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Abstract

Estimation of an adequate premium in presence of extreme events is of crucial importance for
reinsurance companies. In this paper, we consider the statistical issue of constructing confidence
intervals for the proportional hazard premium (PHP) under high-excess loss layer. A straightforward
confidence interval is based on the asymptotic normal approximation of the PHP. However, its
coverage accuracy can be unsatisfactory. In this paper, we propose two other methods, namely, the
likelihood ratio method and the data tilting method. We establish their asympotic properties. Then,
we assess their finite-sample performance via simulations. Finally, we apply the proposed methods
on two real data sets (Danish fire losses and Algerian car insurance claims). Our investigations
suggest that the data tilting method provides the best results.

Keywords: data tilting ; likelihood ratio method ; Hill estimator ; normal approximation ; tail
index

1. Introduction

Extreme events arise in a wide variety of domains : environment (flooding, heat waves), in-
dustry (industrial accident, fire), finance (crash, extreme loss). . . and can cause considerable losses
in insurers portfolio. It has therefore become crucial for insurance and reinsurance companies to
determine adequate premiums for extreme risks. Several premium calculation principles have been
proposed for that purpose. One of the most recent principles is based on a distortion function, that
is, an increasing and concave function g : [0, 1] → [0, 1] satisfying g(0) = 0 and g(1) = 1 (Wang,
1996).

Let X be a random risk with distribution function (df) F . The distortion risk measure based
on g is defined as

Π(g) =

∫ ∞
0

g(1− F (x)) dx. (1.1)

The well-known proportional hazard premium - PHP (Wang, 1995) arises as a special case of (1.1)
when g(x) = x1/ρ, for ρ ≥ 1. Several other examples of distortion functions are given in Wang
(1996). The PHP of X is thus given by:

Πρ =

∫ ∞
0

(1− F (x))
1
ρ dx,

which is also the distorted expectation of X. The parameter ρ controls the amount of risk loading
in the premium. It is called the distortion coefficient, or risk aversion index. The estimation of
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Πρ has been investigated by several authors, see for example Centeno and Andrade e Silva (2005),
Necir and Meraghni (2009), Rassoul (2012a), Deme et al. (2013).

In reinsurance, one is often interested in estimating a premium for a given retention level R > 0,
that is, a reinsurance premium of the high layer [R,∞). This issue arises when an insurer decides to
transfer part of a risk to a reinsurer, since it may not have sufficient financial resources to bear the
total risk. In this case, the reinsurer will not pay the insurer if X is less than or equal to R and will
pay (X−R) if X exceeds R (equivalently said, the reinsurer compensates the cedant’s loss above the
retention level R only). The amount paid by the reinsurer is thus (X−R)+, where x+ = max(0, x),
and the corresponding PHP for the layer [R,∞) is defined as the distorted expectation of (X−R)+:

Πρ,R =

∫ ∞
R

(1− F (x))
1
ρ dx.

For high-excess loss layers (R → ∞) of a heavy-tailed insured risk, Necir and Boukhetala (2004),
Vandewalle and Beirlant (2006), Necir et al. (2007), Rassoul (2012b), Benkhelifa (2014), Ahmedou
et al. (2023) proposed various estimators of Πρ,R and proved their asymptotic normality. These
estimates are obtained for a fixed risk aversion index ρ and an optimal retention level Ropt =
F←(1− ε), where ε is a small number and F←(s) = inf{t > 0, F (t) ≥ s} is the generalized inverse
of F . As an extension of these contributions, our interest, here, is to construct confidence intervals
for Πρ,R, in the case of high-excess loss layers.

One obvious first method to construct a confidence interval for Πρ,R is to use the asymptotic
normality of an estimate of Πρ,R. This approach is described in Section 2.1. Our simulation
study in Section 3 will show, however, that the coverage probabilities of the resulting intervals
can be quite far from the nominal confidence level. Therefore, in this paper, we investigate two
alternative methods, namely a likelihood ratio method and a data tilting method (data tilting is a
non-parametric approach which can be seen as a generalization of the empirical likelihood method of
Owen (2001)). Both methods have recently proved useful to construct confidence intervals in various
contexts. For example, Lu and Peng (2002) and Peng and Qi (2006) use the likelihood ratio method
to obtain confidence intervals for the tail index and high quantiles of a heavy-tailed distribution.
Empirical likelihood was used by Lu and Peng (2002), Li and Qi (2019), Qi et al. (2023) to construct
confidence intervals for the tail index and high quantiles of a heavy-tailed distribution. Data tilting
was introduced by Hall and Yao (2003) for constructing confidence regions in regression problems.
Peng and Qi (2006) adapted the method to construct confidence intervals for high quantiles of a
heavy-tailed distribution. Chan et al. (2007) and Tursunalieva and Silvapulle (2016) used data
tilting to construct confidence intervals for the value-at-risk (VaR).

Our paper is organized as follows. In Section 2, we briefly describe asymptotic normality-based
confidence intervals for Πρ,R. Then, we show how the likelihood ratio and data tilting methods
can be adapted to construct confidence intervals for Πρ,R. We state two results about the asymp-
totic properties of these methods. In Section 3, the results of a simulation study comparing the
performance of the three methods are reported. We also describe two real data applications of the
proposed confidence intervals (on a set of Danish fire losses and a set of Algerian car insurance
claims). Proofs of the theoretical results are provided in an appendix.
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2. Confidence intervals for the premium Πρ,R: methodology

2.1. The normal approximation approach
Let X1, . . . , Xn be a sample of independent and identically distributed risks with common df F .

We assume that F is heavy-tailed, that is, for every x > 0, the survival function 1− F satisfies:

1− F (x) = x−αℓ(x), (2.2)

where α > 0 is an unknown parameter (called the tail index) and ℓ is a slowly-varying function at
infinity, that is,

lim
x→∞

ℓ(tx)

ℓ(x)
= 1, for all t > 0.

