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Abstract: Measuring the optical properties of highly diffuse materials is a challenge as it could
be related to the white colour or an oversaturation of pixels in the acquisition system. We used a
spatially resolved method and adapted a nonlinear trust-region algorithm to the fit Farrell diffusion
theory model. We established an inversion method to estimate two optical properties of a material
through a single reflectance measurement: the absorption and the reduced scattering coefficient. We
demonstrate the validity of our method by comparing results obtained on milk samples, with a good
fitting and a retrieval of linear correlations with the fat content, given by R2 scores over 0.94 with low
p-values. The values of absorption coefficients retrieved vary between 1 × 10−3 and 8 × 10−3 mm−1,
whilst the values of the scattering coefficients obtained from our method are between 3 and 8 mm−1

depending on the percentage of fat in the milk sample, and under the assumption of the anisotropy
factor g > 0.8. We also measured and analyzed the results on white paint and paper, although the
paper results were difficult to relate to indicators. Thus, the method designed works for highly diffuse
isotropic materials.

Keywords: material appearance; BSSRDF; inversion model; imaging device; absorption coefficient;
reduced scattering coefficient

1. Introduction

Diffuse materials are known for redistributing light through phenomena such as
subsurface scattering. These materials can be found in everyday objects such as light
and displays [1], or food and liquids such as milk [2]. Being able to estimate the optical
properties of a material such as the absorption or scattering coefficients can be useful
for various applications: the diagnosis of diseases with the analysis of skin tissues [3–6],
nondestructive quality control of fruits and vegetables [7–9], rendering of skin faces and
other materials for the movie, gaming and virtual reality industries [10].

According to Tong et al. [11] in their study on modeling and rendering the subsurface
scattering of quasi-homogeneous materials, two different approaches can be considered to
describe the appearance. The first approach can be called the object appearance represen-
tation, and it focuses on capturing appearance features coupled to a specific geometry of
an object. Therefore, these properties are intrinsic to the object considered and cannot be
exported directly to a wider scope. It is practical to focus on the object appearance when it
comes to assessing the quality of specific objects, or if the object geometry is original in itself.
The second approach is the material appearance representation. It consists of studying the
properties which define the appearance of the material regardless of the geometrical shape
of the object it may compose. Then, they can define the material at an industrial production
level. Features such as colour, texture, gloss, translucency, or transparency can be utilized
to describe the appearance of a material [12]. These features are frequently correlated with
optical properties of the material such as absorption, scattering, transmittance or reflectance
at specific wavelengths. They represent how the light interacts with the material surface
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or how it propagates inside and through the medium. We aim to estimate the optical
properties related to absorption and scattering of highly diffuse materials, such as milk,
prone to scattering and subsurface scattering effects. Thus, in this work, we consider the
material appearance over the object appearance representation.

Subsurface scattering is influencing the material appearance. Among their intro-
duction of several concepts on reflectance properties, Nicodemus et al. [13] define the
subsurface scattering phenomenon as diffuse reflections produced by multiple internal
scattering in a material below the nominal reflecting surface. This effect occurs with diffuse
reflectors and almost all natural reflecting surface materials. It highly depends on how the
incident light beam penetrates into the medium before being absorbed or scattered back
through the surface again. In most cases, the exit point for rays is different from the entry
point in the material. We considered the assumption of having a semi-infinite material.
Hereby, we consider materials that are large enough to not consider all boundary effects,
and make it impossible for light to escape on the sides and to see through.

Scattering and absorption effects usually vary with the wavelength of the light con-
sidered [14], and can then be numerically characterized, respectively, by the scattering
coefficient µs and the absorption coefficient µa. Effects of scattering and absorption con-
tribute to the material appearance and their absences in virtual rendering are noticeable.
For example, they influence skin rendering for human faces due to the various layers under
the skin and the concentration of hemoglobin [15]. As a consequence, being able to estimate
the values of the scattering and absorption coefficients of a material can be an asset to
improve its rendering, assuming an adequate model is chosen.

The focus of this work is on the use of the diffusion theory model [16] coupled with
an adapted implementation of a nonlinear least-square inversion method to estimate the
absorption and scattering coefficients linked to the optical properties of highly diffuse
materials. Two surveys from the literature are useful for this study. Guarnera et al. [10]
present an overview on how to capture material information related to its appearance,
how to model it and apply it for virtual reality usages. Frisvad et al. [17] reviewed several
models and ways to measure optical properties of translucent materials and give a clear
definition of the design of an inversion model. Both surveys introduce the notion of the
appearance model for computer graphics application, but this can also be used for material
study. Appearance models can consider two aspects [11]: object appearance and material
appearance. Optical properties related to material appearance are commonly supported by
models which explain the propagation of light inside a medium such as the Kubelka–Munk
model [18], the four-flux model [19], the Inverse Adding Doubling method [20,21] or the
diffusion model [16], or by functions such as the BRDF (Bidirectional Reflectance Distribu-
tion Function) and BSSRDF (Bidirectional Subsurface Scattering Reflectance FUnction) [13]
to describe the reflectance of light by a material. Two optical properties can be identified
related to material appearance and subsurface scattering [3,22]: the absorption coefficient
and the scattering coefficient. They can be retrieved by performing acquisitions of BSSRDF
using various setups [23–25], or by measuring the attenuation of light in the medium and
solving the inversion problem from the collected data [8,9,14,26].

The radiative transfer equation is a model describing the behaviour of light scattering
and absorption in a material. In the case of material with dominant scattering, a diffusion
model may be more adapted. Such a model has been widely used in the literature for
various applications. Following the initial use of Farrell et al. [16], Kienle et al. performed
measurements of optical absorption and scattering coefficients of biological tissues by using
a noninvasive approach they developed [26]. They also pursued this work by focusing
on the measurements of absorption and scattering coefficients in the case of semi-infinite
turbid media in which they evaluated their method with the use of time and frequency
domain acquisition techniques and Monte Carlo simulations [27,28]. Another area for
which the diffusion model is being utilized is in food quality control. Qin et al. applied
a hyperspectral imaging method to liquids such as milk and juices [7], or fruits and
vegetables [8] to obtain the absorption and reduced scattering parameters of the material



Sensors 2023, 23, 6853 3 of 21

studied. A similar technique was followed by Hu et al. for studying fruits with visible and
near-infrared imaging devices [9]. Stam worked on the diffuse approximation itself and
reviewed several numerical solutions to solve the radiative transfer equation using the
approximation [29]. Finally, this model was extended to the area of computer graphics by
Jensen et al. [30] with the implementation of the dipole model adapted to the representation
of the BSSRDF of materials, which is mainly used in the rendering literature [31].

