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ABSTRACT

This paper formulates model selection as an infinite-armed bandit problem. The models are arms,
and picking an arm corresponds to a partial training of the model (resource allocation). The reward is
the accuracy of the selected model after its partial training. In this best arm identification problem,
regret is the gap between the expected accuracy of the optimal model and that of the model finally
chosen. We first consider a straightforward generalization of UCB-E (see Audibert et al., 2010) to the
stochastic infinite-armed bandit problem and show that, under basic assumptions, the expected regret
order is T−α for some α ∈ (0, 1/5) and T the number of resources to allocate. From this vanilla
algorithm, we introduce the algorithm Mutant-UCB that incorporates operators from evolutionary
algorithms. Tests carried out on three open source image classification data sets attest to the relevance
of this novel combining approach, which outperforms the state-of-the-art for a fixed budget.

Keywords Infinite-armed bandits · Model selection · Neural architecture optimisation · Hyperparameter optimisation ·
Evolutionnary algorithm · Image classification · AutoML · Online Learning

1 Introduction

Accuracy of machine learning models significantly depends on some parameters which cannot be modified during
training. As the number of parameter combinations to be tested exponentially increases with the number of these
parameters, it becomes costly and time-consuming to optimize them. Automating the selection of promising models,
usually referred to as AutoML (Automated Machine Learning), is a fast-growing area of research (see Hutter et al.,
2019 for a quite recent book). We approach the model selection problem in a general manner without any restrictions
on the nature of the hyper-parameters, such as the types of machine learning models, neural network architectures,
or hyper-parameters of random forests. Our aim is to find the best model without making any assumptions about the
task, model type, or reward to maximize. We assume that we have access to an infinite number of possible models. To
accomplish this, we set a predetermined budget of resources T , used to train the models. These resources are allocated
to the models in the form of “sub-trains”, such as iterations, data samples or features. The final model is chosen by
finding a good trade-off between exploration (training a large number of models) and exploitation (allocating a large
budget to promising models). This process may fall under the umbrella of bandits (see Lattimore and Szepesvári, 2020
for an in-depth review).

In this paper, we treat model selection as an instance of best-arm identification in infinite-armed bandits and consider
Upper Confidence Bound (UCB)-based algorithms (see Auer et al., 2002). From these we developed a new model
selection algorithm, called Mutant-UCB by adding a mutation operator from the Evolutionary Algorithm to UCB-E
(see Audibert et al., 2010). This operator creates a new model from the neighborhood of the model selected by the
bandit algorithm. Unlike most model selection algorithms, Mutant-UCB makes no assumptions about the solutions
encoding, also called search space, or the reward function to be maximized, making it suitable for a wide range of
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configurations. The use of a UCB-type algorithm and adaptive resource allocation allows exploration of the search
space, while the mutation operator effectively directs the search towards promising solutions. Results on a neural
networks optimization problem demonstrate the relevance of this approach.

We begin this paper by presenting the setup of our bandit model selection approach in Section 2 and we position
ourselves in relation to the state of the art. A generalization of UCB-E (see Audibert et al., 2010) to the stochastic
infinite-armed bandit problem, called ∞-UCB-E, and an upper regret bound for this algorithm are proposed in Section 3.
Based on ∞-UCB-E, we developped a new algorithm called Mutant-UCB, which is presented Section 4. Section 5 is
dedicated to experiments on the optimization of deep neural networks. We validate the performance of Mutant-UCB on
three open-source image classification data sets. Finally, Section 6 discusses the advantages of Mutant-UCB compared
to the state of the art and opens new research perspectives.

2 Model selection problem setup: a bandit approach

2.1 Literature Discussion

Naive strategies for model selection are grid or random search. More sophisticated strategies address model selection as
a sequential learning problem. Two approaches stand out: configuration selection methods sequentially select new
models (“close” to promising models) to train, while configuration evaluation [Li et al., 2018] methods allocate more
resources (training time) to promising models. The first approach suggests the existence of a distance between models
(namely an underlying space), so that two models close to each other will have similar performance, while the second
comes with no assumption about the potential (smooth)-links between model performances.

Evolutionary methods. Among the configuration selection methods, evolutionary algorithms have been popular
for many years (see, e.g., Young et al., 2015 and Jian et al., 2023). Starting from an initial set of configurations, they
evolve them towards performing models using unitary operators like the mutation (little change in the configuration),
or even complex operators involving more than two configurations like the crossover Strumberger et al., 2019. These
algorithms are highly versatile and can be applied to a wide range of setups. The literature presents different methods
that vary in terms of search spaces, i.e. the way configurations are encoded. The operators used to generate the
new population typically depend on this encoding. Usually, the configurations are represented as character strings
or lists and can be modified using bit-string mutations and combined with k-point crossovers (see Eiben and Smith,
2015 for more details). But recent works, mostly for neural networks architecture optimization, tried to design other
representations and operators. For instance a tree-based mutation operator to optimize recurrent neural networks is
proposed by Rawal and Miikkulainen [2018]. Awad et al. [2021] use differential evolutionary operators to optimize
neural network hyperparameters and architectures. One disadvantage of the evolutionary algorithms is the large number
of parameters involved, such as the population size, the selection function, or the elitism rate. Choosing the appropriate
values for these parameters can be complex.

Bayesian optimization. Bayesian optimization has recently emerged as a more efficient approach than evolutionary
methods in AutoML (see, among others, Malkomes et al., 2016, Zoph and Le, 2016 and Kandasamy et al., 2018). It
is a sequential optimization technique commonly used to minimize black-box functions. Those algorithms are based
on two main components, a surrogate model that approximates the unknown black-box function, and an acquisition
function that selects the next element in the search space to be evaluated. One major limitation of these acquisition
functions is their reliance on strong assumptions about the black-box function and the search space Garrido-Merchán
and Hernández-Lobato [2020]. Therefore, we did not employ a Bayesian optimization algorithm in our experiments as
we aimed to avoid making any assumptions about the smoothness, distance or continuity of the search space or the
reward function.