The survival function 1− F of a heavy-tailed distribution thus satisfies:

lim
x→∞

1− F (tx)

1− F (x)
= t−α, for all t > 0,

and is said to be regularly-varying with tail index α.
Let X1,n ≤ X2,n ≤ . . . ≤ Xn,n be the order statistics of the sample X1, . . . , Xn and k = k(n)

be an integer sequence such that k → ∞ and k/n → 0 as n → ∞. Necir et al. (2007) consider the
optimal retention level Ropt = F←(1− k/n) and propose the following estimator of Πρ,Ropt :

Π̂ρ,R̂opt
=

(
k

n

) 1
ρ ρ

1/γ̂ − ρ
Xn−k,n, (2.3)

where R̂opt = Xn−k,n and γ̂ is the Hill estimator (Hill, 1975) of the extreme value index γ = 1/α,
defined by:

γ̂ =
1

k

k∑
i=1

logXn−i+1,n − logXn−k,n. (2.4)

Remark 1. In Necir et al. (2007), Π̂ρ,R̂opt
is obtained by substituting, in Πρ,R =

∫∞
R (1−F (x))

1
ρ dx,

the retention level R = Ropt = F←(1 − k/n) by R̂opt = Xn−k,n and the tail 1 − F (x), x → ∞, of
the heavy-tailed df F by the approximation 1− F̂ (x) = (k/n)X

1/γ̂
n−k,nx

−1/γ̂. Integrating over x finally
yields (2.3). ■

The asymptotic normality of Π̂ρ,R̂opt
is established under the so-called second-order regular

variation condition (de Haan and Ferreira, 2006). Let U(t) = (1/(1 − F ))←(t). Then U is said to
satisfy the second-order regular variation condition if there exists a function A such that A(t) → 0
as t → ∞ and

lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ

xβ − 1

β
(2.5)

for all x > 0, where β ≤ 0.
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Theorem 2.1. (Necir et al., 2007, 2010) Let ρ ≥ 1 and assume that (2.5) holds. Let k = k(n)
be an integer sequence such that k → ∞, k/n → 0 and

√
kA(n/k) → 0 as n → ∞. Then, for

0 < γ < 1/ρ, the following holds as n → ∞:

(k/n)
− 1

ρ

Xn−k,n

√
k(Π̂ρ,R̂opt

−Πρ,Ropt)
L−→ N (0, σ2(ρ, γ)),

where

σ2(ρ, γ) =
ργ(γ2 − 2γ3ρ+ γ4ρ2 + 1)

(1− ργ)2
.

Based on this result, a confidence interval with asymptotic confidence level 1− p for Πρ,Ropt is:

Π̂ρ,R̂opt
± z1−p/2

σ(ρ, γ̂)Xn−k,n(k/n)
1
ρ

√
k

,

where z1−p/2 denotes the quantile of order 1 − p/2 of the standard normal distribution and γ̂ is
the Hill estimator, see Necir et al. (2007). We will see in our simulation study that the coverage
accuracy of this interval can be quite far from the nominal confidence level.

Now, we investigate two alternative methods for constructing confidence intervals for Πρ,R.

2.2. Likelihood ratio method
First, we provide an interpretation of Π̂ρ,R̂opt

as a maximum likelihood estimator in a slightly
modified form of model (2.2). This observation will motivate our construction of the likelihood ratio
confidence interval. Assume that F has the form

1− F (x) = cx−α, for x > u, (2.6)

where u is some high threshold and c > 0 is an unknown parameter (Lu and Peng (2002) and Peng
and Qi (2006) construct confidence intervals for the tail index and high quantiles of a heavy-tailed
distribution, based on this model).

By substituting 1−F (x) = cx−α in Πρ,R =
∫∞
R (1−F (x))

1
ρ dx and integrating over x, we obtain

the following expression for the premium Πρ,R in model (2.6):

Πρ,R = c
1
ρ

ρ

α− ρ
R

1−α
ρ . (2.7)

Now, consider the set of left-censored observations {(max(Xi, u), δi); i = 1, . . . , n}, where δi =
1{Xi>u}. Based on these observations, the likelihood of (α, c) in model (2.6) is:

L(α, c) =
n∏

i=1

(cαX−α−1i )δi(1− cu−α)1−δi . (2.8)

Let u = Xn−k,n, where k = k(n) is an integer sequence such that k → ∞ and k/n → 0 as n → ∞.
Then L(α, c) becomes

L(α, c) = (cα)k(1− cX−αn−k,n)
n−k

n∏
i=1

X
−(α+1)δi
i ,
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since
∑n

i=1 δi = k. Let (α̂, ĉ) denote the maximum likelihood estimator of (α, c). Equivalently,
(α̂, ĉ) maximizes the log-likelihood

logL(α, c) = k logα+ k log c− (α+ 1)
k∑

i=1

logXn−i+1,n + (n− k) log(1− cX−αn−k,n).

It is easy to verify that α̂ = γ̂−1 and ĉ = (k/n)X α̂
n−k,n. Substituting α̂ and ĉ in (2.7), with

R̂opt = Xn−k,n, yields (2.3).
Now, we construct our likelihood ratio-based confidence intervals for Πρ,Ropt . Motivated by the

maximum likelihood interpretation of Π̂ρ,R̂opt
, we propose to maximize logL(α, c) subject to

α > 0, c > 0, log Πρ,Ropt −
1

ρ
log c− log ρ+ log(α− ρ)−

(
1− α

ρ

)
logRopt = 0,

where the last constraint comes from taking the logarithm in (2.7). Let ᾱ(λn) and c̄(λn) be the
maximizers of this constrained log-likelihood, where λn denotes Lagrange multiplier. Then it is not
difficult to show that ᾱ(λn) and c̄(λn) satisfy

ᾱ(λn) =
k∑k

i=1 log
(
Xn−i+1,n

Xn−k,n

)
− λn

ρ (Πρ,Ropt − logXn−k,n)

and
c̄(λn) =

ρk − λn

ρn− λn
X

ᾱ(λn)
n−k,n,

and λn satisfies{
ᾱ(λn) > 0, λn < ρk,

log Πρ,Ropt − 1
ρ log c̄(λn)− log ρ+ log(ᾱ(λn)− ρ)−

(
1− ᾱ(λn)

ρ

)
logRopt = 0.

(2.9)

We define the log-likelihood ratio statistic as:

ℓ(Πρ,Ropt) = −2 {logL(ᾱ(λn), c̄(λn))− logL(α̂, ĉ)} .