Farrell et al. [16] studied the diffuse reflectance Rd of an infinite small vertical light
source upon the surface of a semi-infinite turbid medium as a function of the radial distance
between the source and the detector. It allowed them to study the optical parameters of the
medium such as the absorption coefficient µa, the reduced scattering coefficient µ′s, and the
relative refractive index η. Equation (1) gives the diffuse reflectance,

Rd(r) =
α

4πµt

[(
µeff +

1
r1

) e−µeff r1

r2
1

+
(

1 +
4A
3

)(
µeff +

1
r2

) e−µeff r2

r2
2

]
(1)

where r is the distance between the entry point of the light in the material and the detected
exit point, α is the reduced albedo defined by α = µ′s

µa+µ′s
, µeff is the effective attenuation

coefficient defined by µeff =
√

3µa(µa + µ′s), and µt is the extinction coefficient defined by
µt = µa + µ′s. r1 and r2 are distances of the observed point at the surface, respectively, from
the real and virtual source (dipole approximation) such as

r1 =

√
r2 +

( 1
µt

)2
(2)

r2 =

√
r2 +
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1 +

4A
3

) 1
µt

]2
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In Equations (1) and (3), the parameter A is an internal reflection coefficient and it can
be derived following the equations proposed by Donner et al. [31]

A =
1 + Fd
1− Fd

(4)

with Fd the diffuse Fresnel reflectance defined by

Fd =

−0.4299 + 0.7099
η − 0.3319

η2 + 0.0636
η3 η < 1

− 1.4399
η2 + 0.7099

η + 0.6681 + 0.0636η η > 1
(5)

The relative refractive index η is defined as the ratio of refractive indices between
the two media considered at the interface (air and the material in our case). Most of the
materials used are assumed to have a constant refractive index to avoid having a complex
model. Therefore, once the reflectance profile of a material is known, it is possible to
have estimates of the coefficients µa and µ′s by performing an inversion of Equation (1).
Assumptions of this model used in this study are that the material is semi-infinite, i.e., both
its thickness and its lateral dimensions are infinite, and the material is highly scattering.

We selected the diffuse approximation as the light model to fit the measured data, and
the spatially resolved (SR) method as the way to perform the acquisition. The SR method
has often been utilized in various setups for measuring optical properties. Nichols et al. [32]
used a white light source to acquire reflectance from biological tissues through optical
fibers close to the sample. Doornbos et al. [14] performed a similar experiment with optical
fibers but they were able to have a larger spectrum for the light source, thus introducing
a wavelength dependency model for the scattering coefficient. Qin et al. [7] made use of
hyperspectral imaging for studying optical properties of fruits and vegetables. Their setup
was composed of a CCD camera coupled with an imaging spectrograph and a zoom lens to
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get an image while the samples were illuminated with a collimated light. Although this
setup allows hyperspectral imaging and a better understanding of the behaviour of the
scattering and absorption properties based on the wavelength of the light, its use is limited
to very constrained conditions. Thus, we selected an industrial imaging-based device
called the ©Dia-Stron TLS850 to perform the acquisitions on materials. Its ergonomics
allows for both indoor and outdoor measurements if opportunities are presented. We chose
to test our inversion method with the diffusion model on highly diffuse materials with
liquid and solid physical states. Some of the highly diffuse materials can be associated with
the colour white (not the case of skin), and thus have strong reflective properties. They
represent a challenge for several imaging techniques due to the saturation of sensors or
other calibration issues, which makes them an interesting target for studying.

The material we have selected to verify and prove our inversion method is cow milk.
Milk is a diffuse material with high scattering properties due to the casein and fat particles
which compose it [33]. The fat percentage of milk usually characterizes its properties [34],
and a linear relationship with the absorption and scattering coefficients has been shown in
several studies [35,36]. Therefore, measuring the optical coefficients of milk and their linear
relationship to the fat content of milk is an ideal scenario to validate our acquisition and
inversion method. Furthermore, there have been other recent studies using spectroscopy
methods to analyze the composition of milk impacting the quality of dairy products [37,38].

The Section 1 deals in-depth with the measurement protocol employed, the device
used and the inversion method put in place to solve the problem. A Section 2 sheds light
on the validation of the method using measurements on milk samples with various fat
content, estimations of absorption and reduced scattering parameters, and retrieval of linear
correlation between the fat content of the milk and its optical properties. In a Section 3 the
results results are presented on other highly diffuse materials such as paper substrates and
tainted water with white paint pigments, before concluding on the validity of the method
and its limitations.

2. Method
2.1. Acquisition

We selected a translucency meter device called the ©Dia-Stron TLS850. It is a hand
device composed of 3 LEDs for RGB channels and a 20 mm photodiode array to detect
signal of re-emitted light from the material sampled. Figure 1 is a schematic representation
of what the device does when the acquisition is started, and it illustrates the spatially
resolved method previously mentioned. The design is practical and allows a wide variety
of uses, whether it is the acquisition conditions (indoor or outdoor) or the physical state of
the material (solid or liquid are possible). By reproducing the spatially resolved method, it
allows the user to study the attenuated intensity along the distance from the light source for
red, green and blue channels. The peak wavelengths are, respectively, at 630 nm, 525 nm,
and 472 nm according to the manufacturer. There is also the possibility to fine tune the
LED control to have separate or simultaneous use of the three channels. The sensor of the
device is an NMOS linear image sensor type composed of 512 pixels whose pixel pitch is
25 µm and pixel height is 2.5 mm. The spectral response range of the sensor varies from
200 nm to 1000 nm with a peak sensitivity at 600 nm. Furthermore, the photodiode typical
dark current is at 0.1 pA with a maximum of 0.3 pA, and its saturation charge is at 25 pC.
The combination of a low dark current and a high saturation charge allows the photodiode
to reach a long integration time and a wide dynamic range at ambient temperature. The
total acquisition time for one sample with the 3 LEDs operating in sequence varies between
8 and 10 s, which averages up to 3 s per LED.
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Figure 1. Schematic of the process operated by the TLS850. The LED sends light vertically towards
the surface of the material, then the light is scattered in it. The photodiode array collects the light
coming out of the material at various distances from the entry point in the material.

