eωn |

2 − ‖eωn‖2L2(S2)) = 0 , E|gn,k(ω)|2 = 1 .

Moreover, the laws of eωn(x) and eωn(y) are the same as a consequence of rotational invariance.
Hence, expanding

eωn1
(x) = (2n1 + 1)−

1
2

∑
|k1|≤n1

gn1,k1(ω)Yn1,k1(x)
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we deduce from the independence that

E
∣∣∣ ∑
n1,n2≤N

(λn1λ
2
n2

)−(α− 1
2

) e
it(λ2n−λ2n1 ) − 1

i(λ2
n − λ2

n1
)

(∫
S2
eωn1

(x)(|eωn2
(x)|2 − ‖eωn2

‖2L2(S2))Yn,k(x)dx
)∣∣∣2

=
∑

n1,n2≤N
1n1 6=n2(λn1λ

2
n2

)−2(α− 1
2

)(2n1 + 1)−1
∣∣∣eit(λ2n−λ2n1 ) − 1

i(λ2
n − λ2

n1
)

∣∣∣2
∑
|k1|≤n1

E
∣∣∣ ∫

S2
(|eωn2

(x)|2 − ‖eωn2
‖2L2(S2))gn1,k1(ω)Yn1,k1(x)Yn,k(x)dx

∣∣∣2 (4.7)

We estimate from below (4.7) by only keeping the high × low frequency interactions, namely
when n2 = 1, which are resonant n = n1, and with k = k1: uniformly in n, k with n ≥ 2, we have

(4.7) & t2n−1λ
−2(α− 1

2
)

n E
∣∣∣ ∫

S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2
∼ t2n−2λ−2(α−1)

n E
∣∣∣ ∫

S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2 ,
where we used that λn ∼ cn. We deduce from (3.10) and (4.7) that

E‖ IIN (t)‖2Hα−1 & t2
∑

2≤n.N

n−2
∑
|k|≤n

E
∣∣∣ ∫

S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2 . (4.8)

Then, we use the explicit expression of eω1 , and we remove a well-chosen subset from Ω (such that
the remainder still has positive measure) in order to exploit the concentration of Y1,1 near the
equator. We have, for ω ∈ Ω and x ∈ S2,

eω1 (x) =
1√
3

(
g1,1(ω)Y1,1(x) + g1,−1(ω)Y1,−1(x) + g1,0(ω)Y1,0(x)

)
,

According to (2.4), we can express in spherical coordinates

Y1,1(θ, ϕ) = −
√

3

2
sin(θ) eiϕ .

Then, given 0 < ε� 1 we define

Sε =
{
ω ∈ Ω | |g1,1(ω)|2 ≥ 1, |g1,−1(ω)|2 + |g1,0(ω)|2 ≤ ε

}
.

Note that P(Sε) > 0. We write

|eω1 (x)|2 − ‖eω1 ‖2L2(S2) = |g1,1(ω)|2(
3

2
sin2(θ)− 1) + r(x, ω) ,

with for all ε > 0, x ∈ S2 and ω ∈ Sε,
|r(x, ω)| . ε . (4.9)

We observe that for all δ > 0,

x ∈ S2 \ C2δ =⇒ 3

2
sin2(θ)− 1 ≥ 1

2
(1− 12δ2) , (4.10)
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where Cδ is defined in (2.6). Fix δ > 0 and set

an,k(ω, δ) = |g1,1(ω)|2
∫
S2

(1− 1C2δ
(x))(

3

2
sin2(θ)− 1) |Yn,k(x)|2 dx

bn,k(ω, δ) = |g1,1(ω)|2
∫
S2
1C2δ

(x)(
3

2
sin2(θ)− 1) |Yn,k(x)|2 dx+

∫
S2
r(x, ω) |Yn,k(x)|2 dx .

so that ∫
S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx = an,k(ω, δ) + bn,k(ω, δ) .

Then, we deduce from the inequality (a+ b)2 ≥ a2

2 − b
2 for a, b ∈ R, that for all ω, n, k,

E
[
1Sε(ω)

∣∣∣ ∫
S2

(
|eω1 (x)|2 − ‖eω1 ‖L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2]
≥ 1

2
E[1Sε(ω)an,k(ω)2]− E[1Sε(ω)bn,k(ω)2] . (4.11)

Moreover, for all ε, δ > 0, n, k and ω ∈ Sε we have form (4.10) that

an,k(ω, δ) ≥
1

2
|g1,1(ω)|2(1− 12δ2)

∫
S2

(1− 1C2δ
(x))|Yn,k(x)|2dx ,

and from (4.9) that

|bn,k(ω, δ)| ≤
1

2
|g1,1(ω)|2

∫
S2
1C2δ

(x)|Yn,k(x)|2dx+ Cε ,

for some universal constant C > 0.