The next theorem gives the asymptotic distribution of ℓ(Πρ,Ropt).

Theorem 2.2. Let 1 ≤ ρ < α and assume that (2.5) holds. Let k = k(n) be an integer sequence
such that k → ∞, k/n → 0,

√
k/ log n → 0 and

√
kA(n/k) → 0 as n → ∞. Then there exists a

unique solution λn to (2.9), and the sequence (λn) is such that ℓ(Πρ,Ropt) satisfies:

ℓ(Πρ,Ropt)
L−→ χ2

1 as n → ∞.

Based on this result, a confidence interval with level 1− p for the true value of Πρ,Ropt is:{
Πρ,Ropt : ℓ(Πρ,Ropt) ≤ c1−p

}
,

where c1−p denotes the quantile of order 1 − p of the χ2
1 distribution. The performance of this

confidence interval will be assessed via simulations in Section 3.

5



2.3. Data tilting method
In this section, we adapt the data tilting method to construct new confidence intervals for the

reinsurance premium. Data tilting is a non-parametric approach which can be seen as a general-
ization of the empirical likelihood method (Owen, 2001), where the observations are weighted in
order to minimize some distance function. Data tilting was introduced by Hall and Yao (2003) for
constructing confidence regions in regression problems. Peng and Qi (2006) adapted the method to
construct confidence intervals for high quantiles of a heavy-tailed distribution. Chan et al. (2007)
and Tursunalieva and Silvapulle (2016) used it to construct confidence intervals for the VaR.

The method is as follows. Let q = (q1, . . . , qn) be a set of weights such that qi ≥ 0 and∑n
i=1 qi = 1. First, we find the couple (α̂(q), ĉ(q)) such that

(α̂(q), ĉ(q)) = argmax
(α,c)

n∑
i=1

qi log
(
(cαX−α−1i )δi(1− cX−αn−k,n)

1−δi
)
,

that is, (α̂(q), ĉ(q)) maximizes a weighted version of the likelihood (2.8), where the contribution of
the i-th individual is weighted by qi. It is easy to see that:

ĉ(q) = X
α̂(q)
n−k,n

n∑
i=1

qiδi and α̂(q) =

∑n
i=1 qiδi∑n

i=1 qiδi(logXi − logXn−k,n)
.

Note that α̂(q) and ĉ(q) reduce to α̂ and ĉ when qi = 1/n for every i.
Now, let D(q) denote Kullback-Leibler divergence between q and the uniform distribution on the

integers {1, . . . , n} (which has qi = 1/n for every i = 1, . . . , n). We have D(q) =
∑n

i=1 qi log(nqi).
We choose q so as to minimize D(q) under the constraints qi ≥ 0,

n∑
i=1

qi = 1 and Πρ,Ropt = ĉ(q)
1
ρ

ρ

α̂(q)− ρ
X

1− α̂(q)
ρ

n−k,n ,

or equivalently,

n∑
i=1

qi = 1 and Πρ,Ropt

(
α̂(q)

ρ
− 1

)
−Xn−k,n

(
n∑

i=1

qiδi

) 1
ρ

= 0. (2.10)

Let

A1(λ1) = 1− (n− k)

n
e−1−λ1 and A2(λ1) =

A1(λ1)Πρ,Ropt

ρ
(
Πρ,Ropt +Xn−k,n(A1(λ1))

1
ρ

) .
Then, minimizing D(q) with respect to the qi, under the constraints stated above, gives:

qi(λ1, λ2) =


1
ne
−1−λ1 if δi = 0

1
n exp

(
−1− λ1 − λ2

[
Πρ,Ropt

ρA2(λ1)
−

Πρ,RoptA1(λ1) log(Xi/Xn−k,n)

ρ(A2(λ1))2
− Xn−k,n(A1(λ1))

1
ρ−1

ρ

])
if δi = 1,

where λ1 and λ2 are the Lagrange multipliers, which satisfy (2.10). In what follows, we will note
qi := qi(λ1, λ2) for notational simplicity. We also denote by L(Πρ,Ropt) the value minq(2nD(q))
achieved under the constraints (2.10). We are now in position to state our second main result.

6



Theorem 2.3. Assume that the conditions in Theorem 2.2 hold. Then there exists a solution
(λ1, λ2) to the constraints (2.10), with −1 − log

(
1 +

√
k

n−k

)
≤ λ1 ≤ −1 − log

(
1−

√
k

n−k

)
, such that

under the true value of Πρ,Ropt,

L(Πρ,Ropt)
L−→ χ2

1 as n → ∞.

Based on this, a confidence interval with level 1− p for the true Πρ,Ropt can be constructed as:{
Πρ,Ropt : L(Πρ,Ropt) ≤ c1−p

}
,

where c1−p is the (1− p)-quantile of the χ2
1 distribution.

In the next section, we investigate the finite-sample performance of the three types of confidence
intervals.

3. A simulation study and real applications

3.1. A simulation study
In this study, we compare the coverage accuracy of the confidence intervals constructed using the

normal approximation method, the likelihood ratio method and the data tilting method. Coverage
accuracy is evaluated in terms of coverage probabilities and length of the intervals. The simulation
scenarios are as follows.
First, we simulate N = 1000 samples of size n = 1000 from the Pareto distribution with df F (x) =
1− x−α, x > 0, and then from the Burr distribution with df F (x) = 1− (1+ xβ−α)−α/(β−α), x > 0.
We consider various combinations of values for the parameters, namely α = 2 and ρ = 1.2, 1.5 for
Pareto distribution, and (α, β) = (2, 4), (1.5, 3) and ρ = 1.1, 1.2 for Burr distribution. Recall that ρ
is the risk aversion index, which controls the amount of risk loading in the premium. The nominal
confidence level of the confidence intervals is set to 0.9.
For each value k of the sample fraction (with k = 20, 22, 24, . . . , 300), we calculate the confidence
intervals for the three methods, and we compute their coverage probabilities as the proportions of
the N intervals which contain the true premium value. These coverage probabilities are plotted
against k (see Figures 1 and 2 for Burr distribution and Figure 3 for Pareto distribution).