Bandits approaches. Firstly, still in the field of Bayesian optimization, the extensions GP-UCB and KernelUCB (see,
Srinivas et al., 2009, Valko et al., 2013, respectively) of the classical UCB bandit algorithm and more recent algorithms
largely inspired by them (see, e.g., Dai et al., 2023) have been massively used for optimization and eventually model
selection. BayesGap algorithm introduced by Hoffman et al. [2014] connects Bayesian optimization approaches and
best arm identification, assuming correlations among the arms. More recently, Huang et al. [2021] sees the neural
architecture search as a combinatorial multi-armed bandit problem which allows the decomposition of a large search
space into smaller blocks where tree-search methods can be applied more effectively and efficiently. Configuration
evaluation approaches have also been investigated in an infinite or multi-armed bandit framework. At each iteration
of the algorithm, a new arm/model can be drawn from an infinite search space containing the models and added to
the set of models already (more or less) trained. Karnin et al. [2013] proposes the Sequential (or Successive) Halving
algorithm, which splits the given budget evenly across an optimal number of elimination rounds, and within a round,
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pulls arms in a uniform manner. It comes with solid theoretical guarantees that have recently been improved by Zhao
et al. [2023]. Li et al. [2018] proposes the algorithm Hyperband, a robust extension of Sequential Halving, and applies it
to deep neural networks hyperparameters optimization. Moreover, Shang et al. [2019] introduces D-TTTS, an algorithm
inspired by Thompson sampling. Hybrid methods combine adaptive configuration selection and evaluation: Terayama
et al. [2021] proposes a rule to stop training a model prematurely based on the predicted performance from Gaussian
Process; in addition, Kandasamy et al. [2016] extends GP-UCB to enable sequential model training (and thus resource
allocation).

Best-arm identification in infinite-armed bandits. The stochastic infinite-armed bandit framework have been
introduced and studied for the cumulative reward maximization problem by Berry et al. [1997] and Wang et al. [2008].
Carpentier and Valko [2015] and Aziz et al. [2018] study best armed identification problem in this framework. They
prove that their strategies (SiRI and extensions; α,ϵ-KL-LUCB, respectively) are minimax optimal either up to a log
factor.

2.2 Contributions

In this section we first consider the ∞-UCB-E algorithm. This is a straightforward generalization of UCB-E [Audibert
et al., 2010] to stochastic infinite-armed bandits. We show that, under basic assumptions, the expected regret order
for this algorithm is T−α with α ∈ (0, 1/5). This result helps us to set the appropriate number of models to sample
from the search space before running UCB-E. Hyperband and Successive halving algorithms generally outperform
UCB-based approaches. Besides, algorithms cited in the previous paragraph outperform the regret bound of the
∞-UCB-E algorithm (see, e.g, Karnin et al., 2013). However, this algorithm is the basis of our second and main
contribution and the regret bound is a first milestone to attest the relevance of our approach.

From this vanilla algorithm, we propose the algorithm Mutant-UCB that incorporates techniques from evolutionary
algorithms. It combines both configuration evaluation and configuration selection approaches: it is sequential in
computation and picks a (generally promising) model thanks to a UCB-based criteria. Then it either continues its
training (resource allocation) or creates and starts training a new model derived from the selected one thanks to the
“mutation” operation of an evolutionary algorithm. This last possibility is based on the intuition that the expected
“mutant model” accuracy will be close to that of the original model. While bandit approaches have been used to design
the “selection” operator for evolutionary algorithms(see Li et al., 2013), to our knowledge this is the first time that
operators from evolutionary algorithms are incorporated into a bandit algorithm.

Finally, we compare Mutant-UCB to a random search, the evolutionary algorithm proposed by Keisler et al. [2023] and
Hyperband (see Li et al., 2018) on three open source data sets collected for image classification: CIFAR-10 [Krizhevsky
et al., 2009], MRBI [Larochelle et al., 2007] and SVHN [Netzer et al., 2011]. For a fair comparison, Mutant-UCB and
the evolutionary algorithm under consideration share the same mutation operation.

2.3 Set-up

When a new arm k is pulled from the search space, the expectation of the accuracy of the associated model µk is
assumed to be an independent sample from a fixed distribution. With T a fixed budget, at each round t = 1, . . . , T , an
arm It is picked and a sub-train (allocation of a resource) is performed on the associated model. This model is then
evaluated on a validation data set Dvalid using an accuracy function acc we aim to maximize. This accuracy corresponds
to the reward at. Conditionally to the chosen arm, the reward is assumed independent from the past and so we have
E[ at | It = k] = µk. In practice, it is highly likely that successive sub-trains will greatly improve accuracy, thereby
invalidating the assumption of independence between rewards of the same model. After T rounds, we select the final
arm ÎT . In this best-arm identification problem in infinite-armed bandit framework; if we let µ⋆ ∈ argmaxk∈N⋆ µk be
the accuracy expectation of the best possible model, we aim to minimize the regret

rT = µ⋆ − µÎT
. (1)

In what follows, the untrained model associated with arm k is denoted fk, and after Nk sub-trains we denote it fNk

k .

