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Introduction

Extreme events arise in a wide variety of domains : environment (flooding, heat waves), industry (industrial accident, fire), finance (crash, extreme loss). . . and can cause considerable losses in insurers portfolio. It has therefore become crucial for insurance and reinsurance companies to determine adequate premiums for extreme risks. Several premium calculation principles have been proposed for that purpose. One of the most recent principles is based on a distortion function, that is, an increasing and concave function g : [0, 1] → [0, 1] satisfying g(0) = 0 and g(1) = 1 [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF].

Let X be a random risk with distribution function (df) F . The distortion risk measure based on g is defined as

Π(g) = ∞ 0 g(1 -F (x)) dx.
(1.1)

The well-known proportional hazard premium -PHP [START_REF] Wang | Insurance pricing and increased limits ratemaking by proportional hazards transforms[END_REF] arises as a special case of (1.1) when g(x) = x 1/ρ , for ρ ≥ 1. Several other examples of distortion functions are given in [START_REF] Wang | Premium calculation by transforming the layer premium density[END_REF]. The PHP of X is thus given by:

Π ρ = ∞ 0 (1 -F (x)) 1 ρ dx,
which is also the distorted expectation of X. The parameter ρ controls the amount of risk loading in the premium. It is called the distortion coefficient, or risk aversion index. The estimation of February 6, 2024

Π ρ has been investigated by several authors, see for example [START_REF] Centeno | Applying the Proportional Hazard Premium calculation principle[END_REF], [START_REF] Necir | Empirical estimation of the proportional hazard premium for heavytailed claim amounts[END_REF], Rassoul (2012a), [START_REF] Deme | Reduced-bias estimator of the Proportional Hazard Premium for heavy-tailed distributions[END_REF].

In reinsurance, one is often interested in estimating a premium for a given retention level R > 0, that is, a reinsurance premium of the high layer [R, ∞). This issue arises when an insurer decides to transfer part of a risk to a reinsurer, since it may not have sufficient financial resources to bear the total risk. In this case, the reinsurer will not pay the insurer if X is less than or equal to R and will pay (X -R) if X exceeds R (equivalently said, the reinsurer compensates the cedant's loss above the retention level R only). The amount paid by the reinsurer is thus (X -R) + , where x + = max(0, x), and the corresponding PHP for the layer [R, ∞) is defined as the distorted expectation of (X -R) + :

Π ρ,R = ∞ R (1 -F (x)) 1 ρ dx.
For high-excess loss layers (R → ∞) of a heavy-tailed insured risk, [START_REF] Necir | Estimating the risk adjusted premium of the largest reinsurance covers[END_REF], [START_REF] Vandewalle | On univariate extreme value statistics and the estimation of reinsurance premiums[END_REF], [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF], Rassoul (2012b), [START_REF] Benkhelifa | Kernel-type estimator of the reinsurance premium for heavy-tailed loss distributions[END_REF], [START_REF] Ahmedou | An improved estimator of distortion risk premiums under dependence insured risks with heavy-tailed marginals[END_REF] proposed various estimators of Π ρ,R and proved their asymptotic normality. These estimates are obtained for a fixed risk aversion index ρ and an optimal retention level R opt = F ← (1 -ε), where ε is a small number and F ← (s) = inf{t > 0, F (t) ≥ s} is the generalized inverse of F . As an extension of these contributions, our interest, here, is to construct confidence intervals for Π ρ,R , in the case of high-excess loss layers.

One obvious first method to construct a confidence interval for Π ρ,R is to use the asymptotic normality of an estimate of Π ρ,R . This approach is described in Section 2.1. Our simulation study in Section 3 will show, however, that the coverage probabilities of the resulting intervals can be quite far from the nominal confidence level. Therefore, in this paper, we investigate two alternative methods, namely a likelihood ratio method and a data tilting method (data tilting is a non-parametric approach which can be seen as a generalization of the empirical likelihood method of [START_REF] Owen | Empirical Likelihood[END_REF]). Both methods have recently proved useful to construct confidence intervals in various contexts. For example, [START_REF] Lu | Likelihood Based Confidence Intervals for the Tail Index[END_REF] and [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] use the likelihood ratio method to obtain confidence intervals for the tail index and high quantiles of a heavy-tailed distribution. Empirical likelihood was used by [START_REF] Lu | Likelihood Based Confidence Intervals for the Tail Index[END_REF], [START_REF] Li | Adjusted empirical likelihood method for the tail index of a heavy-tailed distribution[END_REF]Qi (2019), Qi et al. (2023) to construct confidence intervals for the tail index and high quantiles of a heavy-tailed distribution. Data tilting was introduced by [START_REF] Hall | Data tilting for time series[END_REF] for constructing confidence regions in regression problems. [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] adapted the method to construct confidence intervals for high quantiles of a heavy-tailed distribution. [START_REF] Chan | Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations[END_REF] and [START_REF] Tursunalieva | Nonparametric estimation of operational value-at-risk (Op-VaR)[END_REF] used data tilting to construct confidence intervals for the value-at-risk (VaR).

Our paper is organized as follows. In Section 2, we briefly describe asymptotic normality-based confidence intervals for Π ρ,R . Then, we show how the likelihood ratio and data tilting methods can be adapted to construct confidence intervals for Π ρ,R . We state two results about the asymptotic properties of these methods. In Section 3, the results of a simulation study comparing the performance of the three methods are reported. We also describe two real data applications of the proposed confidence intervals (on a set of Danish fire losses and a set of Algerian car insurance claims). Proofs of the theoretical results are provided in an appendix.

