
HAL Id: hal-04440552
https://hal.science/hal-04440552v2

Preprint submitted on 13 Jun 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Bandit Approach with Evolutionary Operators for
Model Selection

Margaux Brégère, Julie Keisler

To cite this version:
Margaux Brégère, Julie Keisler. A Bandit Approach with Evolutionary Operators for Model Selection:
Application to Neural Architecture Optimization for Image Classification. 2024. �hal-04440552v2�

https://hal.science/hal-04440552v2
https://hal.archives-ouvertes.fr


A Bandit Approach With Evolutionary Operators for Model
Selection: Application to Neural Architecture Optimization for

Image Classification
Margaux Brégère

∗

margaux.bregere@edf.fr

EDF Lab Saclay, Palaiseau, France

Univ. de Paris and Sorbonne Université, CNRS\LPSM
Paris, France

Julie Keisler
∗

julie.keisler@edf.fr

EDF Lab Saclay, Palaiseau, France

CNRS\CRIStAL, Inria Lille, Université de Lille
Villeneuve d’Ascq, France

ABSTRACT
This work formulates model selection as an infinite-armed bandit

problem, namely, a problem in which a decision maker iteratively

selects one of an infinite number of fixed choices (i.e., arms) when

the properties of each choice are only partially known at the time

of allocation and may become better understood over time, via the

attainment of rewards. Here, the arms are machine learning models

to train and selecting an arm corresponds to a partial training of

the model (resource allocation). The reward is the accuracy of the

selected model after its partial training. We aim to identify the best

model at the end of a finite number of resource allocations and thus

consider the best arm identification setup. We propose the algo-

rithm Mutant-UCB that incorporates operators from evolutionary

algorithms into the UCB-E (Upper Confidence Bound Exploration)

bandit algorithm introduced by Audibert et al. [1]. Tests carried

out on three open source image classification data sets attest to the

relevance of this novel combining approach, which outperforms

the state-of-the-art for a fixed budget.

KEYWORDS
Infinite-armed bandits, Best arm identification, Model selection,

Neural architecture optimisation, Hyperparameter optimisation,

Evolutionnary algorithm, Image classification, AutoML, Online

Learning

1 INTRODUCTION
Accuracy of machine learning models significantly depends on

some parameters which cannot be modified during training. As

the number of parameter combinations to be tested exponentially

increases with the number of these parameters, it becomes costly

and time-consuming to optimize them. Automating the selection

of promising models, usually referred to as AutoML (Automated

Machine Learning), is a fast-growing area of research (see Hutter

et al. [13] for a quite recent book). We approach the model selection

problem in a general manner without any restrictions on the nature

of the hyper-parameters, such as the types of machine learning

models, neural network architectures, or hyper-parameters of ran-

dom forests. Our aim is to find the best model without making any

assumptions about the task, model type, or reward to maximize.

We assume that we have access to an infinite number of possible

models and set a predetermined budget of resources𝑇 , used to train

the models. These resources are allocated to the models in the form

∗
Both authors contributed equally to this research.

of “sub-trains”, such as iterations, data samples or features. The

final (and hopefully the best) model is chosen by finding a good

trade-off between exploration (training a large number of models)

and exploitation (allocating a large budget to promising models).

This process may fall under the umbrella of multi-armed bandits

(see Lattimore and Szepesvári [22] for an in-depth review).

In this paper, we treat model selection as an instance of best-arm

identification in infinite-armed bandits. We propose a newmodel se-

lection algorithm, called Mutant-UCB: an Upper Confidence Bound

(UCB)-based algorithm (see Auer et al. [2] for UCB’s original idea)

that incorporates a mutation operator from the evolutionary algo-

rithms. This operator creates a new model from the neighborhood

of the model selected by the bandit algorithm. Unlike most model

selection algorithms, Mutant-UCB makes no assumptions about

the solutions encoding, also called search space, or the reward

function to be maximized, making it suitable for a wide range of

configurations. The use of a UCB-type algorithm and adaptive re-

source allocation allows exploration of the search space, while the

mutation operator effectively directs the search towards promis-

ing solutions. Results on a neural networks optimization problem

demonstrate the relevance of this approach.

We begin this paper by presenting the setup of our bandit model

selection approach in Section 2 andwe position ourselves in relation

to the state of the art. Mutant-UCB, the algorithm we develop, is

presented in Section 3. Section 4 is dedicated to experiments on the

optimization of deep neural networks: we validate the performance

of Mutant-UCB on three open-source image classification datasets.

Finally, Section 5 discusses the advantages of Mutant-UCB com-

pared to the state of the art and opens new research perspectives.

2 MODEL SELECTION PROBLEM SETUP: A
BANDIT APPROACH

2.1 Literature Discussion
Naive strategies for model selection are Grid or Random Search.

More sophisticated strategies address model selection as a sequen-

tial learning problem. Two approaches stand out: configuration se-
lection methods sequentially select new models (“close” to promis-

ing models) to train, while configuration evaluation methods

allocate more resources (training time) to promising models. The

first approach suggests that accuracy is regular with respect to

some distance between models implying the existence of an under-

lying space. Therefore, two models that are close to each other will

have similar performance. The second approach, on the other hand,



Brégère and Keisler

makes no assumptions about the potential (smooth) links between

model performances.

