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Introduction

Biological invasion is often regarded as invasion of single species. Yet, organisms live in symbiosis with a rich and diverse collection of microbes that is an essential component of their host's fitness and reproductive success [START_REF] Fitzpatrick | The plant microbiome: from ecology to reductionism and beyond[END_REF][START_REF] Compant | A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application[END_REF][START_REF] Koskella | The microbiome beyond the horizon of ecological and evolutionary theory[END_REF]. Host-associated microbial communities may encompass mutualistic, commensal, and parasitic (or pathogenic) symbionts that may benefit or harm the host to different extents. While the presence of parasitic symbionts may lead to reduced host growth, mutualistic symbionts may increase host fitness and health by carrying out important metabolic and protective functions, such as increasing resource provisioning, or by protecting a host against infection [START_REF] Smith | Mycorrhizal symbiosis[END_REF][START_REF] Peixoto | Advances in microbiome research for animal health[END_REF]. Thus, microbial communities can affect a species' competitive ability, host-to-host interactions, and ultimately, invasion success [START_REF] Van Der Heijden | Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland[END_REF][START_REF] Lin | Arbuscular mycorrhizal fungal effects on plant competition and community structure[END_REF][START_REF] Tedersoo | How mycorrhizal associations drive plant population and community biology[END_REF].

In particular, microbial transmission from native to invasive ('symbiont spillback') or from invasive to native hosts ('symbiont spillover') can lead to the establishment or disruption of host-symbiont associations and alter invasive trajectories in several ways [START_REF] Bever | Rooting theories of plant community ecology in microbial interactions[END_REF][START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF]Martignoni and Kolodny, 2023). For example, the formation of novel associations between invasive plants and pre-existing native mycorrhizal networks can Jordano, 2013), whose dynamics may differ from what is observed in host-associated microbial communities. Additionally, theoretical outputs are largely based on Lotka-Volterra equations that may lead to inaccurate predictions due to their unrealistic biological assumptions, such as linear positive effects of mutualistic interactions and unlimited growth [START_REF] Holland | Population ecology of mutualism[END_REF]. Thus, the development of mathematical models that integrate biologically relevant mechanisms, such as density-dependent (instead of linear) positive effects of mutualism, while maintaining the necessary simplicity to allow analytical tractability, is key to providing a predictive understanding of the dynamics of host-microbial communities and their invasibility.

We develop a mathematical framework to explore the possible invasion dynamics occurring when native and invasive hosts may share their beneficial (i.e., mutualistic) and harmful (i.e., parasitic or pathogenic) microbes. Our model accounts for key features of host-symbiont interactions including, critically, host-symbiont interdependent fitness and horizontal microbial transmission between hosts. Our analysis allows us to disentangle different factors influencing the community dynamics, such as each species' competitive ability and the resource exchange capacity between hosts and symbionts, with our main goal being to understand how changes in growth rates driven by novel microbial associations affect invasion success.

Despite their opposite effects on host fitness, invasion dynamics driven by beneficial microbes or harmful microbes may present similar interaction motifs [START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF]. For instance, the formation of mutualistic associations between invasive hosts and native mycorrhizal fungi (i.e., an association that would benefit invasive hosts) and the transmission of invasive pathogens to native hosts (i.e., an association that may weaken native hosts) may lead to similar outputs, namely providing a competitive advantage to invasive hosts and increasing their invasion success. Our model characterization allows us to identify and organize these unifying patterns of microbially mediated invasion through the exploration, within a single framework, of dynamics occurring when microbial influence on host growth may range from beneficial to harmful, depending on the balance between the benefits and costs of the association.

We will describe multiple microbially driven dynamics that may result in no invasion, in co-invasion (defined here as the simultaneous invasion of an introduced host population and its microbial community), or in either host or microbial invasions. We portray the model in terms that correspond best to symbioses for which microbes are primarily external to their hosts (e.g., plant-microbial symbioses), because these have been studied and described [START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF][START_REF] Bever | Rooting theories of plant community ecology in microbial interactions[END_REF]. However, the same principles hold for systems in which the microbes are internal or partially internal to their hosts (e.g., gut or coral microbiomes, [START_REF] Pettay | Microbial invasion of the caribbean by an indo-pacific coral zooxanthella[END_REF]; [START_REF] Chiarello | Environment and co-occurring native mussel species, but not host genetics, impact the microbiome of a freshwater invasive species (corbicula fluminea)[END_REF]; [START_REF] Goedknegt | Spillover but no spillback of two invasive parasitic copepods from invasive pacific oysters (crassostrea gigas) to native bivalve hosts[END_REF]).

2 Model and Methods

Mathematical framework

To investigate the dynamics of host-microbial communities we develop a consumer-resource model for mutualism [START_REF] Holland | A consumer-resource approach to the density-dependent population dynamics of mutualism[END_REF], similar to that presented by Martignoni et al. (2020b). We consider a native host population with biomass p n and its associated native microbial community with biomass m n . Hosts and microbes interact by exchanging resources necessary for each other's growth. For example, in the case of the mycorrhizal symbiosis, the host plant may provide synthesized carbon in the form of sugars (e.g., glucose and sucrose) to its associated mycorrhizal fungi, and receive necessary nutrients such as phosphorus, nitrogen, or water in return [START_REF] Smith | Mycorrhizal symbiosis[END_REF]. The transfer of resources from hosts to microbes increases microbial biomass and decreases host biomass. The transfer of resources from mi-crobes to hosts increases host biomass and decreases microbial biomass. We consider hosts to be facultative mutualists, and capable of some growth in the absence of microbes (with intrinsic growth rate quantified by the parameter r p ), while microbes are obligate mutualists and can not grow in the absence of a host. We then extend this model to include interactions between an invasive host population (with biomass p i ) and its microbial community (with biomass m i ). We consider that native microbes may exchange resources with native hosts, and invasive microbes may exchange resources with native hosts. Competition between native and invasive hosts (c p parameters) and between native and invasive symbionts (c m parameters), may reduce their abundance, e.g., due to competition for host colonization between microbes [START_REF] Engelmoer | Intense competition between arbuscular mycorrhizal mutualists in an in vitro root microbiome negatively affects total fungal abundance[END_REF][START_REF] Smith | Competition-colonization tradeoffs structure fungal diversity[END_REF], or due to host competition for light or other external resources [START_REF] Craine | Mechanisms of plant competition for nutrients, water and light[END_REF].

We obtain the following equations:

dp n dt = r pn p n + q hp n α nn f nn m + α in f in m supply from mn and mi -q cp n β nn f nn p + β ni f ni p supply to mn and mi

-c pin p n p i competition -µ pn p 2 n , (1a) 
dm n dt = q cmn β nn f nn p + β in f in p supply from pn and pi -q hmn α nn f nn m + α ni f ni m supply to pn and pi

-c min m n m i competition -µ mn m 2 n , (1b) 
dp i dt = r pi p i + q hp i α ii f ii m + α ni f ni m
supply from mi and mn -q cp i β ii f ii p + β in f in p supply to mi and mn

-c pni p n p i competition -µ pi p 2 i , (1c) 
dm i dt = q cmi β ii f ii p + β ni f ni p
supply from pi and pn -q hmi α ii f ii m + α in f in m supply to mi and mn

-c mni m n m i competition -µ mi m 2 i . (1d) 
All of the parameters and the functions f are discussed in detail below. A schematic representation of this model is provided in Fig. 2.

The transfer of resources from microbes to hosts and from hosts to microbes is quantified by the α jk and β jk parameters respectively, with subindex j representing the supplying species (n for native, or i for invasive), and subindex k representing the receiving species.

These parameters may represent particular traits in the receiving and supplying species, that quantify the resource exchange capacity of each one. For instance, microbes that provide lots of phosphorus to host plants and take lots of carbon from host plants are represented by large α j and β j parameters. Additionally, native and invasive species can differ in their intrinsic growth rate (parameters r p j , j = n, i), in their efficiency at converting the resource received or supplied into biomass (parameters q hp j , q cp j , q cm j , q hm j , with j = n, i), and in the rate at which resources need to be diverted into maintenance of the existing biomass (parameters µ p j and µ m j , with j = n, i).

To explore the effect of microbial sharing on invasion success, we consider that parameters α in , α ni , β in and β ni can be zero or positive, depending on whether or not resource exchange between invasive microbes/hosts and native hosts/microbes is occurring. If invasive hosts exchange nutrients with native microbes, parameters α ni (quantifying the resource supply from native microbes to invasive hosts) and β in (quantifying the resource supply from invasive hosts to native microbes) will assume positive values. The relationship between how much a host receives from its associated microbes (which depends on α parameters) and how much a host gives to its associated microbes (which depends on β parameters) per unit time determines whether a host-microbial relationship is beneficial or harmful for the host. Generally, the relationship is beneficial for α ≃ β, and harmful for α ≪ β. A thorough explanation of the quantitative criteria used to understand whether the exchange is beneficial or harmful is provided below in the 'Harmful and beneficial microbes' section. In addition to resource exchange parameters, resource supply also depends on host and microbial densities, as determined by the functions f m and f p . Functions f jk m are the densitydependent rates at which the microbial community m j supplies resources to the host population p k (or the rates at which a host population p k receives resources from m j ), with indexes j = n, i and k = n, i referring to native (n) or invasive (i) populations. Functions f jk p refer to the density-dependent rates at which the host population p j supplies resources to the microbial community m k (or the rates at which the microbial community m k receives resources from the host population p j ). We define:

f jk m = m j p k dm j + dm k + p k + p j & f jk p = p j m k p j /d + p k /d + m k + m j . (2) 
The function f p in Eq. ( 2) tells us that when the total host biomass is much larger than the total microbial biomass, the amount of resource that hosts can supply is limited by microbial biomass (i.e., by what microbes can take), adjusted by the factor 1/d. Each host species will supply to its microbes an amount of resource proportional to the microbial biomass, and to the relative abundance of the host species in the whole host population. When the total host biomass is much smaller than the total microbial biomass (adjusted by the factor 1/d) the amount of resource that hosts can supply to their microbes is limited by host biomass (e.g., by what the host can give). Each microbe will supply to its host an amount of resource proportional to the host biomass, and to the proportion of biomass of the microbial species in the whole microbial community. Indeed, note that

f jk p ≃        p j m k m k + m j if m k + m j ≫ (p j + p k ) 1 d , m k d p j p j + p k if m k + m j ≪ (p j + p k ) 1 d .
(3)

Analogously, the function f m tells us that the amount of resource that microbes supply to hosts is limited by microbial biomass, when the total host biomass is large compared to the total microbial biomass, and by microbial biomass, when the total host biomass is smaller than the total microbial biomass (adjusted by the factor d). Indeed, note that:

f jk m ≃      m j p k p k + p j if p k + p j ≫ (m j + m k )d, p k d m j m j + m k if p k + p j ≪ (m j + m k )d .
(4)

Harmful and beneficial microbes

In our model, microbial contribution to host growth varies along a continuum ranging from 'harmful' to 'beneficial', depending on whether the additional presence of a given microbe increases or decreases host biomass at equilibrium (see Fig. 2). A native symbiont m n is considered beneficial for an invasive host population if the host biomass at equilibrium p * i satisfies

p * i (m i (α ii ), m n (α ni )) > p * i (m i (α ii ), 0) , (5) 
and is considered harmful otherwise. An equivalent equation can be written to determine whether association with invasive microbes m i is beneficial or harmful to native hosts p n , depending on the value of α in .

The threshold distinguishing between beneficial and harmful microbes is determined by the value of α ni = α * ni for which equality in Eq. ( 5) is obtained. The value of α * ni depends on whether native symbionts are more or less beneficial than invasive symbionts (i.e., it depends on the value of α ii , which is 0.4 in Fig. 2), and more generally, it depends on host biomass at equilibrium before and after the introduction of the new symbiont (as determined by all model parameters, see SI, section B).

If we fix the rate at which resources are transferred from hosts to symbionts (i.e., parameter β ni or β in ), and consider only variations in the rate at which symbionts transfer resources to their hosts (i.e., variations in parameters α in or α ni , see Fig. 2), the value of α * ni satisfies the estimate

q cp q hp β in d < α * ni < α ii (6) 
(see SI C.3 and Fig. C.2 for the mathematical derivation of Eq. ( 6) and Eq. ( 21) for an accurate approximation of α * ni ). In our analysis, we will consider the continuum of harmful to beneficial interactions ranging from α ni , α in = 0 to α ni = α nn and α in = α ii respectively (see SI, section C.3). Specific scenarios considered are provided in Table 1.

Finally, note that variations in the amount of resource supplied by hosts to microbes (implemented in the model through variations in parameters β in and β ni ) could also be used to determine whether host associations are harmful or beneficial to microbes. Thus, we recognize that by considering only how microbes are harmful or beneficial to host, our analysis is fundamentally host-centric. This is done, however, in order to simplify the presentation of our results. pi*(0,mi(αii)), αii=0.4

p i * ( m n ( α n i ) , m i ( α ii ) )
mn is beneficial to pi if : pi*(0,mi(αii)) < pi*(mn(αni),mi(αii)) and harmful if : pi*(0,mi(αii)) > pi*(mn(αni),mi(αii)) mn is beneficial to pi mn is harmful to pi Effect of native microbes mn on invasive host population pi Fig. 2: The direct effect of a native microbial community m n on an invasive host population may range from harmful (in red) to beneficial (in blue). We can explore this range by varying parameter α ni , which quantifies the benefit provided by native microbes to invasive hosts, while all other parameters are kept constant (top right figure). The value of α * ni determines the threshold at which the microbial contribution switches from beneficial to harmful (or vice-versa), and is determined by the biomass of invasive hosts at equilibrium p * i in the absence of native microbes (bottom right figure). Equivalent results can be obtained when varying parameter α in and considering the direct effect of invasive microbes m i on native hosts p n .

Model analysis

Interaction Scenario

Parameter values (-, +)

α in = 0, β ni = β ; α ni = α, β in = β (0, +) α in = 0, β ni = 0 ; α ni = α, β in = β (+, +) α in = α, β ni = β ; α ni = α, β in = β (-, 0) α in = 0, β ni = β ; α ni = 0, β in = 0 (0, 0) α in = 0, β ni = 0 ; α ni = 0, β in = 0 (+, 0) α in = α, β ni = β ; α ni = 0, β in = 0 (-, -) α in = 0, β ni = β ; α ni = 0, β in = β (0, -) α in = 0, β ni = 0 ; α ni = 0, β in = β (+, -) α in = α, β ni = β ; α ni = 0, β in = β
Table 1: Parameter values of resource exchange rates between native microbes and invasive hosts (α ni and β in ) and between native hosts and invasive microbes (α in and β ni ), for the given interaction scenarios of Fig. 3 (described in more detail in Fig. A.1). The first entry in each ordered pair indicates the effect of invasive microbes on a native hosts (which can be harmful '-', neutral '0', or beneficial '+'). The second entry indicates the effect of native microbes on invasive hosts.

To highlight possible outcomes of the model (Eq. ( 1)), we will consider different scenarios, each one labeled with a coordinate pair, where the first entry in each ordered pair indicates the effect of invasive microbes on an native host population (which can be harmful '-', neutral '0', or beneficial '+') and the second entry indicates the effect of native microbes on an invasive host population. The two entries categorise the coloured arrows in Fig. 1: The sign (negative, zero, or positive) corresponds to the colour (red to blue) of the diagonal arrow. provides an illustrative overview of these scenarios.