2. Confidence intervals for the premium Π ρ,R : methodology

The normal approximation approach

Let X 1 , . . . , X n be a sample of independent and identically distributed risks with common df F . We assume that F is heavy-tailed, that is, for every x > 0, the survival function 1 -F satisfies:

1 -F (x) = x -α ℓ(x), (2.2)
where α > 0 is an unknown parameter (called the tail index) and ℓ is a slowly-varying function at infinity, that is,

lim x→∞ ℓ(tx) ℓ(x) = 1, for all t > 0.
The survival function 1 -F of a heavy-tailed distribution thus satisfies:

lim x→∞ 1 -F (tx) 1 -F (x) = t -α , for all t > 0,
and is said to be regularly-varying with tail index α.

Let X 1,n ≤ X 2,n ≤ . . . ≤ X n,n be the order statistics of the sample X 1 , . . . , X n and k = k(n) be an integer sequence such that k → ∞ and k/n → 0 as n → ∞. [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF] consider the optimal retention level R opt = F ← (1 -k/n) and propose the following estimator of Π ρ,Ropt :

Πρ, Ropt = k n 1 ρ ρ 1/γ -ρ X n-k,n , (2.3) 
where Ropt = X n-k,n and γ is the Hill estimator [START_REF] Hill | A simple approach to inference about the tail of a distribution[END_REF] of the extreme value index γ = 1/α, defined by:

γ = 1 k k i=1 log X n-i+1,n -log X n-k,n .
(2.4)

Remark 1. In [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF], Πρ, Ropt is obtained by substituting, in

Π ρ,R = ∞ R (1-F (x)) 1 ρ dx, the retention level R = R opt = F ← (1 -k/n) by Ropt = X n-k,n and the tail 1 -F (x), x → ∞, of the heavy-tailed df F by the approximation 1 -F (x) = (k/n)X 1/γ n-k,n x -1/γ . Integrating over x finally yields (2.3). ■
The asymptotic normality of Πρ, Ropt is established under the so-called second-order regular variation condition (de [START_REF] De Haan | Extreme Value Theory: An Introduction[END_REF]

. Let U (t) = (1/(1 -F )) ← (t).
Then U is said to satisfy the second-order regular variation condition if there exists a function A such that A(t) → 0 as t → ∞ and

lim t→∞ U (tx)/U (t) -x γ A(t) = x γ x β -1 β (2.5)
for all x > 0, where β ≤ 0.

Theorem 2.1. [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF][START_REF] Necir | Erratum to: 'Statistical estimate of the proportional hazard premium of loss[END_REF] Let ρ ≥ 1 and assume that (2.5) holds. Let k = k(n) be an integer sequence such that k → ∞, k/n → 0 and √ kA(n/k) → 0 as n → ∞. Then, for 0 < γ < 1/ρ, the following holds as n → ∞:

(k/n) -1 ρ X n-k,n √ k( Πρ, Ropt -Π ρ,Ropt ) L -→ N (0, σ 2 (ρ, γ)),
where

σ 2 (ρ, γ) = ργ(γ 2 -2γ 3 ρ + γ 4 ρ 2 + 1) (1 -ργ) 2 .
Based on this result, a confidence interval with asymptotic confidence level 1 -p for Π ρ,Ropt is:

Πρ, Ropt ± z 1-p/2 σ(ρ, γ)X n-k,n (k/n) 1 ρ √ k ,
where z 1-p/2 denotes the quantile of order 1 -p/2 of the standard normal distribution and γ is the Hill estimator, see [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF]. We will see in our simulation study that the coverage accuracy of this interval can be quite far from the nominal confidence level. Now, we investigate two alternative methods for constructing confidence intervals for Π ρ,R .

Likelihood ratio method

First, we provide an interpretation of Πρ, Ropt as a maximum likelihood estimator in a slightly modified form of model (2.2). This observation will motivate our construction of the likelihood ratio confidence interval. Assume that F has the form

1 -F (x) = cx -α , for x > u, (2.6)
where u is some high threshold and c > 0 is an unknown parameter [START_REF] Lu | Likelihood Based Confidence Intervals for the Tail Index[END_REF] and [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] construct confidence intervals for the tail index and high quantiles of a heavy-tailed distribution, based on this model).

By substituting 1 -

F (x) = cx -α in Π ρ,R = ∞ R (1 -F (x))
1 ρ dx and integrating over x, we obtain the following expression for the premium Π ρ,R in model (2.6):

Π ρ,R = c 1 ρ ρ α -ρ R 1-α ρ .
(2.7) Now, consider the set of left-censored observations {(max(X i , u), δ i ); i = 1, . . . , n}, where δ i = 1 {X i >u} . Based on these observations, the likelihood of (α, c) in model (2.6) is:

L(α, c) = n i=1 (cαX -α-1 i ) δ i (1 -cu -α ) 1-δ i . (2.8) Let u = X n-k,n , where k = k(n) is an integer sequence such that k → ∞ and k/n → 0 as n → ∞. Then L(α, c) becomes L(α, c) = (cα) k (1 -cX -α n-k,n ) n-k n i=1 X -(α+1)δ i i , since n i=1 δ i = k.
Let (α, ĉ) denote the maximum likelihood estimator of (α, c). Equivalently, (α, ĉ) maximizes the log-likelihood

log L(α, c) = k log α + k log c -(α + 1) k i=1 log X n-i+1,n + (n -k) log(1 -cX -α n-k,n ).
It is easy to verify that α = γ-1 and ĉ = (k/n)X α n-k,n . Substituting α and ĉ in (2.7), with Ropt = X n-k,n , yields (2.3). Now, we construct our likelihood ratio-based confidence intervals for Π ρ,Ropt . Motivated by the maximum likelihood interpretation of Πρ, Ropt , we propose to maximize log L(α, c) subject to

α > 0, c > 0, log Π ρ,Ropt - 1 ρ log c -log ρ + log(α -ρ) -1 - α ρ log R opt = 0,
where the last constraint comes from taking the logarithm in (2.7). Let ᾱ(λ n ) and c(λ n ) be the maximizers of this constrained log-likelihood, where λ n denotes Lagrange multiplier. Then it is not difficult to show that ᾱ(λ n ) and c(λ n ) satisfy