3 An extension of UCB-E for infinite-armed bandits

3.1 Algorithm

Algorithm 1 introduces ∞-UCB-E, a variant of the UCB-E algorithm proposed by Audibert et al. [2010] in which the
number K of arms (or, in our use case, untrained models) is not given by the bandit problem but a parameter of the
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Algorithm 1 ∞-UCB-E

Inputs:
T budget
E exploration parameter
K number of untrained models

Initialization
Sample K untrained models f1, . . . , fK
For k = 1, 2, . . . ,K

Perform a first sub-train on fk which becomes f1
k

Get the reward ak = acc
(
f1
k ,Dvalid

)
Define Nk = 1, µ̂k = ak

For t = K + 1,K + 2, . . . , T

Choose It ∈ argmaxk∈{1,...K}

{
µ̂k +

√
E
Nk

}
Perform a sub-train: model fNIt

It
becomes fNIt+1

It

Get the reward at = acc
(
f
NIt+1
It

, Dvalid

)
Update µ̂It =

1
NIt+1

(
rt +NIt µ̂It

)
and NIt = NIt + 1

Output:
Model f

NÎT

ÎT
where ÎT ∈ argmaxk∈{1,...K} µ̂k

algorithm. This highly exploratory policy is based on the principle of optimism in the face of uncertainty, in the spirit of
the UCB algorithm introduced by Auer et al. [2002]. Once K has been fixed and the untrained models f1, . . . , fK have
been sampled from the search space, the algorithm starts by K rounds of deterministic exploration: it performs a first
sub-train per model and observes the accuracies ak = acc

(
f1
k , Dvalid

)
. At each round t = K + 1, . . . , T , and for each

k, it computes the empirical mean accuracy µ̂k from the previous rewards associated with arm k:

µ̂k =
1

Nk

t−1∑
s=1

at1Is=k with Nk =

t−1∑
s=1

1Is=k . (2)

Then, it chooses the arm optimistically:

It ∈ argmax
k∈{1,...K}

{
µ̂k +

√
E

Nk

}
, (3)

performs a sub-train on the associated model and receives the reward at = acc
(
f
NIt+1
It

, Dvalid

)
. The core issue is the

tuning of the exploration parameter E. Audibert et al. [2010] show that the optimal value depends on the difficulty of
the underlying bandit problem, which has no reason to be known in advance. We will see below that, under some basic
assumptions on the distribution of the expectations µ1, . . . , µk, . . . , setting E = 25

36
T−K
K5 with K of order Tα, where

α ∈ (0, 1/5), is a good choice to minimize the regret expectation.

3.2 Upper bound on the simple regret expectation

Unlike UCB-E, it is almost surely impossible in our case to select the best arm and achieve the maximum (in expectation)
accuracy µ⋆. Thus, we do not focus on the probability of finding the best arm but aim to minimize the expected regret
E[rT ]. This regret should tend to 0, meaning that with a larger budget T , the probability of selecting a (very) good
model increases.
Remark 3.1. Stronger results are generally of the type “P(rT > ε) < δ ”, see, e.g., Zhao et al. [2023].

In order to obtain an upper bound for the expected regret, it is essential to make assumptions about the distribution of
the accuracy expectations.
Assumption 3.2. When a new untrained model fk is sampled from the search space, the expectation of its accuracy µk

is assumed to be an independent sample from the continuous uniform distribution on [0, 1]:

µk ∼ U
(
[0, 1]

)
. (4)

This implies µ⋆ = 1.
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Remark 3.3. In infinite-armed bandit framework (see, e.g., Wang et al., 2008), classical assumptions generally
characterize the probability of pulling near-optimal arms: given µ⋆ and β > 0 a parameter of the reward expectation
distribution, the probability that a new arm is ε-optimal is of order εβ : P(µk ≥ µ⋆ − ε) = O(εβ) for ε → 0. This
statement is satisfied for β = 1 as soon as Assumption 3.2 holds.

The validity of this hypothesis in our case study is discussed in Appendix B.1.

Theorem 3.4. Fix a risk δ ∈ (0, 1), a budget T ≥ 1 and an initial number of untrained models K < T . Assume that
Assumption 3.2 on the distribution of the reward expectations holds. Algorithm 1 running with an exploration parameter
E = 25

36
(T−K)

K3 δ2 satisfies

E[ rT ] ≤ 1

K + 1
+ δ + 2TKe−

T−K

18K3 δ2 . (5)

The theorem is obtained by dividing the regret in two:

rT = µ⋆ − µÎT
=

(
µ⋆ − µI⋆

)
+
(
µI⋆ − µÎT

)
,

where the random variable I⋆ is the best arm among the K sampled ones. Using results on the distribution of the
maximum of K independent variables sampled from the continuous uniform distribution on [0, 1], we get rid of the first
term: its expectation equals 1/(K + 1). The second one is also split in two. Under Assumption 3.2, the probability that
the exploration parameter E is not well fitted for UCB-E is bounded by the risk δ. If, on the other hand, it is well fitted,
the upper-bound proposed in Theorem 1 of Audibert et al. [2010] is satisfied since its assumptions hold. This leads to
the last term in Equation (5). Details of the proof are provided in Appendix A. With a risk δ = 1/K, we get

E[ rT ] ≤ 2

K
+ 2TKe−

T−K

18K5 . (6)

It remains to fix the number of initial arms to minimize this expectation. In particular, when the order of K is a power
of budget Tα, taking α ∈ (0, 1/5) ensures that the regret bound is O(T−α). Indeed, recalling that K must be an integer
less than T , α has to be in (0, 1). Moreover, the second term of (6) converges to 0 as it is of order T 1+α exp (−T 1−5α).
It then becomes negligible compared with the first term only if α < 1/5. The regret bound is then of the order of the
first term, namely T−α, with α ∈ (0, 1/5).
Remark 3.5. SiRI algorithm introduced by Carpentier and Valko [2015] and discussed in 2.1 which involves a more
complex confidence bound, leads, under Assumption 3.2, to a better upper bound of order O(1/

√
T ).

Here, we have chosen to retain ∞-UCB-E, a vanilla version of UCB-E for infinite-armed bandits, as the entry point for
the development of our algorithm presented below.