There are, of course, many factors that can affect invasion success [START_REF] Theoharides | Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion[END_REF][START_REF] Heger | Predicting biological invasions[END_REF], and our framework can be readily used to explore the relative importance of these factors through numerical simulations. In order to keep the focus on microbially mediated invasion, however, the analysis we present here will consider the acquisition of beneficial or harmful microbes as the primary factor influencing the community dynamics. We will therefore discuss cases in which native and invasive species are characterised by exactly the same parameters, except for variation in the value of the microbial sharing parameters α ni , α in β in and β ni (diagonal arrows in Fig. 1). We focus on situations in which competition between hosts and competition between symbionts is strong. In these cases, neither native and invasive hosts nor native and invasive symbionts can stably coexist, and thus these scenarios are those most likely to be of concern for biological conservation. The default values for the resource exchange parameters used in the different interaction scenarios we consider are provided in Table 1. The default values of all other parameters are provided in Table A.1. In SI I.2, we discuss how the strength of competition between hosts and symbionts can affect observed outcomes.

When the effect of invasive microbes on native hosts is the same as the effect of native microbes on invasive hosts (e.g., when the cross-species influence of invasive/native microbes on native/invasive hosts is the same, as in scenarios (-, -) and (+, +), or when the native and invasive hosts do not share microbes at all, as in scenario (0, 0)) microbial exchange does not provide a competitive advantage to either native or invasive species. In these cases, differences in other traits or drift (not considered in this model) will eventually cause one host-microbe combination to take over the other. Trait differences between native and invasive species may include: differences in the competitive effect of one species on another (c m jw and c p jw parameters), differences in the rate of host-microbial resource exchange (α jw and β jw parameters), differences in the efficiency by which nutrients supplied or received are converted into biomass (q hp j , q cp j , q cm j , and q hm j parameters), differences in the intrinsic growth rate of the hosts (r p j parameter), differences in maintenance costs (µ p j and µ m j parameters), which can be related, for example, to the ability of a species to tolerate stress, or differences in initial biomass. We call these differences 'secondary effects', as we consider that their effect on the community dynamics is secondary to microbial acquisition. This is done, as explained before, in order to focus on the direct effects of the microbial exchange.

Results

Overview of interaction scenarios

In the absence of competition, host and microbial biomass increase asymptotically over time until a certain equilibrium value is reached. When considering a single host-symbiont pair, the value of this equilibrium is derived in SI B, Eq. ( 12). A graphical representation of host and microbial biomass at equilibrium in a single host-symbiont pair is provided in the phase-plane of Fig. This type of competitive advantage plays out in the scenarios of Fig. 3. For example, in scenario (0, +) (top row, middle column), the association of invasive hosts with native microbes provides a competitive advantage to invasive hosts, as well as to native microbes.

The competitive exclusion dynamics that occur will vary depending on which of the following events occurs first: native symbionts outcompeting invasive symbionts, or invasive hosts outcompeting native hosts (see Fig. 4a). Similarly, in scenario (+, 0), the association of native hosts with invasive microbes provides a competitive advantage to invasive microbes and native hosts (Fig. 4b).

In scenarios (-, 0) and (-, +) of Fig. 3, we consider that the acquisition of invasive microbes that are harmful to native hosts provides a competitive advantage to invasive hosts.

In contrast, in scenarios (0, -) and (+, -), native microbes are harmful to invasive hosts, and thus provide resilience against invasion.

In scenarios (-, -), (0, 0) and (+, +) neither the hosts nor the microbes have a competitive advantage over the other species due to microbial sharing, as both hosts have microbial partners that provide the same benefit or cost. The coexistence equilibrium is unstable, as we consider the case in which competition between hosts and microbes is strong, and which species will be excluded will be determined by secondary effects, as explained at the end of the 'Model analysis' section.

Note that the outcomes presented in Fig. 3 are only those that occur at the extreme ends of a continuum of beneficial to harmful interactions (for which α parameters are equal to zero, when microbes are harmful, or assume a fixed positive value, when microbes are beneficial, see Table 1 and section 'Harmful and beneficial microbes'). Exploration of specific scenarios along this continuum, as well as specific scenarios corresponding to different parameter combinations, can be conducted through numerical simulations of Eq. (1). A user-friendly version of the code is made publicly available on the modelRxiv platform [START_REF] Harris | modelrxiv: A platform for the distribution, computation and interactive display of models[END_REF] (https://modelrxiv.org/model/YfndNX), and can be used for this purpose. In SI I we also provide more details on the outcomes of each scenario depending on parameter values, especially on different outcomes observed when varying the competitive effect of one species on another (i.e., the magnitude of the c parameters), or the degree of mutualism of the host (from obligate to facultative). Interesting emerging scenarios will be discussed in the next section. 

Legend

Fig. 3: Possible microbially mediated invasion dynamics occurring when native and invasive species share their beneficial or harmful microbes. The horizontal axis represents the effect of invasive microbes on native hosts (which can be harmful '-', neutral '0', or beneficial '+'), while the vertical axis represents the effect of native microbes on invasive hosts. The cell content represents the expected steady state in each scenario, where persistence of natives is represented by green icons (plants or microbes), while persistence of invaders is represented by yellow icons. Each cell is labeled with a coordinate pair, where the first entry in each ordered pair indicates the effect of invasive microbes on a native host population and the second entry indicates the effect of native microbes on an invasive host population. The resource exchange parameters corresponding to each scenario are provided in Table 1.

The red numbered circles indicate eight possible microbially mediated pathways of invasion, which will be discussed in detail in the results section. Interactive reproduction and re-parametrization of these scenarios can be done through the modelRxiv platform (https://modelrxiv.org/model/YfndNX).

Dynamics of microbially mediated invasion

Here we discuss eight possible microbially mediated invasion dynamics emerging from our analysis, and numbered according to the invasion pathways shown in Fig. 3. This analysis is not exhaustive, but rather is intended to highlight several possible dynamics that can lead to invasion of hosts, microbes, or both, and in particular illustrate that several routes can lead to each outcome despite differences in underlying mechanisms.

1 Co-invasion via no microbial sharing: When no microbial sharing occurs, competitive exclusion of one host-symbiont community, either the native or the invasive one, occurs through selection due to trait differences or differences in initial abundance, or through drift (not considered here). When selection due to trait differences occur, the host-microbial associations that provides the highest fitness to either hosts or symbionts outcompete the other.

Highest fitness can be provided through 'secondary effects', such as differences in the competitive effect of one species on another, or differences in stress tolerance, as explained at the end of the 'Model analysis' section. The quality of resource exchange between hosts and symbionts can also be directly related to their competitive ability, as it determines their interdependent growth rates.

Differences in initial abundance can also favor one host-symbiont community with respect to the other. In classical theory, initial abundances do not affect the competitive dynamics of two species, and if two competing species have the same competitive ability, each of the species will fill in a proportion of the carrying capacity proportional to their initial abundance [START_REF] Gilad | Competition and competition models[END_REF]. However, in host-symbiont communities, feedback loops induced by nutrient exchanges affect such dynamics (see SI I.2.1 and SI I.1.4 for details). Differences in the initial abundance of symbionts (or hosts) affect host (or symbiont) growth rate and, in turn, symbiont (or host)

growth rate, providing a competitive advantage to the community with the largest abundance of hosts or symbionts.

2 Co-invasion via spillback of beneficial microbes: Association with beneficial native microbes may provide a competitive advantage to invasive hosts that leads to competitive exclusion of native hosts (Fig. 4a, right pathways, and SI I.2.4 for details). Subsequently, invasive symbionts may outcompete native symbionts, e.g., if native symbionts are weakened by the absence of native hosts or if invasive symbionts are empowered by an increase in invasive hosts (Fig. 4a, far right pathway, leading to association between p i and m i ). Alternatively, invasive symbionts may be outcompeted by native symbionts (Fig. 4a, centre right pathway, leading to association between p i and m n ).

In the absence of microbial sharing, less mutualistic host-microbial associations have lower fitness with respect to more mutualistic host-microbial associations, and are thus not likely to invade (as discussed in 1 ). When microbial sharing can occur, however, co-invasion can be driven by the exploitation of existing host-microbial associations. For example, if invasive symbionts are less beneficial toward native hosts than native symbionts (i.e., α α in < α nn , see also point 6 ), or if hosts are less beneficial toward native symbionts than native hosts (e.g., β in < β nn ), invasive hosts indirectly exploit native hosts, by receiving resources from native symbionts at low cost.

This particular dynamic is highlighted in Fig. 5a: Introduced invasive hosts may grow rapidly by benefiting from the presence of a large native microbial community and, indirectly, from their native hosts. Consequently, native hosts and symbionts suffer from the presence of invasive hosts and experience a reduction in biomass. Eventually, the increase in the biomass of invasive hosts also increases the biomass of invasive symbionts, which grow larger than native symbionts and outcompete them. Subsequently, in the absence of native hosts and symbionts, the biomass of invasive hosts decreases (as they can no longer acquire resources at little cost), and co-invasion leads to a community that has lower biomass.

3 Co-invasion via spillover of beneficial microbes: In this scenario, mutualistic association of invasive microbes with native hosts provides a competitive advantage to invasive microbes, that then outcompete native microbes (Fig. 4b, right pathways, and SI I.2.4 for details). The disruption of the association between native hosts and their symbionts may weaken native hosts, and lead to invasive host establishment. Thus, in this case, co-invasion may be observed due to symbiont spillover (Fig. 4b far right pathway, leading to association between p i and m i ). Alternatively, microbial invasion may be observed if invasive hosts are outcompeted by native hosts, but invasive symbionts persist in association with native hosts (Fig. 4b centre right pathway, leading to association between p n and m i ).

4 Host invasion via spillback of beneficial microbes: Here, mutualistic association with invasive hosts provides a competitive advantage to native symbionts, that then outcompete invasive symbionts (Fig. 4a, left pathway, and SI I.2.4 for details). Exclusion of invasive symbionts may provide a competitive advantage to invasive hosts, and lead to the exclusion of native hosts, particularly if invasive symbionts are low quality mutualists, or even parasitic to their host (see Fig. B.3 for details on parasitic terminology). In this case, we observe the formation of novel associations between invasive hosts and native symbionts (Fig. 4a centre left pathway, leading to association between p i and m n ). No invasion occurs if invasive hosts suffer from the disruption of invasive host-symbiont associations which causes them to be outcompeted by native hosts (Fig. 4a far left pathway, leading to association between p n and m n ).

5 Microbial invasion via spillover of beneficial microbes: In this case, association with invasive symbionts provides an advantage to native hosts, that then outcompete invasive hosts (Fig. 4b, left pathway and SI I.2.4 for details). If invasive symbionts are strong competitors, they may subsequently exclude native symbionts, which would lead to the formation of novel associations between invasive symbionts and native hosts, and to microbial invasion (Fig. 4b centre left pathway, leading to association between p n and m i ). Note that this scenario of symbiont replacement may be more likely to occur, as it can be observed through two different pathways, namely, the centre left and right pathways in Fig. 5b. If invasive microbes are less mutualistic than natives, the substitution of native symbionts with invasive symbionts may lead to a loss in the biomass of native hosts (Fig. 5b). In this situation, invasive microbes continue to be present in the environment and negatively affect ecosystem functionality long after the disappearance of their invasive hosts. No invasion occurs if invasive symbionts suffer from the absence of invasive hosts and are outcompeted by native symbionts (Fig. 4b far left pathway, leading to associations between p n and m n ).

6 Co-invasion via spillover of harmful microbes: Co-invasion may be facilitated if invasive symbionts are harmful to native species, which would weaken native hosts and cause their competitive exclusion and the consequent exclusion of their symbionts (see SI I.2.3 for further insights). This situation can occur, e.g., if pathogens causing disease in native hosts are co-introduced with invasive hosts. A similar effect can also be observed if invasive symbionts are less mutualistic than native symbionts, and exploit native hosts at the indirect expense of native symbionts. Such a mechanism would weaken native host-symbiont communities and lead to their competitive exclusion. The newly established invasive host-symbiont community will subsequently experience a loss of biomass due to the disappearance of the native hosts and symbionts that were being exploited, similar to what was observed in Fig. 5a.

7 Host invasion via spillover of harmful microbes and spillback of beneficial microbes: Microbial sharing may lead to the combined effect of increasing the fitness of invasive hosts (through the formation of novel associations with native symbionts) and decreasing the fitness of native hosts (through the acquisition of invasive parasites or pathogens), making the dynamics of host invasion described in 2 more likely to occur (see SI I.2.2 for further insights). Note that this scenario may also represent the situation in which both native and invasive hosts can share microbes, but if some microbes are more mutualistic than others the resulting system can transition from the scenario described in (+, +), to either (-, +) or (+, -).

8 Microbial invasion via spillback of harmful microbes and spillover of beneficial microbes: The dynamics of microbial invasion described in 5 is more likely to occur if native parasites are transmitted to invasive hosts, facilitating their competitive exclusion by native hosts. Also in this case, invasive symbionts may persist in the environment by forming novel associations with native hosts (see SI I.2.2 for further insights).

Discussion

Microbial sharing between native and invasive species can facilitate invasion of introduced hosts or provide resilience to native communities. We present a framework that allows us to explore these outcomes systematically, and organize them along a continuum of harmful to beneficial host-microbial interactions.

Microbially mediated increase in invasion risk

A growing number of empirical studies, particularly on plant-fungal associations, have shown microbially mediated invasion can occur when invasive hosts form novel mutualistic associations with native symbionts, eventually increasing a host competitive ability [START_REF] Callaway | Soil biota and exotic plant invasion[END_REF][START_REF] Tedersoo | Ectomycorrhizal fungi of the seychelles: diversity patterns and host shifts from the native vateriopsis seychellarum (dipterocarpaceae) and intsia bijuga (caesalpiniaceae) to the introduced eucalyptus robusta (myrtaceae), but not pinus caribea (pinaceae)[END_REF][START_REF] Moeller | Mycorrhizal co-invasion and novel interactions depend on neighborhood context[END_REF][START_REF] Shipunov | Hidden diversity of endophytic fungi in an invasive plant[END_REF]. Strong evidence also shows that pathogens co-introduced with invasive hosts may weaken native host populations, which favours their competitive exclusion by invading hosts in a dynamic often referred to as 'disease-mediated invasion' [START_REF] Anderson | Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers[END_REF][START_REF] Parker | The evolutionary ecology of novel plant-pathogen interactions[END_REF][START_REF] Desprez-Loustau | The fungal dimension of biological invasions[END_REF][START_REF] Santini | Biogeographical patterns and determinants of invasion by forest pathogens in europe[END_REF][START_REF] Carnegie | Impact of the invasive rust puccinia psidii (myrtle rust) on native myrtaceae in natural ecosystems in australia[END_REF]. We highlight the possibility that some of these mechanisms may occur not only when shared symbionts are either pathogens or mutualists, but also when the mutualistic quality of introduced symbionts differs from that of native symbionts. For instance, introduced symbionts that are slightly less mutualistic than those found in native communities might be perceived by native hosts as parasitic, as their association with native hosts may lead to a decrease in biomass [START_REF] Bever | Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit[END_REF]. A similar dynamics is observed if native acquire introduced pathogens, although the decrease in biomass in this case should be to a lesser extent. Similarly, the acquisition of native symbionts that are slightly more mutualistic than the original invasive community can lead to an increase in the biomass of invasive hosts. These changes in population growth and abundance may not be sufficient to directly drive a community to extinction (as for the acquisition of pathogenic microbes), but they may be enough to provide a competitive advantage to a population with respect to another and change the invasion dynamics [START_REF] Levine | A meta-analysis of biotic resistance to exotic plant invasions[END_REF].