ᾱ(λ n ) = k k i=1 log X n-i+1,n X n-k,n -λn ρ (Π ρ,Ropt -log X n-k,n ) and c(λ n ) = ρk -λ n ρn -λ n X ᾱ(λn) n-k,n ,
and λ n satisfies

ᾱ(λ n ) > 0, λ n < ρk, log Π ρ,Ropt -1 ρ log c(λ n ) -log ρ + log(ᾱ(λ n ) -ρ) -1 -ᾱ(λn) ρ log R opt = 0.
(2.9)

We define the log-likelihood ratio statistic as:

ℓ(Π ρ,Ropt ) = -2 {log L(ᾱ(λ n ), c(λ n )) -log L(α, ĉ)} .
The next theorem gives the asymptotic distribution of ℓ(Π ρ,Ropt ).

Theorem 2.2. Let 1 ≤ ρ < α and assume that (2.5)

holds. Let k = k(n) be an integer sequence such that k → ∞, k/n → 0, √ k/ log n → 0 and √ kA(n/k) → 0 as n → ∞.
Then there exists a unique solution λ n to (2.9), and the sequence (λ n ) is such that ℓ(Π ρ,Ropt ) satisfies:

ℓ(Π ρ,Ropt ) L -→ χ 2 1 as n → ∞.
Based on this result, a confidence interval with level 1 -p for the true value of Π ρ,Ropt is:

Π ρ,Ropt : ℓ(Π ρ,Ropt ) ≤ c 1-p ,
where c 1-p denotes the quantile of order 1 -p of the χ 2 1 distribution. The performance of this confidence interval will be assessed via simulations in Section 3.

Data tilting method

In this section, we adapt the data tilting method to construct new confidence intervals for the reinsurance premium. Data tilting is a non-parametric approach which can be seen as a generalization of the empirical likelihood method [START_REF] Owen | Empirical Likelihood[END_REF], where the observations are weighted in order to minimize some distance function. Data tilting was introduced by [START_REF] Hall | Data tilting for time series[END_REF] for constructing confidence regions in regression problems. [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] adapted the method to construct confidence intervals for high quantiles of a heavy-tailed distribution. [START_REF] Chan | Interval estimation of value-at-risk based on GARCH models with heavy-tailed innovations[END_REF] and [START_REF] Tursunalieva | Nonparametric estimation of operational value-at-risk (Op-VaR)[END_REF] used it to construct confidence intervals for the VaR.

The method is as follows. Let q = (q 1 , . . . , q n ) be a set of weights such that q i ≥ 0 and n i=1 q i = 1. First, we find the couple (α(q), ĉ(q)) such that

(α(q), ĉ(q)) = arg max (α,c) n i=1 q i log (cαX -α-1 i ) δ i (1 -cX -α n-k,n ) 1-δ i ,
that is, (α(q), ĉ(q)) maximizes a weighted version of the likelihood (2.8), where the contribution of the i-th individual is weighted by q i . It is easy to see that:

ĉ(q) = X α(q) n-k,n n i=1 q i δ i and α(q) = n i=1 q i δ i n i=1 q i δ i (log X i -log X n-k,n )
.

Note that α(q) and ĉ(q) reduce to α and ĉ when q i = 1/n for every i. Now, let D(q) denote Kullback-Leibler divergence between q and the uniform distribution on the integers {1, . . . , n} (which has q i = 1/n for every i = 1, . . . , n). We have D(q) = n i=1 q i log(nq i ). We choose q so as to minimize D(q) under the constraints q i ≥ 0,

n i=1 q i = 1 and Π ρ,Ropt = ĉ(q) 1 ρ ρ α(q) -ρ X 1- α(q) ρ n-k,n ,
or equivalently,

n i=1 q i = 1 and Π ρ,Ropt α(q) ρ -1 -X n-k,n n i=1 q i δ i 1 ρ = 0. (2.10) Let A 1 (λ 1 ) = 1 - (n -k) n e -1-λ 1 and A 2 (λ 1 ) = A 1 (λ 1 )Π ρ,Ropt ρ Π ρ,Ropt + X n-k,n (A 1 (λ 1 )) 1 ρ
.

Then, minimizing D(q) with respect to the q i , under the constraints stated above, gives:

q i (λ 1 , λ 2 ) =        1 n e -1-λ 1 if δ i = 0 1 n exp -1 -λ 1 -λ 2 Π ρ,R opt ρA 2 (λ 1 ) - Π ρ,R opt A 1 (λ 1 ) log(X i /X n-k,n ) ρ(A 2 (λ 1 )) 2 - X n-k,n (A 1 (λ 1 )) 1 ρ -1 ρ if δ i = 1,
where λ 1 and λ 2 are the Lagrange multipliers, which satisfy (2.10). In what follows, we will note q i := q i (λ 1 , λ 2 ) for notational simplicity. We also denote by L(Π ρ,Ropt ) the value min q (2nD(q)) achieved under the constraints (2.10). We are now in position to state our second main result.

Theorem 2.3. Assume that the conditions in Theorem 2.2 hold. Then there exists a solution (λ 1 , λ 2 ) to the constraints (2.10), with -1 -log 1 +

√ k n-k ≤ λ 1 ≤ -1 -log 1 - √ k n-k , such that under the true value of Π ρ,Ropt , L(Π ρ,Ropt ) L -→ χ 2 1 as n → ∞.
Based on this, a confidence interval with level 1 -p for the true Π ρ,Ropt can be constructed as:

Π ρ,Ropt : L(Π ρ,Ropt ) ≤ c 1-p ,
where c 1-p is the (1 -p)-quantile of the χ 2 1 distribution. In the next section, we investigate the finite-sample performance of the three types of confidence intervals.

