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STRUCTURE PRESERVING SOLVER FOR MULTI-DIMENSIONAL
VLASOV-POISSON TYPE EQUATIONS

Alain Blaustein1

Abstract. In [5], we have developed a discretization of the Vlasov-Poisson-Fokker-Planck
model in the Hermite basis. This method allows for the treatment of different scales, ranging
from collisionless regimes where we recover Vlasov-Poisson dynamics to highly collisional
situations where the plasma behaves like a fluid. Furthermore, this approach preserves the
entropy and hypocoercivity structure of the model, which facilitates its numerical analysis.

However, it may not be efficient in high dimensions, as it requires solving large systems,
with typical size (NxNv)

d, where Nx (resp. Nv) denotes the spatial (resp. velocity) mesh
refinement. Here, we propose a splitting scheme that preserves the structure of the system
while drastically reducing the computational effort. More precisely, we decompose the system
into Nd

v structure preserving blocks, each of sizes Nd
x and with same sparsity structure. We

rigorously prove its structure preserving properties and illustrate its computational efficiency
throughout various simulations.
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1. Introduction

The Vlasov-Poisson-Fokker-Planck system provides a kinetic description of a gas consti-
tuted of charged particles, let us say electrons and heavy positive ions, interacting through a
mean electrostatic field:

(1.1)


∂tf + v · ∇xf + E · ∇vf = ν divv (vf + T0∇vf) ,

E = −∇xΦ ; −λ∆xΦ = ρ− ρi ; ρ(t,x) =

∫
Rd

f(t,x,v)dv ,

The system is completed with the following condition, which ensures uniqueness of the po-
tential Φ

(1.2)

∫
Td

Φ(t,x) dx = 0 .

In (1.1), f(t,x,v) is the distribution of particles over the phase space (x,v) ∈ Td × Rd at
time t ≥ 0, where d ≥ 1. Field interactions are taken into account thanks to a coupling
between kinetic and Poisson equations (first and second line of (1.1) respectively). In the
Poisson equation, λ determines the nature and strength of interactions: λ > 0 corresponds
to the repulsive or Coulomb case whereas λ < 0 corresponds to the attractive or Newtonian
case. The right-hand side of the Poisson equation features the macroscopic distribution of
particles ρ(t,x) as well as a fixed background density ρi(x). The following compatibility
condition is satisfied for all time t ≥ 0∫

Td

ρ(t,x) dx =

∫
Td

ρi(x) dx

as soon as it is initially verified. Thermodynamic effects are taken into account thanks to
a Fokker-Planck operator, on the right-hand side of the kinetic equation, where appears the
collision frequency ν ≥ 0 of particles with a surrounding bath described by a spatially homo-
geneous temperature T0 > 0. The case ν = 0 corresponds to the collisionless regime.

A major challenge in the numerical simulation of kinetic equations in plasma physics is
to numerically account for their multi-scale nature (quasi-neutrality, weakly/strongly colli-
sional). This first difficulty comes with another: kinetic equations suffer from the infamous
“curse of dimensionality”. This expression refers to their resolution cost, as the distribution
function acts in the high-dimensional phase space Rd

x×Rd
v. Several numerical methods have

been proposed for (1.1)-(1.2), we mention for instance [21, 27, 9, 10, 6, 24]. These numer-
ical schemes are either deterministic or stochastic, with an effort to capture some physical
phenomena associated to weakly collisional plasmas such as Landau damping or two-stream
instability, occurring for short time range, before being canceled by collisions. More recently,
dynamical low-rank algorithms have been proposed [15, 8], they decouple the dimensions of
the phase space allowing to reduce the computational cost.
Furthermore, intense efforts have been deployed in order to preserve the hypocoercivity struc-
ture of continuous Vlasov equations [12, 26, 13, 23], at the discrete level [25, 20, 14, 3]. These
approaches ensure that the long time dynamics of the continuous model are faithfully re-
produced. In this context, we have developed a discretization of the Vlasov-Poisson-Fokker-
Planck model in the Hermite basis [5] in dimension d = 1. This method allows for the
treatment of different scales without any constraint on the time step since it is fully implicit
in time. Furthermore, it preserves the entropy and hypocoercivity structure of the model,
which facilitates its asymptotic and stability analysis. However, it may not be efficient in
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high dimensions, as it requires solving large systems, with typical size Nd
x × Nd

v , where Nx

(resp. Nv) denotes the number of mesh point in position (resp. velocity). Therefore, we pro-
pose an efficient splitting scheme that preserves the structure of the system while reducing
the computational effort in high dimensions.

When ν > 0, the equilibrium state f∞ of (1.1) is uniquely determined as follows

f∞(x,v) = ρ∞(x)M(v) ,

whereM denotes the Maxwellian with temperature T0

M(v) =
1

(2π T0)d/2
exp

(
−|v|

2

2T0

)
and where ρ∞ solves

(1.3)

 ρ∞ = exp

(
−Φ∞

T0

)
,

−λ∆xΦ∞ = ρ∞ − ρi ,

completed with the following condition∫
Td

exp

(
−Φ∞

T0

)
dx =

∫
Td

ρi dx .

In order to design a well-balanced approximation for (1.1)-(1.2), we consider an equivalent
reformulation in terms of quantities near equilibrium. Replacing Φ with Ψ = Φ − Φ∞ in
(1.1)-(1.2), we find that f solves

(1.4)


∂tf + v · ∇xf − ∇xΦ∞ · ∇vf − ∇xΨ · ∇vf = ν divv (vf + T0∇vf) ,

−λ∆xΨ = ρ− ρ∞ ; ρ(t,x) =

∫
Rd

f(t,x,v)dv ,

completed with the condition

(1.5)

∫
Td

Ψ(t,x) dx = 0 .

