
HAL Id: hal-04440600
https://hal.science/hal-04440600

Preprint submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-end Ultrametric Learning for Hierarchical
Segmentation

Raphael Lapertot, Giovanni Chierchia, Benjamin Perret

To cite this version:
Raphael Lapertot, Giovanni Chierchia, Benjamin Perret. End-to-end Ultrametric Learning for Hier-
archical Segmentation. 2024. �hal-04440600�

https://hal.science/hal-04440600
https://hal.archives-ouvertes.fr

End-to-end Ultrametric Learning for
Hierarchical Segmentation ⋆

Raphael Lapertot1[0009−0004−1208−8115], Giovanni
Chierchia1[0000−0001−5899−689X], and Benjamin Perret1[0000−0003−0933−8342]

LIGM, Univ Gustave Eiffel, CNRS, ESIEE Paris, F-77454 Marne-la-Vallée, France

Abstract. Hierarchical image segmentation aims to capture the struc-
ture of objects of different sizes at different scales and helps to understand
the scene. With the success of neural networks for image segmentation
and the recent emergence of object and part segmentation datasets, the
task of supervised learning of segmentation hierarchies naturally arises.
In a previous work, we proposed a differentiable ultrametric layer that
transforms any dissimilarity measure into an ultrametric distance equiv-
alent to a hierarchical segmentation. In this paper, we study several loss
functions for end-to-end learning of a neural network model predicting
hierarchical segmentations. In particular, we propose a generalization
of the Rand index for hierarchical segmentation and propose exact and
approximate algorithms to compute it. We introduce new metrics to com-
pare hierarchical segmentations, and we demonstrate the suitability of
the proposed pipeline with several possible loss function combinations
on a simulated hierarchical dataset.

Keywords: Image segmentation · Hierarchy · Ultrametric

1 Introduction

Image segmentation is the process of dividing an image into distinct regions that
highlight relevant structures. One critical factor in this process is the selection
of an appropriate scale, since it affects the level of detail visible in an image.
Such difficulty can be avoided by using a hierarchical framework that generates
consistent segmentations across multiple scales. This approach allows one to
defer the decision regarding the scale until after the segmentation is complete.

With the success of neural networks in flat image segmentation [7,23,25,21]
and the recent emergence of hierarchical segmentation datasets [4,9,19,14,8], the
task of end-to-end supervised learning of hierarchical segmentation naturally
arises. Notable efforts have been made to produce high quality hierarchical im-
age segmentations, however, to the best of our knowledge, none of them propose
loss functions for end-to-end supervised learning of hierarchical image segmen-
tation. Some prior research has performed end-to-end supervised learning of

⋆ This work is supported by the French ANR grant ANR-20-CE23-0019, and
was granted access to the HPC resources of IDRIS under the allocation 2023-
AD011013101R1 made by GENCI.

2 R. Lapertot et al.

flat image segmentations [24,1,16], while other studies have produced hierar-
chical segmentations, but not in an end-to-end fashion, using flat segmentation
ground-truths [20,18,13]. HieraSeg [12] propose a pixel approach for hierarchi-
cal semantic segmentation, for which the hierarchy is on the semantic labels.
Loss functions play a major role in the process as they guide the model towards
meaningful segmentation hierarchies through the optimization process. Using an
end-to-end pipeline has also shown to be advantageous.

This paper extends our previous works which proposed a differentiable ultra-
metric layer [5], and a pipeline for the supervised learning of ultrametrics [11].
We explore various loss functions including an adaptation of the Rand Index,
a well-established metric for evaluating segmentation quality, to the hierarchi-
cal context for end-to-end optimization. We also introduce quantitative metrics
to assess well-ordered hierarchical segmentations. Our main contributions are
new loss functions for the supervised learning of hierarchical segmentation, cor-
responding algorithms for approximate or exact computation, and quantitative
metrics for hierarchical segmentation assessments.