In addition to highlighting the possible dynamics along the mutualism-parasitism continuum, we would like to emphasize the importance of considering invasion dynamics arising at the whole community level, rather than thinking in terms of host-symbiont pairs. Previous theoretical work has often considered host-symbiont pairs (i.e., 'holobionts') as units of selection [START_REF] Roughgarden | Holobionts as units of selection and a model of their population dynamics and evolution[END_REF][START_REF] Gilbert | The holobiont with its hologenome is a level of selection in evolution[END_REF][START_REF] Zilber-Rosenberg | Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution[END_REF], which may lead to the misconception that only the host-symbiont pair that provides the highest fitness to their host may co-invade and displace native communities, as observed in some instances [START_REF] Dickie | Co-invasion by pinus and its mycorrhizal fungi[END_REF][START_REF] Nunez | Invasive belowground mutualists of woody plants[END_REF][START_REF] Hayward | Ectomycorrhizal fungal communities coinvading with p inaceae host plants in a rgentina: G ringos bajo el bosque[END_REF]. However, when accounting for the possibility that symbiont disruption and exchange among native and invasive hosts may occur [START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF][START_REF] Catford | Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework[END_REF][START_REF] Mitchell | Biotic interactions and plant invasions[END_REF], co-invasion of a less fit host-symbiont pair may be observed. We emphasize that when thinking of microbially mediated invasion it is important to move beyond the holobiont concept [START_REF] Douglas | Holes in the hologenome: why host-microbe symbioses are not holobionts[END_REF][START_REF] Skillings | Holobionts and the ecology of organisms: Multi-species communities or integrated individuals?[END_REF][START_REF] Morar | The conceptual ecology of the human microbiome[END_REF], and reason in terms of 'holocommunity', or host-symbiont communities. Accounting for higher-order interactions between and among multiple hosts and symbionts is key to evaluating the whole range of possible outcomes following the introduction of a new species [START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF][START_REF] Fahey | Soil microbes alter competition between native and invasive plants[END_REF].

In some instances, microbially mediated invasion may lead to changes in total community biomass with, in some circumstances, long-term repercussions on ecosystem functionality [START_REF] Nunez | Invasive belowground mutualists of woody plants[END_REF][START_REF] Lovett | Forest ecosystem responses to exotic pests and pathogens in eastern north america[END_REF][START_REF] Dickie | Ecosystem service and biodiversity trade-offs in two woody successions[END_REF][START_REF] Mitchell | Release of invasive plants from fungal and viral pathogens[END_REF][START_REF] Cobb | Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen[END_REF][START_REF] Preston | Disease ecology meets ecosystem science[END_REF][START_REF] Ehrenfeld | Ecosystem consequences of biological invasions. Annual review of ecology[END_REF]. Although this reduction in community biomass is well-known for pathogen spread [START_REF] Lovett | Forest ecosystem responses to exotic pests and pathogens in eastern north america[END_REF][START_REF] Mitchell | Release of invasive plants from fungal and viral pathogens[END_REF][START_REF] Cobb | Litter chemistry, community shift, and non-additive effects drive litter decomposition changes following invasion by a generalist pathogen[END_REF][START_REF] Preston | Disease ecology meets ecosystem science[END_REF], here we present alternative mechanisms that can lead to an invasion-driven biomass decrease through higher-order interactions [START_REF] Billick | Higher order interactions in ecological communities: what are they and how can they be detected[END_REF][START_REF] Mayfield | Higher-order interactions capture unexplained complexity in diverse communities[END_REF]. For example, if invasive hosts provide a reduced reward as compared to natives [START_REF] Hoffman | The root morphology of some legume spp. in the south-western cape and the relationship of vesicular-arbuscular mycorrhizas with dry mass and phosphorus content of acacia saligna seedlings[END_REF][START_REF] Mummey | The invasive plant species centaurea maculosa alters arbuscular mycorrhizal fungal communities in the field[END_REF][START_REF] Hausmann | Plant neighborhood control of arbuscular mycorrhizal community composition[END_REF][START_REF] Vogelsang | Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion[END_REF], associations between invasive hosts and native symbionts will lead to the direct exploitation of the resources provided by native symbionts. In addition, there will be indirect exploitation of more mutualistic native hosts that invested resources in the growth of a large native microbial community from which it can no longer fully benefit. Thus, in this case, an increase in the abundance of invasive hosts occurs in conjunction with a decrease in the abundance of native symbionts and their hosts (Fig. 5(a)) [START_REF] Vogelsang | Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion[END_REF].

Microbially mediated increase in community resilience

Less studied than the role of microbial associations in invasion dynamics is their role in providing resilience to native host-symbiont communities [START_REF] Van Der Putten | Impacts of soil microbial communities on exotic plant invasions[END_REF][START_REF] Zenni | The elephant in the room: the role of failed invasions in understanding invasion biology[END_REF][START_REF] Levine | A meta-analysis of biotic resistance to exotic plant invasions[END_REF]. Although invasion failure remains poorly understood in practice [START_REF] Diez | Learning from failures: testing broad taxonomic hypotheses about plant naturalization[END_REF][START_REF] Zenni | The elephant in the room: the role of failed invasions in understanding invasion biology[END_REF], given that symbionts may be key to understanding invasion success, they may also underlie the mechanisms providing resistance to invasion. Indeed, mechanisms of symbiont disruption and replacement, as well as differences in community composition and their emerging properties occurring after species introduction, may lead to changes in resource exchange dynamics between hosts and microbes and possibly provide resistance to invasion [START_REF] Levine | A meta-analysis of biotic resistance to exotic plant invasions[END_REF][START_REF] Dinoor | The role and importance of pathogens in natural plant communities[END_REF][START_REF] Beckstead | Invasiveness of ammophila arenaria: release from soil-borne pathogens?[END_REF][START_REF] Knevel | Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien ammophila arenaria in south africa[END_REF].

A clear example is the transmission of native pathogens to invasive plants [START_REF] Hood | Colonisation of woody material in pinus radiata plantations by armillaria novae-zelandiae basidiospores[END_REF][START_REF] Piou | Hosts and distribution of collybia fusipes in france and factors related to the disease's severity[END_REF], which can provide biotic resistance against invaders [START_REF] Mordecai | Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrass-invaded grassland[END_REF][START_REF] Flory | Pathogen accumulation and long-term dynamics of plant invasions[END_REF][START_REF] Prevéy | Increased winter precipitation benefits the native plant pathogen ustilago bullata that infects an invasive grass[END_REF]. Other more complex dynamics of biotic resistance occur when native symbionts, which have co-evolved with native hosts, are highly mutualistic to native hosts but not to invasive hosts [START_REF] Bunn | Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? a meta-analysis[END_REF][START_REF] Moora | Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing[END_REF].

Thus, association with these symbionts can be perceived as slightly parasitic by invasive hosts, and can allow for their competitive exclusion by native hosts.

Finally, less competitive host-symbiont pairs may resist invasion by associating with mutualistic invasive symbionts [START_REF] Mordecai | Despite spillover, a shared pathogen promotes native plant persistence in a cheatgrass-invaded grassland[END_REF][START_REF] Flory | Pathogen accumulation and long-term dynamics of plant invasions[END_REF]. Although reports of mutualistic association between native hosts and invasive symbionts are limited, it is certain that these associations occur and, in some instances, provide natives with biotic resistance to invasives. Indeed, reports of native pathogenic transmission to invasive hosts are numerous [START_REF] Anderson | Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers[END_REF][START_REF] Parker | The evolutionary ecology of novel plant-pathogen interactions[END_REF][START_REF] Desprez-Loustau | The fungal dimension of biological invasions[END_REF][START_REF] Santini | Biogeographical patterns and determinants of invasion by forest pathogens in europe[END_REF][START_REF] Carnegie | Impact of the invasive rust puccinia psidii (myrtle rust) on native myrtaceae in natural ecosystems in australia[END_REF], and so are reports of symbiont spread in native habitats [START_REF] Dickie | Towards management of invasive ectomycorrhizal fungi[END_REF][START_REF] Wolfe | Geographically structured host specificity is caused by the range expansions and host shifts of a symbiotic fungus[END_REF][START_REF] Berch | The death cap mushroom (amanita phalloides) moves to a native tree in victoria, british columbia[END_REF][START_REF] Mallon | Microbial invasions: the process, patterns, and mechanisms[END_REF][START_REF] Hart | Unknown risks to soil biodiversity from commercial fungal inoculants[END_REF].

Thus, it is possible that the scant existing evidence for the establishment of novel mutualistic associations between native hosts and invasive microbes and their role in preventing invasion is due to reporting biases [START_REF] Dickie | The emerging science of linked plant-fungal invasions[END_REF]. We hope that our insights will inspire further empirical studies aimed at evaluating the role of microbial association in contributing to invasion failure.

Framework limitations and possible extensions

In our work, we highlight some of the multiple possible theoretical scenarios of microbially mediated invasion, however it is important to understand that the feasibility of each scenario in practice needs to be assessed on a case-by-case basis. The specificity of host-symbiont interactions and variability in their contribution to host fitness is crucial to understanding which scenarios are more likely to occur in particular settings. In this sense, our framework can be regarded as a helpful tool to explore possible microbially mediated invasion dynamics.

In particular, parametrization based on realistic biological scenarios may provide insights into possible outcomes through numerical simulations (e.g., through the tool we provide on the modelRxiv platform, [START_REF] Harris | modelrxiv: A platform for the distribution, computation and interactive display of models[END_REF]). Future model parametrization may utilize phylogenetic or ecological similarity as predictors of the amount of microbial sharing [START_REF] Vacher | Ecological integration of alien species into a tree-parasitic fungus network[END_REF][START_REF] Bufford | Taxonomic similarity, more than contact opportunity, explains novel plant-pathogen associations between native and alien taxa[END_REF][START_REF] Parker | Phylogenetic structure and host abundance drive disease pressure in communities[END_REF][START_REF] Gilbert | The evolutionary ecology of plant disease: a phylogenetic perspective[END_REF][START_REF] Davison | Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism[END_REF], together with other traits related to the invasiveness and invasibility of native and invasive species [START_REF] Hoeksema | Ectomycorrhizal plant-fungal coinvasions as natural experiments for connecting plant and fungal traits to their ecosystem consequences[END_REF][START_REF] Traveset | Mutualistic interactions and biological invasions[END_REF][START_REF] Litchman | Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems[END_REF], such as their dependence on the symbiosis [START_REF] Vogelsang | Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion[END_REF][START_REF] Klironomos | Variation in plant response to native and exotic arbuscular mycorrhizal fungi[END_REF].

In addition to narrowing the gap between theory and experimental results, the framework presented here also provides a strong basis for new theoretical extensions. For instance, an extended version of Eq. ( 1) that accounts for associations between multiple hosts and symbionts is presented in SI E, and could be used to investigate a situation in which changes in the native community composition are observed after species' introduction [START_REF] Bunn | Do native and invasive plants differ in their interactions with arbuscular mycorrhizal fungi? a meta-analysis[END_REF][START_REF] Moora | Alien plants associate with widespread generalist arbuscular mycorrhizal fungal taxa: evidence from a continental-scale study using massively parallel 454 sequencing[END_REF]. If we consider that a microbial community is composed of multiple microbial strains, and if invasive hosts support only certain microbial strains with respect to others [START_REF] Callaway | Compensatory growth and competitive ability of an invasive weed are enhanced by soil fungi and native neighbours[END_REF][START_REF] Bever | Negative feedback within a mutualism: host-specific growth of mycorrhizal fungi reduces plant benefit[END_REF][START_REF] Kohout | Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive pinus strobus and native pinus sylvestris in a pot experiment[END_REF], changes in the abundance of different strains may ultimately affect the overall benefit that the community provides to its host [START_REF] Vandegrift | Mixed fitness effects of grass endophytes modulate impact of enemy release and rapid evolution in an invasive grass[END_REF][START_REF] Moeller | Mycorrhizal co-invasion and novel interactions depend on neighborhood context[END_REF]. Although this scenario can already be modelled implicitly within our framework (e.g., by considering the overall effect of novel associations of the new host before and after species introduction), more explicit modeling efforts could account for the presence of multiple microbial communities m j characterized by different rates of resource supply α j . Evolution of host-symbiont interactions may also be taken into account [START_REF] Lankau | An exotic invader drives the evolution of plant traits that determine mycorrhizal fungal diversity in a native competitor[END_REF][START_REF] Dror | Core and dynamic microbial communities of two invasive ascidians: Can host-symbiont dynamics plasticity affect invasion capacity?[END_REF], such as the evolution of host adaptation to pathogens [START_REF] Thrall | Local adaptation in the linum marginale-melampsora lini host-pathogen interaction[END_REF], as well as the possible coupling of trait evolution with abiotic conditions such as nutrients or moisture availability, or anthropogenic disturbance [START_REF] Johnson | Can fertilization of soil select less mutualistic mycorrhizae?[END_REF][START_REF] Endresz | Deficit watering reduces plant growth to a smaller extent with arbuscular mycorrhizal association than without it for non-invasive grass species but not for invasive grass species[END_REF][START_REF] Clavel | The role of arbuscular mycorrhizal fungi in nonnative plant invasion along mountain roads[END_REF].

Further work may also consider dynamics arising when invasive hosts actively disrupt native host-symbiont associations, e.g. through the secretion of various compounds [START_REF] Vogelsang | Mycorrhizal densities decline in association with nonnative plants and contribute to plant invasion[END_REF][START_REF] Meinhardt | Disrupting mycorrhizal mutualisms: a potential mechanism by which exotic tamarisk outcompetes native cottonwoods[END_REF][START_REF] Stinson | Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms[END_REF]. This feature can be incorporated into the model by adding a term to Eq. ( 1) that accounts for reduced symbiont growth in the presence of an introduced host population. Other added features may include spatial effects, such as accounting for asymmetries in the dispersal strategies of hosts and symbionts (Martignoni et al., 2023;[START_REF] Moeller | Mycorrhizal co-invasion and novel interactions depend on neighborhood context[END_REF][START_REF] Nuñez | Lack of belowground mutualisms hinders pinaceae invasions[END_REF]. Finally, interesting microbially mediated dynamics that we did not discuss here, but that may benefit from explicit modelling, are cases in which association of invasive hosts with native pathogens that increase in abundance on invasive hosts leads to increased colonization of native hosts (i.e., the 'parasite-spillback' mechanisms) [START_REF] Flory | Pathogen accumulation and long-term dynamics of plant invasions[END_REF][START_REF] Strauss | Invading with biological weapons: the importance of disease-mediated invasions[END_REF][START_REF] Kelly | Parasite spillback: a neglected concept in invasion ecology[END_REF][START_REF] Mangla | Exotic invasive plant accumulates native soil pathogens which inhibit native plants[END_REF][START_REF] Day | Fungi from a non-native invasive plant increase its growth but have different growth effects on native plants[END_REF].