From theses figures, it first appears that the normal approximation method has rather bad
performance, with coverage probabilities being far from the nominal confidence level, for every value
of k. The likelihood ratio and data tilting methods perform equally on the range k = 20, . . . , 220
approximately (except in the case of Burr(2, 4) with ρ = 1.1 where both methods perform equally
well on the whole range k = 20, . . . , 300). The data tilting method is superior when k takes larger
values, which indicates that this method is more robust to the bias when a large value of k is used.
This may stem from the automatic assignment of the weights qi in the data tilting methodology. A
similar observation was made by Peng and Qi (2006) in their assessment of the data tilting method
for constructing confidence intervals for high quantiles of a heavy-tailed distribution.

In a second part, we briefly investigate the finite-sample distribution of L(Πρ,Ropt) in Theorem
2.3 (in what follows, we focus on the data tilting method since it provides the best results among
the three methods). We simulate N = 1000 samples of size n = 1000 of the Burr(2, 4) and
Pareto(1.5) distributions and we calculate L(Πρ,Ropt) for various values of ρ, with k = 50, 100. For
each simulation setting, we plot the histogram of the N values of L(Πρ,Ropt) and we add the density
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of the χ2
1. Plots for the Burr(2, 4) are given in Figure 4, plots for the Pareto(1.5) are given in Figure

5. Both indicate a correct approximation of the distribution of L(Πρ,Ropt) by the χ2
1.

Finally, as in Peng and Qi (2006), we investigate the shape of L(Πρ,Ropt) in the data tilting
method. We simulate a sample of size n = 1000 from the Burr(α, 2α) distribution (then, from
Pareto(α)), and we compute the data tilting function L(Πρ,Ropt) at all Π̂ρ,R̂opt

± Π̂ρ,R̂opt
× i/1000,

i = 0, 1, . . . , 1000, where Π̂ρ,R̂opt
denotes Necir et al. (2007) estimator of Πρ,Ropt (see Section 2.1).

The data tilting function L(Πρ,Ropt) is plotted for various 1 ≤ ρ and for k = 50, 100 ; see Figure 6
(for Burr) and Figure 7 (for Pareto). These plots reveal that the function is convex, which implies
that the resulting confidence region is indeed an interval. We observe that the confidence intervals
are wider when k = 50. This may be due to an increasing variability caused by the smaller number
of observations above the threshold Xn−k,n. We also observe that as ρ increases, the confidence
intervals shift to the right on the x-axis (with an upper bound which may be quite large). This,
again, is natural, since as risk aversion increases, one expects the premium to be larger.

Overall, our short simulation study indicates that the data tilting method should be preferred.
Its coverage accuracy is generally close to the nominal level, and it has a smaller sensitivity to the
choice of the sample fraction k than the likelihood ratio method. A short comparison of the length
of the intervals provided by the three methods will be reported in the next section.

3.2. Application to Danish fire data
In this section, we illustrate our confidence intervals on the set of Danish fire data, which consists

of n = 2167 fire insurance loss over one million Danish Krone, recorded between 1980 and 1990 (the
loss include damage to buildings, furnishings, personal properties and loss of profits). These data
have been analyzed by several authors (e.g., McNeil, 1997; Resnick, 1997; Peng and Qi, 2006) and
are now available in the R package evir (Pfaff and McNeil, 2018). Using various methods (statistical
tests and graphical devices), McNeil (1997) and Resnick (1997) have shown that the data can be
considered as heavy-tailed. A Kolmogorov-Smirnov test for a heavy-tailed distribution was further
developed by Koning and Peng (2008), and confirmed that a heavy-tailed distribution is appropriate
for these data. Consensus values for the tail index estimate range between 1.2 and 1.4, as suggested
by the Hill plot, see Figure 8. Here, we take α̂ = 1.3. We consider various values for the risk
aversion index ρ, with 1 ≤ ρ < α̂ (namely, ρ = 1, 1.1, 1.2).
For each ρ and each of the normal approximation, likelihood ratio and data tilting method, we plot
the confidence intervals of level 0.90 for Πρ,R against the sample fraction k (with k = 20, 22, . . . , 250),
see Figure 9. On the same figure, we also plot the length of the intervals against the sample fraction.
From these plots, we observe that the normal approximation based interval has consistently larger
length than the intervals constructed from the likelihood ratio and data tilting methods. The
intervals based on these latter two methods have roughly similar length, with slightly smaller length
for the data tilting intervals when ρ increases. On Figure 9, we also observe that the level of the
intervals starts to decrease around k = 190. However, when k increases, one may expect that the
level of the premium increases. This pattern may be due to the bias increasing when a large value
of k is used. One can check on the Hill plot of Figure 8 that after a stable phase in the estimation
of α, the bias starts to increase around k = 190. For these reasons, we suggest to consider values of
k smaller than 190 for the purpose of calculating confidence intervals for the premium, on this data
set.
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3.3. Application to Algerian car insurance claims
The data considered in this section consist of n = 1009 third-party liability insurance claims,

where each claim corresponds to a car accident having occurred in Northern Algeria. The data
were communicated to us by an Algerian insurance company. First, we investigate the heavy-tail
hypothesis for these data. We use the Kolmogorov-Smirnov goodness-of-fit test proposed by Koning
and Peng (2008). For every k = 1, 2, . . . the test statistic is defined as:

sup
r>1

√
k|1−Gk(r)− r−1/γ̂ | (3.11)

where 1−Gk(r) =
1
k

∑
i 1{Xi>rXn−k,n} and γ̂ is the Hill estimator (2.4). We calculate (3.11) for k

ranging from 10 to 800, and we plot the values against k (see Figure 10). From Koning and Peng
(2008), the limiting critical value with level 0.95 is 1.076. This value is represented as the horizontal
line on Figure 10. Koning and Peng (2008) explain that "Ideally, when the heavy tailed hypothesis
is true, test should not reject the null hypothesis for small values of k, and reject it for large values
of k since the critical values are obtained by ignoring the bias". Deciding whether k is small or large
is somewhat subjective, but Figure 10 seems to be consistent with the ideal pattern described by
Koning and Peng (2008), which suggests that the heavy-tailed hypothesis holds for the Algerian
car claim data. Indeed, for every k less than 400, the hypothesis of a heavy-tailed distribution is
consistently accepted. When k is larger than 400, the hypothesis is consistently rejected. Next, we
calculate and plot the Hill estimator α̂ = 1/γ̂ of α (see Figure 11). Note how the bias starts to
dominate when k ≥ 400, which indicates that we should consider values of k smaller than 400 for
purpose of inference on α. For k less than 200 (approximately), Hill estimator is quite unstable.
Therefore, we suggest to consider values of k in the neighborhood of 200 to estimate α, and we
retain the value α̂ = 1.45.
Now, we consider premium estimation for various values of ρ < α̂, namely, ρ = 1.1, 1.2. On Figure
12, we plot the confidence intervals of level 0.90 for Πρ,R, and their length, against the sample
fraction k (with k = 100, 102, . . . , 400). Again, we observe that the normal approximation method
yields larger intervals, while the likelihood ratio and data tilting methods, here, provide similar
intervals.