2 Model

Our primary objective is to establish an end-to-end supervised learning frame-
work for hierarchical segmentation. Given the success of deep learning method-
ologies in the domain of image segmentation, it is natural to explore their ap-
plicability to this particular context. We frame the problem as a regression task
operating on the edges of the 4-adjacency graph (or grid) G of the image, with
pixels as vertices and edges linking each neighbor pixels.

2.1 Hierarchical segmentation using graphs

Flat segmentation is often approached from a region-based perspective. From
this point of view, a segmentation S associates each pixel v of the image with an
associated region label sv. It can also be seen from a boundary-based perspec-
tive. Let us consider the 4-adjacency graph of an image. Considering a segmen-
tation S, the cut ϕS indicates whether two pixels belong to the same region in
S or not: ϕS(v, v

′) = 1 if sv ̸= sv′ else 0 with v and v′ two pixels.
Hierarchical segmentation can also be seen from a region point of view and a

boundary point of view. In the first case, it is represented as a sequence of ordered
segmentations, the next one being a refinement of the previous one. From the
boundary perspective, a hierarchical image segmentation is represented as an
ultrametric (dissimilarity) grid (G, w) (also called saliency map or ultrametric
contour map), that is, a 4-adjacency graph G whose edges e ∈ E are weighted by
a dissimilarity value w(e) that satisfies the ultrametric constraint (∀C ∈ C,∀e ∈
C,w(e) ≤ maxe′∈C\{e} w(e

′), with C the set of cycles of G).
In general, a dissimilarity grid (G, w) is not an ultrametric grid, but a sim-

ple way to transform it into an ultrametric grid is to compute its subdominant
ultrametric (G, uw), i.e., the largest ultrametric grid which is smaller or equal

End-to-end Ultrametric Learning for Hierarchical Segmentation 3

than (G, w). In image analysis, computing the subdominant ultrametric of a dis-
similarity grid can be seen as removing borders with holes. The subdominant
ultrametric of a dissimilarity grid can also be defined thanks to the notion of
min-max paths, i.e. paths that minimizes the maximal value along the path.
More formally, we denote Pv,v′ the set of paths from v to v′ in a dissimilarity
grid (G, w). The min-max path P ∗

v,v′ from the pixel v to the pixel v′ is

P ∗
v,v′ = argmin

P∈Pv,v′

max
e∈P

w(e). (1)

The maximal edge of the min-max path is called the min-max edge, and will be
denoted mmw(v, v

′). Finally, the subdominant ultrametric dw(v, v
′) of (G, w) on

the edge {v, v′} is equal to the weight of the min-max edge between v and v′:

dw(v, v
′) = w(mmw(v, v

′)). (2)

In this paper, we will consider hierarchies represented as ultrametric grid.

2.2 Ultrametric network

We propose the design of a neural network that predicts an ultrametric grid from
an input image. The pipeline is shown in Figure 1 and unfolds as follows.

– The input image is given to a U-Net neural network. The network outputs a
transformed image of identical dimensions, preserving spatial relationships.

– The output is transformed into edge-weights that correspond to the 4-adjacency
graph of the original image.

– A sigmoid activation function binds these edge-weights within the range of
0 (no contour) to 1 (strong contour).

– An ultrametric layer converts the graph into an ultrametric graph, while
preserving the differentiability of the computation [5].

In particular, the U-Net architecture shows versatility by accommodating differ-
ent convolutional or transformer-based neural networks, ensuring adaptability
to upcoming innovations. Our approach converts the U-Net’s output in the pixel
domain to edge-weights by taking the average weight of neighboring pixels.

3 Loss functions

In this section, we introduce differentiable loss functions for comparing two ul-
trametric grids, one of which is predicted by the proposed ultrametric network.
We give algorithms to compute them both approximately and exactly. These
loss functions will be used for training the proposed ultrametric network.