Concluding remarks

Microbial sharing can lead to scenarios ranging from increased invasion success to increased community resilience, and identification of the biological mechanisms favoring one or the other process is key to predicting invasion risk. We provide a tool to explore these outcomes within a single framework and advance the conceptualization of microbially mediated invasion and its theoretical basis. Our framework can guide the formulation of new hypotheses that remain to be tested empirically, to provide innovative insights into invasive species management and restoration strategies [START_REF] Kowalski | Advancing the science of microbial symbiosis to support invasive species management: a case study on phragmites in the great lakes[END_REF]. 3, for the parameter combinations provided in Table 1 andTable 1. Note that in scenarios (0, 0), (+, +) and (-, -) the curves representing native and invasive host biomass (p n and p i ) and native and invasive microbial biomass (m n and m i ) overlap. In this case, the coexistence steady state is unstable when competition is strong, and differences in model parameters or in initial conditions will lead to competitive exclusion of one of the two hosts and one of the two symbionts. The same steady states are stable only for weak competition, as discussed in SI I.1.4 and I.2.5. Scenarios (0, +) and (+, 0) are produced by assuming weak competition between hosts or symbionts, depending on whether we are looking at the symbiont or host competition scenario. In scenarios (-, +) and (+, -) we assume weak competition between symbionts.

Supplementary information

5a α ii 0.3 5b α ii 0.3 β ii 0.3 β ii 0.3 α ni 0.4 α ni 0 β in 0.3 β in 0 α in 0 α in 0.3 β ni 0 β ni 0.4 c m in 0.

A.3 Scenarios of interest

B Analysis of the one host and one symbiont case

B.1 Steady state existence

Obligate mutualist host (r p = 0): Consider the model of Eq. ( 1), consisting of only one host and its associated microbial community. We consider both host and symbiont to be obligate mutualists, i.e. r p = 0. We obtain:

           dp dt = pm p d + m q hp α d -q cp β -µ p p 2 , dm dt = pm p d + m q cm β -q hm α d -µ m m 2 . ( 7 
)
We are interested in identifying the steady states of the system of Eq. ( 7) and their stability.

For this purpose, we set dp dt and dm dt to zero and solve for p and m. Let us first define

   Q p = q hp α d -q cp β , Q m = q cm β -q hm α d ,
and consider

           dp dt = 0 ↔ p = 0 or m p d + m Q p -µ p p = 0 , dm dt = 0 ↔ m = 0 or p p d + m Q m -µ m m = 0 . (8) 
Thus, a positive steady state state exists only for Q p , Q m > 0, i.e. for

q hp q cp > βd α > q hm q cm . (9) 
Note that if we choose to set q cp = q hm = q cm = 1, and α = β (as chosen for simplicity in our simulations), in order for equation ( 9) to be satisfied, we need q hp > d. Also note that for d > 1 (indicating that the host is larger than the symbiont), Eq. ( 9) implies that Q p > Q m .

For Q p > 0 and Q m > 0 we obtain the following nullclines for p > 0 and m > 0:

       p = 0 & m = µ p p 2 d(Q p -µ p p) := n 1 (p) , m = 0 & m = - p 2d + 1 2 p d 2 + 4pQ m µ m := n 2 (p) . (10) 
Intersection of the nullclines n 1 (p) and n 2 (p) correspond to the steady state (p * , m * ). Note that n 1 (p) presents an asymptote at p

= Q p µ p , meaning that n 1 (p) → ∞ for p → Q p µ p . On the other hand, n 2 (p) → ∞ for p → ∞.
Additionally, we know that the first derivative of n 1 (p) tends to zero at p → 0 (i.e., n ′ 1 (0) → 0), while n ′ 2 (0) > 0. Thus, we conclude that a steady state (p * , m * ) always exists, provided that Q, Q ′ > 0 (Eq. ( 9)). A graphical representation of the nullclines of Eq. ( 10) and their corresponding phase plane is plot in Fig. B.1a.

We can compute explicitly, the steady state (p * , m * ) as follows.

m * = - p * 2d + 1 2 p * d 2 + 4p * Q m µ m m * = p * p * d + m * Q m µ m 1 p * d + m * 2 Q p Q m -µ p µ m = 0 ⇒ p * d + m * = Q p Q m µ m µ p ⇒ p * d + p * d 2 + 4p * Q m µ m = 2 Q p Q m µ m µ p ⇒ p * Q m µ m + 1 d Q p Q m µ m µ p = Q p Q m µ m µ p
We deduce that the steady state satisfies

p * = Q p Q m µ m µ p 1 d + Q m µ p µ m Q p and m * = Q m µ m 1 d + Q m µ p µ m Q p
Facultative mutualist host (r p > 0): We can now look at the case in which the host is a facultative mutualist, i.e., r p > 0. The corresponding differential equation system is:

           dp dt = r p p + pm p d + m q hp α d -q cp β -µ p p 2 , dm dt = pm p d + m q cm β -q hm α d -µ m m 2 . (11) 
In this situation, host-symbiont coexistence may be observed as long as Q p + r p > 0, hence as long as Q p is larger than -r p . Also for this case, we can compute the steady states, which corresponds to the symbiont-free steady state (p 0 , 0), with p 0 = r p /µ p , and the coexistence steady state (p * , m * ), given by

p * = p 0 + Q p Q m µ m µ p S 1 d + Q m µ m and m * = d Q m µ m S 1 d S 1 d + Q m µ m (12) 
where Let us remark that if Q p > 0, that is α large enough α ≥ q cp /q hp β d, the biomass of the host in association with the symbiont is always larger than the biomass of the host alone (p 0 ). Conversely, when Q p < 0, that is 0 < α ≤ q cp /q hp β d, the biomass of the host is reduced compared to its biomass alone. In this case we say that the symbiont is parasitic or pathogenic.

S 1 = p 0 2d + p 0 2d 2 + p 0 Q m µ m + Q m Q p µ m µ p
Moreover, we can show that the biomass of the host is not monotonic with the exchange rate α. It is increasing for α < α * such that ∂ α p * (α * ) = 0 and decreasing for α ≥ α * (see The red square corresponds to the critical value α = q cp /q hp β d (Eq. ( 9)).

B.2 Steady state stability

Obligate mutualist host (r p = 0): To derive the stability of the steady state (p * , m * ), we compute the Jacobian of the system of equation ( 7). We obtain:

J(p * , m * ) = 1 p * d + m *             m * 2 p * d + m * Q p -2µ p p * p * d + m * p * 2 d p * d + m * Q p m * 2 p * d + m * Q m p * 2 d p * d + m * Q m -2µ m m * p * d + m *             .
From Eq. ( 8), we know that at steady state

             m * p * d + m * Q p = µ p p * p * p * d + m * Q m = µ m m * . ( 13 
)
Thus the Jacobian J can be written as

J(p * , m * ) = 1 p * d + m *     -µ p p * m * + 2p * d µ m m * p * d Q p Q m µ p m * p * Q m Q p -µ m m * 2m * + p * d     .
We can see right away that Tr(J) < 0. To prove stability of (p * , m * ) we should therefore only show that DetJ > 0. We have

DetJ = µ m µ p m * p * m * + 2p * d 2m * + p * d -m * p * d = 2µ m µ p m * p * m * + p * d 2 > 0 .
Therefore, we showed that a unique stable steady (p * , m * ) always exists for Q p , Q m > 0. The for the case where r p > 0 we compute the Jacobian of the system of equation ( 11). We obtain:

J(p * , m * ) = 1 p * d + m *             m * 2 p * d + m * Q p + (r p -2µ p p * ) p * d + m * p * 2 d p * d + m * Q p m * 2 p * d + m * Q m p * 2 d p * d + m * Q m -2µ m m * p * d + m *             . ( 14 
)
From Eq. ( 8), we know that at steady state

             m * p * d + m * Q p = µ p p * -r p = µ p (p * -p 0 ) p * p * d + m * Q m = µ m m * . (15) 
Thus the Jacobian J can be written as

J(p * , m * ) = 1 p * d + m *     -µ p p * m * + 2p * -p 0 d µ m m * p * d Q p Q m µ p m * Q m Q p p * -p 0 -µ m m * 2m * + p * d     .
First, we have Tr(J) < 0. If Q p ≥ 0, then p * > p 0 and the inequality follows. Conversely, if Q p < 0 we have

Tr(J) = -µ p p * m * + 2p * -p 0 d -µ m m * 2m * + p * d = -(µ p p * + µ m m * ) m * + p * d -µ p p * p * -p 0 d -µ m m * 2 = -(µ p p * + µ m m * ) m * + p * d - p * d m * p * d + m * Q p -m * p * p * d + m * Q m < 0 .
The inequality holds true if Q m > -Q p /d, that is equivalent to q cm > q cp /d and q hm < q hp /d, which imposes that q hp q cm /(q cp q hm ) > 1. To prove stability of (p * , m * ) we should therefore show that DetJ > 0. We have

DetJ = µ m µ p m * p * m * + 2p * -p 0 d 2m * + p * d -µ p µ m m * 2 p * d (p * -p 0 ) = µ m µ p m * p * m * + p * d 2 m * + p * d - p 0 d > 0 .
The positivity of the determinant follows from the following inequality

2 m * + p * d - p 0 d = 2S 0 - p 0 d = p 0 2d 2 + Q m µ m p 0 + Q m Q p µ m µ p > 0 .
Therefore, we showed that the unique positive stable steady state (p * , m * ) always exists for C Analysis of the one host and multiple symbionts case (no competition)

r p ≥ 0, Q m > 0 and Q p ≥ -
Consider the function f m , proportional to the rate at which a symbiont provides a resource to the host:

f m = m p p + md , i.e., f m = m if p ≫ md, p d if p ≪ md .
Similarly, the rate at which a host provides resources to a symbiont, depends on:

f p = p m m + p d , i.e., f p =    p if m ≫ p d , md if m ≪ p d .
In the presence of multiple microbial communities, dm needs to be substituted by d i m i , for i = 1, ..., N such that the rate at which each symbiont provides resource to the host is proportional to:

f m i = m i p p + i m i d , i.e., f m i =    m i if p ≫ i m i d, m i i m i p d if p ≪ i m i d ,
and the rate at which the host host provides nutrients to symbiont i is proportional to

f p = p m i i m i + p d , i.e., f p =    p m i i m i if i m i ≫ p d , m i d if i m i ≪ p d .
Thus, we obtain:

           dp dt = r p + p p d + i m i i m i Q p i -µ p p 2 , dm i dt = pm i p d + i m i Q m i -µ m m 2 , for i = 1, ..., N . (16) 

C.1 Steady state existence

The host, that might be obligate or facultative mutualists (r p ≥ 0), and symbionts exchange with it at rates given by

Q p i = q hp α i d -q cp β i and Q m i = q cm β i -q hm α i d .
To compute the steady state, let us define the three following vectors Q p , Q m and p 0

Q m =    Q m 1 . . . Q m N    and Q p = Q p 1 • • • Q p N and p 0 = r p µ p ,
and let us denote

S = p d + N i=1 m i .
A steady state (p, m 1 , . . . , m N ), that we write (p, m) with m = (m 1 , . . . , m N ), will satisfy the following problem

1 S Q p m = µ p p -µ p 0 and 1 S Q m p = µ m m . ( 17 
)
Combining the two systems, we obtain

Q m Q p µ m µ p m = S 2 m -S Q m µ m p 0 and Q p Q m µ p µ m p = S 2 (p -p 0 )
. We can reformulate the system as follows

p = S 2 p 0 S 2 - Q p Q m µ p µ m and (S 2 I -A)m = Sq 0 , where A = Q m Q p µ m µ p and q 0 = Q m /µ m p 0 . Observing that Tr(A) = Q p Q m µ p µ m and A k = Q p Q m µ p µ m k A for any k ≥ 2, we deduce that (S 2 I -A) -1 = 1 S 2 I - A S 2 -1 = 1 S 2 k≥0 A S 2 k = 1 S 2 I + k≥1 1 S 2 Q p Q m µ p µ m k A = 1 S 2     I + A S 2 - Q p Q m µ p µ m     = S 2 I + A - Q p Q m µ p µ m I S 2 S 2 - Q p Q m µ p µ m .
We can compute m as follow:

m = (S 2 I -A) -1 S q 0 = S 2 q 0 + A - Q p Q m µ p µ m I q 0 S(S 2 - Q p Q m µ p µ m ) = S Q m µ m p 0 S 2 - Q p Q m µ p µ m .
Thus from the definition of S, we obtain the following equation

S = p d + e m = 1 d S 2 p 0 S 2 - Q p Q m µ p µ m + S eQ m µ m p 0 S 2 - Q p Q m µ p µ m
, where e = (1, . . . , 1). We show that S is the positive root of the following second order polynomial

S 2 - p 0 d S - eQ m µ m p 0 + Q p Q m µ p µ m .
So we can deduce that S is given by

S = p 0 2d + p 0 2d 2 + eQ m µ m p 0 + Q p Q m µ p µ m .
Finally, we get 

p = p 0 + Q p Q m µ p µ m S d + eQ m µ m and m = S S d + eQ m µ m Q m µ m .

Case of N similar symbionts

We here assume that exchange rates are similar among the symbionts community, that is α i = α and β i = β for all i ∈ {1, . . . , N }. In this case, the biomass of symbiont at equilibrium are all equal to m * and the steady state (p * , m * ) can be expressed as

p * = p 0 + Q p Q m µ m µ p S N √ N d + Q m µ m and m * = d Q m µ m S N d √ N S N d √ N + Q m µ m , (18) 
where

S N = p 0 2 √ N d + 1 N p 0 2d 2 + Q m µ m p 0 + Q m Q p µ m µ p .

C.2 Steady state stability with similar species

To gain insights into conditions for the existence of a stable steady state of coexistence of a host and multiple microbes, we compute the (N × N )-Jacobian of the system of Eq. ( 16) at (p * , m * , ..., m * ). The corresponding Jacobian is:

J =         j p b • • • • • • b c j m e • • • e . . . e . . . . . . . . . . . . . . . . . . . . . e c e • • • e j m        
, where

                                               j p = - p * m * N Q p d p d + N m * 2 -µ p p * < 0 b = (p * ) 2 Q p d p d + N m * 2 > 0 c = N (m * ) 2 Q m p d + N m * 2 > 0 j m = - p * m * Q m p d + N m * 2 -µ m m * < 0 e = - p * m * Q m p d + N m * 2 -cm * = j m + µ m m * < 0 . ( 19 
)
We observe that j m -e = -µ m m * is an eigenvalue of multiplicity N -1 of J associated to the eigenvectors v i for i ∈ {2, . . . , N }, where v i (i) = -v i (i + 1) = 1 and v i (j) = 0 for j ̸ = i and i ∈ {2, . . . , N }. Thus, the characteristic polynomial of J can be factorized as follows:

det(J -λI) = (λ + µ m m * ) N -1 (λ 2 + Aλ + B) , where A = -Tr(J) + (N -1)(j m -e) = -j p -j m -e(N -1) > 0 and B = (-1) N +1 det(J) (-(j m -e)) N -1 = j p (j m + e(N -1)) -2bc > 0 .
The coefficient A and B are positive, so the eigenvalues of the Jacobian are all negative.

C.3 Harmful and beneficial microbes

As explained in the main text, our definition of 'harmful' or 'beneficial' microbes depends on whether host biomass at equilibrium decreases or increases after the addition of the symbiont.

Host biomass depends on all model parameters, as shown in the SI B, and on the number of symbionts (see e.g. Eq. ( 18)).