A simulation study and real applications

A simulation study

In this study, we compare the coverage accuracy of the confidence intervals constructed using the normal approximation method, the likelihood ratio method and the data tilting method. Coverage accuracy is evaluated in terms of coverage probabilities and length of the intervals. The simulation scenarios are as follows. First, we simulate N = 1000 samples of size n = 1000 from the Pareto distribution with df F (x) = 1 -x -α , x > 0, and then from the Burr distribution with df

F (x) = 1 -(1 + x β-α ) -α/(β-α) , x > 0.
We consider various combinations of values for the parameters, namely α = 2 and ρ = 1.2, 1.5 for Pareto distribution, and (α, β) = (2, 4), (1.5, 3) and ρ = 1.1, 1.2 for Burr distribution. Recall that ρ is the risk aversion index, which controls the amount of risk loading in the premium. The nominal confidence level of the confidence intervals is set to 0.9. For each value k of the sample fraction (with k = 20, 22, 24, . . . , 300), we calculate the confidence intervals for the three methods, and we compute their coverage probabilities as the proportions of the N intervals which contain the true premium value. These coverage probabilities are plotted against k (see Figures 1 and2 for Burr distribution and Figure 3 for Pareto distribution).

From theses figures, it first appears that the normal approximation method has rather bad performance, with coverage probabilities being far from the nominal confidence level, for every value of k. The likelihood ratio and data tilting methods perform equally on the range k = 20, . . . , 220 approximately (except in the case of Burr(2, 4) with ρ = 1.1 where both methods perform equally well on the whole range k = 20, . . . , 300). The data tilting method is superior when k takes larger values, which indicates that this method is more robust to the bias when a large value of k is used. This may stem from the automatic assignment of the weights q i in the data tilting methodology. A similar observation was made by [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] in their assessment of the data tilting method for constructing confidence intervals for high quantiles of a heavy-tailed distribution.

In a second part, we briefly investigate the finite-sample distribution of L(Π ρ,Ropt ) in Theorem 2.3 (in what follows, we focus on the data tilting method since it provides the best results among the three methods). We simulate N = 1000 samples of size n = 1000 of the Burr(2, 4) and Pareto(1.5) distributions and we calculate L(Π ρ,Ropt ) for various values of ρ, with k = 50, 100. For each simulation setting, we plot the histogram of the N values of L(Π ρ,Ropt ) and we add the density of the χ 2 1 . Plots for the Burr(2, 4) are given in Figure 4, plots for the Pareto(1.5) are given in Figure 5. Both indicate a correct approximation of the distribution of L(Π ρ,Ropt ) by the χ 2 1 . Finally, as in [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF], we investigate the shape of L(Π ρ,Ropt ) in the data tilting method. We simulate a sample of size n = 1000 from the Burr(α, 2α) distribution (then, from Pareto(α)), and we compute the data tilting function L(Π ρ,Ropt ) at all Πρ, Ropt ± Πρ, Ropt × i/1000, i = 0, 1, . . . , 1000, where Πρ, Ropt denotes [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF] estimator of Π ρ,Ropt (see Section 2.1). The data tilting function L(Π ρ,Ropt ) is plotted for various 1 ≤ ρ and for k = 50, 100 ; see Figure 6 (for Burr) and Figure 7 (for Pareto). These plots reveal that the function is convex, which implies that the resulting confidence region is indeed an interval. We observe that the confidence intervals are wider when k = 50. This may be due to an increasing variability caused by the smaller number of observations above the threshold X n-k,n . We also observe that as ρ increases, the confidence intervals shift to the right on the x-axis (with an upper bound which may be quite large). This, again, is natural, since as risk aversion increases, one expects the premium to be larger.

Overall, our short simulation study indicates that the data tilting method should be preferred. Its coverage accuracy is generally close to the nominal level, and it has a smaller sensitivity to the choice of the sample fraction k than the likelihood ratio method. A short comparison of the length of the intervals provided by the three methods will be reported in the next section.

Application to Danish fire data

In this section, we illustrate our confidence intervals on the set of Danish fire data, which consists of n = 2167 fire insurance loss over one million Danish Krone, recorded between 1980 and 1990 (the loss include damage to buildings, furnishings, personal properties and loss of profits). These data have been analyzed by several authors (e.g., [START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF][START_REF] Resnick | Discussion of the Danish Data on Large Fire Insurance Losses[END_REF][START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF] and are now available in the R package evir [START_REF] Pfaff | Inference of high quantiles of a heavy-tailed distribution from block data[END_REF]. Using various methods (statistical tests and graphical devices), [START_REF] Mcneil | Estimating the tails of loss severity distributions using extreme value theory[END_REF] and [START_REF] Resnick | Discussion of the Danish Data on Large Fire Insurance Losses[END_REF] have shown that the data can be considered as heavy-tailed. A Kolmogorov-Smirnov test for a heavy-tailed distribution was further developed by [START_REF] Koning | Goodness-of-fit tests for a heavy tailed distribution[END_REF], and confirmed that a heavy-tailed distribution is appropriate for these data. Consensus values for the tail index estimate range between 1.2 and 1.4, as suggested by the Hill plot, see Figure 8. Here, we take α = 1.3. We consider various values for the risk aversion index ρ, with 1 ≤ ρ < α (namely, ρ = 1, 1.1, 1.2). For each ρ and each of the normal approximation, likelihood ratio and data tilting method, we plot the confidence intervals of level 0.90 for Π ρ,R against the sample fraction k (with k = 20, 22, . . . , 250), see Figure 9. On the same figure, we also plot the length of the intervals against the sample fraction. From these plots, we observe that the normal approximation based interval has consistently larger length than the intervals constructed from the likelihood ratio and data tilting methods. The intervals based on these latter two methods have roughly similar length, with slightly smaller length for the data tilting intervals when ρ increases. On Figure 9, we also observe that the level of the intervals starts to decrease around k = 190. However, when k increases, one may expect that the level of the premium increases. This pattern may be due to the bias increasing when a large value of k is used. One can check on the Hill plot of Figure 8 that after a stable phase in the estimation of α, the bias starts to increase around k = 190. For these reasons, we suggest to consider values of k smaller than 190 for the purpose of calculating confidence intervals for the premium, on this data set.