In the following, we assume that any ground-truth ultrametric grid w is com-
posed of a few different levels Λ(w). For example, a ground-truth in an objects-
and-parts dataset typically has three levels: the level 0 denotes the absence of
frontier, the level 1 delineates objects, and the level 2 defines the parts of objects.

4 R. Lapertot et al.

Inference

U-Net

Target UCM

LossTraining
phase

Predicted UCM

Post-
processing

Ultrametric
Layer

Loss

Non end-to-end

End-to-end

Fig. 1: Our proposed pipeline with optimization either end-to-end or not. In this
figure, the U-Net outputs edge-weights (seen as a dissimilarity measure) of the
4-adjacency graph built on the input image. The loss function is computed either
before or after (or both) the ultrametric layer that transforms the dissimilarity
grid into an ultrametric one, which is equivalent to a hierarchical segmentation.

3.1 Quadratic Error

A simple approach is to consider the L2 distance between the ground-truth
ultrametric grid (w) and the predicted edge-weights (ŵ), while mitigating the
imbalance between the number of edges in the different levels of the ground-
truth. This can be formulated as

L2(ŵ, w) =
1

|E|
∑

λ∈Λ(w)

βλ

∑
e∈Eλ

(ŵ(e)− w(e))2, (3)

where E denotes the set of edges within the 4-adjacency graph corresponding
to the input image, Eλ represents the set of edges with a ground-truth value

of λ, and βλ = 1 − |Eλ|
|E| serves as a class-balancing weight. The latter term

is essential as there are typically a lot more non-edges than edges; when this
term is not included, the non-edges are naturally privileged, and actual edges
are harder to learn and detect. While this approach seems natural, it is sensitive
to small geometric transformations such as translations, which is undesirable
since the quality of a segmentation should not decrease significantly with small
spatial variations. This loss can be applied after the ultrametric layer, offering
an end-to-end learning pipeline. It can also be applied before the ultrametric
layer, which can serve as a baseline even if the training is no longer end-to-end.

3.2 Hierarchical Rand Index

From a region-based perspective, the Rand Index for two segmentations S and
Ŝ can be defined as follows

1−RI(Ŝ, S) =

(
N

2

)−1 ∑
v<v′

|δ(sv, sv′)− δ(ŝv, ŝv′)| . (4)

End-to-end Ultrametric Learning for Hierarchical Segmentation 5

In this equation, N is the number of pixels, with
(
N
2

)−1
used for normalization, v

and v′ are pixels, and δ(x, y) if the indicator function which is 0 if x = y and 1 of
x ̸= y. Overall, the Rand index measures the proportion of pixel pairs for which
the two segmentations disagree. This measure increases when regions are split
or merged incorrectly, while being robust to small geometric transformations.
From a boundary-based perspective, the Rand Index can be expressed using the
cuts ϕŜ and ϕS similarly. This is from this boundary-based perspective that we
relax the Rand Index to hierarchical segmentation. We define the Hierarchical
Rand Index (HRI) of two dissimilarity grids w and ŵ on G as

HRI(ŵ, w) =

(
N

2

)−1 ∑
v<v′

βdw(v,v′) (dw(v, v
′)− dŵ(v, v

′))
2
. (5)

It computes the mean ultrametric distance error for every pixel pair of the graph.
This measure keeps the same benefits as the Rand index, that is, it focuses on
the incorrect merging and splitting of hierarchical regions. We use the same
class-balancing weights βλ as described previously.

3.3 Naive algorithm for HRI

Let us focus on the computation of the HRI. Firstly, in an optimization frame-
work, the loss function needs to be differentiable on the edges of the graph. To
calculate the ultrametric distance between pairs of pixels, we exploit an inter-
esting property of minimal spanning trees (or MST for short): each path in an
MST of a graph is a min-max path. A binary partition tree (BPT) associated
with the MST can be built during the Kruskal algorithm [15] which enables to
efficiently find min-max edge between any pixel pair by querying their lowest
common ancestor in this BPT, which can be done efficiently with a linear time
preprocessing of the tree [3]. A naive algorithm for computing the HRI is de-
tailed in Algorithm 1. This naive algorithm has a quadratic runtime w.r.t. the
number of vertices as it browses each pixel pair.

