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Résumé – Les systèmes à double fonction radar-communication (DFRC) ont été mis en place en réponse à la pénurie spectrale
en intégrant des fonctionnalités radar et de transmission reposant sur une unique forme d’onde. Tout récemment, une attention
particulière a été portée à l’usage d’un système à plusieurs antennes et une forme d’onde fondée sur une approche OFDM (orthogonal
frequency division multiplexing). Dans ce cas, l’un des points clés est l’estimation des paramètres des cibles tels que la direction
d’arrivée (DOA), la distance et la vitesse. Dans cette communication, nous dérivons ce que l’on appelle la borne de Cramér-Rao
modifiée relative à l’estimation des DOA, distances et vitesses des cibles. Puis, nous analysons de quelle manière cette borne dépend
du rapport signal sur bruit et des paramètres du système tels que le nombre de sous-porteuses, de symboles OFDM et d’antennes.

Abstract – Dual-Function Radar and Communication (DFRC) systems have emerged to solve spectrum scarcity by integrating
both Radar and communication functionalities based on a single waveform. Recently, a great attention has been paid to the systems
based on multiple antennas and using orthogonal frequency division multiplexing (OFDM) as a waveform. In that case, one of the
key issues is the estimation of the target parameters such as the direction of arrival (DOA), the range and the velocity. In this paper,
we derive what is called the modified Cramér-Rao bound (MCRB) for the estimations of the DOA, range and velocity of the targets
and analyze how the MCRB depends on the signal-to-noise ratio and the system parameters such as the number of sub-carriers,
OFDM symbols and antennas.

1 Introduction
For the last few years, there has been a growing interest in

Multiple-Input Multiple-Output (MIMO) Dual-Function Radar
Communication (DFRC) systems because this system can de-
tect targets by means of a radar and also communicate with the
same hardware, by introducing transmission of information
bits in a Radar waveform [5, 9, 15]. Orthogonal signals were
also transmitted from multiple antennas due to the improved
angular resolution [11] and the data rates. One popular wave-
form used in the literature for transmitting orthogonal signals
from multiple antennas is the Orthogonal Frequency Division
Multiplexing (OFDM). OFDM offers a high range resolution
and is well-suited to combat multi-path fading.
Thus, when dealing with MIMO OFDM DFRC systems, var-
ious issues have to be addressed. One of them is the estima-
tion of the target parameters, namely the direction of arrival
(DOA), the range and the velocity. Regarding the DOA, many
approaches can be used from subspace methods [6] to deep-
learning based approaches [3]. In [2], we suggested estimating
not only the DOA but also the range and the velocity of the tar-
gets by using subspace methods. This can be done if the Radar
waveform is based on the data symbols that are replicated over
a few sub-carriers and during a few OFDM symbols. As this
replication can reduce the data rate in the communication part,
the target ranges and velocities can be estimated by using a
least-squares (LS) or total LS method. Another way to esti-
mate the target parameters is based on the Fourier transform
(FT) [13]. Its main advantage is its low computational cost. In
[14], the DOAs of the different targets are jointly estimated by