Evolutionary methods. Among the configuration selection meth-

ods, evolutionary algorithms have been popular for many years (see,

e.g., Young et al. [37] and Jian et al. [14]). Starting from an initial

set of configurations, they evolve them towards performing mod-

els using unitary operators like the mutation (little change in the

configuration). Even complex operators involving more than two

configurations like the crossover are considered by Strumberger

et al. [32]. These algorithms are highly versatile and can be applied

to a wide range of setups. The literature presents different methods

that vary in terms of search spaces, i.e. the way configurations

are encoded. The operators used to generate the new population

typically depend on this encoding. Usually, the configurations are

represented as character strings or lists and can be modified using

bit-string mutations and combined with k-point crossovers (see

Eiben and Smith [8] for more details). But recent works, mostly for

neural networks architecture optimization, tried to design other

representations and operators. For instance a tree-based mutation

operator to optimize recurrent neural networks is proposed by

Rawal and Miikkulainen [29]. Awad et al. [3] use differential evo-

lutionary operators to optimize neural network hyper-parameters

and architectures. One disadvantage of the evolutionary algorithms

is the large number of parameters involved, such as the popula-

tion size, the selection function, or the elitism rate. Choosing the

appropriate values for these parameters can be complex.

Bayesian optimization. Bayesian optimization has recently emerged

as a more efficient approach than evolutionary methods in AutoML

(see, among others, Malkomes et al. [27], Zoph and Le [39] and

Kandasamy et al. [16]). It is a sequential optimization technique

commonly used to minimize black-box functions. Those algorithms

are based on two main components, a surrogate model that approxi-

mates the unknown black-box function, and an acquisition function

that selects the next element in the search space to be evaluated.

One major limitation of these acquisition functions is their reliance

on strong assumptions about the black-box function and the search

space (see Garrido-Merchán and Hernández-Lobato [9] for further

details). Therefore, we did not employ a Bayesian optimization

algorithm in our experiments as we aimed to avoid making any

assumptions about the smoothness, distance or continuity of the

search space or the reward function.

Bandits approaches. Firstly, still in the field of Bayesian optimiza-

tion, the extensions GP-UCB and KernelUCB (see, Srinivas et al.

[31] and Valko et al. [34], respectively) of the classical UCB bandit

algorithm and more recent algorithms largely inspired by them (see,

e.g., Dai et al. [7]) have been massively used for optimization and

eventually model selection. The BayesGap algorithm introduced

by Hoffman et al. [10] connects Bayesian optimization approaches

and best arm identification, assuming correlations among the arms.

More recently, Huang et al. [12] sees the neural architecture search

as a combinatorial multi-armed bandit problem which allows the

decomposition of a large search space into smaller blocks where

tree-search methods can be applied more effectively and efficiently.

Configuration evaluation approaches have also been investigated

in an infinite or multi-armed bandit framework. At each iteration

of the algorithm, a new arm/model can be drawn from an infinite

search space containing the models and added to the set of models

already (more or less) trained. Karnin et al. [17] proposes the Se-

quential (or Successive) Halving algorithm, which splits the given

budget evenly across an optimal number of elimination rounds,

and within a round, pulls arms in a uniform manner. It comes with

solid theoretical guarantees that have recently been improved by

Zhao et al. [38]. Li et al. [25] proposes the Hyperband algorithm,

a robust extension of Sequential Halving, and applies it to deep

neural networks hyperparameters optimization. Moreover, Shang

et al. [30] introduces D-TTTS, an algorithm inspired by Thompson

sampling. Hybrid methods combine adaptive configuration selec-

tion and evaluation: Terayama et al. [33] proposes a rule to stop

training a model prematurely based on the predicted performance

from Gaussian Process; in addition, Kandasamy et al. [15] extends

GP-UCB to enable sequential model training (and thus resource

allocation).

Best-arm identification in infinite-armed bandits. The stochastic
infinite-armed bandit framework has been introduced and studied

for the cumulative reward maximization problem by Berry et al.

[5] and Wang et al. [36]. Carpentier and Valko [6] and Aziz et al.

[4] study best armed identification problem in this framework.

Theoretical results attest to the performance of their strategies

(SiRI and extensions; 𝛼 ,𝜖-KL-LUCB, respectively).

2.2 Contributions
The main contribution of this study is the Mutant-UCB algorithm,

which incorporates operators from evolutionary algorithms into

the UCB-E (Upper Confidence Bound Exploration) algorithm in-

troduced by Audibert et al. [1]. It combines both configuration

evaluation and configuration selection approaches: it is sequential

in computation and picks a (generally promising) model thanks to

a UCB-based criteria. Then it either continues its training (resource

allocation) or creates and starts training a new model derived from

the selected one thanks to the “mutation” operation of an evolu-

tionary algorithm. This last possibility is based on the intuition

that the expected “mutant model” accuracy will be close to that

of the original model. While bandit approaches have been used to

design the “selection” operator for evolutionary algorithms by Li

et al. [23], to our knowledge this is the first time that operators from

evolutionary algorithms are incorporated into a bandit algorithm.

Afterwards, we compare Mutant-UCB to a Random Search, the

evolutionary algorithm proposed by Keisler et al. [18] and the Hy-

perband algorithm introduced by Li et al. [25] on three open source

data sets collected for image classification: CIFAR-10 [20], MRBI

[21] and SVHN [28]. For a fair comparison, Mutant-UCB and the

evolutionary algorithm under consideration share the same muta-

tion operation.

2.3 Set-up
In the infinite-armed bandit framework, when a new arm 𝑘 is pulled

from the reservoir, the expectation of the accuracy of the associated

model 𝜇𝑘 pulled from the search space is assumed to be an indepen-

dent sample from a fixed distribution. With𝑇 a fixed budget, at each

round 𝑡 = 1, . . . ,𝑇 , an arm 𝐼𝑡 is picked and a sub-train (allocation

of a resource) is performed on the associated model. This model is



A Bandit Approach With Evolutionary Operators for Model Selection

then evaluated on a validation data set D
valid

using an accuracy

function acc we aim to maximize. This accuracy corresponds to

the reward 𝑎𝑡 . After 𝑇 rounds, we select the final arm �̂�𝑇 . In what

follows, the untrained model associated with arm 𝑘 is denoted 𝑓𝑘 ,

and after 𝑁𝑘 sub-trains we denote it 𝑓
𝑁𝑘

𝑘
.