Application to Algerian car insurance claims

The data considered in this section consist of n = 1009 third-party liability insurance claims, where each claim corresponds to a car accident having occurred in Northern Algeria. The data were communicated to us by an Algerian insurance company. First, we investigate the heavy-tail hypothesis for these data. We use the Kolmogorov-Smirnov goodness-of-fit test proposed by [START_REF] Koning | Goodness-of-fit tests for a heavy tailed distribution[END_REF]. For every k = 1, 2, . . . the test statistic is defined as:

sup r>1 √ k|1 -G k (r) -r -1/γ | (3.11)
where 1 -G k (r) = 1 k i 1 {Xi>rXn-k,n} and γ is the Hill estimator (2.4). We calculate (3.11) for k ranging from 10 to 800, and we plot the values against k (see Figure 10). From [START_REF] Koning | Goodness-of-fit tests for a heavy tailed distribution[END_REF], the limiting critical value with level 0.95 is 1.076. This value is represented as the horizontal line on Figure 10. [START_REF] Koning | Goodness-of-fit tests for a heavy tailed distribution[END_REF] explain that "Ideally, when the heavy tailed hypothesis is true, test should not reject the null hypothesis for small values of k, and reject it for large values of k since the critical values are obtained by ignoring the bias". Deciding whether k is small or large is somewhat subjective, but Figure 10 seems to be consistent with the ideal pattern described by [START_REF] Koning | Goodness-of-fit tests for a heavy tailed distribution[END_REF], which suggests that the heavy-tailed hypothesis holds for the Algerian car claim data. Indeed, for every k less than 400, the hypothesis of a heavy-tailed distribution is consistently accepted. When k is larger than 400, the hypothesis is consistently rejected. Next, we calculate and plot the Hill estimator α = 1/γ of α (see Figure 11). Note how the bias starts to dominate when k ≥ 400, which indicates that we should consider values of k smaller than 400 for purpose of inference on α. For k less than 200 (approximately), Hill estimator is quite unstable. Therefore, we suggest to consider values of k in the neighborhood of 200 to estimate α, and we retain the value α = 1.45. Now, we consider premium estimation for various values of ρ < α, namely, ρ = 1.1, 1.2. On Figure 12, we plot the confidence intervals of level 0.90 for Π ρ,R , and their length, against the sample fraction k (with k = 100, 102, . . . , 400). Again, we observe that the normal approximation method yields larger intervals, while the likelihood ratio and data tilting methods, here, provide similar intervals.

Discussion

In this paper, we investigated several methods for constructing premium confidence intervals, namely, a normal approximation based method, a likelihood ratio method and a data tilting method. Our investigations suggest that for finite sample sizes, the normal approximation method performs rather poorly, both in terms of coverage probabilities and length of the intervals. On the other hand, based on our simulations, it appears that the likelihood ratio and data tilting methods provide good results, with a slight superiority for the data tilting method. Now, several problems may deserve further attention. One of these is the construction of premium confidence intervals based on censored data. Another interesting problem arises when the claim amounts are observed together with some additional information (in the form of covariates). In this case, it becomes of interest to estimate a conditional premium. All these problems are the topic for our future research.

Appendix : proofs

Proof of Theorem 2.2: We first prove three technical lemmas (in what follows, we will note R instead of R opt in order to simplify the notations).

Lemma 1. Let g : R → R be defined as

g(λ) = Π ρ,R α/ρ 1 -λ α ρk (Π ρ,R -log X n-k,n ) -1 -X n-k,n ρk -λ ρn -λ 1 ρ
.

Then there exists a unique λ such that g(λ) = 0.

Proof. The derivative of g with respect to λ is

g ′ (λ) = Π ρ,R α2 1 k (Π ρ,R -log X n-k,n ) ρ 2 1 -λ α ρk (Π ρ,R -log X n-k,n ) 2 + X n-k,n ρk -λ ρn -λ 1 ρ -1 (n -k) (ρn -λ) 2 .
(4.12)

The quantity

c(λ) = ρk -λ ρn -λ X ᾱ(λ) n-k,n
must be positive, therefore, the constraint ρk -λ > 0 (or equivalently, λ < ρk) must apply. Under this constraint, the second term in the sum (4.12) is strictly positive. Now, consider the case where Π ρ,R -log X n-k,n > 0 (the case where Π ρ,R -log X n-k,n ≤ 0 can be treated using similar arguments). Then g ′ (λ) > 0 and g is strictly increasing.

It is easy to see that

ᾱ(λ) = α 1 -λ α ρk (Π ρ,R -log X n-k,n )
, and since ᾱ(λ) must be positive, the constraint

λ < ρk α(Π ρ,R -log X n-k,n )
must also apply. Therefore, we must have

λ ∈ (-∞, m), where m = min ρk, ρk α(Π ρ,R -log X n-k,n ) > 0. We have g(-∞) = -Π ρ,R -X n-k,n < 0. If m = ρk/{α(Π ρ,R -log X n-k,n )}, then g(m-) = +∞. If m = ρk, that is, if ρk ≤ ρk/{α(Π ρ,R -log X n-k,n
)}, it is easy to show that:

1 < 1 1 -α(Π ρ,R -log X n-k,n ) ,
and thus,

0 < α/ρ 1 -α(Π ρ,R -log X n-k,n ) -1.
This, finally, implies that if m = ρk,

g(m) = Π ρ,R α/ρ 1 -α(Π ρ,R -log X n-k,n ) -1 > 0.
In summary, g is continuous, strictly increasing, g(-∞) < 0 and g(m) > 0, with m > 0. Therefore, there exists a unique λ ∈ (-∞, m) such that g(λ) = 0.