Let us consider the situation in which a symbiont is added to a host-symbiont pair, e.g., a native host, associated with its microbes. Let us assume that native and invasive symbionts differ by the rate at which resources are transferred to the host, e.g., by parameter α in and α nn and to the symbiont, e.g., by parameter β nn and β ni . We keep α nn fix to 0.4, and vary Obligate mutualist host (r p = 0) In this case, we can compute the coexistence steady state (p * n (α nn , α in ), m * n , m * i )), as follows. Let us define the exchange rates

   Q p = q hp α nn d -q cp β nn , Q m = q cm β nn -q hm α nn d , and 
   q p = q hp α in d -q cp β ni = Q p + q hp α in -α nn d , q m = q cm β ni -q hm α in d = Q m -q hm α in -α nn d ,
where Q p and Q m are exchanges between the native host and its native symbiont, while q p , q m are the exchange rates between the native host and the invasive symbiont. If q m ≥ 0, we obtain that the biomass at coexistence equilibrium is given by the following formula

p * n (α nn , α in ) = Q p Q m µ m µ p 1 + q p q m Q p Q m 1 d + Q m µ p µ m Q p 1 + q m Q m 1 + q p q m Q p Q m = p * n (α nn , 0) 1 d + Q m µ p µ m Q p 1 + q p q m Q p Q m 1 d + Q m µ p µ m Q p 1 + q m Q m 1 + q p q m Q p Q m ,
where p * n (α nn , 0) is the biomass of the native host at equilibrium only with its native symbiont:

p * n (α nn , 0) = Q p Q m µ m µ p 1 d + Q m µ p µ m Q p .
One can observe that if the invasive symbiont is too parasitic for the native host, that

is q p ≤ - Q p Q m q m
, which corresponds to very small value of α in (see dashed in Fig. C.3), the coexistence steady state does not exist. In addition, if the symbiont is parasitic, that is q p < 0,

which corresponds to α in ≤ q cp β ni d/q hp , then p * n (α in , α nn ) < p * n (0, α nn ), which implies that the critical threshold α * in such that p * n (α * in , α nn ) = p * n (0, α nn ) satisfies α * in > q cp q hp β ni d .
It means that also symbionts that provide some benefit to their host can be parasitic or pathogenic, if their mutualistic investment α in is lower than α * in .

When the exchange rate to symbionts are identical β ni = β nn , we can show that if the invasive symbiont is as beneficial as the native symbiont (i.e., α in = α nn ), then p * n (α nn , α nn ) > p * n (0, α nn ). Thus the critical threshold α * in such that p

* n (α * in , α nn ) = p * n (0, α nn ) satisfies q cp q hp β ni d < α * in < α nn .
Finally, if the invasive symbiont is too mutualistic, that is α in is very large such that α in → q cm q hm β d (which corresponds to the case where the exchange rate q m → 0), the symbiont can not grow. In this case, we obtain that p * n (α * in , α nn ) → p * n (0, α nn ) as q m → 0, and we observe that the biomass of the host in association with the two symbionts tends to be identical as its biomass only with its native symbionts. The coexistence state exists only if q m ≥ 0. Otherwise, exclusion occurs.

Facultative mutualist host (r p > 0) In this case, we define p 0 = r p /µ p , as the carrying capacity of the host alone, and we can compute the coexistence steady state (p

* n (α nn , α in ), m * n , m * i ))
as follows:

p * n (α nn , α in ) = p 0 + Q p Q m µ m µ p 1 + q p q m Q p Q m S ni d + Q m µ m 1 + q m Q m ,
where S ni is given by

S ni = p 0 2d + p 0 2d 2 + p 0 Q m µ m 1 + q m Q m + Q m Q p µ m µ p 1 + q m q p Q m Q p .
In absence of the invasive symbionts, we have the following expression p * n (α nn , 0) of the biomass of the native host at equilibrium only with its native symbiont:

p * n (α nn , 0) = p 0 + Q p Q m µ m µ p S n d + Q m µ m
, where S n is given by

S n = p 0 2d + p 0 2d 2 + p 0 Q m µ m + Q m Q p µ m µ p .
The critical value α * in such that p * n (α nn , 0) = p * n (α nn , α * in ) can be approximated by the following formula

α * in ≈ q cp q hp β ni d + d q hp Q m Q p µ m S n S n d + Q m µ m p 0 2d 2 + p 0 Q m µ m + Q m Q p µ m µ p - 1 2d Q m Q p µ m µ p . (20) 
In the particular when

β nn = β ni = β, the critical value α * in satisfies α * in ≈ α nn - d q hp       Q p - Q m Q p µ m S n S n d + Q m µ m p 0 2d 2 + p 0 Q m µ m + Q m Q p µ m µ p - 1 2d Q m Q p µ m µ p       . (21) 
In 

* i (m n (α ni ), m i (α ii )) > p * i (0, m i (α ii )) for α in large enough,
meaning that the biomass at equilibrium of a host associated with two symbionts characterized by the same α is larger than the biomass of the same host associated with only one symbiont.

Further increasing the value of α ni decreases the ability of the symbiont m n to grow, and to supply resource to the host. Thus, D Analysis of the one symbiont and multiple hosts case (no competition)

p * i (m n (α ni ), m i (α ii )) = p * i (0, m i (α ii )) for α ni large enough.
Consider now the situation in which we have one symbiont and multiple hosts. In the presence of multiple hosts, p/d needs to be substituted by j p j /d, for j = 1, ..., N such that the rate at which a symbiont provides resources to host j is proportional to:

f m = m p j j p j + md , i.e., f m =      m p j j p j if j p j ≫ md, p j d if j p j ≪ md ,
and the rate at which each host provides resources to it's symbionts is proportional to

f p j = p j m i m i + j p j d , i.e., f p j =        p j if m ≫ j p j d , p j j p j md if m ≪ j p j d .
Thus, we obtain:

             dp j dt = r p i p i + p j j p j d + m mQ p j -µ p p 2 j for i = 1, ..., N , dm dt = m j p j d + m j p j Q m j -µ m m 2 . (22) 
Steady state with one symbiont and multiple hosts

The hosts might be obligate or facultative mutualists (r p i ≥ 0, i ∈ {1, . . . , N }) and a symbiont exchanges with both hosts at rates given by

Q p i = q hp α i d -q cp β i and Q m i = q cm β i -q hm α i d .
To compute the steady state, let us define the three following vectors Q p , Q m and p 0 :

Q p =    Q p 1 . . . Q p 2    and Q m = Q m 1 • • • Q m 2 and p 0 = 1 µ p    r p 1 . . . r p 2    ,
and let us denote

S = 1 d N i=1 p i + m.
A steady state (p 1 , . . . , p N , m), that we write (p, m) with p = (p 1 , . . . , p N ), will satisfy the following problem:

1 S Q p m = µ p p -µ p p 0 and 1 S Q m p = µ m m . (23) 
Combining the two systems, we obtain:

Q m Q p µ m µ p m = S 2 m -S Q m µ m p 0 and Q p Q m µ p µ m p = S 2 (p -p 0 ) .
We can reformulate the system as follows:

(S 2 I -A)p = S 2 p 0 and m = Sq 0 S 2 - Q m Q p µ p µ m , where A = Q p Q m µ p µ m , and 
q 0 = Q m µ m p 0 . Observing that Tr(A) = Q m Q p µ p µ m and A k = Q m Q p µ p µ m k A for any k ≥ 2, we deduce that (S 2 I -A) -1 = 1 S 2 I - A S 2 -1 = 1 S 2 k≥0 A S 2 k = 1 S 2 I + k≥1 1 S 2 Q m Q p µ p µ m k A = 1 S 2     I + A S 2 - Q m Q p µ p µ m     = S 2 I + A - Q m Q p µ p µ m S 2 S 2 - Q m Q p µ p µ m .
We can compute p as follow

p = (S 2 I -A) -1 S 2 p 0 = S 2 p 0 + A - Q m Q p µ p µ m p 0 (S 2 - Q m Q p µ p µ m )
.

Thus from the definition of S, we obtain the following equation

S = 1 d ep + m = 1 d S 2 ep 0 S 2 - Q m Q p µ p µ m + 1 d e A - Q m Q p µ p µ m p 0 S 2 - Q m Q p µ p µ m + Sq 0 S 2 - Q m Q p µ p µ m
, where e = (1, 1). We show that S is the positive root of the following third order polynomial

S 3 - ep 0 d S 2 - Q m µ m p 0 + Q m Q p µ p µ m S -e Q p Q m µ p µ m - Q m Q p µ p µ m p 0 .

E Analysis of the multiple symbionts and multiple hosts case (no competition)

The rate at which each symbiont i supplies a resource to each host j is proportional to

f m i = m i p j j p j + i m i d , i.e., f m i =      m i p j j p j if j p j ≫ i m i d, p j d m i i m i if j p j ≪ i m i d ,
and the rate at which each host j provides resources to a symbiont i is proportional to

f p j = p j m i i m i + j p j d , i.e., f p j =          p j m i i m i if i m i ≫ j p j d , p j j p j m i d if i m i ≪ j p j d .
Thus, we obtain the following system with M hosts and N symbionts

             dp j dt = p j j p j d + i m i i m i Q p ij -µ p p 2 j , for j = 1, ..., M , dm i dt = m i j p j d + i m i j p j Q m ji -µ m m 2 i , for i = 1, ..., N , (24) 
where Q p ij is the effect of AMF i on host j and Q m ji is the effect of host j on AMF i. They are defined for any i, j ∈ {1, 2} by

Q p ij = q hp α ji d -q cp β ij and Q m ij = q cm β ji -q hm α ij d .
To compute the steady state, let us define the two following matrices

Q p and Q m Q p =    Q p 11 • • • Q p 1N . . . . . . Q p M 1 • • • Q p M N    and Q m =    Q m 11 • • • Q m 1M . . . . . . Q m N 1 • • • Q m N M    ,
and let us denote

S = 1 d M i=1 p i + N j=1 m j .
E.1 Coexistence steady state with obligate hosts (r p i = 0)

A steady state (p 1 , . . . , p M , m 1 , . . . , m N ) = (p, m), with p = (p 1 , . . . , p M ) and m = (m 1 , . . . , m N ) will satisfy the following system

1 S Q p m = µ p p and 1 S Q m p = µ m m .
Combining the two systems we show that, if it exists, S 2 is the positive eigenvalue of the matrix Q m Q p /µ m µ p and m is its associated positive eigenvector, while p is the positive eigenvector associated to matrix Q p Q m /µ p µ m with the same eigenvalue. If the matrices are positive, their eigenpair exists thanks to Perron-Frobenius theorem and it satisfies the following system

Q m Q p µ m µ p m = S 2 m and Q p Q m µ p µ m p = S 2 p .
In particular, the eigenpair is unique if the matrix Q m Q p /µ m µ p is primitive. Nevertheless, the eigenvectors are unique up to a scalar factor. Let us define x p and x m , the normalized eigenvector associated to S 2 that satisfies M i=1 x p i = N j=1 x m j = 1. Then p = P x p and m = M x m , where P and M are respectively the total biomass of hosts and symbionts. These quantities satisfy

P = S 2 S d + eQ m x p µ m and M = S eQ m x p µ m S d + eQ m x p µ m .
Case of two hosts and two symbionts (N = M = 2) In this case we can compute the value of S 2 by finding the positive root of the characteristic polynomial of the matrix, that is

S 2 = Tr Q m Q p 2µ m µ p + 1 2 Tr Q m Q p µ m µ p 2 -4 det Q m Q p (µ m µ p ) 2 .
In scenarios (0, +), (+, +) and (+, 0), the matrices Q m Q p and Q p Q m are positive and thus primitive. As consequences, the positive steady state always exists in this situation as well as the exclusion steady state.

The coexistence steady state exist for the scenario (0, 0), because the matrices Q m and Q p are proportional to the identity matrix. However, for the scenario (0, -) or (-, 0), the discriminant is negative and there is no positive eigenpair, meaning that exclusion occurs. In the extreme scenarios (-, -), (+, -) or (-, +), coexistence may occur.

Moreover, we can explicitly compute the steady state as follow:

P = S 1 d + Q m11 + Q m21 µ m x 1 S + Q m12 + Q m22 µ m x 2 S and M = Q m11 + Q m21 µ m x 1 + Q m12 + Q m22 µ m x 2 1 d + Q m11 + Q m21 µ m x 1 S + Q m12 + Q m22 µ m x 2 S x p1 = 1 1 + µ m µ p S 2 -(Q p11 Q m11 + Q p12 Q m21 ) (Q p11 Q m12 + Q p12 Q m22 )
and

x p2 = 1 1 + µ m µ p S 2 -(Q p21 Q m12 + Q p22 Q m22 ) (Q p21 Q m11 + Q p22 Q m21 ) x m1 = 1 1 + µ m µ p S 2 -(Q m11 Q p11 + Q m12 Q p21 ) (Q m11 Q p12 + Q m12 Q p22 )
and

x m2 = 1 1 + µ m µ p S 2 -(Q m21 Q p12 + Q m22 Q p22 ) (Q m21 Q p11 + Q m22 Q p21 )
.

E.2 Coexistence steady state with facultative hosts (r p i ≥ 0)

The coexistence steady state (p 1 , . . . , p M , m 1 , . . . , m N ), that we write (p, m) with p = (p 1 , . . . , p M ) and m = (m 1 , . . . , m N ), will satisfy the following problem:

1 S Q p m = µ p p -µ p p 0 and 1 S Q m p = µ m m .
Combining the two systems, we obtain

Q m Q p µ m µ p m = S 2 m -S Q m µ m p 0 and Q p Q m µ p µ m p = S 2 (p -p 0 ) .
We can reformulate the system as follows (S 2 I -A p )p = S 2 p 0 and (S 2 I -A m )m = Sq 0 ,

where

A p = Q p Q m µ p µ m , A m = Q m Q p µ m µ p and q 0 = Q m µ m p 0 . Now assuming that S 2 is neither in the spectrum of A p nor A m , we get that p = S 2 (S 2 I -A p ) -1 p 0 and m = S(S 2 I -A m ) -1 q 0 .
Case of two hosts and two symbionts (N = M = 2) In this case we characterize S 2 with the positive root of a fourth order polynomial. Indeed,

p = S 2 (S 2 I -A p ) -1 p 0 = S 2 S 2 I -(A p -Tr(A p )I) det(S 2 I -A p ) p 0 = S 2 S 2 p 0 + (A p -Tr(A p )I)p 0 S 4 -Tr(A p )S 2 + det(A p ) , m = S(S 2 I -A p ) -1 q 0 = S S 2 q 0 + (A m -Tr(A m )I)q 0 S 4 -Tr(A p )S 2 + det(A p ) , because Tr(Q p Q m ) = Tr(Q m Q p ) and det(Q p Q m ) = det(Q m Q p ).
Thus from the definition of S, we show that S solves the following equation

S = 1 d e p + e m = S 2 d e S 2 p 0 + (A p -Tr(A p )I)p 0 S 4 -Tr(A p )S 2 + det(A p ) + Se S 2 q 0 + (A m -Tr(A m )I)q 0 S 4 -Tr(A p )S 2 + det(A p ) .
Thus, S is the positive root of the following fourth order polynomial

S 4 - 1 d ep 0 S 3 -(Tr(A p )+e q 0 )S 2 - 1 d e(A p -Tr(A p )I)p 0 S+det(A p )+e(A m -Tr(A m )I))q 0 = 0 .
Note that when p 0 = 0, we recover the previous equation for S.