3 A UCB-BASED ALGORITHM
INCORPORATING MUTATION OPERATORS
FROM EVOLUTIONARY ALGORITHMS

3.1 A brief reminder of the UCB-E algorithm
Designed for best arm-identification in a 𝐾-multi-armed bandit

problem, the UCB-E algorithm proposed byAudibert et al. [1] is

recalled in Algorithm 1. This highly exploratory policy is based on

the principle of optimism in the face of uncertainty, in the spirit

of the UCB algorithm introduced by Auer et al. [2]. It aims to find

the best model among 𝐾 untrained models 𝑓1, . . . , 𝑓𝐾 sampled from

the search space. The algorithm starts by 𝐾 rounds of deterministic

exploration: it performs a first sub-train per model and observes

the accuracies 𝑎𝑘 = acc

(
𝑓 1
𝑘
, D

valid

)
. At each round 𝑡 = 𝐾 + 1, . . . ,𝑇 ,

and for each 𝑘 , it computes the empirical mean accuracy 𝜇𝑘,𝑡 from

the previous rewards associated with arm 𝑘 :

𝜇𝑘,𝑡 =
1

𝑁𝑘,𝑡

𝑡−1∑︁
𝑠=1

𝑎𝑡1𝐼𝑠=𝑘 with 𝑁𝑘,𝑡 =

𝑡−1∑︁
𝑠=1

1𝐼𝑠=𝑘 . (1)

Then, it chooses the arm optimistically:

𝐼𝑡 ∈ argmax

𝑘∈{1,...𝐾 }

{
𝜇𝑘,𝑡 +

√︄
𝐸

𝑁𝑘,𝑡

}
, (2)

performs a sub-train on the associated model and receives the

reward 𝑎𝑡 = acc

(
𝑓
𝑁𝐼𝑡 ,𝑡+1
𝐼𝑡

, D
valid

)
. For the sake of readability, the

iteration index for the counting 𝑁𝑘 and empirical mean 𝜇𝑘 variables

in Algorithms 1 and 2 have been removed. These variables are

updated throughout the iterations.

The core issue is the tuning of the exploration parameter 𝐸.

Audibert et al. [1] show that the optimal value depends on the

difficulty of the underlying bandit problem, which has no reason to

be known in advance.

3.2 Main contribution: the Mutant-UCB
algorithm

Mutant-UCB, presented in Algorithm 2, incorporates two main

ideas into UCB-E. First of all, there is no point in multiplying the

number of sub-trains for the same model: there generally comes

a time when it is no longer useful, so we can potentially define a

maximum number of sub-trains 𝑁 . Note that this idea of a maxi-

mum quantity of resources that can be allocated to a single model

was already present in the Hyperband algorithm proposed by Li

et al. [25]. Furthermore, in model selection, it is not uncommon for

similar models to perform similarly, which is why configuration

selection methods may be so effective in this task. In general, the

main problem lies in defining a distance between models: search

spaces are usually high-dimensional and hyper-parameters are of

various kinds (learning rate, type of activation function, number of

neurons, etc.). While the notion of distance between two models is

Algorithm 1𝑈𝐶𝐵 − 𝐸
Inputs:
𝑇 budget

𝐸 exploration parameter

𝐾 number of untrained models

Initialization
Sample 𝐾 untrained models 𝑓1, . . . , 𝑓𝐾
For 𝑘 = 1, 2, . . . , 𝐾

Perform a first sub-train on 𝑓𝑘 which becomes 𝑓 1
𝑘

Get the reward 𝑎𝑘 = acc

(
𝑓 1
𝑘
,D

valid

)
Define 𝑁𝑘 = 1, 𝜇𝑘 = 𝑎𝑘

For 𝑡 = 𝐾 + 1, 𝐾 + 2, . . . ,𝑇

Choose 𝐼𝑡 ∈ argmax𝑘∈{1,...𝐾 }
{
𝜇𝑘 +

√︃
𝐸
𝑁𝑘

}
Perform a sub-train: model 𝑓

𝑁𝐼𝑡

𝐼𝑡
becomes 𝑓

𝑁𝐼𝑡 +1
𝐼𝑡

Get the reward 𝑎𝑡 = acc

(
𝑓
𝑁𝐼𝑡 +1
𝐼𝑡

, D
valid

)
Update 𝜇𝐼𝑡 = 1

𝑁𝐼𝑡 +1
(
𝑎𝑡 + 𝑁𝐼𝑡 𝜇𝐼𝑡

)
and 𝑁𝐼𝑡 = 𝑁𝐼𝑡 + 1

Output:

Model 𝑓
𝑁
�̂�𝑇

�̂�𝑇
where �̂�𝑇 ∈ argmax𝑘∈{1,...𝐾 } 𝜇𝑘

not easy to define, evolutionary algorithms offer a good compro-

mise: they breed new individuals through crossover and mutation

operations. Crossover operations mix two individuals, while mu-

tation operations can be applied to a single individual in order to

create “mutants”, involving some tiny changes. Those “mutants”

can be seen as neighbors of the initial point. We could therefore

imagine that a model chosen by the algorithm could mutate to

give rise to a new one, with the intuition that the mutant and its

original model will have similar accuracies. To our knowledge, the

inclusion of mutation operators of evolutionary algorithms in a

bandit algorithm is completely new.

Like the UCB-E algorithm, Mutant-UCB starts with the first sub-

train of 𝐾 models. At each round 𝑡 = 𝐾 + 1, . . . , it still chooses the

next arm optimistically, by resolving Equation (2). For an arm 𝑘 ,

we recall that 𝑁𝑘,𝑡 is the number of times the arm has been picked

before round 𝑡 - see Equation (1).We now introduce𝑁𝑘,𝑡 , the integer

that counts the number of times the model associated with arm 𝑘

has been trained. Once arm 𝐼𝑡 is picked, with 𝑝𝑡 = 1 − 𝑁 𝐼𝑡 ,𝑡 /𝑁 :r
a sub-train is performed on 𝑓

𝑁 𝐼𝑡 ,𝑡

𝐼𝑡
with probability 𝑝𝑡 orr

a mutation is performed on 𝑓
𝑁 𝐼𝑡 ,𝑡

𝐼𝑡 ,𝑡
with probability 1 − 𝑝𝑡 .