4. Discussion

In this paper, we investigated several methods for constructing premium confidence intervals,
namely, a normal approximation based method, a likelihood ratio method and a data tilting method.
Our investigations suggest that for finite sample sizes, the normal approximation method performs
rather poorly, both in terms of coverage probabilities and length of the intervals. On the other hand,
based on our simulations, it appears that the likelihood ratio and data tilting methods provide good
results, with a slight superiority for the data tilting method. Now, several problems may deserve
further attention. One of these is the construction of premium confidence intervals based on censored
data. Another interesting problem arises when the claim amounts are observed together with some
additional information (in the form of covariates). In this case, it becomes of interest to estimate a
conditional premium. All these problems are the topic for our future research.

Appendix : proofs

Proof of Theorem 2.2: We first prove three technical lemmas (in what follows, we will note R
instead of Ropt in order to simplify the notations).
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Lemma 1. Let g : R → R be defined as

g(λ) = Πρ,R

(
α̂/ρ

1− λα̂
ρk (Πρ,R − logXn−k,n)

− 1

)
−Xn−k,n

(
ρk − λ

ρn− λ

) 1
ρ

.

Then there exists a unique λ such that g(λ) = 0.

Proof. The derivative of g with respect to λ is

g′(λ) = Πρ,R
α̂2 1

k (Πρ,R − logXn−k,n)

ρ2
(
1− λα̂

ρk (Πρ,R − logXn−k,n)
)2 +Xn−k,n

(
ρk − λ

ρn− λ

) 1
ρ
−1 (n− k)

(ρn− λ)2
. (4.12)

The quantity

c̄(λ) =
ρk − λ

ρn− λ
X

ᾱ(λ)
n−k,n

must be positive, therefore, the constraint ρk − λ > 0 (or equivalently, λ < ρk) must apply. Under
this constraint, the second term in the sum (4.12) is strictly positive. Now, consider the case where
Πρ,R−logXn−k,n > 0 (the case where Πρ,R−logXn−k,n ≤ 0 can be treated using similar arguments).
Then g′(λ) > 0 and g is strictly increasing.
It is easy to see that

ᾱ(λ) =
α̂

1− λα̂
ρk (Πρ,R − logXn−k,n)

,

and since ᾱ(λ) must be positive, the constraint

λ <
ρk

α̂(Πρ,R − logXn−k,n)

must also apply. Therefore, we must have

λ ∈ (−∞,m),

where
m = min

(
ρk,

ρk

α̂(Πρ,R − logXn−k,n)

)
> 0.

We have g(−∞) = −Πρ,R −Xn−k,n < 0. If m = ρk/{α̂(Πρ,R − logXn−k,n)}, then g(m−) = +∞. If
m = ρk, that is, if ρk ≤ ρk/{α̂(Πρ,R − logXn−k,n)}, it is easy to show that:

1 <
1

1− α̂(Πρ,R − logXn−k,n)
,

and thus,

0 <
α̂/ρ

1− α̂(Πρ,R − logXn−k,n)
− 1.

This, finally, implies that if m = ρk,

g(m) = Πρ,R

(
α̂/ρ

1− α̂(Πρ,R − logXn−k,n)
− 1

)
> 0.

In summary, g is continuous, strictly increasing, g(−∞) < 0 and g(m) > 0, with m > 0. Therefore,
there exists a unique λ ∈ (−∞,m) such that g(λ) = 0. ■
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Lemma 2. Let

bn =
kρ2

Πρ,R(Πρ,R − logXn−k,n)α̂2
,

where k = k(n) satisfies k → ∞, k/n → 0 and
√
k/ log n → 0 as n → ∞, and let λn denote the

solution to (2.9). Then, as n → ∞, P(|λn| < bn) → 1 and |λn|/
√
k

P−→ 0.

Proof. If λn is the solution to (2.9), then g(λn) = 0 (existence of λn is ensured by Lemma 1). We
wish to show that P(|λn| < bn) → 1 as n → ∞. We have P(|λn| < bn) = P(−bn < λn < bn) =
P(g(−bn) < 0 < g(bn)) since g is strictly increasing. To prove that P(g(−bn) < 0 < g(bn)) → 1, we
prove that P(g(bn) > 0) → 1 and P(g(−bn) < 0) → 1.
First, note that:

1− bn
ρk

1− bn
ρn

=
1

1− k
nρ

1
Πρ,R(Πρ,R−logXn−k,n)α̂2

− ρ

Πρ,R(Πρ,R − logXn−k,n)α̂2 − k
nρ

= 1 + oP(1).

Therefore,

Xn−k,n

(
ρk − bn
ρn− bn

) 1
ρ

= Xn−k,n

(
k

n

) 1
ρ

(
1− bn

ρk

1− bn
ρn

) 1
ρ

= Xn−k,n

(
k

n

) 1
ρ

(1 + oP(1))

= Π̂ρ,R̂opt

(
α̂

ρ
− 1

)
+ oP(1)

= Πρ,R

(
α

ρ
− 1

)
+ oP(1), (4.13)

since Π̂ρ,R̂opt
− Πρ,R = oP(1) (Necir et al., 2007) and α̂ − α = oP(1) (Mason, 1982). Now, using

(4.13) and Taylor’s expansion in

g(bn) =
Πρ,Rα̂

ρ

(
1

1− bnα̂
ρk (Πρ,R − logXn−k,n)

)
−Πρ,R −Xn−k,n

(
ρk − bn
ρn− bn

) 1
ρ

,

we obtain:

g(bn) =
Πρ,Rα̂

ρ

(
1 +

bnα̂

ρk
(Πρ,R − logXn−k,n)(1 + oP(1))

)
−Πρ,R −Πρ,R

(
α

ρ
− 1

)
+ oP(1)

=
Πρ,Rα̂

ρ
+

Πρ,Rbnα̂
2

ρ2k
(Πρ,R − logXn−k,n)(1 + oP(1))−

Πρ,Rα

ρ
+ oP(1)

= 1 + oP(1).