2.2. Inversion

In their review, Frisvad et al. [17] presented several models and ways to estimate the
optical properties of translucent materials. Even though our study focuses on the optical
properties of highly diffuse materials, their description of the forward and especially
inverse model is valuable. When designing an the inverse model, some steps must be
validated. The first aspect is to define the type of data measured, then a model for light
scattering distribution must be chosen. Afterwards, an objective function is to be selected
to give the best match possible between the model and the measurements. Finally, an
optimization method is applied to minimize the objective function. In our case, reflectance
data profiles are acquired, the diffusion model is chosen as the light transfer model, and we
have selected a trust-region nonlinear optimization method to optimize the sum of squares
of residuals between the data and the model.

As stated by Kienle et al. [26], there could be an infinite number of solutions for µa and
µ′s if there are no constraints in the optimization process. In their paper, Jensen et al. [30]
used the diffuse equation as reported in Equation (1). For their optimization, they mea-
sured the total reflectance, which is the integration of Rd over the whole surface considered.
Therefore, they added this constraint to obtain estimates of µa and µ′s. Nonetheless, ac-
quiring the total reflectance may not always be possible, which is the case in this work.
For this case, we selected milk data from our dataset and we assigned values in the
range [0, 0.2] mm−1 to absorption and reduced scattering coefficients. For each of these
values, we computed the sum of square residuals between the data and the model we
wanted to fit, and we plotted the contour lines for each channel R, G, and B. As seen in
Figure 2, for each channel, it is not possible to find an area for which a set (µa, µ′s) minimizes
the cost function chosen. There seems to be an infinite number of solutions judging by the
straight lines plotted. This result strongly indicates there is a need to refine the optimization
method to add more constraints in order to find estimates for µa and µ′s which would
minimize the cost function.

Farrell et al. [39] studied the influence of the optical parameters µeff and µt on the shape
of the reflectance. According to them, most of the information of those optical parameters
can be found in the shape of the reflectance. Rather than looking directly at the reflectance,
they focused on log |r2Rd(r)| while fixing the value of one parameter and varying the
other one in a Monte Carlo simulation. When µeff is fixed, they observed a peak in the
shape of the curve a few millimeters of the light source. The position of this peak changed
depending on the value of µt chosen. Similarly, when µeff varies while µt is fixed, when
detected away from the source, the slope of the exponential curve increased or reduced.
Then, they concluded that the two coefficients µeff and µt could be estimated by analyzing
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the shapes of those curves, and therefore could deduce the value of the absorption µa and
the reduced scattering µ′s coefficients.
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Figure 2. Contour plot of an arbitrary study of the cost function. The lines show the potential (µa, µ′s)
solutions minimizing the cost function. An ideal solution would be to find an ellipse made of these
contours, which is not the case in this study.

To corroborate their conclusion, we investigated Equation (1) by doing asymptotic
derivations in the case of r → 0 and r → +∞. The derivations were performed on
a normalized version of Equation (1) as the interest lies into the shape of the diffuse
reflectance, and since it is not always possible to obtain the total reflectance for each
sample, it is best to actually focus on the shape. Then, the coefficient outside the bracket in
Equation (1) is discarded by the normalization process. After derivations, the following
equations are obtained:

Rd(r) =
r→ 0

µ3
t

(
1 +

1
C2

)
(6)

Rd(r) =
r→ +∞

(1 + C)
(

µeff +
1
r

) e−µeff r

r2 (7)

with C = 1 + 4A
3 . Using the result of Equation (6), the shape of the diffuse reflectance

is mainly influenced by the parameter µt in the case of r → 0, when the light is de-
tected close to the source. Similarly, when the light is detected far away from the source,
the diffuse reflectance can be approximated by the expression of Equation (7). The pa-
rameter µeff is mainly shaping the curve of the diffuse reflectance with the exponential
decrease. These results support the conclusion of Farrell et al. [39] but also the results from
Bevilacqua et al. [40] where they stated that to obtain a unique determination of (µa, µ′s), it
is required to perform at least two sets of measurements with one close to the source and
one far from the source.

As a consequence, we decided to split our reflectance data curves into two parts to
estimate differently the effective attenuation coefficient µeff and the extinction coefficient µt.
We need to determine at which distance from the source the data can be split in two parts.
To do so, we compute the gradient of f (r) = r2R(r). According to the observations of
Farrell et al. [39], the peak of this function f could be used as a separation for our data. The
use of the gradient helps to find the position of the peak by looking at the change of sign of
the gradient, which symbolises a change of variation in the function. As such, the split of
the data would be adapted to each type of data for each channel R, G, and B acquired. This
method gives estimated values for µt and µeff , and by using their analytical expressions,
both absorption and reduced scattering coefficients can be deduced with

µa =
µ2

eff

3µt
(8)
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µ′s = µt −
µ2

eff

3µt
(9)

Therefore, for each part of the curve, we performed a trust-region nonlinear least-
square optimization [7] to get estimates of µt and µeff and then compute both optical
parameters using Equations (8) and (9).

3. Results and Validation on Milk

We assembled two datasets of milk samples to perform our measurements. The first
dataset is referred as the Q-dataset and is composed of four types of milk samples from
the brand ©Q, a Norwegian milk company whose bottles can be bought in supermarkets.
The fat concentration in these milk samples can be found at 0.1%, 0.5%, and 1% to 4%.
The second dataset is also composed from various samples of milk, ranging from skim
milk (0.1% of fat), light milk (0.5%, 0.7%, 1% and 1.2%), to whole milk (3.5% and 4%).
Since the samples originate from different brands and some variations in the making and
dilution processes may have been introduced by the companies, this dataset was named
the mix-dataset.

For both datasets, we followed a similar protocol of measurement. A cylindrical plastic
glass was filled to its maximal volume capacity with milk, which represented nearly one
liter. The glass has a diameter of 9 cm and a height of 16 cm. The ©Dia-Stron was attached
to a tripod with an adjustable height. Therefore, we were able to set up the device so that
the sensor was in contact with the milk but not entirely immersed into it. All measurements
were performed in a dark room to avoid noise and perturbations from other light sources.
The value for the refractive index of milk is assumed to be 1.347 [36]. The results for each
dataset are discussed in the following paragraphs.

