N

N

A Core Reference Model for Applicable Reconfigurable
Manufacturing Systems
Pascal André, Olivier Cardin

» To cite this version:

Pascal André, Olivier Cardin. A Core Reference Model for Applicable Reconfigurable Manufacturing
Systems. Borangiu, T., Trentesaux, D., Leitdo, P., Berrah, L., Jimenez, JF. (eds). Service Ori-
ented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future, 1136, Springer
Nature Switzerland, pp.507-519, 2024, Studies in Computational Intelligence, 10.1007/978-3-031-
53445-4 42 . hal-04440581

HAL Id: hal-04440581
https://hal.science/hal-04440581
Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-04440581
https://hal.archives-ouvertes.fr

A Core Reference Model for Applicable
Reconfigurable Manufacturing Systems

Pascal André and Olivier Cardin

Abstract Reconfigurable Manufacturing Systems (RMS) have emerged as a promis-
ing approach to address the dynamic demands and uncertainties in modern manu-
facturing. However, the lack of a comprehensive and universally accepted defini-
tion of the notion of configuration in RMS poses challenges for researchers and
practitioners. This research article aims to bridge this gap by suggesting a core ref-
erence model for RMS, allowing to exhibit a generic modelling of configurations.
The article critically examines existing definitions and approaches to configuration,
providing a comprehensive overview of the different dimensions and components
of configuration in RMS. By addressing the lack of a consistent understanding of
configuration in RMS, this article contributes to the development of a shared knowl-
edge base and paves the way for further advancements in the field. It also highlights
the importance of establishing a clear and holistic definition of configuration for
effective implementation and utilization of RMS in practice.

Key words: Reconfigurable Manufacturing Systems, Metamodel, Holon, Con-
cerns, Design pattern

1 Introduction

In the face of rapidly changing market demands, increasing product complexity, and
technological advancements, manufacturers are seeking innovative solutions to en-
hance their agility, adaptability, and competitiveness. Reconfigurable Manufacturing
Systems (RMS) have emerged as a promising approach to meet these challenges by
providing a flexible and responsive manufacturing environment. However, despite
the growing interest and adoption of RMS, there remains a critical gap in the un-
derstanding and definition of the notion of configuration within these systems. Con-
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figuration, as a fundamental concept in RMS, encompasses the arrangement, orga-
nization, and adaptation of system components, processes, and resources to meet
specific manufacturing requirements. It encompasses the ability to modify and re-
organize the system’s physical, logical, and operational attributes to accommodate
changing product specifications, production volumes, and market conditions. The
configuration of an RMS influences its adaptability, scalability, and overall perfor-
mance, thereby playing a crucial role in achieving operational excellence and com-
petitive advantage.

Currently, there is a lack of a comprehensive and universally accepted definition
of configuration in the context of RMS. This gap hampers researchers and practi-
tioners in effectively understanding, designing, and implementing RMS. The objec-
tive of this article is to bridge the existing gap by suggesting a core reference model
for RMS. The ultimate objective is to establish a foundation for a unified and com-
prehensive definition of configuration in RMS. To do so, this article will examine
the different aspects and components of configuration, targeting modular design,
adaptability, flexibility, and reconfigurability.

The findings of this research aims at contributing to the development of a shared
knowledge base for researchers and practitioners in the field of RMS. A clear and
holistic understanding of the notion of configuration will enable more effective de-
sign, implementation, and utilization of RMS in practice. It will also facilitate the
development of standardized methodologies, tools, and frameworks for configuring
RMS to meet evolving manufacturing needs.

The primarily targeted methodologies are related to a research project (RODIC
project, funded by the French National Research Agency - ANR) where the focus
is specifically on the evaluation phase of a given potential configuration. The con-
figuration can therefore be roughly defined as a set of modules, arranged in a given
manner with given parameters. In this phase of evaluation, several actions have to
be executed:

¢ let the user define its configuration in a computable form

* verify the validity of the configuration

* define the test scenario that will be executed

* evaluate the performance indicators of the configuration in this scenario
* present the indicators in an understandable form to the user.

This list exhibits the need to have different perspectives on the notion of configura-
tion all along the evaluation phase. Therefore, it seems valuable to connect all those
perspectives with a single reference model, able to capture all the characteristics of
a configuration in a RMS context.