F Analysis of the one host and multiple competing symbionts case

We consider the case in which one one host is associated with N symbionts m 1 ,..., m N , which compete between each other. The corresponding differential equation system, is given by:

           dp dt = r p + p p d + N i=1 m i q hp N i=1 α i d m i -q cp N i=1 β i m i -µ p p 2 , dm i dt = pm i p d + N i=1 m i q cm β i -q hm α i d -j̸ =i c ji m j -µ m m i . (25) 
The host, that might be obligate or facultative mutualists (r p ≥ 0), and symbionts exchange with the host at rates given by

Q p i = q hp α i d -q cp β i and Q m i = q cm β i -q hm α i d .

F.1 Steady state existence

To compute the coexistence steady state (p, m 1 , . . . , m N ), that we write (p, m) with m = (m 1 , . . . , m N ), we first introduce the previous vectors, Q p , Q m , and p 0

Q m =    Q m 1 . . . Q m N    and Q p = Q p 1 • • • Q p N and p 0 = r p µ p .
We also introduce the following competition matrix

C m C m =       µ m c 12 . . . c 1N c 21 . . . . . . . . . . . . . . . . . . c (N -1)N c N 1 • • • c N (N -1) µ m      
, and let us denote S = p d + N i=1 m i .

From the system, we obtain that p, m satisfies the following system of equation

1 S Q p m = µ p p -µ p p 0 and 1 S Q m p = C m m .
We will assume here that the competition strength between symbionts are all equal to c, that c ij = c for all i ̸ = j in {1, . . . , N }. In this case the matrix C m = (µ m -c)I + c1, where 1 is the matrix full of 1. We know that the eigenvalues of the 1 are 0 with multiplicity N -1 and N with multiplicity 1. Thus the matrix C m is invertible if and only if

µ m ̸ = c or µ m ̸ = (N + 1)c. . (26) 
Moreover, we can compute its inverse as follow

C -1 m = 1 µ m -c I - c (µ m -c)(µ m + c(N -1))
1 .

Under the previous assumption (26), by combining the two systems, we obtain

C -1 m Q m Q p µ p m = S 2 m -SC -1 m Q m p 0 and Q p C -1 m Q m µ p p = S 2 (p -p 0 ) .
We can reformulate the system as follows:

p = S 2 p 0 S 2 - Q p C -1 m Q m µ p and (S 2 I -A)m = Sq 0 , where A = C -1 m Q m Q p µ p and q 0 = C -1 m Q m p 0 . Observing that Tr(A) = Q p C -1 m Q m µ p and A k = Q p C -1 m Q m µ p k A for any k ≥ 2, we deduce that (S 2 I -A) -1 1 S 2 I - A S 2 -1 = 1 S 2 k≥0 A S 2 k 1 S 2 I + k≥1 1 S 2 Q p C -1 m Q m µ p k A = 1 S 2      I + A S 2 - Q p C -1 m Q m µ p      = S 2 I + A - Q p C -1 m Q m µ p I S 2 S 2 - Q p C -1 m Q m µ p .
We can compute m as follow

m = (S 2 I -A) -1 S q 0 = S 2 q 0 + A - Q p C -1 m Q m µ p I q 0 S(S 2 - Q p C -1 m Q m µ p ) = SC -1 m Q m p 0 S 2 - Q p C -1 m Q m µ p .
Thus from the definition of S, we obtain the following equation

S = p d + e m = 1 d S 2 p 0 S 2 - Q p C -1 m Q m µ p + SeC -1 m Q m p 0 S 2 - Q p C -1 m Q m µ p
, where e = (1, . . . , 1). We show that S is the positive root of the following second order polynomial

S 2 - p 0 d S -eC -1 m Q m p 0 + Q p C -1 m Q m µ p .
Finally, using the property of C -1 m , we can show that

eC -1 m Q m = eQ m µ m + c(N -1)
and

Q p C -1 m Q m µ p = Q p Q m µ p (µ m -c) - c (eQ m )(eQ p ) (µ m -c)(µ m + c(N -1))µ p ,
(p * , m * 1 , . . . , m * N ): where

J N =         j p b • • • • • • b a j m e
                               j p = - p * m * N Q p d S 2 N -µ p p * < 0 b = (p * ) 2 Q p dS 2 N > 0 a = N (m * ) 2 Q m S 2 N > 0 j m = - p * m * Q m S 2 N -µ m m * < 0 e = - p * m * Q m S 2 N -cm * = j m + (µ m -c)m * < 0 . ( 29 
)
From the structure of the matrix, we can show that j m -e = (c -µ m )m * is an eigenvalue of multiplicity N -1 of the jacobian matrix J. Thus the characteristic polynomial of J can be factorize as follows

det(J -λI) = (λ -(c -µ m )m * ) N -1 (λ 2 + Aλ + B),
where A = -Tr(J) + (N -1)(j m -e) = -j p -j m -e(N -1) > 0 and B = (-1) N +1 det(J) (-(j m -e)) N -1 = j p (j m + e(N -1)) -2bc > 0 . The coefficient A and B are positive, so the eigenvalues of the Jacobian are all negative if and only if the inequality c < µ m holds true.

F.3 Stability of a community of native symbionts against an invasive symbiont

We here look at the stability of a host with N ≥ 1 similar symbionts, in the presence of an invasive symbiont with exchange rates Q p i and Q m i . The competition strength c N i between the invader and the community might be different from the competition strength inside the community (c = c nn )), that is c ̸ = c N i . We here look at two particular cases: A community of only one symbiont (the parameter c does not occur here), and a community with N > 1 similar symbionts. In this situations, the stability analysis needs to take into account the change in dynamics due to the presence of the invasive symbiont.

Stability of a single symbiont: the exclusion steady states (p * , m * , 0) We her look at the case of in which a single symbiont is considered in association with a single host.

In a context of multi symbiont competing with each other, it corresponds to the exclusion steady state. The definition of this state is given by ( 12) in section B. Linearizing around the (p * , m * , 0) steady state, we obtain the Jacobian matrix J s1 :

J s1 = J(p * , m * ) B 1 0 a i where a i = Q m i p * S 1 -c N i m * . ( 30 
)
The Jacobian J(p * , m * ) is defined by ( 14) and B 1 is a vector which depends on p * and m * . From the analysis of section B, we know that the eigenvalues of J(p * , m * ) are negative, thus the exclusion steady state is stable if and only if Competitive exclusion occurs when the competition strength is large, that is

c N i > Q mi Q m µ m .

Competitive exclusion and coexistence

c > µ m min Q m i Q mn , Q mn Q m i .
Conversely, coexistence occurs when the competition is weak, that is when the host is obligate

r p = 0 c < µ m min 1, Q m i Q mn , Q mn Q m i , Q pn Q mn + Q p i Q m i Q pn Q m i + Q p i Q mn .
Harmful and beneficial symbiont with competition We have seen that depending on the strength of competition coexistence or competitive exclusion can occur. In order to understand whether an invasive symbiont is harmful or beneficial to the native host, we compare the biomass of host at equilibrium in the absence of the invasive symbiont p * n , that is, when the host is associated only with its native symbiont, and the biomass of the host with the invasive symbiont in the two alternative cases: exclusion steady state p * i in which only the invasive symbiont persist or coexistence steady state p * ni .

From the formulae ( 27) and ( 28), we can see that if competition is weak enough the coexistence state exists. In this case, we can compare the biomass of the host with its native symbiont and its biomass in presence of both a native and an invasive symbionts. Depending on the mutualistic quality of the invasive symbiont, quantified through α in , we can see from with its native symbiont if the invasive symbiont is a good mutualist (α in > α * in defined by Eq. ( 6)). In this case the symbiont is called beneficial to the host. Conversely, if the mutualistic quality of the symbiont is low, the biomass of the host in the presence of the symbiont is reduced below the biomass of the host observed when the host is associated only with its native symbiont, and the introduced symbiont is called harmful.

If competition is strong (c ≥ µ m ), in order to be beneficial to the host, the introduced symbiont should have a higher mutualistic quality than when competition is low.

When adding competition between hosts, that is described by the following matrix

C p C p =       µ p c p • • • c p c p . . . . . . . . . . . . . . . . . . c p c p • • • c p µ p      
, the steady state (p 1 , • • • , p N , m) will satisfy the following problem:

1 S Q p m = C p p -C p p 0 and 1 S Q m p = µ m m ,
where now p 0 depends on the competition between hosts and it is defined by

p 0 = C -1 p    r p 1 . . . r p N    .
Let us remark that p 0 is the coexistence steady state of N facultative hosts in competition. It is an actual steady state of our problem only if its components are all positive, that requires the following assumption c p ≤ µ p N -1 .

We immediately recover that if competition between hosts is too strong, coexistence is not possible.

Combining the two systems, we obtain:

Q m C -1 p Q p µ m m = S 2 m -S Q m µ m p 0 and C -1 p Q p Q m µ m p = S 2 (p -p 0 ) .
We can reformulate the system as follows:

(S 2 I -A)p = S 2 p 0 and m = Sq 0 S 2 - Q m C -1 p Q p µ p µ m , where A = C -1 p Q p Q m µ m , and 
q 0 = Q m µ m p 0 . Observing that Tr(A) = Q m C -1 p Q p µ m and A k = Q m C -1 p Q p µ m k A for any k ≥ 2, we deduce that (S 2 I -A) -1 = 1 S 2 I - A S 2 -1 = 1 S 2 k≥0 A S 2 k = 1 S 2   I + k≥1 1 S 2 Q m C -1 p Q p µ m k A   = 1 S 2      I + A S 2 - Q m C -1 p Q p µ m      = S 2 I + A - Q m C -1 p Q p µ m S 2 S 2 - Q m C -1 p Q p µ m . We can compute p as follows p = (S 2 I -A) -1 S 2 p 0 = S 2 p 0 + A - Q m C -1 p Q p µ m p 0 (S 2 - Q m C -1 p Q p µ m )
.

Using the definition of S and the above computation, we show that S is the positive root of the following third order polynomial

S 3 - ep 0 d S 2 - Q m µ m p 0 + Q m C -1 p Q p µ m S -e C -1 p Q p Q m µ m - Q m C -1 p Q p µ m p 0 .
Special case of two obligate hosts (r p = 0) and one symbiont (N = 2) In this case the previous formula become

S = Q m C -1 p Q p µ m = 1 µ m (µ 2 p -c 2 ) Q p 1 Q m 1 + Q p 2 Q m 2 µ p -c p Q p 1 Q m 2 + Q p 2 Q m 1 , and 
p * i = S S + (Q p 1 + Q p 2 ) (µ p + c p )d µ p Q p i -c p Q p j (µ 2 p -c 2 p ) and m * = S 2 S + (Q p 1 + Q p 2 ) (µ p + c p )d .
So the coexistence steady state exists if and only if

Q p 1 > 0 and Q p 2 > 0 , and 
c p ≤ µ p min 1, Q p 2 Q p 1 , Q p 1 Q p 2 , Q p 1 Q m 1 + Q p 2 Q m 2 Q p 1 Q m 2 + Q p 2 Q m 1 .

Stability of the steady state

With the description of the steady state we can compute the Jacobian of the system around the steady state (p 1 , . . . , p N , m) as follows

J p N =         j p 1 e 1 • • • e 1 b 1 e 2 . . . . . . . . . . . . . . . . . . . . . e N -1 . . . e N • • • e N j p N b N c 1 • • • • • • c N j m        
where

j m = - Q p p S 2 m -µ m m < 0 b i = p i Q p i S 2 ep d > 0 c i = Q m i m S 2 S - 1 d p i > 0 j p i = - Q p i p i m dS 2 -µ p p i < 0 e i = - Q p i p i m dS 2 -cp i < 0 .
If the hosts are identical and the symbiont provides nutrients at the same rate for every host, then we can prove as in section F.2, that the steady state is stable if and only if c < µ p .

H Analysis of the multiple competing symbionts and multiple competing hosts case

We here consider M competing hosts and N competing symbionts that may exchange resources; We obtain the following system

             dp j dt = r p j p j + p j j p j d + i m i i m i Q p ij -µ p p 2 j -c k̸ =j p k , for j = 1, ..., M , dm i dt = m i j p j d + i m i j p j Q m ji -µ m m 2 i -c l̸ =i m l , for i = 1, ..., N ,
where Q p ij is the effect of AMF i on host j and Q m ji is the effect of host j on AMF i. These are defined for any i ∈ {1, . . . , N } and j ∈ {1, . . . , M } by

Q p ij = q hp α ji d -q cp β ij and Q m ij = q cm β ji -q hm α ij d .
Let us define the two exchange matrices

Q p and Q m Q p =    Q p 11 • • • Q p 1N . . . . . . Q p M 1 • • • Q p M N    and Q m =    Q m 11 • • • Q m 1M . . . . . . Q m N 1 • • • Q m N M    ,
and the two competition matrices C m and C p

C p =       µ p c p • • • c p c p . . . . . . . . . . . . . . . . . . c p c p • • • c p µ p       and C m =       µ m c m . . . c m c m . . . . . . . . . . . . . . . . . . c m c m • • • c m µ m       .
Let us denote S = 1 d M i=1 p i + N j=1 m j , p = (p 1 , . . . , p M ) and m = (m 1 , . . . , m N ). Since the competition terms are identical among hosts and symbionts, we can reformulate the matrices C p and C m using the identity matrix I and the matrix with all ones 1:

C p = (µ p -c p ) I + c p µ p -c p 1 and C m = (µ m -c m ) I + c m µ m -c m 1 .
As soon as µ p ̸ = c p and µ m ̸ = c m , the competition matrices are invertible, with inverse satisfying

C -1 p = 1 µ p -c p I - c p µ p + c p (M -1) 1 and C -1 m = 1 µ m -c m I - c m µ m + c m (N -1) 1 .
Then, let us denote

p 0 = C -1 p    r p 1 . . . r p M    .
The quantity p 0 , which is the coexistence steady state of facultative hosts alone (in absence of symbionts), is non negative if the competition strength is not too large, that is

c p < µ p min        1 1 + r p -r p i r p i M , s.t. r p M M -1 > r p i > 0, i ∈ {1, . . . , M }        ,
The condition on the discriminant provides a condition on the competition terms c m and c p .

In particular, if c p = 0, then we have an explicit condition on c m , that is the discriminant is positive if and only if c m ≤ c * m where c * m depends on the matrices Q m and Q p as it satisfies

µ m + c m µ m -c m 1 2 Tr (Q m Q p ) - c m µ m + c m Tr (1Q m Q p ) 2 = det(Q m Q p ) .
In particular, we see that c * m < µ m .

In addition, the matrices

C -1 p Q p C -1 m Q m and C -1 m Q m C -1
p Q p might be non positive and the existence of positive eigenpair truly depend on the competition parameters.

Thus, if the competition parameters are large enough, that is c p ≥ µ p or c m ≥ µ m , then the coexistence steady state does not exist or is unstable.

H.1.2 Coexistence with facultative hosts (r p > 0)

In this case, the system can be reformulated as follows

(S 2 I -A)p = S 2 p 0 and (S 2 I -Ã)m = Sq 0 , where A = C -1 p Q p C -1 m Q m , Ã = C -1 m Q m C -1 p Q p and q 0 = C -1 m Q m p 0 .
As long as S 2 is not an eigenvalue of A and Ã, we can solve the previous linear system. Then using the definition of S = ep/d + em, S should satisfies the following equation S = S 2 d e(S 2 I -A) -1 p 0 + S(S 2 I -Ã) -1 q 0 .