4 A UCB-based algorithm incorporating mutation operators from evolutionary algorithms

Mutant-UCB (see Algorithm 2) incorporates two main ideas into ∞-UCB-E. First of all, there is no point in multiplying
the number of sub-trains for the same model: there generally comes a time when it is no longer useful, so we can
potentially define a maximum number of sub-trains N . Note that this idea of a maximum quantity of resources that
can be allocated to a single model was already present in the Hyperband algorithm (see Li et al., 2018). Furthermore,
in model selection, it is not uncommon for similar models to perform similarly, which is why configuration selection
methods may be so effective in this task. In general, the main problem lies in defining a distance between models:
search spaces are usually high-dimensional and hyper-parameters are of various kinds (learning rate, type of activation
function, number of neurons, etc.). While the notion of distance between two models is not easy to define, evolutionary
algorithms offer a good compromise: they breed new individuals through crossover and mutation operations. Crossover
operations mix two individuals, while mutation operations can be applied to a single individual in order to create
“mutants”, involving some tiny changes. Those “mutants” can be seen as neighbors of the initial point. We could
therefore imagine that a model chosen by the algorithm could mutate to give rise to a new one, with the intuition
that the mutant and its original model will have similar accuracies. To our knowledge, the inclusion of mutation
operators in evolutionary algorithms in a bandit algorithm is completely new. These two ideas run completely counter
to the assumption of the stochastic infinite-armed bandit framework. Conditionally on the chosen arm, rewards are
not independent since we assume that successive sub-trains on a model improve its accuracy up to a certain point of
convergence. Furthermore, when a new untrained model is created through a mutation operation performed on an
original model, it is unlikely that their accuracy expectations are independent.

Like the ∞-UCB-E algorithm, Mutant-UCB starts with the first sub-train of K models. At each round t = K + 1, . . . ,
it still chooses the next arm optimistically, by resolving Equation (3). For an arm k, we recall that Nk is the number of
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Algorithm 2 Mutant-UCB

Inputs:
T budget
E exploration parameter
K initial number of models
N maximum number of sub-trains that can be allocated

to a single model
Initialization

Sample K untrained models f1, . . . , fK
For k = 1, 2, . . . ,K

Perform a first sub-train on fk which becomes f1
k

Get the reward ak = acc
(
f1
k ,Dvalid

)
Define Nk = Nk = 1, µ̂k = ak

For t = K + 1,K + 2, . . . , (T −N + 1)

Choose It ∈ argmaxk∈{1,...K}

{
µ̂k +

√
E
Nk

}
Sample Xt ∼ B(pt) with pt = 1−N It/N
If Xt = 1:

Perform a sub-train: model fNIt

It
becomes fNIt+1

It

Get the reward at = acc
(
f
NIt+1
It

, Dvalid

)
Update µ̂It =

1
NIt+1

(
rt +N It µ̂It

)
, NIt = NIt + 1

and N It = N It + 1
Else :

Update the number of models K = K + 1

Create a mutant model fK from f
NIt

It

Perform a first sub-train on fK which becomes f1
K

Get the reward at = acc
(
f1
K ,Dvalid

)
Define NK = NK = 1, µ̂K = at
Update NIt = NIt + 1

Finalization
Select the best model ÎT ∈ argmaxk∈{1,...K} µ̂k

Finalize its training by performing N −N ÎT
sub-trains

Output: fN
ÎT

times the arm has been picked before round t - see Equation (2). We now introduce Nk, the integer that counts the
number of times the model associated with arm k has been trained. Once arm It is picked, with pt = 1−N It/N :ra sub-train is performed on f

NIt

It
with probability pt orra mutation is performed on f

NIt

It
with probability 1− pt.

The mutation is performed on the trained model fNIt

It
- and not just fIt - to include the case where certain parameters

of the model optimized during training (e.g., weights of neuron networks) are passed on to its mutant. We detail the
mutation operation for our use-case in Section 5. When a mutation occurs, a new model is created, a first sub-train is
performed and the model is added to the list of potential models to be retained at the end of the algorithm. Thus, the
number of models K increases by 1 each time a mutant model is created.
Remark 4.1. When a new model comes into play, it is very likely to be quickly chosen by the algorithm, even if its
accuracy is not good: the algorithm must explore this new possibility. The “sleeping bandit” framework, in which new
arms may be added and/or become unavailable during the algorithm execution, is studied in Kleinberg et al. [2010]. It
proposes a very natural extension of UCB: the Awake Upper Estimated Reward algorithm and shows there is no need to
adapt the confidence bounds.

The probability pt decreases as the model goes along its sub-trains and guarantees that it will not be trained more than
N times. The more the model has been trained, the more likely it is to mutate when selected. The underlying idea is that
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further training will probably have little effect or even overfit in the case of neural networks, and that if the algorithm
selects this already well-trained model, it is because it may have good accuracy (and it will probably be the same for
a mutant model). Note that the probability pt is linear in NIt ; this choice is arbitrary and we could quite easily have
chosen another type of relationship, e.g., pt = 1− exp(NIt −N). The algorithm ends with a finalization phase: the
best model ÎT is selected among the initial models and the mutant models and its training is completed with N −N ÎT
additional sub-trains.
Remark 4.2. In order to obtain an upper bound on the regret, we think it is necessary to retain the stochastic bandit
hypothesis on the distribution of rewards (conditionally on the chosen arms, rewards are independent, so the accuracy
does not depend on the number of sub-trains performed) as well as that on the distribution of the expectations of the
model accuracies in the initialization phase of the algorithm (see Assumption 3.2). But, in order to legitimize the idea
of integrating mutation operations, and hopefully improve the bound, it seems essential to add an assumption about the
distribution of the expectation of the accuracies of mutant models, e.g.,

E
[
µk

∣∣ fk is amutant of f
Nj

j

]
= µj .

We could also model the correlations between the rewards associated with a model and those of its mutants (see, e.g,
Gupta et al., 2021 which propose the correlated multi-armed bandits framework). Theses kind of assumption in our
case study are discussed in Appendix B.2.