The paper is organised as follows. We recall the background information in Sec-
tion 2. Section 3 expresses the main principles of applicable reference architectures
which are put in practice in the reference model we propose in Section 4. The archi-
tecture is modular to be customized in various contexts of RMS and then illustrated
in a simple case in Section 5. In conclusion, we draw perspectives for a larger inte-
gration and development of the tool in an actual manufacturing context.



2 Background

3 Requirements

This sections discusses requirements for RMS reasoning and applicability. Most
belong to the Stream #2-analysis of RMS features of Bortolini et al.’s survey [5]:
modularity, integrability, diagnosibility, convertibility, customisation and scalability.

(D Conceptual models for RMS The survey of Kayser et al. [11] pointed out that
detailed reference architecture are under-specified to be applicable, there miss de-
tailed models to design the software applications of the manufacturing systems,
leaving such decisions to software delivers. As mentioned in [5], conceptual mod-
els for RMS are a missing but promising research stream. In this article, we will
the widespread UML standard notation. To improve the modelling quality, we refer
to the core model principles of [2]: meaningful notation, type/instance distinction,
recursive aggregation, aggregation protocols, schematic specialisations.

(@ Modularity Reconfiguration cannot operate on any random MS concept, there
must be reconfiguration units. As mentioned in [7], modularity is a basic require-
ment for RMS and module-based configuration enables reconfiguration. Indeed, el-
ements can be put together either to adjust the production volume (scalability), or
to add functionality to the system (convertibility), or to produce more customized
products (customization).

(® Type and Instance Models As mentioned in [2], in MES we need both type
and instance at the modelling level because instances can have several occur-
rences. A resource-type (e.g. a arm robot) describe capabilities. A resource (e.g.
the FANUC LR Mate 200) describe a resource instance that may have several oc-
currences (instances), each having its customised information (id, values...). The
same applies for products defined by product-types (e.g. with a nomenclature) and
produced in several instances according to a product order. In Object Orientation,
meta-protocol allow the
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(@ Abstraction and encapsulation Abstraction is a key feature in modular design.
A configuration is an assembly of modules that focuses on the module interface
(an abstraction) not the module implementation (encapsulates data, control...). The
interface must include the information to decide whether modules can be linked
together or not (integrability).

(® Recursive aggregation A module can be implemented by other modules. From
the interface point of view, a composite is a module that can be assembled with other
in a configuration. From the implementation point of view, a composite modules
encapsulates a configuration of other modules. This is an elegant way to achieve
scalability and improves part to part diagnosibility. For example, a module can be a
single resource or a workstation module in a workshop or a production line module
in a factory module.

(6 Multi-aspect and loose coupling A manufacturing system involves several
stakeholders that have different concerns: CPS engineers to connect physical mod-
ules, automation engineers for resources control, software engineers for commu-
nication networks and MES, business managers for KPI, etc. Both modules and
configurations are perceived differently by stakeholders. For example, Fotso et al.
propose a fractal vision of modules where four aspects are associated to modules
(physical, control, simulation, KPI) [7]. However their (high-level) reference model
is not applicable because the glue for integration (based on the production process)
has not been studied and the viewpoints are not continuously fractal among recur-
sive aggregation. Last to be reusable the aspects must be as independent as possible
(loose coupling).

(D Early verification and strong consistency The consistent and complete in-
tegration of the viewpoints is the most important challenge to tackle for RMS
applicability. In addition to model modularity, we need modelling language modu-
larity by composing Domain Specific Languages to face heterogeneity. As an exam-
ple, we separate in three axis: system structure (organisation) from its dynamic be-
haviour (or control) and its functional behaviour (or actions, computations). Smaller
DSL improves verifiability and diagnosibility by focusing on specific properties
(strong consistency) e.g. deadlock freeness is associated to control not to the struc-
ture or computations.