A first approach to alleviate this problem is to approximate the HRI by
considering a subset of M pixel pairs. This reduces the time complexity from
O(N2) to O(M + N logN) but we only get an approximation of the correct
result. In the context of a stochastic gradient descent algorithm, such kind of
approximation in the loss function might be acceptable.

3.4 Optimized algorithm for HRI

In this section, we propose a more efficient algorithm to compute the HRI. This
algorithm leverages on the properties of min-max paths and the BPT. The idea
is as follows: when computing the MST of a graph and the corresponding BPT
using Kruskal’s algorithm, when an edge is added to the BPT, it merges two
subtrees. The amount of pixels in a tree will be called its area. The number of
pixel pairs for which the added edge is the min-max edge can be deduced by

6 R. Lapertot et al.

Algorithm 1 Naive hierarchical Rand index

1: procedure Naive-Hri(G, ŵ, w) ▷ O(N2)
2: Compute BPT (G, ŵ) ▷ O(N logN)
3: Compute BPT (G, w) ▷ O(N logN)

4: Compute the class-balancing weight: ∀λ ∈ Λ(w), βλ = 1− |Eλ|
|E| ▷ O(N)

5: for (v, v′) ∈ V 2 with v < v′ do ▷ O(N2)
6: Find the predicted min-max edge mmŵ(v, v

′) using BPT (G, ŵ) ▷ O(1)
7: Get its dissimilarity value: dŵ(v, v

′)← ŵ(mmŵ(v, v
′)) ▷ O(1)

8: Find the ground-truth min-max edge mmw(v, v
′) using BPT (G, w) ▷ O(1)

9: Get its dissimilarity value: dw(v, v
′)← w(mmw(v, v

′)) ▷ O(1)
10: Compute error: HRI(ŵ, w)v,v′ = βdw(v,v′) (dw(v, v

′)− dŵ(v, v
′))

2
▷ O(1)

11: end for
12: Return the mean HRI error
13: end procedure

looking at the areas of the trees it merges. Formally, for each edge e ∈ MST (G, ŵ)
and each ground-truth level λ ∈ Λ(w), we define the area A(e, λ) at e for the
level λ as the number of pixel pairs whose min-max edge in (G, ŵ) is e and whose
ultrametric distance in the ground truth is λ:

A(e, λ) =
∣∣{(v, v′) ∈ V 2 | dw(v, v′) = λ, e = mmŵ(v, v

′)}
∣∣ . (6)

The HRI can then be rewritten as follows

HRI(ŵ, w) =

(
N

2

)−1 ∑
λ∈Λ(w)

∑
e∈MST (G,ŵ)

A(e, λ)(λ− ŵ(e))2. (7)

In this new formulation which is equivalent to Equation 5, we have replaced the
sum over all pixel pairs by a double sum over the ground truth levels, which is
small, and the MST edges, which is in the order of N the number of pixels.

Then, let’s see how to calculate A(e, λ). Assume that the finest ground-truth
partition if composed of k regions labeled {1, ..., k}. We define the ultrametric
distance between any two of these regions as

U(i, j) = dw(v, v
′). (8)

where v (resp v′) is a pixel of the region i (resp. j); note that the choice of v and
v′ does not matter as they are all at the same ultrametric distance. Let e be an
edge of MST (G, ŵ). This edge corresponds to a node n in the associated BPT.
The number of pixels of label i contained in the subtree rooted at the node n
is denoted R(n, i). Let ce1 and ce2 be respectively the left and right children of
the node of the BPT associated to the edge e. Note that, as e merges its left
and right subtrees in the BPT, e is the min-max edge between any pixel in the
subtrees rooted in ce1 and in ce2. We can observe that, for any MST edge e and
for any two different regions i and j, there are R(ce1, i)R(ce2, j) +R(ce1, j)R(ce2, i)
pairs of pixels from the regions i and j in the ground-truth between the subtrees
rooted in ce1 and ce2. Similarly, there are R(ce1, i)R(ce2, i) pairs of pixels of the same