3.1. Q-Dataset Results

We first detail the results of the experiment conducted on the Q-dataset composed
of milk samples from the Norwegian ©Q brand. Table 1 shows the values of absorption
coefficient µa and reduced scattering coefficient µ′s estimated from the reflectance profiles
using the inversion method described earlier. A first aspect to note is that µ′s values
are larger than µa values by 2–3 orders of magnitudes, which validates the diffusion
model utilized as one of its assumption is to have a medium with dominant scattering
over absorption. A second positive aspect of the results in Table 1 is the increase in µa
and µ′s values with the decrease in the wavelength for each channel. As pointed out by
Doornbos et al. [14], a power-law relationship can be established between the reduced
scattering coefficient and wavelengths. One could suggest to verify such a relationship by
using the estimated values of Table 1, but only having three discrete values for three distinct
wavelengths (472 nm for the blue channel, 525 nm for the green, and 630 nm for the red)
may not be enough to draw conclusions. Moreover, the wavelengths previously given are
the peak wavelengths of the LEDs power and it may not be as precise as a monochromator.
Since our focus is not specifically on the spectral aspect, the lack of precision in spectral
resolution is acceptable.

Table 1. Estimated optical properties for the Q-dataset.

Fat Content µa (mm−1) µ′s (mm−1)
R G B R G B

0.1% 3.2 × 10−9 2.4 × 10−3 1.0 × 10−2 0.62 0.74 0.81
0.5% 1.4 × 10−3 3.7 × 10−3 1.2 × 10−2 0.62 0.75 0.84
1% 3.0 × 10−3 7.8 × 10−3 1.6 × 10−2 0.69 0.84 0.95
4% 5.3 × 10−3 1.5 × 10−2 3.6 × 10−2 1.05 1.35 1.52
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Another way of evaluating the quality of the estimates obtained is to plot the fit
model and compare it to the data, as shown in Figure 3, where we display a plot with
reflectance profiles acquired with the device and their fit model for each R, G, and B channel
in the case of the milk sample containing 0.5% of fat concentration. The quality of the
fit is evaluated using R2 values computed as residuals between the reflectance profiles
and Equation (1) of the diffusion model using the estimated values of absorption µa and
reduced scattering µ′s coefficients from Table 1. We are dealing with normalized reflectance
profiles when processing the comparison, since most of the information about these two
optical properties is mainly contained in the shape of the reflectance curve [39]. Results
for other fat concentrations show similar R2 values, stating the estimated values provide a
good fit to the model proposed.
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Figure 3. Reflectance profile for the milk sample containing 0.5% of fat in the Q-dataset. R2 values
for the fit of R, G, and B channels are all 0.90.

3.2. Mix-Dataset Results

Similarly to the Q-dataset results, this section highlights the results of the mix-dataset
which is composed of milk samples coming from various brands. Acquisitions were
performed identically to the Q-dataset but are separated by a month in time. In Table 2,
the results of the inverse algorithm are registered for estimating the optical properties
following the acquisitions of reflectance profiles with the TLS850 device. Once again, one
can notice that µ′s values are larger than µa values, which is expected in the case of a highly
scattering material. Actually, as mentioned by Leyre et al. [2], the fact that scattering is
more dominant in such a diffuse material as milk lowers the accuracy which can be reached
for the estimate of the absorption coefficient. Furthermore, absorption is very low for milk.

Table 2. Estimated optical properties for the mix-dataset.

Fat Content µa (mm−1) µ′s (mm−1)
R G B R G B

0.1% 1.7 × 10−5 3.4 × 10−3 8.6 × 10−3 0.60 0.70 0.78
0.5% 1.2 × 10−3 4.0 × 10−3 1.3 × 10−2 0.61 0.75 0.83
0.7% 1.9 × 10−3 5.0 × 10−3 1.4 × 10−2 0.67 0.82 0.91
1% 3.3 × 10−3 6.6 × 10−3 1.9 × 10−2 0.68 0.84 0.92

1.2% 4.3 × 10−3 5.8 × 10−3 1.9 × 10−2 0.71 0.90 0.98
3.5% 5.1 × 10−3 1.2 × 10−2 2.7 × 10−2 0.92 1.26 1.40
4% 5.3 × 10−3 1.1 × 10−2 3.5 × 10−2 0.98 1.36 1.51
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It is also possible to judge the quality of the fit of the model with the data using R2

values supported with the example of Figure 4 for the case of the sample with a 1.2%
fat content.
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Figure 4. Reflectance profile for the milk sample containing 1.2% fat in the mix-dataset. R2 values for
the fit of R, G, and B channels are, respectively, 0.91, 0.90 and 0.89.

3.3. Correlation with the Fat Content

Another way of assessing the performance of our inversion method is by retrieving
the linear relationship between the fat content of milk and the absorption and reduced
scattering coefficients. For each milk sample, with a different fat percentage, 10 signals
were acquired before computing the estimated coefficients for each of them. Thus, we can
compute some statistics on the estimated values while verifying their linear relationship
with the fat content of milk. Figures 5 and 6 display the results of these statistical studies
regarding the linear correlation with the fat content. The linear regression was performed
with the average estimates of µa and µ′s for each sample of milk, then error bars were
plotted using the 95% confidence interval CI95% = ±1.96 σ√

N
with σ being the standard

deviation of the estimates for each sample and N the number of acquisitions per sample,
hereby 10. In Figures 5 and 6, the linear regressions (solid lines) for each channel were
evaluated by computing confidence intervals at 95% (dashed lines), as well as R2 and
p-values, as shown in Table 3. One can notice the obtained results validate a correlation
between the fat content of milk and its absorption and scattering properties. Indeed, R2

values are very high and close or equal to 1 while the p-values are very low, giving more
weight to the probability of an existing linear correlation. Furthermore, in Figure 6, one
can observe the regression lines for each channel have almost a similar slope since they are
nearly parallel (mostly the case for the blue and green channel). It shows the scattering of
milk mainly varies in magnitude depending on the light’s wavelength, but the variation in
the fat content remains almost constant across the visible spectrum. In previous studies, it
has been shown that fat particles inside the milk play a major role with the interaction of
light in the milk. Being able to retrieve the correlation with our inversion method validates
its use.
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Table 3. Results of statistical studies for the milk mix-dataset.