using a FT. Then, the estimation of the range and the velocity
is based on an element-wise division between two quantities
requiring the identification of the values of the main peaks
of the modulus of the FT of the received signal and the term
involving the DOA estimate. However, problems occur when
more than one target must be detected because FT is known to
be a low-resolution approach unable to discriminate the DOAs
of two targets when the DOA difference is small. For this rea-
son, in [1], we proposed an operation mode making it possible
to address the estimations of the DOAs separately. Indeed, by
taking advantage of the system model, the waveform can be
designed so that the magnitudes of the signals back-scattered
by the targets can be reduced except the one located in a spe-
cific zone. The number of zones and their limits depend on
the choice of the constellation and the number of antennas.
Moreover, each zone is scanned at one sub-carrier.
Another topic about DFRC systems is to optimize some perfor-
mance metrics for the Radar and communication parts. Thus,
in [8], the authors aim to minimize the Cramér-Rao bound
(CRB) of the DOA under some constraints related to signal to
interference plus noise ratio for communication users. In [12],
the noise-free received-data vector is expressed as a product
of two matrices: the target response matrix that depends on
the DOA and a second matrix that depends on the transmitted
data and the beamforming matrix. Then, the authors propose
to select the antennas and then define the beamforming matrix
by minimizing a criterion which is a weighted sum of the data
rate and the CRB of the target response matrix.
Our work is complementary to [8, 12]. Thus, our short-term
goal is to derive the CRB when dealing with the estimations of
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the DOA, the range and the velocity of the targets in a MIMO
OFDM DFRC system. In the system model we consider, the
magnitude of the signals back-scattered by the targets are mod-
elled by combining the Radar range equation and the Swerling
model characterizing the statistical behaviour of the Radar
cross section (RCS) of the target. Our purpose is to analyze
the influence of the signal-to-noise ratio (SNR) and the sys-
tem parameters such as the number of sub-carriers, OFDM
symbols, and antennas on the CRB. Since it is not necessar-
ily straightforward to derive the CRB due to the randomness
of quantities like the RCS and the transmitted symbols, we
propose to focus our attention on the modified CRB (MCRB),
which was used by Gini in [4]. In our case, it consists in
first considering the likelihood of the noisy observations given
the RCS and the transmitted symbols, then deriving it with
respect to the parameters to be estimated and finally taking the
expectation with respect to the observations, the RCS and the
transmitted symbols. The difference between the CRB and the
MCRB is positive semidefinite [4].
The remainder of the paper is organized as follows: The system
model is discussed in Section 2. The derivation of the MCRB
is presented in Section 3. Finally, Section 4 provides conclu-
sions and perspectives. In the following, ∗ is the conjugate,
E[.] the expectation and Re the real part.

2 System Model
Let us consider a mono-static MIMO radar in a DFRC

system based on a uniform linear array of L transmit antennas
and M(= L) receive antennas. d is the distance between
two antennas. Then, an OFDM waveform is employed based
on G sub-carriers with a sub-carrier spacing ∆f . The data
symbols are first modulated over the sub-carriers with the
inverse discrete Fourier transform (IDFT). A cyclic prefix (CP)
is then added and the samples are converted to an analog signal.
The L transmit antennas transmit U OFDM symbols, each of
duration T seconds. Given the above description, let us define
sl(t) the baseband equivalent version of the transmitted signal
from the lth transmit antenna, with l = 0, · · · , L− 1 [2]:

sl(t) =

U−1∑
u=0

G−1∑
g=0

s(g, u, l) exp (j2πg∆ft) rect
(
t− uT

T

)
(1)

where s(g, u, l) is the data symbol modulated over the gth

sub-carrier, fg = fc + g∆f (with fc the carrier frequency),
during the uth OFDM symbol transmitted by the lth an-
tenna. Note that as the symbols s(g, u, l) are normalized for
g = 0, · · · , G− 1, u = 0, · · · , U − 1 and l = 0, · · · , L− 1
and uniformly drawn from a given constellation. The set of
s(g, u, l) ∀ l consists of i.i.d. zero-mean uniformly-distributed
random variables with unit variance. This implies that:

E[s∗(g, u, l)s(g, u, l
′
)] =

{
1 if l = l

′

0 if l ̸= l
′ (2)

Assuming that there are K targets defined by their
DOAs {θk}k=1,...,K , ranges {Dk}k=1,...,K and velocities
{vk}k=1,...,K , the ideal baseband signal ym(t), received by
the mth antenna can be written as follows:

ym(t) =
K∑

k=1

αk

L−1∑
l=0

sl(t− τk) exp (j2πf
d
k t) (3)

where αk is the multiplicative constant defined from the Radar
range equation and the Swerling model 1. It is given by 1:

αk =
λcσ

1/2
k

(4π)3/2D2
k

(4)

where λc is the ratio between the velocity of light denoted as
c and fc. Moreover, σk is the RCS of the kth target. Given
the Swerling model 1, σk ∼ exp(σavg) with σavg the statistical
mean of the target RCS. Note that σ1/2

k is a Rayleigh dis-
tributed random variable with scale parameter 1√

2σavg
. When

more than one target is considered, the following property can
be useful (where k1 and k2 denote the target indices):