End-to-end Ultrametric Learning for Hierarchical Segmentation 7

Algorithm 2 Optimized hierarchical Rand index

1: procedure Optimized-Hri(G, ŵ, w) ▷ O(N(logN + k2 + |Λ(w)|))
2: Compute BPT (G, ŵ) ▷ O(N logN)
3: Compute BPT (G, w) ▷ O(N logN)
4: Compute the ultrametric distance of regions of the finest partition: U ▷ O(k2)
5: Compute areas of regions per edge of MST (G, ŵ): R ▷ O(Nk)
6: Compute areas of regions pair per edge of MST (G, ŵ): B ▷ O(Nk2)
7: Compute areas per ultrametric value and edge of MST (G, ŵ): A ▷ O(N |Λ(w)|)
8: Compute HRI =

∑
λ∈Λ(w)

∑
e∈MST (G,ŵ) A(e, λ)(λ− ŵ(e))2 ▷ O(N |Λ(w)|)

9: Return HRI error ▷ O(1)
10: end procedure

region i in the ground-truth between the subtrees rooted in ce1 and ce2. Thus, the
number of pixels pairs of region i and j, whose min-max edge is e, reads

B(e, i, j) =

R(ce1, i)R(ce2, j) +R(ce1, j)R(ce2, i) if i ̸= j

R(ce1, i)R(ce2, i) if i = j.
(9)

Then, the area A(e, λ) indicating for each edge e of the MST and for each
ultrametric value λ ∈ Λ(w), how many pixel pairs of ultrametric distance λ in
the ground-truth have the min-max edge e in ŵ, can be rewritten as:

A(e, λ) =

k∑
i=1

k∑
j=i

(
1− δ

(
λ,U(i, j)

))
B(e, i, j). (10)

In practice, R is a (N − 1)× k matrix and B is a (N − 1)× k2 matrix: they can
be seen as attributes mapping a k (resp. k2) vector to any internal node of the
BPT. Both can be computed by browsing the BPT from the leaves to the root.

The complete HRI can be computed by Algorithm 2 with a runtime com-
plexity of O

(
N(logN + k2 + |Λ(w)|)

)
. The fewer regions in the ground-truth,

the faster the algorithm. Both Algorithms 1 and 2 yield the same result.

4 Experiments

We now evaluate the proposed loss functions. Specifically, we analyze the effec-
tiveness of these loss functions for training a neural network in the context of
hierarchical image segmentation.

4.1 Dataset

We use a custom-made Humanoid Dataset, which is a toy dataset consisting of
a virtual humanoid moving in front of 6 cameras with different angles for 120
frames, resulting in 720 images of size 128x128. The ground-truths consists of
Ultrametric Contour Maps (UCM) [2,6,11], where interpixels are added to the

8 R. Lapertot et al.

original image to represent the edges, resulting in an image twice as large as
the input image. These UCMs have object-edges drawing the external contours,
and part-edges drawing the contours of the parts (fore-arms, face, ...), with
respectively value 1 and 0.5. When there are no edges, the value is 0. This
dataset was generated using Blender. In our experiments, 4 cameras are used for
training, 1 camera is used for validation, and the remaining camera is used for
testing. Three samples of the Humanoid Dataset are displayed in Figure 2.