Channel R G B

µa
R2 0.86 0.94 0.95

p-value 2.8 × 10−3 3.5 × 10−4 2.2 × 10−4

µ′s
R2 0.98 1.00 1.00

p-value 1.6 × 10−6 7.1 × 10−8 3.2 × 10−8
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Figure 5. Linear regression for the absorption coefficient of milk versus the fat content with 95%
confidence intervals (dashed lines). Star symbols (*) represent the value of the coefficient with the
uncertainty bar.
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Figure 6. Linear regression for the reduced scattering coefficient of milk versus the fat content with
95% confidence intervals (dashed lines). Star symbols (*) represent the value of the coefficient with
the uncertainty bar.
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3.4. Comparison with the Literature

There exist several studies in the literature using milk as a test material for estimating
absorption and reduced scattering coefficients [7,33,36], which is one of the reasons why
this highly diffuse material was chosen to test our method. Thus, it is possible to compare
the results obtained from our inversion method to the estimates found in the literature.
Some of the studies such, as Jensen et al. [30], do not provide estimates for the reduced
scattering coefficient µ′s, but rather consider the scattering coefficient µs of the material.
These two optical parameters are related together by the following equation:

µs =
µ′s

1− g
(10)

with g being the average of the cosine of the scattering angle of the material, also called
the anisotropy factor. In the case of a material with high forward scattering properties,
g would get a value close to 1, g = 0 would mean an isotropic material and g = −1 would
be for a material with strong backward scattering. As a consequence, by using Equation (10)
for a high scattering material such as milk, (1− g) could be a very small value. Then,
the µs value obtained would be an increased value of the estimated µ′s by several orders
of magnitude. Assuming g > 0.8, one would need to multiply our values of reduced
scattering by a factor 5 to 10 to obtain scattering coefficient values to compare with the
literature. One should be aware of this difference in the definition of the two parameters
when comparing our results to others in the literature.

Nevertheless, we are able to compare our values obtained from the milk samples with
previous references from the state of the art. Using an integrating sphere to perform their
measurements, Stocker et al. [33] conducted a thorough study of the optical properties of
milk. Their values for both absorption and reduced scattering coefficients were studied
for a spectral purpose. Thus, when comparing their estimates to ours, one must only
consider the visible range from 400 to 800 nm. The range of values they obtained for the
scattering coefficient varies from 1 to 3 mm−1, and the range for the absorption coefficient
is between 1 × 10−3 mm−1 and 1 × 10−2 mm−1. Their ranges match the ones we obtained
from Tables 1 and 2, even though we used different measurement methods. Focusing on
other references with numerical values of the optical properties of milk, Qin et al. [7] also
made use of a spatially resolved method with the diffusion approximation to get their
estimates. Regardless, the ranges of their estimates are slightly superior to ours (between
0.5 and 2 cm−1 for µa). Similarly, Abildgaard et al. [36] determined the diffusion center
of incoming light in a material to obtain estimates of µa and µ′s using a different formula
from Equations (8) and (9). Their results are also larger than ours (less than 1 mm−1 for µa
values). The difference observed in the results could be due to the milk samples used for the
experiment, since each study had their own different samples, or due to the measurement
method utilized since they are different from one study to the other, ours included. Yet, as
shown, the estimated results have similarities and overlaps. Therefore, one may conclude
there is no method better than the others and that our inversion method is coherent.

3.5. Repeatability of Measurements

Another focus on the results for the milk material is their repeatability. It occurs that
between the Q-dataset and the mix-dataset, there are common samples of milk containing
the same fat content while measurements were conducted at separate instances of time.
Thus, a comparison can be made for µa and µ′s values for the samples of 0.1%, 0.5%, 1%,
and 4% of fat content. These results are reported in Table 4, computed as the difference
between values for the Q-dataset and values for the mix-dataset and then divided by the
Q-dataset values taken as the references. When first observing the relative difference for
the reduced scattering coefficients, one can notice the resulted differences are low. It is a
clear indication our inversion method performs well for repeated measurements regarding
µ′s values, especially in the case of highly diffuse materials with high scattering properties.
As mentioned earlier, the largest relative differences observed from Table 4 are for the
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absorption coefficient µa since these values are small from the beginning and thus more
complicated to estimate. The consistency of repeated results for reduced scattering values
tends to indicate our inversion method is operating accordingly.

Table 4. Relative difference of estimated optical values between the two datasets. The Q-dataset is
considered as reference value.

Fat Content Relative Difference of µa Relative Difference of µ′s
R G B R G B

0.1% 46.9% −41.7% 14% 3.2% 5.4% 3.7%
0.5% 14.3% −8.1% −8.3% 1.6% 0% 1.2%
1% −10% 15.4% −18.8% 1.4% 0% 3.2%
4% 0% 26.7% 2.8% 6.7% −0.7% 0.7%

3.6. Discussing the Inversion Method

One contribution of this paper is the inversion method. The process with the nonlinear
fitting was changed as explained in the Section 2. Nonetheless, the algorithm procedure and
the management of the reflectance data have their importance on the final estimates. For
each sample of the materials considered, several records (between 10 to 15) were acquired
each time. The inversion method for estimating the optical properties was implemented
with two variations. The first variation considers all the records for a material sample.
Then, the inversion algorithm is applied on each of them, giving individual (µa, µ′s) values
for each record. Afterwards, the final estimate of (µa, µ′s) is the average of all the individual
estimates. The second variation considers the average of all the records, which removes
potential noise from the sensor, and then perform the inverse algorithm to estimate (µa, µ′s)
values. Therefore, the main difference between the two variations is when the average is
performed, after or before the inversion, and on which quantities it is applied, the estimates
from all the records or the records themselves.

We compared the two variations by using the data of the milk dataset and com-
puting estimates of absorption and reduced scattering coefficients. Values reported in
Tables 1 and 2 are obtained using the second variation of the algorithm as previously men-
tioned. The relative difference between each value of (µa, µ′s) for all milk samples from the
two variations were then computed by taking the second variation as a reference. For this
comparison, the criteria of the dataset (Q or mix) and the colour channel are discarded, i.e.,
we have 33 values of µa and 33 values of µ′s to be compared together for each variation. The
relative difference obtained for absorption values is of −6.3% while the relative difference
for reduced scattering values if of −0.3%. Overall, when combining both of them, we
obtain a general relative difference of −3.3% between the two variations. Since the second
variation is taken as the reference, a negative relative difference means the first variation
provides slightly larger values than the second variation. As shown by the values, the
highest differences are due to the estimates of µa. Milk is a material with higher scattering
properties than absorption, which leads to lower estimates of the absorption coefficient.
These smaller values of µa are thus more challenging to estimate accurately and can gener-
ate large relative differences even though they remain small in absolute value compared
to µ′s values. Therefore, its is not surprising to observe these relative differences of −6.3%
for µa values and −0.3% for µ′s values. Both variations of the algorithm provide similar
estimates of the reduced scattering coefficient. This comparison also gives good results
regarding the robustness of the inversion method since close estimates are obtained from
both variations.