4 RMS Reference Model

In this section we provide excerpt of the reference architecture, that has been built
upon the principles of Section 3. The models will be illustred with UML and ex-
pressive modelling notation (principle (1)). Fig. 2 shows the general organisation
of the reference architecture. The RMS_Modules describes modules and configura-
tions including layouts and organisational units. The RMS_Control layer adds dy-
namic information to control modules. The RMS_Product layer describes the prod-
ucts. The RMS_Production layer adds functional information for the choregraphy and
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Fig. 2 Main Reference Architecture

orchestration of manufacturing. The Intelligence package adds facilities for schedul-
ing and other ordering activities. The KPI-MM (metamodel) layer defines KPI, at
the enterprise level basically on product information. The KPI are instrumented
in the RMS by the KPI Evaluation integrating layer that provides evaluation means.
Last the Simulation enables to compute metrics to evaluate the RMS before effec-
tive reconfiguration. Note that we are at a logical level, the physical part is hidden
under RMS_Architecture and RMS_Control. Next we will focus on the main trends,
Intelligence and Simulation are cross-cutting secundary concerns that won’t be de-
tailed here. A Simulation emulates the real RMS control to run production activity
and feed the KPI Evaluation.

4.1 Modules and Configurations

The core concepts of the RMS reference architecture are represented in Fig. 3.
A module defines information (attributes or data objects) and operations (princi-
ple @ and (®). The available operations (e.g. the functional capabilities of a re-
source) are published in Interface s. A Service is a high-level operation with an API
(inner operations), service Contracts (QoS) and protocol (how to use the opera-
tions)!. EndPoints enable to connect modules through Bindings. An assembly is a
set of modules connected by assemblyBindings on their end points: this is a clien-
t/server relation. For example, "taking a product on a conveyor place" can be seen
as binding the "leave" operation of a conveyor module with the "take" operation of

! The distinction between service and operation may be arbitrary and somewhat confusing but
this exists for expressiveness reasons: it enables a range of implementations from plain imperative
programming to service oriented computing.
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a workstation module. However, operations as well as interfaces can be specialised
as provided or required capabilities, this may depend on the implementation of the
reference architecture. Behind the input parameters and output results, operations
may exchange data through messages. Similarly to modules, AssemblyType is the
abstraction of assemblies at the Module—type level (principle (3)). CompositeModule en-
ables scalability by encapsulating an assembly of modules (principle (5)-recursion)
and by being perceived as a (black-box) module of the assembly that contains it
(principle (9)-abstraction). The orchestration of composite services is realised via
delegationBindings . Contracts are associated to end points and interfaces and enable
the principle (7) (early verification). We won’t detailed this point here but suggest
the reader a previous work [1].

A configuration is basically an assembly of modules with initialisation infor-
mation (the values for Attribute s and Data objects). Note that configuration can be
"implemented" by configuration services to control the consistency of the input pa-
rameters.

4.2 RMS-Control

Module as well as interfaces or operations (and services) are interacting actors and
have a behaviour defined by dynamic expressions (cf. Fig. 4). For example, the
behaviour of an operation is defined by a finite state machine (FSM) where the
transitions are labelled by (atomic) actions or communication actions e.g. operation
call, message send.... Since FSM denotes widespread formalisms, details are omit-
ted here?. In this layer, we assumed a service-based communication with message
send, signals are messages with no events. No matter what is the implementation of

2 See the draft technical report - draft versionhttps://tinyurl.com/mumaaur3



communications, having a service middleware enables to reason at a model level,
for example to verify dynamic properties of contracts [12] according to principle
(. or to simulate the configurations (e.g. to compute KPIs).
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Fig. 4 RMS Dynamics

Several operations/services can run in parallel in a Module. The choregraphy is
implicitly guided by operation and service calls but can be control by guarded ac-
tions (critical sections in concurrent processes). In CompositeModules this parallelism
is implicitly distributed on the component modules but can be controlled by orches-
trating, the delegationBindings through FSM protocols. Note that string encapsulation
prevents component modules to collaborate with other modules than the other com-
ponents modules of the same composite (assembly bindings) and the composite
it-self (delegation bindings).

4.3 RMS-Production

The production layer includes every (abstract) concepts needed to organise the pro-
duction process: products (and components, articles...), orders, storage, etc. We as-
sume here a Products layer that defines products, which is a common topic to all
MESs. We recall good modelling practice (recursive aggregation, type/instance sep-
aration, contract patterns...) can be found in [2]. The same reference gave examples
of passive storage and containers, as well as passive orders and tasks information.
Transportation and active storage are supposed to belong to RMS modules. Schedul-
ing heuristics are assumed to be found in the Intelligence layer.