4.2 Neural Network & hyper-parameters

We use a ResNet18 pretrained on ImageNet for the backbone of our U-Net. We
first freeze the encoder to only train the decoder for 300 epochs with a One
Cycle learning rate scheduler [22] with a maximum learning rate of 0.001. We
use an Adam optimizer with a weight decay of 0.01. Once this pre-training is
done, we unfreeze the encoder and train it for an additional 100 epochs with a
One Cycle learning rate scheduler with a maximum learning rate of 0.0002. We
use a batch-size of 64 and simple data augmentations such as horizontal flips
and slight random brightness, saturation and contrast modifications.

In terms of computation time, training the neural network as described above
using four NVIDIA Tesla V100 GPUs, the partial algorithm took around 47 min-
utes to compute with one pixel pair, approximately 51 minutes with 16384 pixel
pairs, whereas the optimized algorithm required approximately 1 hour and 16
minutes. For reference, the control group with the L2 loss prior to the ultramet-
ric layer took around 32 minutes to train. Therefore, in the experiments, we used
16384 random pixel pairs when computing the partial algorithm.

The network predictions are post-processed with an area filter removing 1-
pixel regions [17]. The ultrametric grids are then converted to Ultrametric Con-
tour Maps (UCM) [2,6,11], where interpixels are added to the original image to
represent the edges, yielding an image twice as large as the input.

4.3 Metrics

For assessing hierarchical segmentation, we build on our previous work [11] using
the Level Recovery Fraction (LRF) and the False Discovery Fraction (FDF). Let
Upred be a predicted UCM and Utar be the corresponding ground-truth UCM.
The threshold of Upred at levels t is denoted by Upredt

.
For any ground-truth level λ and any threshold level t, LRF (λ, t) denotes

the fraction of ground-edges of level λ which are matched to an edge in Upredt :

LRF (λ, t) =

∣∣{e | matchUpredt
(e) and Utar(e) = λ}

∣∣
|{e | Utar(e) = λ}|

, (11)

where matchUpredt
(e) is true if the edge e is matched with a corresponding edge

in Upredt
using a bipartite graph matching method.

For the False Discovery Fraction, it is however not immediate to associate a
false positive edge in the prediction to a specific level of the ground-truth. For

End-to-end Ultrametric Learning for Hierarchical Segmentation 9

Image

Ground-truth

L2

Ultra L2

OHRI

PHRI

PHRI + L2

PHRI + ultra L2

Fig. 2: Predictions of the neural networks on the Humanoid Dataset trained with
different loss functions. When training with L2 alone, some contours are opened,
resulting in edges that are less salient than expected after post-processing. When
training with HRI alone, the object-edges are well detected and closed, but the
part-edges are not well located. The other configurations produce closed edges
that are well located.

10 R. Lapertot et al.

any threshold level t, FDF (t) is then defined as the fraction of prediction edges
at the threshold t that cannot be matched with any edge of the ground-truth:

FDF (t) =

∣∣{e |!matchUpredt
(e) and Upredt

(e) = 1}
∣∣

|{e | Upredt
(e) = 1}|

. (12)

In a good prediction, the object boundaries will be recovered at a high thresh-
old (1 in our setting), and the part boundaries will be recovered at a medium
threshold (0.5 in our setting), resulting in two step-functions. The FDF, on the
other hand, would be 0 for every threshold.

To summarize LRF curves, we propose to calculate the area enclosed between
the ideal step curve and the observed curve within the LRF at each level of the
hierarchy (LRFobj for object boundaries, and LRFpart for part boundaries).
Additionally, we compute the mean value of the FDF among the thresholds,
giving mFDF . Smaller values for these metrics indicate improved performance.
All in all, LRFobj and LRFpart measure if detected edges are in the right order
in the hierarchy, and mFDF gives insights about false detections.

4.4 Results

We address the following problematic: how effective the loss functions are for
training a neural network for hierarchical image segmentation? To this end, we
train neural networks with various combinations of the proposed loss functions.
We automatically combine multiple losses using learnable parameters [10,26]. In
the following, L2 stands for the quadratic error loss applied before the ultramet-
ric layer (not end-to-end) and serves as a control group, UL2 is the quadratic
error loss applied after the ultrametric layer (end-to-end), and OHRI and PHRI
are the hierarchical rand index computed with respectively the optimized algo-
rithm and the partial algorithm (both end-to-end).