The mutation is performed on the trained model 𝑓
𝑁 𝐼𝑡 ,𝑡

𝐼𝑡
- and

not just 𝑓𝐼𝑡 - to include the case where certain parameters of the

model optimized during training (e.g., weights of neuron networks)

are passed on to its mutant. We detail the mutation operation for

our use-case in Section 4. When a mutation occurs, a new model is

created, a first sub-train is performed and the model is added to the

list of potential models to be retained at the end of the algorithm.

Thus, the number of models 𝐾 increases by one each time a mutant

model is created.

Remark 3.1. When a new model comes into play, it is very likely

to be quickly chosen by the algorithm, even if its accuracy is not



Brégère and Keisler

Algorithm 2Mutant-UCB

Inputs:
𝑇 budget

𝐸 exploration parameter

𝐾 initial number of models

𝑁 maximum number of sub-trains that can be allocated

to a single model

Initialization
Sample 𝐾 untrained models 𝑓1, . . . , 𝑓𝐾
For 𝑘 = 1, 2, . . . , 𝐾

Perform a first sub-train on 𝑓𝑘 which becomes 𝑓 1
𝑘

Get the reward 𝑎𝑘 = acc

(
𝑓 1
𝑘
,D

valid

)
Define 𝑁𝑘 = 𝑁𝑘 = 1, 𝜇𝑘 = 𝑎𝑘

For 𝑡 = 𝐾 + 1, 𝐾 + 2, . . . , (𝑇 − 𝑁 + 1)
Choose 𝐼𝑡 ∈ argmax𝑘∈{1,...𝐾 }

{
𝜇𝑘 +

√︃
𝐸
𝑁𝑘

}
Sample 𝑋𝑡 ∼ B(𝑝𝑡 ) with 𝑝𝑡 = 1 − 𝑁 𝐼𝑡 /𝑁
If 𝑋𝑡 = 1:

Perform a sub-train: model 𝑓
𝑁 𝐼𝑡

𝐼𝑡
becomes 𝑓

𝑁 𝐼𝑡 +1
𝐼𝑡

Get the reward 𝑎𝑡 = acc

(
𝑓
𝑁 𝐼𝑡 +1
𝐼𝑡

, D
valid

)
Update 𝜇𝐼𝑡 = 1

𝑁 𝐼𝑡 +1
(
𝑎𝑡 + 𝑁 𝐼𝑡 𝜇𝐼𝑡

)
, 𝑁𝐼𝑡 = 𝑁𝐼𝑡 + 1

and 𝑁 𝐼𝑡 = 𝑁 𝐼𝑡 + 1

Else :
Update the number of models 𝐾 = 𝐾 + 1

Create a mutant model 𝑓𝐾 from 𝑓
𝑁 𝐼𝑡

𝐼𝑡

Perform a first sub-train on 𝑓𝐾 which becomes 𝑓 1
𝐾

Get the reward 𝑎𝑡 = acc

(
𝑓 1
𝐾
,D

valid

)
Define 𝑁𝐾 = 𝑁𝐾 = 1, 𝜇𝐾 = 𝑎𝑡
Update 𝑁𝐼𝑡 = 𝑁𝐼𝑡 + 1

Finalization
Select the best model �̂�𝑇 ∈ argmax𝑘∈{1,...𝐾 } 𝜇𝑘
Finalize its training by performing 𝑁 − 𝑁

�̂�𝑇
sub-trains

Output: 𝑓 𝑁
�̂�𝑇

good: the algorithm must explore this new possibility. The “sleep-

ing bandit” framework, in which new arms may be added and/or

become unavailable during the algorithm execution, is studied by

Kleinberg et al. [19]. It proposes a very natural extension of UCB:

the Awake Upper Estimated Reward algorithm and shows there is

no need to adapt the confidence bounds.

The probability 𝑝𝑡 decreases as the model goes along its sub-

trains and guarantees that it will not be trained more than 𝑁 times.

The more the model has been trained, the more likely it is to mutate

when selected. The underlying idea is that further training will

probably have little effect or even over-fit in the case of neural

networks, and that if the algorithm selects this already well-trained

model, it is because it may have good accuracy (and it will probably

be the same for a mutant model). Note that the probability 𝑝𝑡 is

linear in𝑁𝐼𝑡 ,𝑡 ; this choice is arbitrary and we could quite easily have

chosen another type of relationship, e.g., 𝑝𝑡 = 1−exp(𝑁𝐼𝑡 ,𝑡−𝑁 ). The
algorithm ends with a finalization phase: the best model, in terms

of average accuracy, �̂�𝑇 is selected among the initial models and the

mutant models and its training is completed with 𝑁 − 𝑁
�̂�𝑇 ,𝑇−𝑁+2

additional sub-trains.

4 EXPERIMENTS
In this section, we evaluate the performance of the Mutant-UCB

algorithm, on neural networks optimization. In order to highlight

the advantages of our method, we put ourselves in a case where we

make no assumptions about the smoothness of the reward function

acc and we do not consider any distance between the elements 𝑓𝑘
from our search space. We therefore compare our methods with

three algorithms that are applicable in this case: a Random Search,

the Hyperband algorithm and an evolutionary algorithm. This neu-

ral networks optimization is applied to three image classification

data sets.

4.1 Experiment design
Data sets. We performed our experiments using three image

classification data sets, also used by Li et al. [25] to introduce the

Hyperband algorithm: CIFAR-10 [20]), Street View House Numbers

(SVHN [28]) and rotated MNIST with background images, also

called MRBI [21]. These first two data sets contain 32 × 32 RGB

images, while MRBI contains 28 × 28 gray-scale images. The labels

for each data set are converted to integers between 0 and 9. We

split each data set into a training, a validation and a testing set.