Another point of discussion regarding our method would be the amount of light
collected by the NMOS sensor of the measuring device. It is unsure if the light reflected at
the surface of the material is entirely collected by the sensor, and most likely there are small
losses. Nonetheless, since our inversion method focuses on the shape of the reflectance
signal, we only need normalized data. Thus it is acceptable to not have the entirety of the
light collected by the sensor, especially in the case of a single measurement setup such as
ours, as it could be complicated to verify and ensure.
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4. Other Highly Diffuse Materials

Our method was validated by using the milk material, but there are other highly
diffuse materials on which one can utilize our method. Thus are presented in the following
sections results of the estimated optical properties of white paper substrates and tainted
water with white acrylic paint.

4.1. Optical Properties of Paper

For this experiment, we considered six categories of A4 white paper sheets by selecting
six different paper weights: 80 g/m2, 100 g/m2, 120 g/m2, 160 g/m2, 200 g/m2, and
250 g/m2. As prescribed by the assumptions of the diffusion model, the material considered
should have a semi-infinite thickness and width. To achieve that, for each samples of paper
considered, several sheets were stacked together into reams. 500 A4 sheets were stacked
for 80 and 100 g/m2 while 250 A4 sheets for the other weights, which corresponds to a
thickness of 5.5 cm for 80 g/m2, 5.3 cm for 100 g/m2, 3.2 cm for 120 g/m2, 4.3 cm for
160 g/m2, 5.0 cm for 200 g/m2 and 6.3 cm for 250 g/m2. The sensor device was also put on
top of the stack in the middle area of the sheet to ensure a semi-infinity in planar directions
and avoid having light escaping on the edges. Since all the paper sheets were compactly
stacked together, we assume the air interface between each sheet is too thin to be considered,
and then it allows us to utilize the diffusion model. Further information required for our
inversion method is the knowledge of the real part of the refractive index for the material
considered. In the case of white paper, we used the study of Fabritius et al. [41] to obtain
the value η = 1.557.

Due to the anisotropic nature of the surface of paper and its directionality, we divided
our sets of acquisitions by changing the position of the rectangular sensor in relation to
the orientation of the stack. Therefore, we defined two datasets for our measurements.
One is called the Vertical dataset and it corresponds to the sensor being orthogonal to the
orientation of the paper stack. For example, if the stack is oriented into portrait, then the
sensor shall be in landscape. The second dataset is labelled as the Horizontal dataset to
specify the case in which the sensor is in the same orientation as the sheets. Results are
presented in the following paragraphs.

4.1.1. Vertical Dataset Results

Using our implemented inversion method coupled with the diffusion model, we
were able to fit our data and obtain estimates of the absorption and reduced scattering
coefficients for the paper sheets with the Vertical configurations. Results of these estimates
for each class of paper and each R, G, and B channel are presented in Table 5.

Table 5. Estimated optical properties for vertical dataset.

Weight (g/m2) µa (mm−1) µ′s (mm−1)
R G B R G B

80 6.62 × 10−2 8.51 × 10−2 8.38 × 10−2 3.13 2.61 2.69
100 4.83 × 10−2 7.96 × 10−2 7.65 × 10−2 3.45 2.86 2.91
120 5.70 × 10−2 7.75 × 10−2 8.21 × 10−2 3.37 2.81 2.86
160 3.86 × 10−2 5.41 × 10−2 5.44 × 10−2 3.59 3.08 3.19
200 3.51 × 10−2 5.90 × 10−2 5.27 × 10−2 3.63 3.00 3.16
250 4.20 × 10−2 7.14 × 10−2 5.45 × 10−2 3.51 2.77 3.09

The first observation which can be made is that absorption values are largely lower
than the reduced scattering values, which follows the assumption of highly diffuse mate-
rials. When comparing µ′s values between channels, one can note the red channel values
are larger than the blue, which in turn are larger than the green. This could be interpreted
as paper having a higher scattering capacity for the red wavelength over the blue and the
green. One can also judge the quality of the estimates by using them with the diffusion
model from Equation (1) and comparing the fit to the data. This is shown in Figure 7. The
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R2 scores are correct with an average of 0.72. In the case of paper, it seems difficult to
achieve a better result with this model and inversion method. Paper seems to be a highly
scattering material, making it more challenging for the algorithm to properly estimate the
absorption contribution, if any. This could be a reason to observe a difference between the
fit and actual data at the lower part of the curve where it is the steepest.
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Figure 7. Reflectance profile for the paper 120 g/m2 in the Vertical dataset. R2 values for the fit of R,
G, and B channels are, respectively, 0.70, 0.72, and 0.73.

4.1.2. Horizontal Dataset Results

Similarly to the Vertical configuration, the absorption, and reduced scattering coeffi-
cients of white paper in the Horizontal configuration were computed and are registered
in Table 6. The Horizontal configuration corresponds to the case for which the sensor is
aligned with the orientation of paper sheets. Surprisingly, one can observe similar results
for both µa and µ′s values with respect to the Vertical dataset. Indeed, the reduced scattering
values have the same tendency regarding their behavior towards the wavelengths of the
light source used. Values for the red channel are higher than the blue values and then the
green values.

Table 6. Estimated optical properties for horizontal dataset.