E[(σ∗
k1
)1/2σ

1/2
k2

] =

{
E[|σk1 |] = E[σk1 ] =

1
σavg

for k1 = k2

E[(σ∗
k1
)1/2]E[σ1/2

k2
] = π

4σavg
for k1 ̸= k2

(5)
In addition, the delay τk can be approximated by:

τk ≈ 2
Dk

c
+ (l +m)d sin θk (6)

and the Doppler frequency satisfies fd
k ≈ 2 vkfc

c .
At the receiver, after applying the DFT to the ideal received
signal after converting the signal from the analog to the discrete
domain and removing the CP, the received data symbols are
assumed to be given by:

y(g, u,m) = µ(g, u,m) + η(g, u,m) (7)

where {η(g, u,m)}g=0,···G−1;u=0,··· ,U−1;m=0,··· ,M−1 is a set
of independent and identically distributed (i.i.d.) Gaussian
random variables with zero-mean and variance σ2

η . No clutter
is considered in this study. Moreover, the noise-free received
signal µ(g, u,m) is given by:

µ(g, u,m) =

K∑
k=1

Γk(g, u,m) (8)

where Γk(g, u,m) is the received back-scattered signal by the
kth target and is given by:

Γk(g, u,m) = αk

[
L−1∑
l=0

s(g, u, l) exp
(
−jlωθk,g

)]
(9)

× exp
(
−jmωθk,g

)
exp (−jgωDk ) exp(juωvk )

with: 
ωθk,g = 2πd sin θk

(fc+g∆f)
c

ωDk = 4π∆fDk
c

ωvk = 4πTvk
λc

(10)

At the receiver, the signal-to-noise ratio related to the kth

target is defined by:

SNRk =

∑G−1
g=0

∑U−1
u=0

∑M−1
m=0 E [Γk(g, u,m)Γ∗

k(g, u,m)]∑G−1
g=0

∑U−1
u=0

∑M−1
m=0 E [η(g, u,m)η∗(g, u,m)]

(11)

=
λ2
c

64π3D4
kσavgσ2

η

M (12)

In the next section, we derive the MCRB for the above-
mentioned system model for the single-target case for sim-
plicity in mathematical development. Note that the same
methodology can be applied when there are more targets.

1. The signal back-scattered by each target at the frequency fc + g∆f

should be multiplied by αk,g =
cσ

1/2
k

(4π)3/2(fc+g∆f)D2
k

. By approximating

fc + g∆f by fc, αk,0 ≈ αk,1 · · · ≈ αk,G−1 = αk
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3 Derivation of the modified Cramér-
Rao bound

The MCRB matrix C is related to the modified Fisher
information matrix (MFIM), F as C = F−1. In the
single-target case, the parameter vector is given by
ζ =

[
θ1 D1 v1

]T
and one has:

C =

Cθθ CθD Cθv

CDθ CDD CDv

Cvθ CvD Cvv

 = F−1 =

Fθθ FθD Fθv

FDθ FDD FDv

Fvθ FvD Fvv

−1

(13)
F is a Hermitian matrix and can be calculated as [4] [7]:

F = −Ey,s,σ

(
∂2 ln p(y|s,σ; ζ

)
∂ζ∂ζT

)
(14)

where y and s are the column vectors that stack the received
and the transmitted data along the spatial, frequency and time
domains respectively. The vector σ consists of {σ1/2

k }Kk=1. In
addition, p(y|s,σ; ζ) is the likelihood function of the vector y
given s and σ. The (pth, qth) element of F is calculated based
on the assumption that p(y|s,σ; ζ) is a multivariate Gaussian
distribution. It is given by:

Fp,q =
2

σ2
η

G−1∑
g=0

U−1∑
u=0

M−1∑
m=0

Re

[
Es,σ

[
∂µ∗(g, u,m)

∂ζp

∂µ(g, u,m)

∂ζq

]]
(15)

where ζp and ζq are pth and qth elements of ζ.
In the following, we give some details to deduce the expression
of F1,2 = FθD as an example. Then, the other elements of
the matrix are presented in a table. Finally, the analytical
expression of the diagonal elements of the MCRB are given.