The training set is used to optimize the model weights (namely to

perform the sub-trains), while the validation set is used to evaluate

the configurations in the selection model algorithms (i.e. to get the

rewards). Finally, the accuracies of the configuration selected by the

algorithms are computed on the testing set to assess their quality.

CIFAR-10 has 35k image on the train set, 15k on the validation set

and 10k on the test set, SVHN has 51k, 22k and 26k and MRBI 10k,

2k and 50k data points on the three sets respectively. For all data

sets we standardized the images so the input has a mean of zero

and a standard deviation of one.

Search space: the pool of possible configurations. We used the

DRAGON framework developed by Keisler et al. [18] to encode our

neural networks. Their article contains an explanation and a tutorial

on how to use the associated implemented package. In this frame-

work, neural networks are represented as directed acyclic graphs

(DAGs), where the nodes represent the layers (e.g., recurrent, feed-

forward, convolutional) and the edges represent the connections

between them. The task on which we want to try our algorithms

is image classification. To do so, we define a generic search space

(the pool of possible configurations 𝑓𝑘 ) with DRAGON, dedicated

to the task at hand. Any sampled configuration 𝑓𝑘 will be made of

two directed acyclic graphs. The first one processes 2D data, and

can be made of 2D convolutions, 2D pooling, normalization and

dropout layers. The second one consists in a flatten layer followed

by MLPs (Multi-Layers Perceptrons) and normalization layers. A

final MLP layer is added at the output of the model to convert

the latent vector into the desired output format. The framework

includes operators, namely mutations and crossovers to modify

and thus optimize the graphs. The mutation operators modify the

neural network architecture by adding, removing or modifying the

nodes and the connections in the graph. They can also be applied



A Bandit Approach With Evolutionary Operators for Model Selection

within the nodes, on the neural network hyper-parameters (e.g.,

convolution layer kernel size or an activation function). Crossover

involves exchanging parts of two graphs.

Sub-trains. We trained our neural networks using a cyclical learn-

ing rate, as proposed by Huang et al. [11]. When the learning rate

is low, the neural network reaches a local minimum. Right after,

the learning rate goes up again taking the model out of the local

minimum. We consider in our experiments that a sub-train is one

of this loop, with learning rate getting from its maximum to its

minimum. We let 𝑁 be the maximum number of sub-trains for a

given element 𝑓𝑘 from our search space.

Baselines. Random Search, the Evolutionary Algorithm (EA), Hy-

perband and Mutant-UCB have all been implemented so that they

can be used with the DRAGON framework. They all use the same

training and validation functions to assess the neural networks

performance, and share a common budget, namely 𝑇 . For Random

Search, we randomly select 𝐾RS = 𝑇 /𝑁 neural networks. For each

of them we perform 𝑁 sub-trains, resulting in 𝑇 sub-trains in total.

For the Evolutionary Algorithm, we implemented an asynchronous

(or steady-state) version. Compared to the standard algorithm, the

steady-state evolutionary algorithm of Liu et al. [26] enhances effi-

ciency on High-Performance Computing (HPC) by producing two

offsprings from the population as soon as a free process is avail-

able, rather than waiting for the entire population to be evaluated.

We set an initial population of size 𝐾EA, where the deep neural

networks are randomly initialized. We perform 𝑁 sub-trains on

each of these models. Then, we evolve the population using the

mutation and crossover operators from the DRAGON framework.

If a generated offspring is better than the worst model from the

population, it replaces it. During the optimization procedure, we

generate 𝑇 /𝑁 − 𝐾EA offsprings and we perform 𝑁 sub-trains on

each, resulting in a total of𝑇 sub-trains. For Hyperband we ran the

algorithm with its parameters 𝑅 and 𝜂 such that the total number

of sub-trains is 𝑇 and that each model can be trained only 𝑁 times

(see, Li et al. [25] for further details). The algorithm Mutant-UCB

starts with an initial population of 𝐾Mutant and runs with a budget

of 𝑇 . For a fair comparison, EA and Mutant-UCB use the same mu-

tation operators. We set 𝐾EA << 𝐾Mutant ≲ 𝐾RS. Indeed, as each

configuration is fully trained in the evolutionary algorithm, 𝐾EA
must be much lower than 𝑇 /𝑁 to allow the creation of a sufficient

number of offsprings. Similarly, Mutant-UCB mutation operator

will create new configurations during the optimization procedure.

However the evolutionary algorithm will generate even more in-

dividuals with the crossover, so 𝐾Mutant may be higher than 𝐾EA.

We then set 𝐾Mutant a bit smaller than 𝑇 /𝑁 . We emphasize that,

with the creation of offsprings and mutants, the final number of

evaluated models by the evolutionary algorithm and Mutant-UCB

will be much higher than 𝐾𝐸𝐴 and 𝐾Mutant, respectively. In addi-

tion, Random Search and the evolutionary algorithm fully train

each configuration tested (of which there are 𝑇 /𝑁 ), while Hyper-

band and Mutant-UCB allow some of them to be partially trained

(resulting in a final population of more than 𝑇 /𝑁 configurations).

Table 1: Number of tested models and accuracies (in %) of
the best model for Random Search (RS), asynchronous evolu-
tionary algorithm (EA) and Mutant-UCB on CIFAR-10, MRBI
and SVHN data sets.

Data set CIFAR-10 MRBI SVHN

RS 1 000 · 75.3 1 000 · 75.5 1 000 · 90.7
EA 1 000 · 77.1 1 000 · 79.5 1 000 · 91.9
Hyperband 2 400 · 75.4 2 400 · 75.9 2 400 · 91.0
Mutant-UCB 3 399 · 79.5 3 463 · 80.5 3 471 · 92.4

Figure (a): CIFAR-10.