Therefore, P(g(bn) > 0) → 1 as n → ∞. Similarly, we can show that g(−bn) = −1 + oP(1), hence
P(g(−bn) < 0) → 1 as n → ∞, which concludes the first part of the proof.
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Next, we have:

P(|λn| < bn) = P
(
|λn|√
k

<
√
k

ρ2

Πρ,R(Πρ,R − logXn−k,n)α̂2

)

= P

 |λn|√
k

<
ρ2

Πρ,Rα̂2

1
Πρ,R√

k
− logXn−k,n√

k

 .

From Theorem 2 of Necir et al. (2007), if
√
k/ log n → 0, then logXn−k,n/

√
k

P−→ ∞. Therefore,

ρ2

Πρ,Rα̂2

1
Πρ,R√

k
− logXn−k,n√

k

P−→ 0

and since P(|λn| < bn) → 1, we conclude that |λn|/
√
k

P−→ 0. ■

Lemma 3. Let λn denote the solution to (2.9), and let k = k(n) be such that k → ∞, k/n → 0

and
√
k/ log n → 0 as n → ∞. Then, as n → ∞, ᾱ(λn)/α̂

P−→ 1.

Proof. First, using Taylor’s expansion, we obtain

g(λn) =
Πρ,Rα̂

ρ
+

Πρ,Rα̂
2

ρ2k
λn(Πρ,R − logXn−k,n)(1 + oP(1))−

Πρ,Rα

ρ
+ oP(1)

=
Πρ,R

ρ
(α̂− α) +

Πρ,Rα̂
2

ρ2k
λn(Πρ,R − logXn−k,n)(1 + oP(1)).

If λn is the solution to (2.9), then g(λn) = 0, and thus,

λn

k
= −ρ(α̂− α)

1

(Πρ,R − logXn−k,n)α̂2
(1 + oP(1)).

Now, we have:
ᾱ(λn)

α̂
− 1 =

1

1− λnα̂
ρk (Πρ,R − logXn−k,n)

− 1,

and by Taylor’s expansion,

ᾱ(λn)

α̂
− 1 =

λnα̂

ρk
(Πρ,R − logXn−k,n)(1 + oP(1))

= −ρ(α̂− α)
1

(Πρ,R − logXn−k,n)α̂2

α̂

ρ
(Πρ,R − logXn−k,n)(1 + oP(1))

= −(α̂− α)

α
(1 + oP(1)).

Therefore, by consistency of α̂, we obtain that ᾱ(λn)/α̂− 1
P−→ 0, which concludes the proof. ■

We are now in position to prove Theorem 2.2. First, recall that

logL(α, c) = k logα+ k log c− (α+ 1)

k∑
i=1

logXn−i+1,n + (n− k) log(1− cX−αn−k,n).

12



Using the fact that α̂−1 = k−1
∑k

i=1 logXn−i+1,n − logXn−k,n, we can re-write logL(α, c) as

logL(α, c) = k logα− k(α+ 1)α̂−1 + k log(cX−αn−k,n)− k logXn−k,n + (n− k) log(1− cX−αn−k,n),

and thus,

ℓ(Πρ,R) = −2 {logL(ᾱ(λn), c̄(λn))− logL(α̂, ĉ)}

= −2

k log

(
ᾱ(λn)

α̂

)
− k(ᾱ(λn)− α̂)α̂−1 + k log

 c̄(λn)X
−ᾱ(λn)
n−k,n

ĉX−α̂n−k,n


+(n− k) log

1− c̄(λn)X
−ᾱ(λn)
n−k,n

1− ĉX−α̂n−k,n

 .

Now, using ĉ = (k/n)X α̂
n−k,n and c̄(λn) =

ρk−λn

ρn−λn
X

ᾱ(λn)
n−k,n, we can re-write ℓ(Πρ,R) as

ℓ(Πρ,R) = −2

{
k log

(
ᾱ(λn)

α̂

)
− k

(
ᾱ(λn)

α̂
− 1

)
+ k log

(
ρk − λn

ρn− λn
· n
k

)
+ (n− k) log

(
ρn− ρk

ρn− λn
· n

n− k

)}
,

and straightforward calculations yield:

ℓ(Πρ,R) = −2k

{
log

(
ᾱ(λn)

α̂

)
−
(
ᾱ(λn)

α̂
− 1

)}
− 2k log

(
1− λn

ρk

)
+ 2n log

(
1− λn

ρn

)
.

By Lemma 2, |λn|/
√
k

P−→ 0 (which also implies |λn|/k
P−→ 0 and |λn|/n

P−→ 0), and by Lemma 3,
ᾱ(λn)/α̂

P−→ 1. Thus, by Taylor’s expansions, we obtain

ℓ(Πρ,R) = −2k

{
log

(
ᾱ(λn)

α̂

)
−
(
ᾱ(λn)

α̂
− 1

)}
+OP

(
λ2
n

k

)
=

(√
k

(
ᾱ(λn)

α̂
− 1

))2

+ oP(1).

Now, according to the proof of Lemma 3, we have

ᾱ(λn)

α̂
− 1 = −(α̂− α)

α
(1 + oP(1)),

therefore, (√
k

(
ᾱ(λn)

α̂
− 1

))2

=

(√
k

(
γ̂ − γ

γ

))2

(1 + oP(1)),

Finally, if (2.5) holds and
√
kA(n/k) → 0 as n → ∞,

√
k(γ̂ − γ)/γ

L−→ N (0, 1) (see de Haan and
Peng, 1998). Therefore,

ℓ(Πρ,R)
L−→ χ2

1.