Weight (g/m2) µa (mm−1) µ′s (mm−1)
R G B R G B

80 6.34 × 10−2 8.06 × 10−2 8.00 × 10−2 2.97 2.55 2.56
100 5.07 × 10−2 8.28 × 10−2 7.76 × 10−2 3.33 2.80 2.80
120 5.43 × 10−2 6.41 × 10−2 8.15 × 10−2 3.29 2.94 2.88
160 4.45 × 10−2 5.67 × 10−2 5.97 × 10−2 3.43 3.04 3.08
200 4.33 × 10−2 6.77 × 10−2 6.83 × 10−2 3.48 2.97 3.04
250 4.26 × 10−2 7.07 × 10−2 7.05 × 10−2 3.52 2.87 3.07

The quality of these estimates can also be evaluated by using them to fit the diffusion
model and compare it to the data, as shown on Figure 8. Similar to the Vertical dataset,
the R2 scores are a bit higher for this type of paper, but the same challenge appears when
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considering the steepest part of the curve. Although the diffusion model seems adequate
for the configuration chosen, it might generate some underfitting for this data.
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Figure 8. Reflectance profile for the paper 80 g/m2 in the Horizontal dataset. R2 values for the fit of
R, G, and B channels are, respectively, 0.73, 0.75, and 0.75.

4.1.3. Differences in Estimates between the Two Datasets

The second class of highly diffuse material we tested is white paper substrate. As
previously mentioned, we experimented on two types of configurations for the paper and it
resulted in various values of µa and µ′s for each paper substrate of different weight. Table 7
displays the computed relative difference of the reduced scattering coefficient for paper
between the two configurations when taking the Vertical dataset as a reference. All of the
relative differences are below 5% in absolute value. One can thus conclude the orientation
of the paper substrate may not play a significant role for the scattering of the light when
considering the diffusion approximation.

Table 7. Relative difference of reduced scattering values between the Vertical and Horizontal datasets.
The Vertical dataset is taken as a reference.

Weight (g/m2) Relative Difference of µ′s
R G B

80 5.1% 2.3% 4.8%
100 3.5% 2.1% 3.8%
120 2.4% −4.6% −0.7%
160 4.5% 1.3% 3.4%
200 4.1% 1.0% 3.8%
250 −0.3% −3.6% 0.6%

4.1.4. Correlation with the Whiteness Index

In order to study the evolution of the estimates of absorption and reduced scattering
coefficient between the different substrates, a physical index was chosen. The first choice
was set on the paper’s weight since it naturally differentiates our substrates from each
other, but we were hardly able to find relevant results. Thus we can assume that neither
absorption nor scattering properties of paper are related to the weight of paper sheets. As
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the substrates are all white coloured, we oriented our choice of a physical index towards the
Whiteness Index (WI). Several definitions can be found in the literature, and we selected
two of them. The first WI selected follows the scale of CIE and is defined by

WI = Y + 800(xn − x) + 1700(yn − y) (11)

with (xn, yn) being coordinates which vary with the illuminant and the observer angle
considered to measure the XYZ tristimuli of the material. The second WI chosen is defined
in ASTM E313 of 1998 by

WI = 3.388Z− 3Y (12)

Both definitions are equivalent and for each, Y and Z can be deduced from the knowl-
edge of (x, y, z) tristimuli. Thus, we used an EyeOne©Pro 3 spectrophotometer to measure
the colour components of our substrates in XYZ space under the illuminant D50 and with an
observer angle of 2◦. Then values for (xn, yn) in Equation (11) are (xn, yn) = (0.3457, 0.3585).
Table 8 shows the results of the computed whiteness indices for our paper substrates.

Table 8. Whiteness indices of paper substrates.

Weight (g/m2) 80 100 120 160 200 250

WI CIE 133.4 135.1 137.4 140.1 141.2 142.6
WI E313 23.06 25.92 29.13 32.32 34.02 34.45

With the computed whiteness indices and the estimated values of absorption and reduced
scattering coefficients, we generated linear regression lines for each colour channel and each
definition of WI. Results of this computation are presented in Table 9. A first general comment
is to notice an increase in R2 scores and a decrease in the associated p-values when going from
the WI CIE definition to the WI E313. Even though the two indices are equivalent, one seems
to give better results of linear correlation for µa and µ′s values. One can notice the R2 scores
and associated p-values for the red channel are good across the two datasets for each of the
optical properties and whiteness indices. Regarding the scores of the green channel for the
two WI, they are low, and the fact that p-values are high tends to mean the linear correlation
between whiteness index and absorption or scattering properties of paper is insignificant for
this specific wavelength. The results of the blue channel are mixed. The scores for µa of the
Horizontal dataset are low for both WI, but the others for (µa, µ′s) of the Vertical dataset and µ′s
for the Horizontal dataset are high, and this seems to show the existence of a linear correlation
with the whiteness indices. Overall, these results clearly indicate a linear relationship between
the whiteness indices and the absorption or scattering properties of paper substrates, but it
varies with the wavelength considered.

Table 9. Results of statistical studies for the paper datasets.

WI CIE WI E313
R G B R G B

µa (ver) R2 0.72 0.43 0.79 0.76 0.49 0.77
p-value 0.03 0.16 0.02 0.02 0.12 0.02

µa (hor) R2 0.84 0.58 0.24 0.88 0.63 0.29
p-value 0.01 0.08 0.33 0.006 0.06 0.27

µ′s (ver) R2 0.67 0.30 0.79 0.75 0.39 0.84
p-value 0.05 0.26 0.02 0.03 0.18 0.01

µ′s (hor) R2 0.78 0.58 0.86 0.82 0.69 0.91
p-value 0.02 0.08 0.007 0.01 0.04 0.003

4.2. Optical Properties of White Paint Mixed with Water

Another diffuse material we used for testing our inversion method is tainted water
mixed with white acrylic paint. By increasing the concentration of pigments in the sample
between each acquisition, we are able to monitor the evolution of absorption and reduced
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scattering coefficients of the mixture depending on the amount of paint dropped in it.
To perform the acquisitions, we followed a similar protocol as the one utilized for milk
measurements, as in both cases we are dealing with liquid materials. Thus, we filled out
the same cylindrical transparent glass with tap water up until the height of 13.5 cm (out of
a maximum of 16 cm for a diameter of 9 cm). It corresponds to an approximate volume of
850 milliliters. Then we added the drops of white acrylic paint and mixed them with water
until reaching homogeneity before performing the acquisition. Due to the high volume
of water, we started off the mixture by adding 2 drops of white paint, then mixed it and
measured the reflectance profile with the TLS device. The incremental number of drops
between each acquisition is 2 drops of white paint.