■ Lemma 2. Let b n = kρ 2 Π ρ,R (Π ρ,R -log X n-k,n )α 2 ,
where k = k(n) satisfies k → ∞, k/n → 0 and √ k/ log n → 0 as n → ∞, and let λ n denote the solution to (2.9). Then, as n → ∞,

P(|λ n | < b n ) → 1 and |λ n |/ √ k P -→ 0.
Proof. If λ n is the solution to (2.9), then g(λ n ) = 0 (existence of λ n is ensured by Lemma 1). We wish to show that

P(|λ n | < b n ) → 1 as n → ∞. We have P(|λ n | < b n ) = P(-b n < λ n < b n ) = P(g(-b n ) < 0 < g(b n )) since g is strictly increasing. To prove that P(g(-b n ) < 0 < g(b n )) → 1, we prove that P(g(b n ) > 0) → 1 and P(g(-b n ) < 0) → 1.
First, note that:

1 -bn ρk 1 -bn ρn = 1 1 -k n ρ 1 Π ρ,R (Π ρ,R -log X n-k,n ) α2 - ρ Π ρ,R (Π ρ,R -log X n-k,n )α 2 -k n ρ = 1 + o P (1). Therefore, X n-k,n ρk -b n ρn -b n 1 ρ = X n-k,n k n 1 ρ 1 -bn ρk 1 -bn ρn 1 ρ = X n-k,n k n 1 ρ (1 + o P (1)) = Πρ, Ropt α ρ -1 + o P (1) = Π ρ,R α ρ -1 + o P (1), (4.13)
since Πρ, Ropt -Π ρ,R = o P (1) [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF] and α -α = o P (1) [START_REF] Mason | Laws of large numbers for sums of extreme values[END_REF]. Now, using (4.13) and Taylor's expansion in

g(b n ) = Π ρ,R α ρ 1 1 -bn α ρk (Π ρ,R -log X n-k,n ) -Π ρ,R -X n-k,n ρk -b n ρn -b n 1 ρ
, we obtain:

g(b n ) = Π ρ,R α ρ 1 + b n α ρk (Π ρ,R -log X n-k,n )(1 + o P (1)) -Π ρ,R -Π ρ,R α ρ -1 + o P (1) = Π ρ,R α ρ + Π ρ,R b n α2 ρ 2 k (Π ρ,R -log X n-k,n )(1 + o P (1)) - Π ρ,R α ρ + o P (1) = 1 + o P (1).
Therefore, P(g(b n ) > 0) → 1 as n → ∞. Similarly, we can show that g(-b n ) = -1 + o P (1), hence P(g(-b n ) < 0) → 1 as n → ∞, which concludes the first part of the proof.

Next, we have:

P(|λ n | < b n ) = P |λ n | √ k < √ k ρ 2 Π ρ,R (Π ρ,R -log X n-k,n )α 2 = P   |λ n | √ k < ρ 2 Π ρ,R α2 1 Π ρ,R √ k - log X n-k,n √ k   .
From Theorem 2 of [START_REF] Necir | Statistical estimate of the proportional hazard premium of loss[END_REF], if

√ k/ log n → 0, then log X n-k,n / √ k P -→ ∞. Therefore, ρ 2 Π ρ,R α2 1 Π ρ,R √ k - log X n-k,n √ k P -→ 0 and since P(|λ n | < b n ) → 1, we conclude that |λ n |/ √ k P -→ 0. ■ Lemma 3.
Let λ n denote the solution to (2.9), and let

k = k(n) be such that k → ∞, k/n → 0 and √ k/ log n → 0 as n → ∞. Then, as n → ∞, ᾱ(λ n )/α P -→ 1.
Proof. First, using Taylor's expansion, we obtain

g(λ n ) = Π ρ,R α ρ + Π ρ,R α2 ρ 2 k λ n (Π ρ,R -log X n-k,n )(1 + o P (1)) - Π ρ,R α ρ + o P (1) = Π ρ,R ρ (α -α) + Π ρ,R α2 ρ 2 k λ n (Π ρ,R -log X n-k,n )(1 + o P (1)).
If λ n is the solution to (2.9), then g(λ n ) = 0, and thus,

λ n k = -ρ(α -α) 1 (Π ρ,R -log X n-k,n )α 2 (1 + o P (1)). Now, we have: ᾱ(λ n ) α -1 = 1 1 -λn α ρk (Π ρ,R -log X n-k,n ) -1,
and by Taylor's expansion,

ᾱ(λ n ) α -1 = λ n α ρk (Π ρ,R -log X n-k,n )(1 + o P (1)) = -ρ(α -α) 1 (Π ρ,R -log X n-k,n )α 2 α ρ (Π ρ,R -log X n-k,n )(1 + o P (1)) = - (α -α) α (1 + o P (1)).
Therefore, by consistency of α, we obtain that ᾱ(λ n )/α -1 P -→ 0, which concludes the proof. ■

We are now in position to prove Theorem 2.2. First, recall that

log L(α, c) = k log α + k log c -(α + 1) k i=1 log X n-i+1,n + (n -k) log(1 -cX -α n-k,n ).
Using the fact that α-

1 = k -1 k i=1 log X n-i+1,n -log X n-k,n , we can re-write log L(α, c) as log L(α, c) = k log α -k(α + 1) α-1 + k log(cX -α n-k,n ) -k log X n-k,n + (n -k) log(1 -cX -α n-k,n ),
and thus,