The RMS reference model set no constraints on the MES control organisation.
Basically, in a centralised version of MES (orchestration), an order manager sched-
ules the orders (and recursive sub-orders), each order is a sequence of tasks (re-
cursive sequences of sub-tasks until reaching atomic tasks) (cf. Fig. 5). In a decen-
tralised version of MES (choreography), an order manager is associated to every
composite module to organise the production sub-process and enable partial recon-
figuration or better runtime reconfiguration.

The MES dispatches orders on high-level modules according to product infor-
mation (not explicit here). In [4], this coupling is designed by smart process/product
decomposition of products, the process are bound to resources and the products are
bound to orders. In [8] orders are specialised in Product-Order and Resource-Order
each of them focusing on one side of product-order-ressource collaboration.
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The Order aggregation pattern of Fig. 5 enables finer coordination with product
and resource holons. For example the tasks can be associated to resources only while
the orders would be associated to products only. Note that orders and tasks can also
be independent from resources and products to perform management or information
processing.

4.4 KPI Computation

In many MES, KPIs are handled in a two standalone processes: the MES store the
production events in databases and the KPI application queries the databases to com-
pute KPIs by filtering on event types and the timestamps events under the software
developer’s responsibility. Reconfiguration may influence both the KPI definition
and computation and if they are considered as a whole the entire KPI system is to
be (costly) revisited. The idea in our reference model is improve modularity (and
reuse) (principle (2)) while separating the Enterprise and the Production concerns
(principle (6)). The KPI definition is KPI-MM is inspired from KPIML [13] that
implements the ISO 22400 norm [9, 10]. It will always depend on the enterprise
information system e.g. ERP and we assume here they focus on products (not the
production resources). The main concern are first to define how to define explic-
itly aggregated KPIs of the management dashboard from production KPI and values
(left part of Fig. 6) and second to feed KPI computations with values in respect with
time periods (right part of Fig. 6). KPIs are defined according KPI-types (KPI defini-
tions in KPIML) and the KPI computation tree is made explicit through aggregation
where the expressions use the KPI codes. The tree leaves are computed on mea-
sures (metrics) on the production system by the means of Instruments: (1) Counter:
inc/dec/raz - value, (2) Timer: start/stop/restart/reset - value and (3) Sensor: trigger
- time stamped events.. These instruments are plugged on the RMS—Production over
products, modules (and their resources), orders...

In this section we sketched the main concepts of the reference architecture. Next
section will illustrate some of them.

5 Application on a Simplified Case Study

In this section, we provide the application of the approach to s simple case study.
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The case study layout and module mapping are showed in Fig. 7. Every physical
part of the system has to be represented somewhere in module model of Fig. 8.
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This model is represented us-
ing the UML component di-
agram notation, where rect-
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modules are not in interaction

directly but all are connected

to the Module 0 (conveyor) that

plays a role of bus communication architecture. Despite the end-point ep (pallet
blocker) and interface of ip provided services ( stopPallet , raiseUp, pick, put, rotate )
are the same for all client module we represent it five times for readability reasons,
however the corresponding interface ir; of required services are different by de-
fault. Example of high-level services are: (1) Module 1 (addEmptyPallet), (2) Module 2
(addTwoProductsOnPallet), (3) Module 3 & 4 (takeProductFromPallet, processProduct,
putProductOnPallet), (4) Module 5 (takeProductFromPallet, storeProduct), Of course run-
ning these services require interactions with Module O services. The fluid and energy
flows are not defined here but they are considered as data and constraints in the in-
terface and services. In Fig. 7, Modules 3 and 4 are clearly composite modules with
two resources each, an operator and a processor. In the assembly of Fig. 8, only the
module interfaces are available (black-box encapsulation). Note that Modules 3 has
to end points access with Module 0 because Operator] takes a product in one point
and puts the product that has been transformed by Processor 1 in another place of
the conveyor (Module 0).