3.1 Expression for the element FθD

The expression of FθD can be deduced from:

FθD
(15)
=

2

σ2
η

G−1∑
g=0

U−1∑
u=0

M−1∑
m=0

Re

[
Es,σ

[
∂µ∗(g, u,m)

∂θ1

∂µ(g, u,m)

∂D1

]]
(16)

Using (4), (8) and (9), let us calculate ∂µ(g,u,m)
∂θ1

as follows:

∂µ(g, u,m)

∂θ1
=

λcσ
1/2
1

(4π)3/2D2
1

exp (−jgωD1) exp(juωv1) (17)

×

[
L−1∑
l=0

s(g, u, l)

(
−j(l +m)

∂ωθ1,g

∂θ1

)
exp

(
−j(l +m)ωθ1,g

)]

with
∂ωθ1,g

∂θ1
= 2πd cos θ1

(fc+g∆f)
c .

Similarly, keeping in mind that α1 depends on D1, ∂µ(g,u,m)
∂D1

leads as:

∂µ(g, u,m)

∂D1
=

λcσ
1/2
1

(4π)3/2D2
1

(
− 2

D1
− jg

∂ωD1

∂D1

)
(18)

× exp (−jgωD1) exp(juωv1)

[
L−1∑
l=0

s(g, u, l) exp
(
−j(l +m)ωθ1,g

)]

with ∂ωD1

∂D1
= 4π∆f

c .
As s and σ are independent of each other, the expectation

Elements
of F Expressions

Fθθ

γ
d2 cos2 θ1

6
(7M − 5)(M − 1)

×
[
1 +

∆f

fc
(G− 1) +

(
∆f

fc

)2
(G− 1)(2G− 1)

6

]
FθD γ d∆f cos θ1

fc
(G− 1)(M − 1)

[
1 + ∆f

fc

(2G−1)
3

]
Fθv −γTd cos θ1(U − 1)(M − 1)

[
1 + (G−1)

2
∆f
fc

]
FDD γ

λ2
c

π2

[
1
D2

1
+ 2π2(G−1)(2G−1)(∆f)2

3c2

]
FDv −γ T∆f

fc
(G− 1)(U − 1)

Fvv γ 2T 2

3 (U − 1)(2U − 1)

Table 1 – Elements in the sub-matrices of F

Es,σ

[
∂µ∗(g,u,m)

∂θ1

∂µ(g,u,m)
∂D1

]
using (2) leads to:

Es,σ

[
∂µ∗(g, u,m)

∂θ1

∂µ(g, u,m)

∂D1

]
= − λ2

c E[σ1]

(4π)3D4
1

∂ωθ1,g

∂θ1
(19)

×
(

2j

D1
− g

∂ωD1

∂D1

)[
L−1∑
l=0

(l +m)

]

Since E[σ1] =
1

σavg
and after further simplification, one gets:

FθD =
d∆f cos θ1γ

fc
(G− 1)(M − 1)

[
1 +

∆f

fc

(2G− 1)

3

]
(20)

where γ = GUM2

8πσ2
ησavgD

4
1

.

Following a similar procedure, all the elements in F can be
calculated and are presented in Table (1).
Then, the MCRB matrix can be deduced by inverting the
MFIM. In the next sub-section, we focus our attention on the
diagonal elements of the MCRB matrix for the sake of space.