5 Experiments

In this section, we evaluate the performance of our algorithm Mutant-UCB, on neural networks optimization. In order to
highlight the advantages of our method, we put ourselves in a case where we make no assumptions about the smoothness
of the reward acc and we do not consider any distance between the elements fk from our search space. We therefore
compare our methods with three algorithms that are applicable in this case: a random search, the Hyperband algorithm
and an evolutionary algorithm. This neural networks optimization is applied to three image classification data sets.
Due to the difficulty of correctly setting the exploration parameter of the algorithm ∞-UCB-E (the theoretical value is
generally too high), we do not compare ourselves with this algorithm. We also explain its poor performance by the
impossibility of limiting the number of sub-trains for this algorithm. However, we discuss and compare ∞-UCB-E and
Mutant-UCB on the toy MNIST data set (see Deng, 2012) in Appendix C.1.

5.1 Experiment design

Data sets. We performed our experiments using three image classification data sets, also used by Li et al. [2018] to
introduce the Hyperband algorithm: CIFAR-10 (see Krizhevsky et al., 2009), Street View House Numbers (SVHN, see
Netzer et al., 2011) and rotated MNIST with background images, also called MRBI (see Larochelle et al., 2007). These
first two data sets contain 32× 32 RGB images, while MRBI contains 28× 28 gray-scale images. The labels for each
data set are converted to integers between 0 and 9. We split each data set into a training, a validation and a testing set.
The training set is used to optimize the model weights (namely to perform the sub-trains), while the validation set is
used to evaluate the configurations in the selection model algorithms (i.e. to get the rewards). Finally, the accuracies of
the configuration selected by the algorithms are computed on the testing set to assess their quality. CIFAR-10 has 35k
image on the train set, 15k on the validation set and 10k on the test set, SVHN has 51k, 22k and 26k and MRBI 10k, 2k
and 50k data points on the three sets respectively. For all data sets we standardized the images so the input has a mean
of zero and a standard deviation of 1.

Search space: the pool of possible configurations. We used the DRAGON framework developped by Keisler et al.
[2023] to encode our neural networks. Their article contains an explanation and a tutorial on how to use the associated
implemented package. In this framework, neural networks are represented as directed acyclic graphs (DAGs), where
the nodes represent the layers (e.g., recurrent, feed-forward, convolutional) and the edges represent the connections
between them. The task on which we want to try our algorithms is image classification. To do so, we define a generic
search space (the pool of possible configurations fk) with DRAGON, dedicated to the task at hand. Any sampled
configuration fk will be made of two directed acyclic graphs. The first one processes 2D data, and can be made of 2D
convolutions, 2D pooling, normalization and dropout layers. The second one consists in a flatten layer followed by
MLPs (Multi-Layers Perceptrons) and normalization layers. A final MLP layer is added at the output of the model
to convert the latent vector into the desired output format. The framework includes operators, namely mutations and
crossovers to modify and thus optimize the graphs. The mutation operators modify the neural network architecture
by adding, removing or modifying the nodes and the connections in the graph. They can also be applied within the
nodes, on the neural network hyper-parameters (e.g., convolution layer kernel size or an activation function). Crossover
involves exchanging parts of two graphs.
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Table 1: Number of tested models and accuracies (in %) of the best model for random search (RS), asynchronous
evolutionary algorithm (EA) and Mutant-UCB on CIFAR-10, MRBI and SVHN data sets.

Data set CIFAR-10 MRBI SVHN

RS 1 000 · 75.3 1 000 · 75.5 1 000 · 90.7
EA 1 000 · 77.1 1 000 · 79.5 1 000 · 91.9
Hyperband 2 400 · 75.4 2 400 · 75.9 2 400 · 91.0
Mutant-UCB 3 399 · 79.5 3 463 · 80.5 3 471 · 92.4

Sub-trains. We trained our neural networks using a cyclical learning rate, as proposed by Huang et al. [2017]. When
the learning rate is low, the neural network reaches a local minimum. Right after the learning rate goes up again taking
the model out of the local minimum. We consider in our experiments that a sub-train is one of this loop, with learning
rate getting from its maximum to its minimum. We let N be the maximum number of sub-trains for a given element fk
from our search space.

Baselines. The random search, the Evolutionary Algorithm (EA), Hyperband and Mutant-UCB have all been
implemented so that they can be used with the DRAGON framework. They all use the same training and validation
functions to assess the neural networks performance, and share a common budget, namely T . For the random search,
we randomly select KRF = T/N neural networks. For each of them we perform N sub-trains, resulting in T sub-trains
in total. For the Evolutionary Algorithm, we implemented an asynchronous (or steady-state) version. Compared to
the standard algorithm, the steady-state evolutionary algorithm enhances efficiency on High-Performance Computing
(HPC) by producing two offsprings from the population as soon as a free process is available, rather than waiting for the
entire population to be evaluated (see Liu et al., 2018). We set an initial population of size KEA, where the deep neural
networks are randomly initialized. We perform N sub-trains on each of these models. Then, we evolve the population
using the mutation and crossover operators from the DRAGON framework. If a generated offspring is better than the
worst model from the population, it replaces it. During the optimization procedure, we generate T/N −KEA offsprings
and we perform N sub-trains on each, resulting in a total of T sub-trains. For Hyperband we ran the algorithm with
its parameters R and η such that the total number of sub-trains is T and that each model can be trained only N times
(see, Li et al., 2018 for further details). The algorithm Mutant-UCB starts with an initial population of KMUTANT

and runs with a budget of T . For a fair comparison, EA and Mutant-UCB use the same mutation operators. We set
KEA << KMUTANT ≲ KRF. Indeed, as each configuration is fully trained in the evolutionary algorithm, KEA must be
much lower than T/N to allow the creation of a sufficient number of offsprings. Similarly, Mutant-UCB mutation
operator will create new configurations during the optimization procedure. However the evolutionary algorithm will
generate even more individuals with the crossover, so KMUTANT may be higher than KEA. We then set KMUTANT a bit
smaller than T/N . We emphasize that, with the creation of offsprings and mutants, the final number of evaluated
models by the evolutionary algorithm and Mutant-UCB will be much higher than KEA and KMUTANT, respectively. In
addition, the random search and the evolutionary algorithm fully train each configuration tested (of which there are
T/N ), while Hyperband and Mutant-UCB allow some of them to be partially trained (resulting in a final population of
more than T/N configurations).