In section 2.2, we prove that in the regime where n is large and n(n+ 1)(1− δ2) ≤ k2 ≤ n2, the
spherical harmonics

{
Yn,k

}
concentrate their mass near the equator, precisely in the region outside

C2δ. Applying Proposition 2.2, we obtain that there exits Cδ such that for all δ > 0, ω ∈ Sε, n ≥ 2
and k as in (2.7),

an,k(ω) ≥ 1

2
|g1,1(ω)|2(1− 12δ2)− Cδ

n
|g1,1(ω)|2 ,

and

|bn,k(ω)| ≤ Cδ
n
|g1,1(ω)|2 + Cε .

Let δ > 0 and N ∈ N. We set

ΛN,δ := {(n, k) ∈ N2 , N ≤ n , n(n+ 1)(1− δ2) ≤ k2 ≤ n2} .

We conclude from (4.11) that, when δ > 0 is sufficiently small, there exists Nδ ≥ 2 such that for all
(n, k) ∈ ΛN,δ and ε > 0 sufficiently small,

E
∣∣∣ ∫

S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2
≥ E

[
1Sε(ω)

∣∣∣ ∫
S2

(
|eω1 (x)|2 − ‖eω1 ‖2L2(S2)

)
|Yn,k(x)|2dx

∣∣∣2] ≥ 1

100
P(Sε) .
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Plugging the above estimate in (4.8) we conclude there exists δ > 0 and Nδ such that for all
N ≥ Nδ and ε > 0 small enough,

E‖ IIN (t)‖2Hα−1(S2) & t
2
∑

Nδ≤n≤N
n−2#{k : (n, k) ∈ ΛNδ,δ}

1

100
P(Sε) &δ,ε t

2 log(N) .

This completes the proof of Proposition 4.3. �

4.3. Conclusion. To complete the proof of Theorem 1.1 we just plug in (4.5) into (4.4): there
exists C, η > 0 and N0 large enough such that for all t and for all N ≥ N0,

‖IS2(t, P≤Nu
ω
α)‖L2(Ω;Hα−1(S2)) ≥ |t|η log(N)

1
2 − C

Taking N0 large enough compared to t and C gives

‖IS2(t, P≤Nu
ω
α)‖L2(Ω;Hα−1(S2)) ≥ |t|

η

2
log(N)

1
2 .

This completes the proof of Theorem 1.1.

5. Regularity of the first iteration on tori

In this appendix, we consider the cubic NLS on the general torus

T2
β = R2/(2πZ)2 ,

endowed with the metric g = dx2
1 + β−2dx2

2 for some β > 0. The cubic NLS on T2
β is written as

i∂tv + ∆βv = |v|2v, (5.1)

where ∆β = ∂2
x1 + β2∂2

x2 . Hence from now on we will only concentrate on (5.1). For n =

(k,m), n′ = (k′,m′) ∈ Z2, we denote by Q(n, n′) = kk′ + β2mm′ the associate quadratic form and
Q(n) := Q(n, n). Then

eit∆β = F−1
x e−itQ(·)Fx .

In light of the Gaussian measure (1.5) defined in the case of S2, we consider initial data of the form

φω1 (x) =
∑
n∈Z2

1

〈n〉
gωn ein·x ,

where 〈n〉 = (1 +Q(n))1/2, and

uω(t, x) =
∑
n∈Z2

eitQ(n)

〈n〉
gωn ein·x

We write the Wick-ordered nonlinearity

N (uω)(t) =
∑

(n1,n2,n3)∈Z2

n2 6=n1,n3

eit(Q(n1)−Q(n2)+Q(n3))

〈n1〉〈n2〉〈n3〉
gn1(ω)gn2(ω)gn3(ω) ei(n1−n2+n3)·x

=
∑

(n1,n2,n3,n)∈Γ

eitΦ(n)

〈n1〉〈n2〉〈n3〉
gn1(ω)gn2(ω)gn3(ω) ein·x,

where the constraint set is

Γ = {(n1, n2, n3, n) ∈ (Z2)4 : n = n1 − n2 + n3, n2 6= n1, n2 6= n3} .
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and the resonant function Φ defined on Γ is

Φ(n) := Q(n1)−Q(n2) +Q(n3)−Q(n1 − n2 + n3) = 2Q(n1 − n2, n2 − n3).