3.2 Diagonal elements of the MCRB matrix
From the 3× 3 matrix F , the analytical expression of each

diagonal element of the MCRB matrix can be expressed as the
ratio of polynomials in ∆f

fc
. Thus, one gets:

Cθθ = β
β0,n + β2,n(

∆f
fc

)2

β0,d + β1,d
∆f
fc

+ β2,d

(
∆f
fc

)2 (21)

where β, β0,n, β2,n and {βq,d}q=0,1,2
2 are weights depending

on products of quantities such as G−1, 2G−1, 7G−5, U−1,
2U − 1, M − 1, but also D1, d, SNR1, etc. It leads to expres-
sions that are too long to be presented in this communication.
Therefore, we suggest making a few approximations 3 such as
G − 1 ≈ G, (U − 1) ≈ U and M − 1 ≈ M to provide an
approximation of the diagonal terms of C, i.e. Ĉθθ, ĈDD and
Ĉvv . In that case, one gets:

β ≈ 1

8π2d2 cos2 θ1GUM3SNR1
(22)

2. The index n refers to the numerator while d refers to the denominator.
3. G,U and M are assumed to between ten to a few tens, but larger values

could also be considered.
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and: 

β0,n ≈ 4
3

λ2
c

π2D2
1

and β2,n ≈ 7
9G

2

β0,d ≈ 5
9

1
π2D2

1
+ 13

54
G2(∆f)2

c2

β1,d ≈ 5
9

G
π2D2

1
+ 7

54
G3(∆f)2

c2

β2,d ≈ 29
108

G2

π2D2
1
+ 7

162
G4(∆f)2

c2

(23)

Similarly, ĈDD and Ĉvv can be obtained as follows 4:

ĈDD = β̃
β̃0,n + β̃1,n

(
∆f
fc

)
+ β̃2,n

(
∆f
fc

)2

β0,d + β1,d

(
∆f
fc

)
+ β2,d

(
∆f
fc

)2 (24)

with:
β̃ ≈ 1

8π2GUMSNR1
(25)

and: {
β̃0,n ≈ 5

9

β̃1,n ≈ 5
9G and β̃2,n ≈ 29

108G
2 (26)

Ĉvv = β
′

∑4
q=0 β

′

q,n

(
∆f
fc

)q

β0,d + β1,d

(
∆f
fc

)
+ β2,d

(
∆f
fc

)2 (27)

with:
β

′
≈ 1

8π2T 2GU3MSNR1
(28)

and:
β

′

0,n ≈ 7λ2
c

6π2D2
1

and β
′

1,n ≈ 7λ2
cG

6π2D2
1

β
′

2,n ≈ 5
9G

2 +
7λ2

c

18π2D2
1
G2 and β

′

3,n ≈ 2
9G

3

β
′

4,n ≈ 2
27G

4

(29)

First of all, the simulations we conducted confirm that the
approximations are relevant. Given (21), (24) and (27), we
can notice that Ĉθθ, ĈDD and Ĉvv are inversely proportional to
SNR1. In addition, we checked by simulations that Ĉθθ and
Ĉvv are inversely proportional to M3 [10] and U3 respectively.
Moreover, from equation (21), as Cθθ depends on the inverse
of cos θ1, it increases when θ1 tends to ±π

2 .
Figure 1 shows that depending on the target range, the de-
pendency of ĈDD with G varies. Indeed, by neglecting the
smallest terms in the denominator of (24), ĈDD is inversely
proportional to G for smaller values of D1 and G, whereas
ĈDD is inversely proportional to G3 for higher values of D1.

4 Conclusions and perspectives
In a MIMO OFDM DFRC system, estimating the DOA but

also the range and the velocity can be of real interest. In this
communication, our purpose was to derive the MCRB in a
single-target case with a few approximations in order to see
how the MCRB may vary with respect to the SNR and the
system parameters like the number of sub-carriers, OFDM
symbols and antennas. The next step is to analyse the cross-
dependency between the target parameters and to extend our
study to more than one target. Finally, the derivation of the
MCRB will serve as a basis to select antennas and sub-carriers
in order to optimize the performance of DFRC systems in
terms of data rate and accuracy of DOA, range and velocity.

4. The denominators of Ĉθθ , ĈDD and Ĉvv defined by {βq,d}q=0,1,2

are the same and are obtained from the determinant of F .

Figure 1 – Variation of ĈDD with G for different values of D1 at
SNR1 = 20 dB, U = 64, M = 16, ∆f = 20KHz, fc = 2GHz,
(θ1, v1) = (39.32o, 31.72m/s)
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