Figure (b): MRBI.

Figure (c): SVHN.

Figure 2: Accuracy of the best model over computational
time for Random Search (RS), asynchronous evolutionary
algorithm (EA) and Mutant-UCB on CIFAR-10, MRBI and
SVHN data sets.



Brégère and Keisler

4.2 Results
We run the experiments with 𝑇 = 10, 000, 𝑁 = 10 and 𝐸 = 0.05

for Mutant-UCB. The tuning of the parameter 𝐸 for Mutant-UCB

is not as important as for the UCB-E algorithm. We only need the

algorithm to not explore too much, since the mutation operator

represents an additional form of exploration. Indeed, in the UCB-E

algorithm, parameter 𝐸 is responsible for managing the balance

between exploration (through the execution of a few sub-trains

for numerous models) and exploitation (through the execution of

numerous sub-trains for a few models). Here, the Mutant-UCB

algorithm incorporates two forms of exploration: firstly, through

the sub-training of numerous models (which is also linked to the

initial number of models 𝐾 ), and secondly, through the generation

of mutants. If 𝐸 is relatively large, numerous models will be tested,

with a correspondingly smaller number of mutants generated (such

an algorithm would be similar to Random Search). Conversely, if 𝐸

is relatively small, a limited number of models will be fully trained,

resulting in a substantial number of mutants being generated from

them (such an algorithm would be similar to an evolutionary al-

gorithm without the crossover operator, selecting only the best

models at each iteration).

Each sub-trains contains 10 epochs, resulting in a maximum

of 100 training epochs, and the learning rate is set to 0.01. Each

experiment is run on a HPC environment using 20 NVIDIA V100

GPUs.

We display Table 1 the maximum accuracies and the number of

tested models for each algorithm from our baseline. We see that

Mutant-UCB outperforms Random Search, the evolutionary algo-

rithm and Hyperband for every data sets. The use of the mutation

operator seems to be the primary factor in this performance. Indeed,

the evolutionary algorithm comes well ahead of Hyperband and

Random Search. It would seem that digging around promising solu-

tions leads to better configurations. However, resources allocation

also seems to be a key factor. Hyperband is in fact slightly better

than Random Search, and converges much faster, as it can be seen

in Figure 2. The computation times to perform the𝑇 iterations vary

a lot between the algorithms and the task at hand. The hardware

definitely has an impact on this, but the resources allocation will

also play a crucial role. Throughout the paper there is an implicit

assumption that a sub-train’s budget in terms of memory and time

is independent of the model, which is not entirely correct. Indeed,

performing more sub-trains on configurations which are more com-

plex take generally a longer time and affect the total duration of

the experiment. Mutant-UCB, with both the mutation operator and

the resources allocation has the fastest convergence and yields

the better accuracies. Appendix A details the models found by the

different algorithms.

Codes are available in the supplementary material.

5 DISCUSSION
This work presents Mutant-UCB, an innovative model selection

algorithm, which combines a UCB-based bandit algorithm with

evolutionary algorithm operators. Most configuration selection

approaches, such as Bayesian optimization or continuous bandit

algorithms, typically consider a normed vector space to represent

the pool of possible configurations. These approaches assume that

the reward function is smooth, meaning that two configurations

that are close in the underlying vector space lead to close accuracies.

Mutant-UCB and the other algorithms in the baseline do not require

any smoothness assumptions. Besides, thanks to its resource alloca-

tion, Mutant-UCB demonstrates a high exploratory potential. It can

evaluate more models within a similar budget compared to Random

Search or evolutionary algorithms. For example, on the MRBI data

set, with a budget 𝑇 = 10, 000, Mutant-UCB evaluated 3, 500 con-

figurations, while the Evolutionary Algorithm and Random Search

only evaluated 1, 000. The use of a mutation operator, on the other

hand, reinforces the exploitation of promising solutions and allows

us to reach much higher performance configurations than Hyper-

band and Random Search. The mutation can be viewed as a concept

of proximity: a mutant and its original model are close together, as

defined by the chosen operator (which does not require any normed

vector space). It remains more permissive than the operators of the

evolutionary algorithm. In particular, the crossover from the evo-

lutionary algorithm requires homogeneity between the elements

of the search space, unlike Mutant-UCB. Thus, Mutant-UCB could

be used with a search space that combines various machine learn-

ing models, such as neural networks, random forests, or boosting;

as soon as we define a mutation operator for each type of model.

Finally, the Mutant-UCB algorithm is highly scalable in an HPC

environment because configurations are evaluated independently

and asynchronously, in contrast to Hyperband and classical evo-

lutionary algorithms, which evaluate populations synchronously.

In summary, Mutant-UCB has several advantages that make it an

attractive algorithm, in addition to its baseline-beating performance

demonstrated in the previous section. One disadvantage is the need

to store the weights of all previous configurations evaluated. This

is because the pool of solutions on which we apply the UCB part of

the algorithm is not limited, unlike the other algorithms from the

baseline.

Prospects. The experiments demonstrate the relevance of Mutant-

UCB. A challenge for further work would be to obtain an upper

bound on the simple regret of this algorithm to attest a theoretical

performance. In this best-arm identification problem for infinite-

armed bandit framework; the simple regret will be the accuracy of

the best possible model minus the accuracy of the model selected by

the algorithm. To obtain theoretical results, we believe that it will

be necessary to introduce some concepts from sleeping bandits due

to the creation of mutants (see, e.g., Kleinberg et al. [19] and con-

textual bandits to model the proximity between mutants and their

original models (see, among other Li et al. [24]). One of the most

challenging aspects of the analysis will be to select an appropriate

hypothesis regarding the distribution of rewards conditionally to

the chosen arm. The classical stochastic bandit assumptions are

not applicable in this context, as they suggest that, conditionally to

the chosen arm, the accuracy does not depend on the number of

sub-trains performed. However, empirical evidence indicates that

performing multiple sub-trains enhance performance. Furthermore,

in order to legitimize the idea of integrating mutation operations,

and hopefully get the simple regret bound, it seems essential to add

an assumption about the distribution of the accuracies of mutants.