5.2 Results

We run the experiments with T = 10 000, N = 10 and E = 0.05 for Mutant-UCB. The tuning of the parameter E for
Mutant-UCB is not as important as for the ∞-UCB-E algorithm. We detail this discussion in Appendix C.1. We only
need the algorithm to not explore too much, since the mutation operator represents an additional form of exploration.
Each sub-trains contains 10 epochs, resulting in a maximum of 100 training epochs, and the learning rate is set to 0.01.
Each experiment is run on a HPC environment using 20 NVIDIA V100 GPUs.

We display Table 1 the maximum accuracies and the number of tested models for each algorithm from our baseline. We
see that Mutant-UCB outperforms the random search, the evolutionary algorithm and Hyperband for every data sets.
The use of the mutation operator seems to be the primary factor in this performance. Indeed, the evolutionary algorithm
comes well ahead of Hyperband and the random search. It would seem that digging around promising solutions leads to
better configurations. However, resources allocation also seems to be a key factor. Hyperband is in fact slightly better
than the random search, and converges much faster, as it can be seen in Figure 1. The computation times to perform
the T iterations vary a lot between the algorithms and the task at hand. The hardware definitely has an impact on this,
but the resources allocation will also play a crucial role. Throughout the paper there is an implicit assumption that a
sub-train’s budget in terms of memory and time is independent of the model, which is not entirely correct. Indeed,
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Figure (a): CIFAR-10.

Figure (b): MRBI.

Figure (c): SVHN.

Figure 1: Accuracy of the best model over computational time for random search (RS), asynchronous evolutionary
algorithm (EA) and Mutant-UCB on CIFAR-10, MRBI and SVHN data sets.
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performing more sub-trains on configurations which are more complex take generally a longer time and affect the total
duration of the experiment. Mutant-UCB, with both the mutation operator and the resources allocation has the fastest
convergence and yields the better accuracies. Appendix C.2 details the models found by the different algorithms.

Codes are available in the supplementary material.

6 Discussion

This article presents Mutant-UCB, an innovative model selection algorithm, which combines a UCB-based bandit
algorithm with evolutionary algorithm operators. Most configuration selection approaches, such as Bayesian opti-
mization or continuous bandit algorithms, typically consider a normed vector space to represent the pool of possible
configurations. These approaches assume that the reward function is smooth, meaning that two configurations that are
close in the underlying vector space lead to close accuracies. Mutant-UCB and the other algorithms in the baseline
do not require any smoothness assumptions. Besides, thanks to its resource allocation, Mutant-UCB demonstrates
a high exploratory potential. It can evaluate more models within a similar budget compared to random search or
evolutionary algorithms. For example, on the MRBI data set, with a budget T = 10000, Mutant-UCB evaluated 3500
configurations, while the Evolutionary Algorithm and the random search only evaluated 1000. The use of a mutation
operator, on the other hand, reinforces the exploitation of promising solutions and allows us to reach much higher
performance configurations than Hyperband and the random search. The mutation can be viewed as a concept of
proximity: a mutant and its original model are close together, as defined by the chosen operator (which does not require
any normed vector space). It remains more permissive than the operators of the evolutionary algorithm. In particular,
the crossover from the evolutionary algorithm requires homogeneity between the elements of the search space, unlike
Mutant-UCB. Thus, Mutant-UCB could be used with a search space that combines various machine learning models,
such as neural networks, random forests, or boosting; as soon as we define a mutation operator for each type of model.
Finally, the Mutant-UCB algorithm is highly scalable in an HPC environment because configurations are evaluated
independently and asynchronously, in contrast to Hyperband and classical evolutionary algorithms, which evaluate
populations synchronously. In summary, Mutant-UCB has several advantages that make it an attractive algorithm, in
addition to its baseline-beating performance demonstrated in the previous section. One disadvantage is the need to store
the weights of all previous configurations evaluated. This is because the pool of solutions on which we apply the UCB
part of the algorithm is not limited, unlike the other algorithms from the baseline.

Prospects. The experiments demonstrate the relevance of Mutant-UCB. As mentioned in Remark 4.1, a challenge for
further work would be to obtain an upper bound on the regret of this algorithm. To do so, we believe that it will be
necessary to introduce some concepts from sleeping bandits due to the creation of mutants (see Kleinberg et al., 2010)
and contextual bandits to model the proximity between mutants and their original models (see, among other Li et al.,
2010). It should also be noted that the HPC environment and the neural network training duration puts us in a context
where rewards arrive with a delay (namely, in a delayed bandits framework - see, e.g., Vernade et al., 2020) and not all
arms are available at all times (sleeping bandits again).

In this paper we applied Mutant-UCB to a very generic problem: neural networks optimization for image classification.
The flexibility of this algorithm means that it can be applied to a wide range of problems. A natural extension of this
paper would be to apply Mutant-UCB to a variety of tasks, models and search spaces where state-of-the-art algorithms,
by their very nature, would be limited or even unusable.
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A Proof of Theorem 3.4

Among the arms sampled by the algorithm, we denote by I⋆ the best one, i.e I⋆ ∈ argmaxk∈{1,...,K} µk. In order to
minimize the regret, we need to draw enough arms to have a chance of finding one close enough to µ⋆ but we also need
to keep K small enough so that the UCB-E algorithm has a chance of converging on the best arm among those drawn
(namely ÎT = I⋆). Therefore, we decompose the regret this way:

rT = µ⋆ − µÎT

= (µ⋆ − µI⋆) + (µI⋆ − µÎT
) .