The RMS—Control layer adds dynamic behavirours to modules. For example, the
left part of Fig. 9 show the dynamic behaviour of service addTwoProductsOnPallet that
loads two products from the store on the current pallet.The right part of Fig. 9 shows
another possible behaviour that infinitely loads products on pallets.

| initstore | i
idle requestPallet EmptyPallet
| @ ]
| : S
| N
| stopProcess " Pallet unload( prod )
releasePalle
|
|
|
|
|
|

initStore idle requestPallet EmptyPallet

Ioad( prod )| | unload

load{ prod )
[size=1]

[ FullPallet full Intermediate

-

releasePallet

~ _ load( prod ) PR AN
FullPallet J:‘ Intermediate

unload( prod )

/ ~
unload( prod )

" " laf Service fillPallets
Service addTwoProductsOnPallet Service fillPallets load( prod ) [size>1]

Fig. 9 Dynamic behaviour addTwoProductsOnPallet

The Products layer describes data objects: a single instance of ProductType that
describes the operations to be performed on the Product instances that will travel
between the modules. Each instance is identified by an product_id.

The KPI-MM includes the following performance indicators instances: (PA) OC:
a revoir ensemble

» OEE index = Availability * Performance rate * Finished goods ratio ;

* Finished goods ratio - The finished goods ratio is the ratio of the good quantity
produced (GQ) to the consumed material (CM). Finished goods ratio = GQ /
CM

* The finished goods inventory shall be the amount of acceptable quantity which
can be delivered. FGI finished goods inventory



¢ The quality ratio is the relationship between the good quantity (GQ) and the
produced quantity (PQ).

* Throughput rate = PQ/AOET (Actual order Execution Time)

¢ Inventory turns Inventory turns = TH / average inventory.

In KPI Evaluation, we need metrics and equipments to compute the KPIs. For each
measure that enters in AtomicKPI expression we provide instrumentation. The OEE
index is instrumented by 3 timers for each module: waiting for product, waiting for pal-
let, production. The timers provide values for the availability and the performance.
The AOET is implemented by one timer per order, starts when the production starts with the
first product instance, stopped when the last product instance is manufactured. The consumed
material (CM) value is instrumented by a counter associated to Module 5 that is incre-
mented each time a product is stored in the inventory sinkl it is also the produced
quantity (PQ). The good quantity (GQ) value is instrumented by a counter associ-
ated to Module 2 that is incremented each time a product is taken from the inven-
tory source2. The number of processed products are stored in counters associated to
modules 3, 4 and 5. The Inventory turns is implemented by a counter associated to
Module 1 that is incremented each time a product is picked from the inventory sourcel.
The counter and timers are time-stamped vectors when periodic rates are required
(for time evolution feedback in simulation dashboards).

The Simulation part will define running scenarios and probabilistic events such as
conveyor failure with possible reconfigurations with AGVs. The simulation aims to
feed the KPI evaluation by providing values for counters and timers. As mentioned
in Section 4, this part is out of the scope of the paper.

Next section discussed advanced topics.

6 Discussion

7 Conclusion

Conceptual models are missing to capture the the particularities of reconfigurable
manufacturing systems (modularity, extendability, substituability, encapsulation...).
In this paper we propose a reference model for RMS with the aim of being applicable
by considering the different points of view on production systems. We detailed parts
of these points of views be the means of packages and driving the models toward
implementation. For example, the KPI vision is to be instrumented by a system
observation instead of leaving this aspect to software providers. We illustrate on a
simple case study how this is can be combined to describe a production system.
Actually we plan an implementation of this reference model for simulation pur-
pose where the performance of each configuration is evaluated. This implementation
should be later plugged to real systems according to a model-driven approach where
a generic framework provides the execution engine [6]. Domain specific languages,
dedicated to the points of views will be composed in order to preserve the con-
sistency of each point of view (modelling simplicity, verification adequacy). Many
design issues are to be solved including production task management, communica-



tion [3]. Such an implementation is the first and short-term perspective. In parallel,
this reference model is the corner stone for reasoning on reconfigurations capa-
bilities. Configurations are then considered as performance objects enriched by cost
features and reconfigurations are operations on the objects ; costs are also associated
to the operations. Such a system would enable to evaluate the balanced cost/profit
reconfiguration.
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