■
Proof of Theorem 2.3: The proof follows the same lines as Peng and Qi (2006), therefore, we
provide an outline of the proof and emphasize the parts that are specific to our problem.
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For i = 1, . . . , n, let δi = 1{Xi>Xn−k,n} and let q(i) denote the concomitant of Xn−i+1,n, that is,

q(i) =
1

n
exp

(
−1− λ1 − λ2

[
Πρ,Ropt

ρA2(λ1)
−

Πρ,RoptA1(λ1) log(Xn−i+1,n/Xn−k,n)

ρ(A2(λ1))2
−

Xn−k,n(A1(λ1))
1
ρ
−1

ρ

])

for i = 1, . . . , k and q(i) =
1
ne
−1−λ1 for i = k + 1, . . . , n. Since

1 =
n∑

i=1

qi =
n∑

i=1

δiqi +
n∑

i=1

(1− δi)qi,

and
∑n

i=1 δiqi =
∑k

i=1 q(i), we have

k∑
i=1

q(i) = 1− (n− k)

n
e−1−λ1

= A1(λ1).

Now, consider the second constraint in (2.10):

Πρ,Ropt

(
α̂(q)

ρ
− 1

)
−Xn−k,n

(
n∑

i=1

qiδi

) 1
ρ

= 0.

This constraint can be rewritten as:

α̂(q) =
ρ
(
Πρ,Ropt +Xn−k,n(A1(λ1))

1
ρ

)
Πρ,Ropt

.

Using this, we can write:

A2(λ1) =
A1(λ1)

α̂(q)

=

∑n
i=1 qiδi
α̂(q)

=
n∑

i=1

qiδi(logXi − logXn−k,n)

=
k∑

i=1

q(i) log(Xn−i+1,n/Xn−k,n),

where the second to third line follows from the expression of α̂(q). Therefore, the constraints in
(2.10) are equivalent to:

A1(λ1) =
k∑

i=1

q(i) and A2(λ1) =
k∑

i=1

q(i)Zi,
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where Zi := log(Xn−i+1,n/Xn−k,n), or also, to:

k∑
i=1

q(i) = A1(λ1) and
∑k

i=1 q(i)Zi∑k
i=1 q(i)

=
A2(λ1)

A1(λ1)
. (4.14)

Now, by using the expression of q(i), the second equality in (4.14) can be rewritten as:

∑k
i=1 exp

(
λ2

Πρ,RoptA1(λ1)Zi

ρ(A2(λ1))2

)
Zi∑k

i=1 exp
(
λ2

Πρ,RoptA1(λ1)Zi

ρ(A2(λ1))2

) =
Πρ,Ropt

ρ
(
Πρ,Ropt +Xn−k,n(A1(λ1))

1
ρ

) . (4.15)

The existence of a solution (λ1, λ2) to (2.10) will be established by proving that : i) for every
λ1, there exists λ2(λ1) such that (λ1, λ2(λ1)) satisfies (4.15), ii) there exists some λ1 such that
(λ1, λ2(λ1)) also satisfies

∑k
i=1 q(i) = A1(λ1).

Proof of i): let

f(λ) =

∑k
i=1 Zi exp(λZi)∑k
i=1 exp(λZi)

.

One can check that f(λ) −−−−→
λ→−∞

Zk, f(λ) −−−−→
λ→+∞

Z1 and f is increasing and continuous on [Zk, Z1].

Therefore, f is invertible on [Zk, Z1], with inverse f−1. Now, let λ2(λ1) be defined (uniquely, for a
given λ1) as:

λ2(λ1) = f−1

 Πρ,Ropt

ρ
(
Πρ,Ropt +Xn−k,n(A1(λ1))

1
ρ

)
 ρ(A2(λ1))

2

Πρ,RoptA1(λ1)
. (4.16)

It is not difficult to see that λ2(λ1) satisfies (4.15), and thus, (λ1, λ2(λ1)) is solution to the constraint∑k
i=1 q(i)Zi∑k
i=1 q(i)

= A2(λ1)
A1(λ1)

.

Thereafter, it will be convenient, for notational simplicity, to re-express λ2(λ1) as:

λ2(λ1) = λ̃× ρ(A2(λ1))
2

Πρ,RoptA1(λ1)
,

with λ̃ ≡ λ̃(λ1) = f−1

(
Πρ,Ropt

ρ(Πρ,Ropt+Xn−k,n(A1(λ1))
1
ρ )

)
.

Proof of ii): first, by Taylor’s expansion, we have, as in Peng and Qi (2006), f(±k−1/4) − f(0) =

±k−1/4f ′(0)(1 + oP(1)), with f(0) =
∑k

i=1 Zi/
∑k

i=1 1 = γ̂ and

f ′(0) =
1

k

k∑
i=1

Z2
i − γ̂2 = γ2(1 +OP(k

−1/2)). (4.17)

Using this, we can show that P(−k−1/4 < λ̃ < k−1/4) → 1 as n → ∞. A second Taylor’s expansion
yields

f(λ̃)− γ̂ = λ̃f ′(0)(1 +OP(k
−1/4)) = λ̃γ2(1 +OP(k

−1/4)), (4.18)
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which implies λ̃ = OP(k
−1/2). Finally, using Taylor’s expansion, we have

k∑
i=1

exp(λ̃Zi) = k

(
1 +OP

(
1√
k

))
. (4.19)

Now, let

h(λ1) =
k∑

i=1

q(i) −A1(λ1).

By plugging λ2(λ1) into q(i), we can re-express h(λ1) as:

h(λ1) =
1

n
e−1−λ1 exp

(
−λ̃

ρ(A2(λ1))
2

Πρ,RoptA1(λ1)

[
Πρ,Ropt

ρA2(λ1)
−

Xn−k,n(A1(λ1))
1
ρ
−1

ρ

])
k∑

i=1

exp(λ̃Zi)

−A1(λ1).