ℓ(Π ρ,R ) = -2 {log L(ᾱ(λ n ), c(λ n )) -log L(α, ĉ)} = -2    k log ᾱ(λ n ) α -k(ᾱ(λ n ) -α)α -1 + k log   c(λ n )X -ᾱ(λn) n-k,n ĉX - α n-k,n   +(n -k) log   1 -c(λ n )X -ᾱ(λn) n-k,n 1 -ĉX - α n-k,n      . Now, using ĉ = (k/n)X α n-k,n and c(λ n ) = ρk-λn ρn-λn X ᾱ(λn) n-k,n , we can re-write ℓ(Π ρ,R ) as ℓ(Π ρ,R ) = -2 k log ᾱ(λ n ) α -k ᾱ(λ n ) α -1 + k log ρk -λ n ρn -λ n • n k + (n -k) log ρn -ρk ρn -λ n • n n -k ,
and straightforward calculations yield: 

ℓ(Π ρ,R ) = -2k log ᾱ(λ n ) α - ᾱ(λ n ) α -1 -2k log 1 - λ n ρk + 2n log 1 - λ n ρn .

By

ℓ(Π ρ,R ) = -2k log ᾱ(λ n ) α - ᾱ(λ n ) α -1 + O P λ 2 n k = √ k ᾱ(λ n ) α -1 2 + o P (1).
Now, according to the proof of Lemma 3, we have

ᾱ(λ n ) α -1 = - (α -α) α (1 + o P (1)), therefore, √ k ᾱ(λ n ) α -1 2 = √ k γ -γ γ 2 (1 + o P (1)),
Finally, if (2.5) holds and [START_REF] De Haan | Comparison of tail index estimators[END_REF]. Therefore,

√ kA(n/k) → 0 as n → ∞, √ k(γ -γ)/γ L -→ N (0, 1) (see de
ℓ(Π ρ,R ) L -→ χ 2 1 .
■ Proof of Theorem 2.3: The proof follows the same lines as [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF], therefore, we provide an outline of the proof and emphasize the parts that are specific to our problem.

For i = 1, . . . , n, let δ i = 1 {X i >X n-k,n } and let q (i) denote the concomitant of X n-i+1,n , that is,

q (i) = 1 n exp -1 -λ 1 -λ 2 Π ρ,Ropt ρA 2 (λ 1 ) - Π ρ,Ropt A 1 (λ 1 ) log(X n-i+1,n /X n-k,n ) ρ(A 2 (λ 1 )) 2 - X n-k,n (A 1 (λ 1 )) 1 ρ -1 ρ for i = 1, . . . , k and q (i) = 1 n e -1-λ 1 for i = k + 1, . . . , n. Since 1 = n i=1 q i = n i=1 δ i q i + n i=1 (1 -δ i )q i ,
and n i=1 δ i q i = k i=1 q (i) , we have

k i=1 q (i) = 1 - (n -k) n e -1-λ 1 = A 1 (λ 1 ).
Now, consider the second constraint in (2.10):

Π ρ,Ropt α(q) ρ -1 -X n-k,n n i=1 q i δ i 1 ρ = 0.
This constraint can be rewritten as:

α(q) = ρ Π ρ,Ropt + X n-k,n (A 1 (λ 1 )) 1 ρ Π ρ,Ropt .
Using this, we can write:

A 2 (λ 1 ) = A 1 (λ 1 ) α(q) = n i=1 q i δ i α(q) = n i=1 q i δ i (log X i -log X n-k,n ) = k i=1 q (i) log(X n-i+1,n /X n-k,n ),
where the second to third line follows from the expression of α(q). Therefore, the constraints in (2.10) are equivalent to:

A 1 (λ 1 ) = k i=1 q (i) and A 2 (λ 1 ) = k i=1 q (i) Z i ,
where Z i := log(X n-i+1,n /X n-k,n ), or also, to:

k i=1 q (i) = A 1 (λ 1 ) and k i=1 q (i) Z i k i=1 q (i) = A 2 (λ 1 ) A 1 (λ 1 ) . (4.14)
Now, by using the expression of q (i) , the second equality in (4.14) can be rewritten as:

k i=1 exp λ 2 Π ρ,R opt A 1 (λ 1 )Z i ρ(A 2 (λ 1 )) 2 Z i k i=1 exp λ 2 Π ρ,R opt A 1 (λ 1 )Z i ρ(A 2 (λ 1 )) 2 = Π ρ,Ropt ρ Π ρ,Ropt + X n-k,n (A 1 (λ 1 )) 1 ρ . (4.15)
The existence of a solution (λ 1 , λ 2 ) to (2.10) will be established by proving that : i) for every λ 1 , there exists λ 2 (λ 1 ) such that (λ 1 , λ 2 (λ 1 )) satisfies (4.15), ii) there exists some λ 1 such that

(λ 1 , λ 2 (λ 1 )) also satisfies k i=1 q (i) = A 1 (λ 1 ). Proof of i): let f (λ) = k i=1 Z i exp(λZ i ) k i=1 exp(λZ i ) . One can check that f (λ) ----→ λ→-∞ Z k , f (λ) ----→ λ→+∞ Z 1 and f is increasing and continuous on [Z k , Z 1 ].
Therefore, f is invertible on [Z k , Z 1 ], with inverse f -1 . Now, let λ 2 (λ 1 ) be defined (uniquely, for a given λ 1 ) as:

λ 2 (λ 1 ) = f -1   Π ρ,Ropt ρ Π ρ,Ropt + X n-k,n (A 1 (λ 1 )) 1 ρ   ρ(A 2 (λ 1 )) 2 Π ρ,Ropt A 1 (λ 1 ) . (4.16)
It is not difficult to see that λ 2 (λ 1 ) satisfies (4.15), and thus, (λ 1 , λ 2 (λ 1 )) is solution to the constraint

k i=1 q (i) Z i k i=1 q (i) = A 2 (λ 1 ) A 1 (λ 1 ) .
Thereafter, it will be convenient, for notational simplicity, to re-express λ 2 (λ 1 ) as:

λ 2 (λ 1 ) = λ × ρ(A 2 (λ 1 )) 2 Π ρ,Ropt A 1 (λ 1 ) , with λ ≡ λ(λ 1 ) = f -1 Π ρ,R opt ρ(Π ρ,R opt +X n-k,n (A 1 (λ 1 )) 1 ρ )
.