Special case with M = 2 facultative hosts and N = 2 symbionts. We deduce that p = S 2 S 2 p 0 + (A -Tr(A)I)p 0 S 4 -Tr(A)S 2 + det(A) and m = S S 2 q 0 + ( Ã -Tr(A)I)q 0 S 4 -Tr(A)S 2 + det(A) .

Thus, from the definition of S, we show that S is the positive root of the following fourth order polynomial S 4 -1 d ep 0 S 3 -(Tr(A) + e q 0 )S 2 -1 d e(A -Tr(A)I)p 0 S -e( Ã -Tr(A)I)q 0 = 0 .

H.2 Stability analysis

The Jacobian of the system around the coexistence steady state (p 1 , . . . , p M , m 1 , . . . , m N ) can be computed as follows

J = J p B C J m where J m = -m • Q m p S 2 + C m < 0 B = p S 2 • (SQ p -Q p m) C = m S 2 • SQ m - 1 d Q m p J p = -p • Q p m S 2 + C p < 0 .
In this situation, the stability analysis is more complex as the stability of the coexistence steady state will truly depend on all the interactions terms of the system (i.e., on the nutrient exchange rates as well as on competition).

I Analysis of the model steady states and interaction scenarios

We consider here the main system (1) consisting of a native host associated with its native symbiont and an invasive host with its invasive symbiont. As in the main text, we assume that both the native host and the invasive host exchange nutrients with their respective symbionts at similar rates, i.e., Q p kk = Q p and Q m kk = Q m for k ∈ {1, 2}. Furthermore, Q p = q hp α d -p cp β and Q m = q cm β -q hm α d .

In contrast, the exchange between native and invasive species, i.e., Q p kl and Q m kl for k ̸ = l, may vary depending on the scenario: (-) the symbiont is harmful to the host, (0) no interaction between host and symbiont and (+) the symbiont is beneficial (see Table 1 and section C.3 for details on the scenarios). More specifically, for k ̸ = l in {1, 2} we have

Q p kl =    Q p beneficial (+) 0
neutral (0) -q p = -q cp β < 0 harmful (-) and

Q m lk =    Q m beneficial (+) 0 neutral (0) q m = q cm β > Q m > 0 harmful (-) (34)
The model of Eq. ( 1) can be written as: 

                               dp 1 dt = r p 1 p 1 + p 1 p 1 d + p 2 d + m 1 + m 2 (m 1 Q p + m 2 Q p 12 ) -µ p p 2 1 -c p p 2 p 1 , dm 1 dt = m 1 p 1 d + p 2 d + m 1 + m 2 (p 1 Q m + p 2 Q m 12 ) -µ m m 2 1 -c m m 2 m
d + m 1 + m 2 (p 2 Q m + p 1 Q m 21 ) -c m m 1 m 2 -µ m m 2 2 . (35) 
For our analysis, it will be useful to define the two exchange matrices Q p and Q m : Then, using the notation p = (p 1 , p 2 ), m = (m 1 , m 2 ), and r p = (r p 1 , r p 2 ), the system (35) can be reformulated as

Q p = Q p Q p 12 Q p 21 Q p and Q m = Q m Q m 12 Q m 21 Q m ,
p ′ = p • r p + Q p m S -C p p m ′ = m • Q m p S -C m m .
I.1 Steady states of the system I.1.1 Exclusion steady states consisting of one host and one symbiont

In our system, the steady state that comprises only one host and one symbiont always exists. Therefore there are four possible exclusion steady states: (p * n , m * n , 0, 0), (0, 0, p * i , m * i ), (p * n , 0, 0, m * i ) and (0, m * n , p * i , 0). Due to our choice of parameters (i.e., with α nn , α ii , β nn and β ii large enough), the steady state with only native species or only invasive species always exist. However, the mixed steady states composed of either a native host with an invasive symbiont, or an invasive host with a native symbiont, only exist when the cross-species resource exchange is beneficial (+) to the new host, while they do not exist if cross species resource exchange is neutral (0) or harmful (-) to the new host.

We note here that a harmful symbiont, with low mutualistic quality (α small) and that corresponds to negative Q p , can only survive on a host with high intrinsic growth rate, that is a facultative mutualist with Q p ij > -r p j . If the host is an obligate mutualist, the mixed steady state cannot exist with a harmful symbiont, because survival requires that Q p ij > 0.

When a mixed steady state exists, its stability depends on the interactions of the host with is original symbiont. To define this dependence more precisely, we compute the Jacobian matrix of the the steady state. For simplicity, we only look at (p 1 , m 1 ) but the argument can be made valid for the other case by permuting the indices and considering indexes 1 and 2 to correspond to n and i. In the case we consider the Jacobian matrix given by

J = J(p * 1 , m * 1 ) B 0 C where C =    Q p 21 m * 1 S + r p -c p p * 1 0 0 Q m 21 p * 1 S -c m m * 1    ,
where J(p * 1 , m * 1 ) is defined by ( 14) in section B.2. From the analysis of Section B.2, we know that the matrix J(p * 1 , m * 1 ) has two negative eigenvalues. Moreover, from the expressions for the steady states p * 1 and m * 1 , we can show that

C =     Q p 21 Q p - c p µ p p * 1 + 1 - Q p 21 Q p p 0 0 0 Q m 21 Q m -c m m * 1     =       p 0 S 2 - Q p Q m µ p µ m 1 - c p µ p S 2 - Q p Q m µ p µ m 1 - Q p 21 Q p 0 0 Q m 21 Q m µ m -c m m * 1      
.

We now consider the two separate cases of strong and weak competition between hosts.

Strong competition between hosts (c p ≥ µ p ) and symbionts (c m ≥ µ m ) When competition is strong, the non-mixed steady states (p * n ,m * n ,0,0) and (0,0,p * i ,m * i ) are always stable. A mixed pair steady state with a beneficial symbiont (+) (i.e., steady states (p * n ,0,0,m * i ) and (0,m * n ,p * i ,0), when m n /m i is beneficial to p i /p n ) are also always stable. A mixed pair steady state with a harmful symbiont (-) (i.e., when m n /m i is harmful to p i /p n ), when it exists, is stable only if competition between hosts is very strong, that is c p ≥ µ p + q m µ m (Q p + q p ) S 2 > µ p , with S = p 0 2d + p 0 2d 2 + p 0 q m µ m -q m q p µ m µ p .

Under strong competition, the system will converge towards one of these four steady states in almost every scenario (see Fig. 3).

other because they can be decomposed over the identity matrix I and the matrix of ones 1 : Strong competition between hosts and between symbionts.

If competition between

hosts and between symbionts is strong, that is c p > µ p and c m > µ m then the coexistence steady state is unstable for any scenarios: harmful (-, -), neutral (0, 0) or beneficial (+, +).

Indeed in this case, the polynomial (40) has always a negative root.

Weak competition between hosts and symbionts. Conversely, when the competition is weak between both the hosts and the symbionts, that is c p < µ p and c m < µ m , then the coexistence state might be stable. Indeed, the eigenvalue are all negative in this case.

Mixed competition (weak/strong). Now, if competition between hosts is strong while competition between symbionts is weak (or viceversa), then the coexistence steady state is unstable when the symbionts are either beneficial (scenario (+, +)) or neutral (scenario (0, 0)).

However, when the symbionts are harmful to their new host (scenario (-, -)), the coexistence steady state might be stable if one competitor is much stronger than the other.

I.2 Outcomes of the different interaction scenarios

In this section we discuss the different interaction scenarios presented in Fig. 3. We investigate the possible stable steady states of the system consisting of a native host and its symbionts, interacting with an invasive and its symbionts for different degrees of competition between hosts and between symbionts, and for different degrees of facultative mutualism.

I.2.1 Neutral symbionts (0, 0) 

Fig. 1 :

 1 Fig. 1: Schematic representation of the model of Eq. (1). A native microbial community m n is associated with a host population p n . Resource exchange between hosts and microbes is quantified by parameters α nn (microbes to hosts) and β nn (hosts to microbes). Similarly, a population of invasive hosts p i exchanges resources with its associated invasive microbial community m i (parameters α ii and β ii ). Depending on the scenario considered, invasive hosts can also exchange resources with native microbes, and so do invasive microbes with native hosts (parameters α in , α ni , β in and β ni ). Blue and red arrows indicate whether resource exchange is beneficial or harmful to the host. Additionally, native and invasive hosts compete with each other, with competition strength quantified by parameters c pin and c pni , and so do native and invasive microbes (parameters c min and c mni ).

  Fig. A.1

Fig. 4 :Fig. 5 :

 45 Fig. 4: More detailed insights into the possible dynamics highlighted in scenarios (a) (0, +) and (b) (+, 0) of Fig. 5. Association of native microbes with invasive hosts (or of invasive microbes with native hosts) may provide a competitive advantage to hosts or symbionts, where different outcomes are observed depending on whether hosts or microbes competitively exclude each other first.

  Fig. A.1: Overview of the interaction scenarios explored with the model. The horizontal axis represents the effect of invasive microbes on native hosts, while the vertical axis represents the effect of native microbes on invasive hosts. This effect can be negative ('-'), neutral ('0'), or positive ('+'), as represented by the diagonal arrows describing the interaction between invasive/native hosts with native/invasive microbes.

  Fig. A.2: Timeseries produced by scenarios described in Fig.3, for the parameter combinations provided in Table1 and Table 1. Note that in scenarios (0, 0), (+, +) and (-, -) the curves representing native and invasive host biomass (p n and p i ) and native and invasive microbial biomass (m n and m i ) overlap. In this case, the coexistence steady state is unstable when competition is strong, and differences in model parameters or in initial conditions will lead to competitive exclusion of one of the two hosts and one of the two symbionts. The same steady states are stable only for weak competition, as discussed in SI I.1.4 and I.2.5. Scenarios (0, +) and (+, 0) are produced by assuming weak competition between hosts or symbionts, depending on whether we are looking at the symbiont or host competition scenario. In scenarios (-, +) and (+, -) we assume weak competition between symbionts.

  The corresponding nullclines are shown inFig. B.2. 

Fig

  Fig. B.3).

Fig. B. 1 :

 1 Fig. B.1: (a) Phase plane corresponding to the system of equations (7), for which r p = 0. Brown dashed lines are nullclines found for dp/dt = 0, while blue dashed lines are nullclines found for dm/dt = 0. Intersection of the two non-zero nullclines corresponds to the stable steady state (p * , m * ), represented by the red square. The vertical black dotted line corresponds to the asymptote p = Q p /µ p . (b) Temporal dynamics of p and m corresponding to the trajectory shown in orange in (a).

  Fig. B.2: (a) Phase plane corresponding to the system of equations (11), for which r p > 0. Brown dashed lines are nullclines found for dp/dt = 0, while blue dashed lines are nullclines found for dm/dt = 0. Intersection of the two non-zero nullclines corresponds to the stable steady state (p * , m * ), represented by the red square. Intersection of the dp/dt = 0 nullcline with the horizontal axis corresponds to the steady state (p 0 , 0), in which the host reaches a symbiont-free steady state. The vertical black dotted line corresponds to the asymptote p = Q p /µ p .
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 3 Fig. B.3: Parasitic or mutualistic symbiont. Evolution of the host biomass at equilibrium p * defined by (12), with respect to the exchange rate α of the symbiont (blue plain curve). The host exchange rate β is fixed to β = 0.4. The dashed line corresponds to the biomass of the host alone p 0 = r p /µ p . The red square corresponds to the critical value α = q cp /q hp β d (Eq. (9)).

  temporal dynamics of p and m over time is shown in Fig. B.1b. Facultative mutualist host (r p > 0): To derive the stability of the steady state (p * , m * )

  Fig. B.1b.
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 1 Fig. C.1: Nullclines of the system of Eq. (16), when considering that all symbionts are identical. Curves represent the nullclines for N = 1 (thicker line) till N = 10 (thinner line). The corresponding steady states for different values of N are indicated by the red squares. Note that for N large, m * decreases while p * increases.

α

  in and compute the steady state p * n (α nn , α in ) for different values of α in . Results are shown in Fig. C.3.

  Fig. C.3(a)-(b) we consider that the host is an obligate mutualist (r p = 0), while in Fig. C.3(b) the host is a facultative mutualist. Increasing α ni increases host biomass at equilibrium p * i . We can see that p

Fig. C. 2 :

 2 Fig. C.2: Host biomass at equilibrium when the host is considered in association with one symbiont (blue curve), characterized by the resource supply rate α in , or with two symbionts (red curve), where one symbiont is characterised by the resource supply rate α nn = 0.4, while the other is characterised by resource supply rate α in . The black dash-dotted line corresponds to the biomass of the host in association only with one native with constant resource exchange parameter α nn = 0.4. The dashed line corresponds to the biomass of the host in the absence of symbionts (with r p = 0.5). The black plain vertical line corresponds to the critical value of the resource exchange rate α *in below which the addition of an introduced symbiont (when a beneficial native symbiont is already present) is considered harmful. The dashed vertical line the minimal value of the resource exchange parameter α required by a symbiont in order to be mutualistic for the host, when no other symbionts are present.
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  Fig. C.2 that the biomass of the host with the two symbiont is larger than its biomass only

  Since A and à have same trace and determinant and they are of dimension 2, we can show that (S 2 I -A) -1 = S 2 I + (A -Tr(A)I) S 4 -Tr(A)S 2 + det(A) and (S 2 I -Ã) -1 = S 2 I + ( à -Tr(A)I) S 4 -Tr(A)S 2 + det(A).

  the two interaction matrices C p and C m :C p = µ p c p c p µ p and C m = µ m c m c m µ m ,

J
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  Table A.2: Brief description of model parameters used to produce Fig. 5. Other parameter values corresponds to those listed in Table A.1.

		12	c m in	0.12
	c m ni	0.02	c m ni	0.02
	c p in	0.02	c p in	0.12
	c p ni	0.02	c p ni	0.12

  When considering a system of two competing symbionts (native symbiont m n and an invasive symbiont m i competing with strength c = c m in = c m ni ) and a single host, then three possible steady states might exist: two exclusion steady states, (p * n , m * n , 0) and (p * i , 0, m * i ), and a coexistence steady state (p * ni , m * n , m * i ). Depending on the competition strength between the symbionts c and the exchange rates betweenthe host and the symbionts, Q p i , Q pn , Q m i and Q mn , which are defined by α and β, we have two regimes: the competitive exclusion regime (i.e., stability of at least one exclusion steady state) and the coexistence regime (i.e., stability of the coexistence steady state).

  Q p + m 1 Q p 21 ) -c p p 1 p 2 -µ p p 2 2 ,

	1 ,
	dp 2 dt (m 2 dm 2 = r p 2 p 2 + p 2 p 1 d + p 2 d + m 1 + m 2 dt m 2 = p 1 d + p 2

  In this case, the only possible steady states are the two exclusion states (p *

n , 0, m * n , 0) and (0, p * i , 0, m * i ), the inclusion steady state consisting of two plants and a symbiont (p * n , p * i , m * n , 0) and (p * n , p * i , 0, m * i ) or the coexistence state (p * n , p * i , m * n , m * i ).
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A.2 Default parameter values

A brief description of model parameters and their default values used for the simulations is provided in Table A.1. Specific parameters used for the plots in Fig. 5 Rate of microbes to hosts resource supply (j to w) 0.4 (0, 0.3)

Rate of hosts to microbes resource supply (j to w) 0.4 (0, 0.3) q hp j Conversion factor: resources received from microbes into host biomass 5 q cp j Conversion factor: resources supplied to microbes into host biomass 1 q cm j Conversion factor: resources received from hosts into microbial biomass 1 Competitive effect of microbial community j on microbial community w 0.02 (weak) or 0.12 (strong) d

Default ratio of host to microbial biomass 2

Table A.1: Brief description of model's variables and parameters and their default values used for the simulations. Index j = n, i and w = n, i refer to native (n) or invasive (i). Values in bracket corresponds to other parameter combinations chosen for the implementation of the scenarios of Fig. 5, as provided in Table A.2. Representative parameters for the interaction scenarios presented in Fig. 3 are provided in Table 1.

and we deduce that S is given by

Finally, we get

Special case of one obligate host (r p = 0) and two symbionts (N = 2) In this case the previous formula become

So the coexistence steady state exists if

Special case with similar symbionts We assume here that symbionts are similar in the sense that the exchange rate are identical among symbionts, that is

In this case the previous formula become

, and

F.2 Stability of the steady state

Case of N similar symbionts We will show that the community of N similar symbionts is stable if i and only if the competition between them is weak, such that c < µ m .