Let λ′1 = −1− log
(
1 +

√
k

n−k

)
and λ′′1 = −1− log

(
1−

√
k

n−k

)
. Then it is easy to see that

e−1−λ
′
1 = 1 +

√
k

n− k
and A1(λ

′
1) =

k

n

(
1− 1√

k

)
. (4.20)

We also have
A2(λ

′
1) = γ

k

n

(
1− 1√

k
+ oP

(
1√
k

))
, (4.21)

which follows from (2.3), from the fact that k
n

(
1− 1√

k

)
≤ A1(λ) ≤ k

n

(
1 + 1√

k

)
for every λ′1 ≤ λ ≤

λ′′1, and from the following result for the Hill estimate:
√
k(γ̂ − γ)

L−→ N (0, γ2).
Now, it follows from (4.19), (4.20) and (4.21) that h(λ′1) =

k
n

1√
k
(1 + oP(1)). Similarly, h(λ′′1) =

− k
n

1√
k
(1 + oP(1)). Since λ′1 ≤ λ1 ≤ λ′′1 and h(λ′1) and h(λ′′1) can be made arbitrarily close to 0 by

letting n → ∞, λ1 satisfies h(λ1) = 0, or equivalently,
∑k

i=1 q(i) = A1(λ1), with λ2(λ1) defined in
(4.16). That is, we have shown that there exists a solution (λ1, λ2(λ1)) of (4.14), or equivalently, of
(2.10).

Now, let λ̂1 be such that h(λ̂1) = 0. By using similar arguments as Peng and Qi (2006), we can
show that

1 + λ̂1 = OP

(√
k

n

)
. (4.22)

Moreover, from (4.18), we can show that

λ̃2 =

(
γ̂ − γ

γ2

)2

(1 +OP(k
−1/4). (4.23)

As in Peng and Qi (2006), we have

L(Πρ,Ropt) = (1 + oP(1))

(
n(1 + λ̂1)

2 + λ̃2
k∑

i=1

(Zi − γ̂)2

)
.
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It follows from (4.17), (4.22) and (4.23) that

L(Πρ,Ropt) = (1 + oP(1))OP (k/n) + (1 + oP(1))kγ
2(1 +OP(k

−1/2))λ̃2

= oP(1) + (1 + oP(1))

(√
k

(
γ̂ − γ

γ

))2

.

Under the conditions of Theorem 2.2,
√
k(γ̂ − γ)/γ

L−→ N (0, 1). Therefore,

L(Πρ,Ropt)
L−→ χ2

1.

■
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Figure 1: Coverage probabilities for Burr(2, 4), plotted against k = 20, 22, . . . , 300 (based on N = 1000 samples of
size n = 1000), with ρ = 1.1 (left) and ρ = 1.2 (right). Red dotted line: likelihood ratio method, black line: normal
approximation method, blue dashed line: data tilting method. Horizontal green line is the nominal confidence level
(0.9).
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Figure 2: Coverage probabilities for Burr(1.5, 3), plotted against k = 20, 22, . . . , 300 (based on N = 1000 samples of
size n = 1000), with ρ = 1.1 (left) and ρ = 1.2 (right). Red dotted line: likelihood ratio method, black line: normal
approximation method, blue dashed line: data tilting method. Horizontal green line is the nominal confidence level
(0.9).
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Figure 3: Coverage probabilities for Pareto(2), plotted against k = 20, 22, . . . , 300 (based on N = 1000 samples of
size n = 1000), with ρ = 1.2 (left) and ρ = 1.5 (right). Red dotted line: likelihood ratio method, black line: normal
approximation method, blue dashed line: data tilting method. Horizontal green line is the nominal confidence level
(0.9).
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Figure 4: Histograms of the N realizations of L(Πρ,Ropt), with samples distributed as Burr(2, 4) (left: k = 50, right:
k = 100). Red line : density of the χ2
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Figure 5: Histograms of the N realizations of L(Πρ,Ropt), with samples distributed as Pareto(1.5) (left: k = 50, right:
k = 100). Red line : density of the χ2
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Figure 6: Burr distribution. Left column: (α, β) = (2, 4) and ρ = 1 (top), ρ = 1.2 (middle), ρ = 1.5 (bottom).
Right column: (α, β) = (1.5, 3) and ρ = 1 (top), ρ = 1.1 (middle), ρ = 1.2 (bottom). Plots of the function L(ΠR,ρ)
are given for k = 50 (blue dotted line) and k = 100 (black line). Red horizontal line: χ2

1-quantile of order 0.9.
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Figure 7: Pareto distribution. Left column: α = 3 and ρ = 1.2 (top), ρ = 1.5 (middle), ρ = 2 (bottom). Right
column: α = 1.5 and ρ = 1 (top), ρ = 1.1 (middle), ρ = 1.2 (bottom). Plots of the function L(ΠR,ρ) are given for
k = 50 (blue dotted line) and k = 100 (black line). Red horizontal line: χ2
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Figure 8: Hill estimate of the tail index α (with 95%-confidence intervals) for the Danish fire data.

24



50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

k

C
on

fid
en

ce
 in

te
rv

al

50 100 150 200 250

0.
0

0.
2

0.
4

0.
6

k

Le
ng

th
 o

f C
R

50 100 150 200 250

0
1

2
3

k

C
on

fid
en

ce
 in

te
rv

al

50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

k

Le
ng

th
 o

f C
R

50 100 150 200 250

0
2

4
6

8

k

C
on

fid
en

ce
 in

te
rv

al

50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

k

Le
ng

th
 o

f C
R

Figure 9: Danish fire data. 90%-confidence intervals for ΠR,ρ (left) and their length (right), calculated for ρ = 1.0
(top), ρ = 1.1 (middle), ρ = 1.2 (bottom), and plotted against k = 20, 22, . . . , 250. Red dotted line: likelihood ratio
method, black line: normal approximation method, blue dashed line: data tilting method.
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Figure 10: Kolmogorov-Smirnov test of the heavy-tail hypothesis for the Algerian car claim data.
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Figure 11: Hill estimate of the tail index α (with 95%-confidence intervals) for the Algerian car claim data (the dotted
line indicates α̂ = 1.45).
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Figure 12: Algerian car claim data. 90%-confidence intervals for ΠR,ρ (left) and their length (right), calculated
for ρ = 1.1 (1st row), ρ = 1.2 (2nd row), and plotted against k = 100, 102, . . . , 400. Red dotted line: likelihood ratio
method, black line: normal approximation method, blue dashed line: data tilting method.
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