It should also be noted that the HPC environment and the neural



A Bandit Approach With Evolutionary Operators for Model Selection

network training duration puts us in a context where rewards ar-

rive with a delay (namely, in a delayed bandits framework - see,

e.g., Vernade et al. [35]) and not all arms are available at all times

(sleeping bandits again).

The strategy for creating mutant models is independent of the

choice of bandit algorithm used to select the arms. Alternative

approaches, other than those based on UCB, could be considered.

In this paper we applied Mutant-UCB to a very generic problem:

neural networks optimization for image classification. The flexibil-

ity of this algorithm means that it can be applied to a wide range

of problems. A natural extension of this paper would be to apply

Mutant-UCB to a variety of tasks, models and search spaces where

state-of-the-art algorithms, by their very nature, would be limited

or even unusable.

REFERENCES
[1] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. 2010. Best arm identifi-

cation in multi-armed bandits.. In COLT. 41–53.
[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[3] Noor Awad, Neeratyoy Mallik, and Frank Hutter. 2021. DEHB: Evolutionary

Hyperband for Scalable, Robust and Efficient Hyperparameter Optimization.

arXiv:2105.09821 [cs.LG]

[4] Maryam Aziz, Jesse Anderton, Emilie Kaufmann, and Javed Aslam. 2018. Pure ex-

ploration in infinitely-armed bandit models with fixed-confidence. In Algorithmic
Learning Theory. PMLR, 3–24.

[5] Donald A Berry, Robert W Chen, Alan Zame, David C Heath, and Larry A Shepp.

1997. Bandit problems with infinitely many arms. The Annals of Statistics 25, 5
(1997), 2103–2116.

[6] Alexandra Carpentier and Michal Valko. 2015. Simple regret for infinitely many

armed bandits. In International Conference on Machine Learning. PMLR, 1133–

1141.

[7] Zhongxiang Dai, Gregory Kang Ruey Lau, Arun Verma, Yao Shu, Bryan

Kian Hsiang Low, and Patrick Jaillet. 2023. Quantum Bayesian Optimization.

arXiv preprint arXiv:2310.05373 (2023).
[8] Agoston E Eiben and James E Smith. 2015. Introduction to evolutionary computing.

Springer.

[9] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2020. Dealing with

categorical and integer-valued variables in bayesian optimization with gaussian

processes. Neurocomputing 380 (2020), 20–35.

[10] Matthew Hoffman, Bobak Shahriari, and Nando Freitas. 2014. On correlation

and budget constraints in model-based bandit optimization with application

to automatic machine learning. In Artificial Intelligence and Statistics. PMLR,

365–374.

[11] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q

Weinberger. 2017. Snapshot ensembles: Train 1, get m for free. arXiv preprint
arXiv:1704.00109 (2017).

[12] Hanxun Huang, Xingjun Ma, Sarah M Erfani, and James Bailey. 2021. Neural

architecture search via combinatorial multi-armed bandit. In 2021 International
Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[13] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated machine
learning: methods, systems, challenges. Springer Nature.

[14] Zheng Jian, Han Wenran, Zhang Ying, and Ji Shufan. 2023. EENAS: An Efficient

Evolutionary Algorithm for Neural Architecture Search. In Asian Conference on
Machine Learning. PMLR, 1261–1276.

[15] Kirthevasan Kandasamy, Gautam Dasarathy, Junier B Oliva, Jeff Schneider, and

Barnabás Póczos. 2016. Gaussian process bandit optimisation with multi-fidelity

evaluations. Advances in neural information processing systems 29 (2016).
[16] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos,

and Eric P Xing. 2018. Neural architecture search with bayesian optimisation

and optimal transport. Advances in neural information processing systems 31
(2018).

[17] Zohar Karnin, Tomer Koren, and Oren Somekh. 2013. Almost optimal exploration

in multi-armed bandits. In International conference on machine learning. PMLR,

1238–1246.

[18] Julie Keisler, El-Ghazali Talbi, Sandra Claudel, and Gilles Cabriel. 2023. An algo-

rithmic framework for the optimization of deep neural networks architectures

and hyperparameters. arXiv preprint arXiv:2303.12797 (2023).

[19] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. 2010.

Regret bounds for sleeping experts and bandits. Machine learning 80, 2-3 (2010),

245–272.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learningmultiple layers of features

from tiny images. (2009).

[21] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua

Bengio. 2007. An empirical evaluation of deep architectures on problems with

many factors of variation. In Proceedings of the 24th international conference on
Machine learning. 473–480.

[22] Tor Lattimore and Csaba Szepesvári. 2020. Bandit algorithms. Cambridge Uni-

versity Press.

[23] Ke Li, Alvaro Fialho, Sam Kwong, and Qingfu Zhang. 2013. Adaptive operator

selection with bandits for a multiobjective evolutionary algorithm based on

decomposition. IEEE Transactions on Evolutionary Computation 18, 1 (2013),

114–130.

[24] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. 2010. A contextual-

bandit approach to personalized news article recommendation. In Proceedings of
the 19th international conference on World wide web. 661–670.

[25] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet

Talwalkar. 2018. Hyperband: A novel bandit-based approach to hyperparameter

optimization. Journal of Machine Learning Research 18, 185 (2018), 1–52.

[26] Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray

Kavukcuoglu. 2018. Hierarchical Representations for Efficient Architecture

Search. arXiv:1711.00436 [cs.LG]

[27] Gustavo Malkomes, Charles Schaff, and Roman Garnett. 2016. Bayesian optimiza-

tion for automated model selection. Advances in neural information processing
systems 29 (2016).

[28] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and An-

drew Y Ng. 2011. Reading digits in natural images with unsupervised feature

learning. (2011).