The metrics on the test set are shown in Figure 3, and the predictions of those
networks are displayed in Figure 2. The Level Recovery Fraction (objects) plot
shows the limits of the control group when computing the L2 prior on the ultra-
metric layer; the blue line representing object boundaries recovery shows that
object borders are recovered at a medium threshold instead of a high threshold,
resulting in a high LRFobj error. This effect, visible in Figure 2, is mostly due to
open borders that are removed when computing the subdominant ultrametric.
The aforementioned effect does not happen with the other loss functions.

Part boundaries are recovered at a medium threshold for most loss functions,
except when training with HRI alone (green and red line). For the latter, part
boundaries are recovered more linearly at a mid-low threshold (instead of the
ideal step curve at a mid threshold), and wrongly recovered even at a high
threshold, resulting in a high LRFpart error. The control group also recovers
part boundaries at a lower threshold than other methods.

Finally, the False Discovery Fraction plot shows that training with HRI alone
results in a lot of wrong boundaries at a medium to low threshold, mostly because
it does not learn where to place the part borders as visible in Figure 2.

End-to-end Ultrametric Learning for Hierarchical Segmentation 11

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

l R
ec

ov
er

y
Fr

ac
tio

n

Level Recovery Fraction (objects)

L2
Ultra L2
OHRI
PHRI
HRI + L2
HRI + ultra L2
Ideal

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Le
ve

l R
ec

ov
er

y
Fr

ac
tio

n

Level Recovery Fraction (parts)

0.0 0.2 0.4 0.6 0.8 1.0
Threshold

0.0

0.2

0.4

0.6

0.8

1.0

Fa
lse

 D
isc

ov
er

y
Fr

ac
tio

n

False Discovery Fraction by threshold

LRFobj LRFpart mFDF

L2 0.354 0.200 0.013
UL2 0.086 0.184 0.018
OHRI 0.031 0.211 0.180
PHRI 0.030 0.250 0.171
PHRI+L2 0.036 0.155 0.034
PHRI+UL2 0.040 0.144 0.044

Fig. 3: Experiment results. The errors are the area between the ideal case (dotted
line) and the actual line for the three metrics. Lower errors means better results.

5 Conclusion

In this paper, we presented new loss functions and developed algorithms for both
approximate and optimized computation. We demonstrated their effectiveness
through a proof-of-concept experiment on a simplified dataset. Additionally, we
introduced quantitative metrics for evaluating hierarchical segmentation. Future
research will involve applying this method to larger and more complex hierar-
chical datasets to further evaluate its potential. Additionally, there is a need
for further investigation into the selection of pixel pairs for the approximate
computation of the HRI. A particularly intriguing and challenging direction for
future research is the incorporation of a semantic dimension into the hierarchical
segmentation pipeline.

References

1. Al-Huda, Z., Peng, B., Yang, Y., Algburi, R.N.A.: Object scale selection of hier-
archical image segmentation with deep seeds. IET Image Processing 15, 191–205
(2020)

2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. IEEE TPAMI 33(5), 898–916 (2010)

3. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: LATIN 2000:
Theoretical Informatics. pp. 88–94. Springer (2000)

4. Chen, X., Mottaghi, R., Liu, X., Fidler, S., Urtasun, R., Yuille, A.: Detect what
you can: Detecting and representing objects using holistic models and body parts.
In: IEEE CVPR (June 2014)

5. Chierchia, G., Perret, B.: Ultrametric fitting by gradient descent. In: NeurIPS.
vol. 32. Curran Associates, Inc. (2019)