The second Picard iteration is written as

IT2
β
(t, φω) =

∫ t

0
ei(t−t

′)∆βN (uω(t′))dt′,

We shall now prove the gain of regularity (1.8) claimed in Theorem 1.1.

Proof. For fixed t, direct computation, independence assumption as well as the observation that
E[g2] = 0 for standard complex guassian functions yields that

E
[
‖IT2

β
(t, φω)‖2Hs

x

]
∼

∑
n=(n1,n2,n3)∈Γ

〈n1 − n2 + n3〉2s

〈n1〉2〈n2〉2〈n3〉3〈Φ(n)〉2
, (5.2)

To compute the right side of (5.2), we decompose dyadically |nj | ∈ Nj , and assume that N (1) ≥
N (2) ≥ N (3) is the non-increasing order of N1, N2, N3. It would be sufficient to obtain an inequality
of the form

(N1N2N3)−2
∑

|nj |∼Nj ,j=1,2,3
n2 6=n1,n3

〈n1 − n2 + n3〉2s

〈Q(n1 − n2, n2 − n3)〉2
. (N (1))−δ. (5.3)

The left side of (5.3) can be bounded by

(N1N2N3)−2
∑
l∈Z

(N (1))2s

〈l〉2
∑
|nj |∈Nj
n2 6=n1,n3

1|Q(n1−n2,n2−n3)−l|≤δ (5.4)

≤(N1N2N3)−2(N (1))2s sup
l∈Z

∑
|nj |∈Nj
n2 6=n1,n3

1|Q(n1−n2,n2−n3)−l|≤δ, (5.5)

for some number 0 < δ < 1 to be fixed later. Now let us estimate the quantity (for fixed l ∈ Z and
δ < 1/4)

MN1,N2,N3 :=
∑
|nj |∼Nj
n2 6=n1,n3

1|Q(n1−n2,n2−n3)−l|≤δ : (5.6)

• Case 1 N1 � N2, N3: in this case, (5.6) can be majorized by

(N2N3)2 sup
n2,n3:n2 6=n3

∑
n1:|n1|∼N1,n1 6=n2

1|Q(n1−n2,n2−n3)−l|≤δ.

For fixed n2, n3, we denote by m1 = n1 − n2,m0 = n2 − n3, |m1| ∼ N1 � |m0|. It is
sufficient to estimate the number of m1 ∈ Z2, |m1| ∼ N1 such that |Q(m1,m0) − l| ≤ δ.
Denote by m0 = (ξ0, η0), if η0 = 0 or ξ0 = 0, Q(m1,m0) ∈ β2Z or Q(m1,m0) ∈ Z, with
respectively. Then Q(m1,m0) can only take a discrete number of values. In these situations,
we have (the same dimension treatment as in [6])

#{m1 ∈ Z2 : |m1| ∼ N1, |Q(m1,m0)− l| ≤ δ} . N1.
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Therefore, without loss of generality, we may assume that both ξ0 and η0 are non zero.
Denote by mβ = (ξ0, β

2η0) = diag(1, β2)m0. Then it is reduced to estimate the cardinality
of the set

Sδ :=

{
z ∈ Z2 :

∣∣∣∣z · mβ

|mβ|
− l

|mβ|

∣∣∣∣ ≤ δ

|mβ|

}
.

We observe that Sδ is a rectangle with side length ∼ N1 and width ≤ 2δ. Since 2δ < 1/2,
we see that

#Sδ . N1.

Thus the contribution of (5.4) in the sum is less then N2s−1
1 , and the associated dyadic

summation over N1 � N2, N3 converges provided that s < 1
2 .

• Case 2: N2 � N1, N3:
In this case, |Q(n1 − n2, n2 − n3)| ∼ N2

2 . Coming back to (5.4), the range of the sum of
l is |l| ≥ N2

2 . Hence by the crude estimate MN1,N2,N3 . (N1N2N3)3, the contribution of
(5.4) is bounded by ∑

|l|≥N2
2

N2s
2

l2
. N2s−2

2 .

Then associated dyadic summation over N2 � N1, N3 converges, provided that s < 1.
For the rest situations, the argument is the same as for Case 1. For example, if

N1 ∼ N2 � N3 (N2 ∼ N3 � N1), we can fix n2, n3 (n1, n2), and do the same manipulation
as in Case 1.

This completes the proof of (1.8) in Theorem 1.1. �
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