This inequality means that competition strength should be smaller than the maintenance cost. Actually, in this case, we can compute the Jacobian J N around the steady state Special case of obligate host (r p = 0). In this case, we can compute the steady state and we obtain

where p * n (α nn ) is the biomass of the native host at equilibrium only with its native symbiont:

Stability of a community of N > 1 symbionts The Jacobian J sN of the system around the steady state (p * , m * 1 , . . . , m * N , 0) becomes

From the previous computation, we know that the eigenvalues of J N are negative if and only if c ≤ µ m . Thus the community of N symbionts is stable against an invader if and only if

If the invader is a better mutualist, that is Q mi ≤ Q m , then the community is not really threaten if the competition strength between the invader is similar as the competition strength inside the community, that is c ≈ c N i . Conversely, if the invader is more parasitic than the community, that is Q mi > Q m , the competition pressure of the community should increase on the invader compared to the competition inside the community.

G Analysis of the one symbiont and multiple competing hosts case

A similar analysis to what shown in section F can be carried out to find conditions for the coexistence of multiple competing hosts sharing a common symbiont.

where

In particular, if the host have the same growth rate r p ≥ 0, the quantity p 0 satisfies

Using these new notations, we can write the previous system as follows:

where • represent the Hadamard product.

H.1 Coexistence steady state

The coexistence steady state of the system of Eq. ( 32) is given by

H.1.1 Coexistence with obligate hosts (r p = 0)

Combining the two systems we show that, if it exists, S 2 is the positive eigenvalue of the matrix C -1 m Q m C -1 p Q p and m is its positive eigenvector. Even if Q m and Q p are positive matrices, due to the competition matrices C p and C m , the product might not be positive.

When it exists, the eigenpair satisfying the following system corresponds to

Special case with M = 2 obligate hosts and N = 2 symbionts. In this case the matrices are of size 2 × 2 and we can compute the second order characteristic polynomial:

Its positive root corresponds to S 2 , that is

From the expression of the competition matrices, we can compute the trace and determinant as follows

Weak competition between hosts. This case corresponds to c p ≤ µ p . Here, the steady states (p * n , m * n , 0, 0) and (0, 0, p * i , m * i ) , (p * n ,0,0,m * i ) and (0,m * n ,p * i ,0) are stable if and only if

In other words, if competition between hosts is weak, and the native/invasive symbiont is very harmful to the invasive/native host (scenarios (-, -), (0, -) or (+, -)), then the steady states consisting of only native hosts and symbionts or of only invasive hosts and symbionts are stable.

The inequality ( 37) is always satisfied if the invasive/native symbiont does not benefit from the native/invasive host, i.e., Q m 21 = 0, which corresponds to the scenario (-, 0). This inequality can also be satisfied if the competition between symbionts is strong, i.e., c m > µ m .

So under strong competition between symbionts, the exclusion steady state is also stable in the scenarios (-, +) and (-, -). Otherwise, symbionts may coexist, as shown in the next section.

I.1.2 Inclusion steady states consisting of one host and two symbionts

The inclusion steady state that we consider in this section corresponds to the case where one host integrates the symbiont from the other host and excludes the other host. In our system, we have two possible steady states of this form (p n , 0, m n , m i ) and (0, p i , m n , m i ). They exist if and only if

Thus, the inclusion steady state with one host and two symbionts exists competition between the symbionts is weak and the invasive/native symbiont is not too harmful to the native/invasive host.

In this case, we can compute the Jacobian matrix to explore the stability of this steady state. Let us look at the inclusion of the invasive symbiont m i by the native host p n and its symbiont m n , i.e., the steady state (p * 1 , 0, m * 1 , m * 2 ). The Jacobian is given by the matrix

The eigenvalues of the matrix J(p * 1 , m * 1 , m * 2 ) are negative if the competition between the symbionts is not too strong. In this case, the steady state is stable if and only if C < 0, which is equivalent to

We now consider the two separate cases of strong and weak competition between hosts.

Strong competition between hosts. If competition between hosts is strong, i.e., c p ≥ µ p , the steady states (p n , 0, m n , m i ) and (0, p i , m n , m i ) are is stable when it exists.

Weak competition between hosts. If, on the other hand, the competition between hosts is weak, i.e., c p ≤ µ p Q p 12 Q p , for stability we obtain the following inequality

Thus, the inclusion steady state is stable only when the initial symbiont paired with the host is very harmful to the other host, i.e., Q p 21 < 0, which corresponds to scenario (-). Conversely, this steady state is unstable as soon as Q p 21 ≥ 0, i.e., the symbiont is either neutral (scenario (0)) or beneficial (scenario (+)) to the other host. This scenario is presented in the next section.

I.1.3 Inclusion steady states consisting of two hosts and one symbiont

This inclusion steady state corresponds to the case where one symbiont supports the two hosts and excludes the other symbiont. In our system, we have two possible steady states of this form: (p n , p i , m n , 0) and (p n , p i , 0, m i ). If the host is minimally facultative, i.e., r p is low, these steady states exist if and only if the symbionts are beneficial,

and competition between hosts is weak,

Thus, the inclusion steady state with two hosts and one symbiont exists if competition between hosts is weak and the remaining symbiont is beneficial.

We can compute the Jacobian matrix to explore the stability of this steady state. Let us look at the inclusion of the invasive host p i by the native host p n and its symbiont m n , which corresponds to the steady state (p * 1 , p * 2 , m * 1 , 0). The Jacobian is given by the following matrix

The eigenvalues of the matrix J(p * 1 , m * 1 , m * 2 ) are negative if the competition between the symbionts is not too strong. In this case, the steady state is stable if and only if C < 0, which is equivalent to

We consider now the two separate cases of strong and weak competition between symbionts.

Strong competition between symbionts. If competition between symbionts is strong, i.e., c m satisfies (38), this steady state is stable when it exists.

Weak competition between symbionts. If, on the other hand, the competition between symbionts is weak, this steady state is unstable.

In sum, this steady state requires a beneficial symbiont (scenarios with a +), and weak competition between hosts in conjunction with strong competition between symbionts.

I.1.4 Coexistence steady state consisting of two hosts and two symbionts

Here, we look at the special case when the native and the invasive symbionts are identical in the sense that they are both harmful (scenario (-, -)), or both neutral (scenario (0, 0)), or both beneficial (scenario (+, +)).

In this case, the interaction matrices are symmetric that is 

where

Even in the neutral scenario (0, 0), where Q ′ p = 0 and Q ′ m = 0, the value of the coexistence steady state depends on competition between both hosts and symbionts, thus it is different from the exclusion steady state which does not depend on c.

The coexistence steady state always exists in the beneficial scenario (+, +) and the neutral scenario (0, 0). However, in the harmful scenario (-, -), the coexistence exists only if the symbionts are not too harmful in the sense that Q ′ p = -q p satisfies the following inequality

Let us now look at the stability of the coexistence steady state in the three scenarios. We can compute the Jacobian around this steady state using the expression of section H.2:

In our special case, the matrices J p , J m , B and C are symmetric and commute with each

Weak competition between hosts and between symbionts. If competition between hosts is weak in the sense that

and the competition between symbiont is also weak,

then coexistence occurs.

Strong competition between hosts or strong competition between symbionts. When competition between hosts or between symbionts is strong, and the hosts are obligate mutualists, then competitive exclusion of one of the two hosts/symbionts, and successively of its associated symbiont/host, occurs. If the host is a facultative mutualist, then the scenario described below can occur.

Weak competition between hosts and strong competition between symbionts. If competition between symbionts is strong, while the competition between hosts is weak, steady state stability depends on the degree of mutualism of the host (whether obligate or facultative). If the plant is an obligate mutualist, strong competition between the symbionts will cause one of the two symbionts to be competitively excluded. The associated host will then consequently go extinct. Therefore, in this case, only the exclusion steady state consisting of native host and their symbionts or of invasive hosts and their symbionts are possible. If the hosts are facultative mutualists, then the inclusion steady state consisting of two plants and a symbiont can occur, where one host survives in the absence of the symbiont, while the other persists in combination with its associated symbiont.

I.2.2 A harmful symbiont versus a beneficial symbiont (-, +) and (+, -)

Without lost of generality, we can consider the situation in which the invasive symbiont is harmful to the native host while the native symbiont is beneficial to the invasive host, that is scenario (-, +). In this situation, we expect the invasive host with its symbiont to replace the native host and either to integrate or to exclude the native symbiont.

Indeed in this scenario, considering that the host is an obligate or weakly facultative mutualist, and that a harmful symbiont is harmful enough to not allow host growth in its presence (as considered in our parameter choice of Table 1), the possible steady state are: the exclusion steady state composed of the invasive host and its invasive symbiont (0, 0,

the exclusion steady state composed of the invasive host and the native symbiont (0, m * n , p * i , 0), or the inclusion of the native symbiont into the invasive host-symbiont pair (0,

Even when other steady states might exists, they are barely stable and very unlikely to persist.

Weak competition between symbionts. If the competition between symbionts is weak, that is c m ≤ µ m , then native and invasive symbionts will coexist (0, m * n , p * i , m * i ), thus the native symbionts is included in the invasive community of symbionts.

Strong competition between symbionts. If competition between symbionts is strong, that is c m > µ m , then the symbionts will exclude each other. Thanks to the advantage of the invasive symbiont, which is harmful to the native host, the invasive species will generally exclude the native species (0, 0, p * i , m * i ). However, strong asymmetric competition favoring the native symbiont (i.e., when c m ni ≫ c m in ) can lead to stability of the steady state (0, m * n , p * i , 0).

Strong facultative hosts with weak competition between them. When the host is strongly facultative, that is its intrinsic growth rate is high compared with the exchange rates Q p , then different outcomes may occur. Under this assumption, new possible steady states exist: the inclusion of the native host in the invasive pair (p * n , 0, p * i , m * i ) and the coexistence

If competition between hosts is weak in the sense that

then the hosts will coexist. If competition between symbionts is weak, that is

then native and invasive hosts and symbionts will coexist

competition between symbionts is strong c m ≥ µ m , then the native symbionts is replaced by the invasive symbiont while native and invasive hosts coexist (p * n , p * i , 0, m * i ).

If competition between hosts is strong, that is c p > µ p , then hosts can not coexist, and we recover the previous results discussed above, for the case in which hosts are poor facultative mutualists.

I.2.3 A harmful symbiont versus a neutral symbiont (-, 0) and (0, -)

In this scenarios, if we consider that the harmful symbiont is harmful enough to not allow for host growth in its presence, only the exclusion steady states (p * n , m * n , 0, 0) and (0, 0, p * i , m * i )

exist. Because one symbiont is harmful and the other is neutral, mixed host-symbiont combinations do not exist if the hosts are poor facultative mutualists. When hosts are strong facultative mutualists, this steady state is always unstable as soon as competition between hosts is not too weak, that is

In addition, the pair with the neutral symbiont is also unstable if competition between symbionts is not too strong that is

Thus, in scenario (-, 0) the invasive steady state (0, 0, p * i , m * i ) is always stable (see Fig. When the harmful symbiont is only weakly parasitic to the new host, and competition between hosts or between symbionts is weak, hosts and symbionts may coexist.

I.2.4 A beneficial symbiont versus a neutral symbiont (+, 0) and (0, +)

In this scenario, we expect a diversity of outcomes depending on the strength of competition between the species.

Strong competition between hosts and symbionts If competition between hosts and between symbionts is strong, that is c p ≥ µ p and c m ≥ µ m , only the exclusion steady states (p * n , m * n , 0, 0), (0, 0, p * i , m * i ), (p * n , 0, 0, m * i ) and (0, m * n , p * i , 0) exist and are stable. In this case, when competition between invasive and native hosts and symbionts is symmetric and equal in both directions, the outcome of the interaction truly depends on the initial quantity of each species. In particular, species that are more abundant than others are more likely to persist.

However, if host and symbionts have similar initial biomass then the invasive symbiont will replace the native symbionts and the native host will exclude the invasive host.

Weak competition between hosts and symbionts As soon as competition between hosts and symbionts is weak, that is c p ≤ µ p and c m ≤ µ m , the exclusion steady states are unstable.

If the competition is weak enough, that is c p and c m satisfies conditions (33) the coexistence steady state exist and it is stable. In this case, the invasive species would coexist with natives.

Mixed competition (strong/weak)) 

I.2.5 Similar symbionts (+, +), (-, -)

In this scenario, we assume that the native and invasive symbionts are either harmful (-, -)

or beneficial (+, +) to their hosts.

Strong competition between hosts and symbionts In this case, the only possible steady states are the exclusion steady states (p * n , m * n , 0, 0), (0, 0, p * i , m * i ), (p * n , 0, 0, m * i ) and (0, m * n , p * i , 0).

When species are similar, the outcome of the interaction only depends on the initial conditions. If the symbionts are harmful, only the native or the invasive species will survive. While if the symbionts are beneficial, the native host and/or the native symbiont can be replaced.

Weak competition between hosts and symbionts If competition between hosts and symbionts is weak, then the coexistence steady state exists and it is stable (see Fig. Mixed competition (weak/strong) with beneficial symbionts (+, +) If either the competition between hosts or between symbionts is strong, then the coexistence steady state cannot occur, because either the hosts exclude each other or the symbionts exclude each other. However, if one of the competition is weak, the steady states consisting of one hosts and two symbionts, or of one symbiont and two hosts are stable.

In particular, if the competition between hosts is strong, that is c p ≥ µ p , and competition between symbionts is weak, that is c m < µ m then the steady states (p * n , 0, m * n , m * i ) and (0, p * i , m * n , m * i ) are stable. Depending on the initial conditions, the native host will include the invasive symbiont in its community and exclude the invasive host, or the invasive host will replace the native host and includes the native symbiont in its community.

Conversely, if the competition between hosts is weak, that is c p ≤ µ p , and competition between symbionts is strong, that is c m > µ m , then the steady states (p * n , p * i , m * n , 0) and (p * n , p * i , 0, m * i ) are stable. Depending on the initial conditions, the native symbiont will exclude the invasive host or the invasive host with exclude the native.

Mixed competition (strong/weak) with harmful symbionts (-, -) Now let us assume that the symbionts are harmful (-, -) and the competition between either hosts or symbionts is strong, that is either c p ≥ µ p or c m ≥ µ m . In this case, even if the competition between hosts or between symbionts is strong, the coexistence steady state remains stable if the competition is not too strong, as long as the the following inequality holds true

(see stability analysis in section I.1.4 for more details).