12 R. Lapertot et al.

6. Cousty, J., Najman, L., Kenmochi, Y., Guimarães, S.: Hierarchical segmentations
with graphs: quasi-flat zones, minimum spanning trees, and saliency maps. JMIV
60(4), 479–502 (2018)

7. Elizar, E., Zulkifley, M.A., Muharar, R., Zaman, M.H.M., Mustaza, S.M.: A review
on multiscale-deep-learning applications. Sensors 22(19) (2022)

8. de Geus, D., Meletis, P., Lu, C., Wen, X., Dubbelman, G.: Part-aware panoptic
segmentation. In: IEEE CVPR (2021)

9. He, J., Yang, S., Yang, S., Kortylewski, A., Yuan, X., Chen, J., Liu, S., Yang, C.,
Yuille, A.L.: Partimagenet: A large, high-quality dataset of parts. CoRR (2021)

10. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics (2018)

11. Lapertot, R., Chierchia, G., Perret, B.: Supervised Learning of Hierarchical Image
Segmentation. In: CIARP (2023)

12. Li, L., Zhou, T., Wang, W., Li, J., Yang, Y.: Deep hierarchical semantic segmen-
tation. In: IEEE CVPR. pp. 1236–1247 (2022)

13. Maninis, K., Pont-Tuset, J., Arbeláez, P., Gool, L.V.: Convolutional oriented
boundaries: From image segmentation to high-level tasks. IEEE TPAMI (2017)

14. Meletis, P., Wen, X., Lu, C., de Geus, D., Dubbelman, G.: Cityscapes-panoptic-
parts and pascal-panoptic-parts datasets for scene understanding. CoRR (2020)

15. Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morpho-
logical trees in edge-weighted graphs. In: ISMM. LNCS, vol. 7883 (2013)

16. Ôn Vû Ngoc, M., Chen, Y., Boutry, N., Chazalon, J., Carlinet, E., Fabrizio, J.,
Mallet, C., Géraud, T.: Introducing the Boundary-Aware loss for deep image seg-
mentation. In: BMVC 2021 (2021)

17. Perret, B., Cousty, J., Guimarães, S.J.F., Kenmochi, Y., Najman, L.: Removing
non-significant regions in hierarchical clustering and segmentation. PRL 128, 433–
439 (2019)

18. Pont-Tuset, J., Arbeláez, P., Barron, J., Marques, F., Malik, J.: Multiscale com-
binatorial grouping for image segmentation and object proposal generation. In:
arXiv:1503.00848 (March 2015)

19. Ramanathan, V., Kalia, A., Petrovic, V., Wen, Y., Zheng, B., Guo, B., Wang, R.,
Marquez, A., Kovvuri, R., Kadian, A., Mousavi, A., Song, Y., Dubey, A., Mahajan,
D.: Paco: Parts and attributes of common objects (2023)

20. Ren, Z., Shakhnarovich, G.: Image segmentation by cascaded region agglomeration.
In: IEEE CVPR. pp. 2011–2018 (2013)

21. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
ical image segmentation. In: MICCAI 2015. pp. 234–241. Springer (2015)

22. Smith, L.N., Topin, N.: Super-convergence: Very fast training of residual networks
using large learning rates. CoRR (2017)

23. Thisanke, H., Deshan, C., Chamith, K., Seneviratne, S., Vidanaarachchi, R.,
Herath, D.: Semantic segmentation using vision transformers: A survey (2023)

24. Wolf, S., Schott, L., Köthe, U., Hamprecht, F.: Learned watershed: End-to-end
learning of seeded segmentation (2017)

25. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer:
Simple and efficient design for semantic segmentation with transformers (2021)

26. Zhang, Y., Wang, C., Wang, X., Zeng, W., Liu, W.: FairMOT: On the fairness of
detection and re-identification in multiple object tracking. IJCV 129(11), 3069–
3087 (sep 2021)

	End-to-end Ultrametric Learning for Hierarchical Segmentation