Proof of ii): first, by Taylor's expansion, we have, as in [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF],

f (±k -1/4 ) -f (0) = ±k -1/4 f ′ (0)(1 + o P (1)), with f (0) = k i=1 Z i / k i=1 1 = γ and f ′ (0) = 1 k k i=1 Z 2 i -γ2 = γ 2 (1 + O P (k -1/2 )).
(4.17)

Using this, we can show that P(-k -1/4 < λ < k -1/4 ) → 1 as n → ∞. A second Taylor's expansion yields

f ( λ) -γ = λf ′ (0)(1 + O P (k -1/4 )) = λγ 2 (1 + O P (k -1/4 )), (4.18) 
which implies λ = O P (k -1/2 ). Finally, using Taylor's expansion, we have

k i=1 exp( λZ i ) = k 1 + O P 1 √ k . (4.19) Now, let h(λ 1 ) = k i=1 q (i) -A 1 (λ 1 ).
By plugging λ 2 (λ 1 ) into q (i) , we can re-express h(λ 1 ) as:

h(λ 1 ) = 1 n e -1-λ 1 exp - λ ρ(A 2 (λ 1 )) 2 Π ρ,Ropt A 1 (λ 1 ) Π ρ,Ropt ρA 2 (λ 1 ) - X n-k,n (A 1 (λ 1 )) 1 ρ -1 ρ k i=1 exp( λZ i ) -A 1 (λ 1 ). Let λ ′ 1 = -1 -log 1 + √ k n-k and λ ′′ 1 = -1 -log 1 - √ k n-k .
Then it is easy to see that

e -1-λ ′ 1 = 1 + √ k n -k and A 1 (λ ′ 1 ) = k n 1 - 1 √ k . (4.20)
We also have

A 2 (λ ′ 1 ) = γ k n 1 - 1 √ k + o P 1 √ k , (4.21) 
which follows from (2.3), from the fact that k n 1 -1

√ k ≤ A 1 (λ) ≤ k n 1 + 1 √ k for every λ ′ 1 ≤ λ ≤ λ ′′
1 , and from the following result for the Hill estimate:

√ k(γ -γ) L -→ N (0, γ 2
). Now, it follows from (4.19), (4.20) and (4.21) that h(λ

′ 1 ) = k n 1 √ k (1 + o P (1)). Similarly, h(λ ′′ 1 ) = -k n 1 √ k (1 + o P (1)). Since λ ′ 1 ≤ λ 1 ≤ λ ′′
1 and h(λ ′ 1 ) and h(λ ′′ 1 ) can be made arbitrarily close to 0 by letting n → ∞, λ 1 satisfies h(λ 1 ) = 0, or equivalently, k i=1 q (i) = A 1 (λ 1 ), with λ 2 (λ 1 ) defined in (4.16). That is, we have shown that there exists a solution (λ 1 , λ 2 (λ 1 )) of (4.14), or equivalently, of (2.10). Now, let λ1 be such that h( λ1 ) = 0. By using similar arguments as [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF], we can show that

1 + λ1 = O P √ k n . (4.22)
Moreover, from (4.18), we can show that

λ2 = γ -γ γ 2 2 (1 + O P (k -1/4 ). (4.23)
As in [START_REF] Peng | Confidence regions for high quantiles of a heavy tailed distribution[END_REF], we have

L(Π ρ,Ropt ) = (1 + o P (1)) n(1 + λ1 ) 2 + λ2 k i=1 (Z i -γ) 2 .
It follows from (4.17), (4.22) and (4.23) that

L(Π ρ,Ropt ) = (1 + o P (1))O P (k/n) + (1 + o P (1))kγ 2 (1 + O P (k -1/2 )) λ2 = o P (1) + (1 + o P (1)) √ k γ -γ γ 2 .
Under the conditions of Theorem 2. 

  Lemma 2, |λ n |/ √ k P -→ 0 (which also implies |λ n |/k P -→ 0 and |λ n |/n P -→ 0), and by Lemma 3, ᾱ(λ n )/α P -→ 1. Thus, by Taylor's expansions, we obtain
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 1 Figure1: Coverage probabilities for Burr(2, 4), plotted against k = 20, 22, . . . , 300 (based on N = 1000 samples of size n = 1000), with ρ = 1.1 (left) and ρ = 1.2 (right). Red dotted line: likelihood ratio method, black line: normal approximation method, blue dashed line: data tilting method. Horizontal green line is the nominal confidence level (0.9).
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 2345678 Figure2: Coverage probabilities for Burr(1.5, 3), plotted against k = 20, 22, . . . , 300 (based on N = 1000 samples of size n = 1000), with ρ = 1.1 (left) and ρ = 1.2 (right). Red dotted line: likelihood ratio method, black line: normal approximation method, blue dashed line: data tilting method. Horizontal green line is the nominal confidence level (0.9).
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 9101112 Figure9: Danish fire data. 90%-confidence intervals for ΠR,ρ (left) and their length (right), calculated for ρ = 1.0 (top), ρ = 1.1 (middle), ρ = 1.2 (bottom), and plotted against k = 20, 22, . . . , 250. Red dotted line: likelihood ratio method, black line: normal approximation method, blue dashed line: data tilting method.