4.2.1. Results

Results of the inversion method applied to the reflectance profiles are displayed in
Table 10. µ′s estimated values are larger than µa values, which is expected from a diffuse
material with high scattering properties. However, one may notice that absorption values
for the first samples with 2 and 4 drops of white paint are extremely low, to the point their
absorptive properties could be nullified. Due to the high initial volume of water in the
glass, these concentrations of paint may not have been enough to change the absorption
properties of the resulted mixture. The mixture was not diffuse enough, which could
be visually checked, and thus some absorptive properties of the water may have stayed
dominant. As a consequence, we chose to keep these points in the dataset for the results to
be displayed and discussed, but we discard them for studying the correlation between the
concentration of white paint and the estimated optical properties.

Table 10. Estimated optical properties for the white paint dataset.

Drops µa (mm−1) µ′s (mm−1)
R G B R G B

2 6.1 × 10−12 2.8 × 10−11 1.5 × 10−11 0.45 0.46 0.50
4 2.0 × 10−12 1.4 × 10−13 1.4 × 10−11 0.40 0.43 0.44
6 2.3 × 10−5 6.4 × 10−5 9.3 × 10−5 0.43 0.48 0.48
8 1.1 × 10−10 3.8 × 10−5 6.5 × 10−5 0.44 0.49 0.49
10 1.3 × 10−4 3.5 × 10−4 5.5 × 10−4 0.47 0.53 0.52
12 5.7 × 10−4 1.0 × 10−3 1.4 × 10−3 0.51 0.56 0.56
14 1.0 × 10−3 1.1 × 10−3 1.8 × 10−3 0.53 0.60 0.59
16 1.5 × 10−3 1.1 × 10−3 2.3 × 10−3 0.55 0.64 0.63
18 2.0 × 10−3 1.7 × 10−3 3.0 × 10−3 0.56 0.68 0.65
20 2.7 × 10−3 2.0 × 10−3 3.9 × 10−3 0.57 0.72 0.68

4.2.2. Correlation with the Concentration of White Pigments

For this material, we wanted to check if a correlation could be found between absorp-
tion or scattering properties and the concentration of white pigments in the mixture. Since
additional pigments in the mixture would increase the white perception and most likely its
reflective properties, there might be a relation with the propagation of light in the material.

R2 scores and p-values for µa and µ′s regarding R, G and B channels are registered in
Table 11. On the other hand, Figures 9 and 10 show the linear regression lines respectively
for µa and µ′s. As one can note with the numbers of Table 11, a strong linear correlation
has been identified for both optical properties depending on the concentration of white
pigments. R2 scores are in the range of 0.93 to 1 while p-values are very low, making it more
possible for a linear correlation to exist. On Figure 9, one can notice the regression lines
are going through their respective error bars. This is not the case in Figure 10, although
the error bars are smaller due to less uncertainty and the points are quite aligned with the
regression lines.
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Table 11. Results of statistical studies for the white paint dataset.

Channel R G B

µa
R2 0.93 0.96 0.97

p-value 1.2 × 10−4 2.6 × 10−5 9.2 × 10−6

µ′s
R2 0.97 0.99 0.99

p-value 9.8 × 10−6 3.1 × 10−7 7.7 × 10−8
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Figure 9. Linear regression for the absorption coefficient of white paint versus the drops number with
95% confidence intervals. Star symbols (*) represent the value of the coefficient with the uncertainty bar.
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Figure 10. Linear regression for the reduced scattering coefficient of white paint versus the drops
number with 95% confidence intervals. Star symbols (*) represent the value of the coefficient with the
uncertainty bar.
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Therefore, it can be concluded a linear correlation exists between the concentration of
white pigments and absorption or scattering coefficients. Even if our method of estimating
the concentration of white pigments is as imprecise as just counting drops, one could study
the way white paint on artworks absorbs or scatters light, and thus determine the initial
concentration added to the mixture. Although in this case, the paint would be dry, which
could affect the estimated coefficients.

5. Conclusions

We reviewed material appearance and methods to measure optical properties of the
material. We used a spatially resolved measurement method with the Dia-Stron©TLS850 to
obtain reflectance profiles of highly diffuse materials. Based on these data, we designed and
applied a nonlinear inversion algorithm to fit the diffusion model by splitting the reflectance
curve in two parts to solve the ill-posed problem when only having a single measurement.
This resulted in estimates of absorption and reduced scattering coefficients of the material.
The comparison of estimates for milk samples with values from the literature allowed
us to validate our method. The values of absorption coefficients retrieved vary between
1 × 10−3 and 8 × 10−3 mm−1, whilst the values of the scattering coefficients obtained from
our method are between 3 and 8 mm−1, depending on the percentage of fat in the milk
sample, and under the assumption of the anisotropy factor g > 0.8. When comparing to the
current literature, values for the scattering coefficient usually vary between 1 and 5 mm−1,
while absorption coefficient values are between 1 × 10−1 and 1 mm−1, depending on the
studies performed [7,33,36]. Although there are some variations for the range of absorption
coefficients, the range of scattering values estimated overlaps the one from the literature.
These results were also supported by finding a linear correlation between optical properties
and the fat content of milk, as we obtained a good fitting given by R2 scores over 0.94 with
low p-values, thus demonstrating the validity of our designed method. Furthermore, we
investigated paper and white paint materials. We observed a linear correlation between the
concentration of paint pigments and optical coefficients. In the case of paper, it was more
challenging. As we have mentioned, the paper structure is anisotropic and we would thus
require more measurements at different angles, then add them in the model to consider the
anisotropy structure and to obtain a good estimates of the properties. A future work could
be to invent a new measuring device with a central light source surrounded by CCD sensors
in different directions to be used for anisotropic materials. Therefore, we can conclude
our measurement method performs well on highly diffuse and isotropic materials, but it
should work with diffuse materials too as long as the samples considered are large enough
to use the semi-infinite assumption and the measuring instrument is adapted.

However, challenges remain for this measurement method and class of materials. We
mainly used relative quantities but it should be possible to explore the field of measuring
objective quantities. Furthermore, the model could be adapted to directly estimate the
scattering coefficient of a material instead of the reduced scattering, then requiring addi-
tional knowledge on the anisotropy factor. The method could even be refined to provide
more precise values regarding the absorption coefficient. Eventually, this method could be
compared to other methods (Monte Carlo simulations, machine learning based methods)
used in the literature to measure optical properties of diffuse materials. Generally, this work
has validated the method, while there are possibilities for improvements. Thus, it allows
us to continue to study materials with little stability or a fast evolution in situ. Potential
contexts or materials to be considered are the process of 3D printed white objects, dairy
food manufacturing, or the evolution of snow for climate monitoring.
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