By rearranging the arm reward expectations in descending order: 1 = µ⋆ ≥ µ(1) ≥ · · · ≥ µ(K) ≥ 0 and recalling that
the kth order statistics sampled from a uniform distribution is a beta-distributed random variable: µ(k) ∼ Beta(K +1−
k, k) - see e.g, David and Nagaraja [2004] - we get that E[µI⋆ ] = E[µ(1)] = K/(K + 1). Using the linearity for the
expectation and recalling that µ⋆ = 1, we get that E [µ⋆ − µI⋆ ] = 1/(K +1). It remains to deal with E [µI⋆ − µÎT

] to
conclude the proof.

The probability of the UCB-E algorithm succeeding depends on the difficulty of the underlying bandit problem. In
Theorem 1 of Audibert et al. [2010], this “difficulty” is assumed to be known in advance and the exploration parameter
is set accordingly. Here, we recall that the best arm is a random variable drawn at the start of the ∞-UCB-E algorithm.
To rid of the expectation E [µI⋆ − µÎT

], we have to condition it on the event “Theorem 1 of Audibert et al. [2010]
holds”. Once the K arms have been sampled and µ(1), . . . µ(K) are set, the statement of the theorem is as follows:
UCB-E satisfies

P(ÎT ≤ I⋆) ≤ 2TKe−
2E
25 if 0 ≤ E ≤ 25

36

T −K

H1
with H1 =

K−1∑
k=1

1

∆2
(k)

and ∆(k) = µ(1) − µ(k+1) .

By noticing that H1 ≤ K/∆2
(1), a condition on ∆(1) will be enough. Thus, using the law of total expectation with a

conditioning on the sampled arms (on µ(1), . . . µ(K), namely), for any h ∈ [0, 1], we have:

E[ rT ] = E
[
E
[
µ⋆ − µI⋆ + µI⋆ − µÎT

|µ(1), . . . µ(K)

] ]
= E

[
µ⋆ − µI⋆

]
+ E

[
E
[
µI⋆ − µÎT

|∆(1)

]]
=

1

K + 1
+ P(∆(1) ≤ h)E

[
µI⋆ − µÎT︸ ︷︷ ︸

≤1

|∆(1)≤h

]
+ P(∆(1) > h)︸ ︷︷ ︸

≤1

E
[
µI⋆ − µÎT

|∆(1)>h

]
≤ 1

K + 1
+ P(∆(1) ≤ h) + P

(
I⋆ ̸= ÎT |∆(1) > h

)
. (7)

The second term in Equation (7) can be bounded by Kh thanks to Lemma A.1 stated next. Proof of this is provided at
the end of this appendix.
Lemma A.1. Assume that Assumption 3.2 holds. When K ≥ 2 arms are picked, with ∆(1) := µ(1)−µ(2) the difference
of the expectations of the two best arms, we have, for all h ∈ [0, 1],

P
(
∆(1) ≤ h

)
= 1− (1− h)K ≤ Kh .

By choosing h = δ/K, we get:
P(∆(1) ≤ h) ≤ δ .

With E = 25
36

(T−K)δ2

K3 (the exploration parameter set in Theorem 3.4), we get E = 25
36

(T−K)h2

K . Conditionally to
∆(1) ≤ h, as H1 ≤ K/∆2

(1), we have E ≤ 25
36

T−K
H1

, i.e. Theorem 1 of Audibert et al. [2010] holds. It is used to bound
the third term in Equation (7):

P
(
I⋆ ̸= ÎT |∆(1) > h

)
≤ 2TKe−

T−K
18K h2

.

The proof is concluded by collecting all pieces.

Proof. Assumption 3.2 ensures that the expectations of the arms are independent and sampled from a uniform
distribution: µ1, . . . , µK

i.i.d∼ U([0, 1]). In Example 2.3. of the book Order Statistics, David and Nagaraja show that the
order statistics µ(1) ≥ · · · ≥ µ(K) satisfy, for any 1 ≤ i ≤ j ≤ K,

µ(i) − µ(j) ∼ Beta(j − i,K + 1− j + i) .
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Therefore, with i = 1 and j = 2, we get ∆(1) ∼ Beta(1,K) and, for any h ∈ [0, 1]),

P(∆(1) ≤ h) =
1!K!

(K − 1)!

∫ h

0

x1−1(1− x)K−1dx =

∫ 1

1−h

KtK−1dt =
[
tK

]1
1−h

= 1− (1− h)K .

To conclude the proof, it remains to show that 1−(1−h)K ≤ Kh. By studying the function f : h 7→ Kh−1+(1−h)K

on [0, 1] and with K ≥ 2, it is straightforward:

h

f ′(h) = K − K(1 − h)K−1

f(h) = Kh − 1 + (1 − h)K

0 1

0 + K

00

11

B Models accuracy distributions

B.1 Accuracy distributions for CIFAR-10, MRBI and SVHN data set

Figure 2: Distributions of the accuracy of 2 000 models randomly sampled and trained for the classification of CIFAR-10,
MRBI and SVHN.

Figure 2 shows the density of accuracies obtained for 2 000 models randomly sampled in the search space and fully
trained for the classification task, on the CIFAR-10, MRBI and SVHN data sets. It should be noted that since the seed
is fixed, the three data sets share the same 2 000 models in terms of architectures and hyper-parameters. However, their
weights are obviously different due to the training on the specific data set. It is quite clear that Assumption 3.2 does
not hold. As mentioned in Remark 3.3, the polynomial dependency is important for the tail of the distribution (εβ :
P(µk ≥ µ⋆ − ε) = O(εβ) for ε → 0). It is not very clear here; you should have to zoom in and train an unmanageable
number of models.
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Figure 3: Mutants distributions for the MNIST data set. For eight configurations with various accuracies we trained and
evaluated 4 000 mutants. The boxplots in purple represent the accuracies distribution for each configurations, ordered
by their accuracy. The boxplot in pink represents the random search.