[29] Aditya Rawal and Risto Miikkulainen. 2018. From Nodes to Networks: Evolving

Recurrent Neural Networks. arXiv:1803.04439 [cs.NE]

[30] Xuedong Shang, Emilie Kaufmann, and Michal Valko. 2019. A simple dynamic

bandit algorithm for hyper-parameter tuning. (2019).

[31] Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. 2009.

Gaussian process optimization in the bandit setting: No regret and experimental

design. arXiv preprint arXiv:0912.3995 (2009).
[32] Ivana Strumberger, Eva Tuba, Nebojsa Bacanin, Raka Jovanovic, and Milan Tuba.

2019. Convolutional neural network architecture design by the tree growth

algorithm framework. In 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 1–8.

[33] Kei Terayama, Masato Sumita, Ryo Tamura, and Koji Tsuda. 2021. Black-box

optimization for automated discovery. Accounts of Chemical Research 54, 6 (2021),
1334–1346.

[34] Michal Valko, Nathaniel Korda, Rémi Munos, Ilias Flaounas, and Nelo Cristianini.

2013. Finite-time analysis of kernelised contextual bandits. arXiv preprint
arXiv:1309.6869 (2013).

[35] Claire Vernade, Alexandra Carpentier, Tor Lattimore, Giovanni Zappella, Beyza

Ermis, and Michael Brueckner. 2020. Linear bandits with stochastic delayed

feedback. In International Conference on Machine Learning. PMLR, 9712–9721.

[36] YizaoWang, Jean-Yves Audibert, and RémiMunos. 2008. Algorithms for infinitely

many-armed bandits. Advances in Neural Information Processing Systems 21
(2008).

[37] Steven R Young, Derek C Rose, Thomas P Karnowski, Seung-Hwan Lim, and

Robert M Patton. 2015. Optimizing deep learning hyper-parameters through an

evolutionary algorithm. In Proceedings of the workshop on machine learning in
high-performance computing environments. 1–5.

[38] Yao Zhao, Connor Stephens, Csaba Szepesvári, and Kwang-Sung Jun. 2023. Revis-

iting simple regret: Fast rates for returning a good arm. In International Conference
on Machine Learning. PMLR, 42110–42158.

[39] Barret Zoph and Quoc Le. 2016. Neural Architecture Search with Reinforcement

Learning. In International Conference on Learning Representations.

A MODELS FOUND BY THE ALGORITHMS
We set the same general seed for each algorithm and data set: CIFAR-

10, MRBI and SHVN. This means that the initial pool of solutions

is exactly the same for each algorithm and for the three data sets.

Hyperband and Random Search found exactly the same architecture,

indicating that the best configuration was at the beginning of this

pool. Indeed, despite the fact that Hyperband looks at more than

twice as many configurations as Random Search, it resulted in the

same configuration as Random Search. Hyperband’s best results

come from the fact that 10 sub-trains are probably too many for

this model, which overfits in the case of Random Search. More

https://arxiv.org/abs/2105.09821
https://arxiv.org/abs/1711.00436
https://arxiv.org/abs/1803.04439


Brégère and Keisler

CIFAR-10 (3, 32, 32)

Conv2d,10,2,LeakyReLU

Conv2d,28,3,Linear

MaxPool2d,8,Linear

Flatten

Identity

Identity,LeakyReLU

Identity 2

BatchNorm1d,Linear

BatchNorm1d,LeakyReLU

MLP,363,LeakyReLU 1

Identity 1

BatchNorm1d,LeakyReLY

MLP,363,LeakyReLU

BatchNorm1d,Linear 1

MLP,472,LeakyReLU

MLP,10,Softmax

Figure (a): Evolutionary algorithm.

CIFAR-10 (3, 32, 32)

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyRelu

Conv2d,44,3,LeakyReLU

Flatten

MLP,396,Linear

BatchNorm1d,LeakyReLU

BatchNorm1d,ReLU

MLP,484,Linear

MLP,10,Softmax

Figure (b): Mutant-UCB.

Figure 7: Best configurations found by the evolutionary algo-
rithm and Mutant-UCB on the CIFAR-10 data set.

surprisingly, the best model for Hyperband and Random Search,

shown in Figure 3, is identical for all three data sets.

Image

Conv2d,44,4,ReLU

AvgPool2d,10,LeakyReLU

Conv2d,44,3,LeakyReLU

Flatten

Identity,Relu

BatchNorm1d

BatchNorm1d,ReLU

MLP,104,ReLU

MLP,10,Softmax

Figure 3: Best model found for CIFAR-10, MRBI and SVHN
by Random Search and Hyperband

Thanks to their evolutionary tools, the evolutionary algorithm

and Mutant-UCB where able to create more performing configura-

tions. Figure 7 shows the models found by both algorithms on the

CIFAR-10 data set. The one found by Mutant-UCB, in Figure (b),

is really close to the original one from the pool displayed Figure 3.

The mutation operator was used to add more MLP layers at the end

of the neural network which helps improving the model accuracy.

On the other hand, the structure shown Figure (a), found by the

evolutionary algorithm is very different. In this algorithm, a new

configuration is created by crossing two parents with the crossover

and then applying a mutation to one of the offspring. This double

transformation allows to move much further away from the initial

pool of solutions. In the case of the CIFAR-10 data set, this led

the algorithm to consider very complex structures, which was not

necessary to obtain good performance.


	Abstract
	1 Introduction
	2 Model selection problem setup: a bandit approach
	2.1 Literature Discussion
	2.2 Contributions
	2.3 Set-up

	3 A UCB-based algorithm incorporating mutation operators from evolutionary algorithms
	3.1 A brief reminder of the UCB-E algorithm
	3.2 Main contribution: the Mutant-UCB algorithm

	4 Experiments
	4.1 Experiment design
	4.2 Results

	5 Discussion
	References
	A Models found by the algorithms