B.2 Mutants accuracy distributions

We consider here height configurations, trained on the toy MNIST data set (see Deng, 2012), of various accuracies. For
each model, we generate and train 4 000 mutants. In Figure 3, we plot in purple the accuracies boxplots of the mutants
from this height configurations. These boxplots are ordered according to the accuracy of the parent model. The boxplot
in pink represents the accuracies of the random search on MNIST. In black, we plot the function x 7→ x. Empirical
means of mutant accuracies do not lie on the first bisector (i.e the black line). This means the equation

E
[
µk

∣∣ fk is amutant of f
Nj

j

]
= µj ,

does not hold. It is furthermore difficult to come up with any reasonable assumption concerning a potential link between
the accuracies of a parent and its mutants. This question requires further study using different data sets and mutation
operators. However, this can be costly from a computational perspective.

C Additional information on the experiments

C.1 Discussion on the exploration parameter tuning

Table 2: Number of tested models and accuracy (in %) of the best model for ∞-UCB-E and Mutant-UCB run with
various exploration parameters.

Algorithm ∞-UCB-E Mutant-UCB

E = 0.01 3 000 · 95.9 2 853 · 98.5
E = 0.05 3 000 · 97.2 2 828 · 98.7
E = 1 3 000 · 97.2 2 629 · 97.2
E = 5 3 000 · 97.2 2 393 · 96.7
E = 10 3 000 · 95.9 2 435 · 97.6

We discuss here the tuning of the exploration parameter E of our algorithms. We run experiments on the toy MNIST
data set (see Deng, 2012) with T = 10 000, N = 10 and various values for E. Results are in Table 2. They attest the
performance of Mutant-UCB compare to our first algorithm ∞-UCB-E. Figure 4 illustrates the difficulty to find for this
second algorithm the exploration parameter E that correctly balances exploration and exploitation. With T = 10 000,
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to satisfy the regret bound proved in Theorem 3.4, the exploration parameter E should be between E = 0.00065 (α
close to 1) and E = 1 (α = 1/5, the best theoretical value). As the theory is generally very conservative, we consider
values between 0.01 and 10. For E = 10, the algorithm ∞-UCB-E explores too much, which leads it to sub-train each
model a little (it only under-train its best model 6 times). Conversely, for E = 0.01, the algorithm exploits too much
and concentrates on a few models, unfortunately not the best (406 sub-trains are performed on its best model). For
Mutant-UCB, Figure 5 shows that the exploration parameter tuning seems less crucial. Thanks to the limitation in the
sub-train allocations, it is more difficult to over-exploit, since in this case more and more mutants are created. On the
other hand, over-exploration is possible: as with ∞-UCB-E, if E is too large, few models get a lot of sub-trains. Note
once again the interest of mutations: almost every time, Mutant-UCB found a model that outperforms the best model in
the initial population of ∞-UCB-E (containing 3 000 models),

Figure 4: Maximum accuracy over computation time for the algorithm ∞-UCB-E ran with various exploration
parameters (E = 0.01, E = 0.05, E = 1, E = 5 and E = 10) and a population of K = 3 000 on MNIST data set.

Figure 5: Maximum accuracy over computation time for the algorithm Mutant-UCB ran with various exploration
parameters (E = 0.01, E = 0.05, E = 1, E = 5 and E = 10) and an initial population of K = 500 on MNIST data
set.
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C.2 Models found by the algorithms

We set the same general seed for each algorithm and data set: CIFAR-10, MRBI and SHVN. This means that the initial
pool of solutions is exactly the same for each algorithm and for the three data sets. Hyperband and the random search
found exactly the same architecture, indicating that the best configuration was at the beginning of this pool. Indeed,
despite the fact that Hyperband looks at more than twice as many configurations as the random search, it resulted in the
same configuration as the random search. Hyperband’s best results come from the fact that 10 sub-trains are probably
too many for this model, which overfits in the case of random search. More surprisingly, the best model for Hyperband
and random search, shown in Figure 6, is identical for all three data sets.

Image

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyReLU

Conv2d,44,3,LeakyReLU

Flatten

Identity,Relu

BatchNorm1d

BatchNorm1d,ReLU

MLP,104,ReLU

MLP,10,Softmax

Figure 6: Best model found for CIFAR-10, MRBI and SVHN by the random search and Hyperband

Thanks to their evolutionary tools, the evolutionary algorithm and Mutant-UCB where able to create more performing
configurations. Figure 7 shows the models found by both algorithms on the CIFAR-10 data set. The one found by
Mutant-UCB, in Figure (b), is really close to the original one from the pool displayed Figure 6. The mutation operator
was used to add more MLP layers at the end of the neural network which helps improving the model accuracy. On the
other hand, the structure shown Figure (a), found by the evolutionary algorithm is very different. In this algorithm, a
new configuration is created by crossing two parents with the crossover and then applying a mutation to one of the
offspring. This double transformation allows to move much further away from the initial pool of solutions. In the case
of the CIFAR-10 data set, this led the algorithm to consider very complex structures, which was not necessary to obtain
good performance.
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CIFAR-10 (3, 32, 32)
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Conv2d,28,3,Linear
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Figure (a): Evolutionary algorithm.

CIFAR-10 (3, 32, 32)

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyRelu

Conv2d,44,3,LeakyReLU

Flatten
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BatchNorm1d,LeakyReLU
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MLP,484,Linear
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Figure (b): Mutant-UCB.

Figure 7: Best configurations found by the evolutionary algorithm and Mutant-UCB on the CIFAR-10 data set.
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