When ν > 0, the equilibrium to (1.4)-(1.5) is now characterized by (f∞,Ψ∞) where Ψ∞ ≡ 0.
The key-estimate to prove the trend to equilibrium of solutions to (1.4)-(1.5) is given by

d

dt
H(f, f∞) = − ν I(f, f∞),

where H(f, f∞) stands for the free energy

H(f, f∞) :=

∫
Td×Rd

ln

(
f

f∞

)
f dx dv +

λ

2T0

∥∇xΨ ∥2L2(Td) ,

and I(f, f∞) is the entropy dissipation

I(f, f∞) := 4T0

∫
Td×Rd

∣∣∣∣∣∇v

√
f

f∞

∣∣∣∣∣
2

f∞ dx dv .

When f is near the equilibrium f∞, we may plug the following formal expansion into the free
energy

f ln

(
f

f∞

)
∼

f→f∞
f − f∞ +

|f − f∞|2

2 f∞
.
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Using that mass is conserved for solutions to (1.4)-(1.5), we define a new functional, named
the linearized free energy, as

(1.6) E(t) = ∥ f(t)− f∞ ∥2L2(f−1
∞ ) +

λ

T0

∥∇xΨ(t) ∥2
L2(Td) .

Unfortunately, this functional is not dissipated by the nonlinear system (1.4)-(1.5), but only
by its linearized version given by

(1.7)


∂tf + v · ∇xf − ∇xΦ∞ · ∇vf − ∇xΨ · ∇vf∞ = ν divv (vf + T0∇vf) ,

−λ∆xΨ = ρ− ρ∞ ; ρ(t,x) =

∫
Rd

f(t,x,v)dv ,

completed with the condition

(1.8)

∫
Td

Ψ(t,x) dx = 0 .

This yields for the solution (f,Ψ) to (1.7)-(1.8)

(1.9)
1

2

d

dt
E(t) = − ν T0

∫
Td×Rd

∣∣∣∣∇v

(
f(t)

f∞

) ∣∣∣∣2 f∞ dx dv .

2. Reformulation of the model

In this section, we introduce our numerical method. We follow the lines of our previous
work for the one dimensional Vlasov-Poisson-Fokker-Planck equation [5] and then propose
a discretization of the Poisson equation allowing to preserve the energy estimate for the
linearized problem. Finally, we present an efficient time splitting scheme using an implicit
procedure allowing to reduce the computational effort.

2.1. Hermite decomposition for the velocity variable. The family of Hermite’s func-
tions (Ψk)k∈Nd defined as

Ψk(v) = Hk

(
v√
T0

)
M(v) ,

constitutes an orthonormal system of L2 (M−1), that is∫
R
Ψk(v)Ψl(v)M−1(v)dv = δk,l .

In the latter definition, (Hk)k∈Nd stands for the family of d-dimensional Hermite polynomials

Hk (ξ) = Hk1 (ξ1) × · · · × Hkd (ξd) , ∀ξ ∈ Rd .

Hermite polynomials are defined recursively as follows H−1 = 0, H0 = 1 and

ξ Hk(ξ) =
√
k Hk− 1(ξ) +

√
k + 1Hk+1(ξ) , ∀ k ≥ 0 .

Let us also point out that Hermite’s polynomials verify the following relation

H ′
k(ξ) =

√
k Hk−1(ξ) , ∀ k ≥ 0 .

The Hermite system arises naturally in our context since it offers a simple discrete reformu-
lation of the L2 (f−1

∞ )-norm which appears in the key estimate (1.9), indeed it holds

∥f(t)∥2
L2(f−1

∞ ) =
∑
k∈Nd

∥Ck(t)∥2L2(ρ−1
∞ ) ,
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where C = (Ck)k∈Nd stand for the Hermite components of f

f (t,x,v) =
∑
k∈Nd

Ck (t,x) Ψk(v) .

2.2. Well-balanced system through spatial normalization. As one can see in the latter
relation, each term of the sequence C = (Ck)k∈Nd naturally belongs to the weighted space
L2 (ρ−1

∞ ). From the numerical point of view, working in weighted spaces induces difficulties
when it comes to integration by part. Hence, we normalize the Hermite coefficients by the
steady state in order to get a well-balanced scheme [7, 16, 5, 4]

(2.1) f (t,x,v) =
√
ρ∞(x)

∑
k∈Nd

Dk (t,x)Ψk(v) .

According to latter considerations, normalized Hermite coefficients D = (Dk)k∈Nd verify

∥f(t)∥2
L2(f−1

∞ ) =
∑
k∈Nd

∥Dk(t)∥2L2(Td) .

To sum up, normalized Hermite coefficients play a fundamental role in our analysis for two
reasons: they offer a discrete reformulation of the key quantity E(t) given by (1.6) and they
belong to the unweighted Lebesgue space L2

(
Td
)
. There is another benefit coming out

of this choice: thanks to the properties of Hermite polynomials, one can see that Hermite
functions diagonalize the Fokker-Planck operator since it holds

∇v · [vΨk + T0∇v Ψk ] = − |k| Ψk .

Taking advantage of the latter relation and using that −√ρ∞∇xΦ∞ = 2T0∇xρ∞, we refor-
mulate the Vlasov equation in (1.4) within the Hermite framework

(2.2) ∂tDk +
d∑

α=1

√
kα

(
Aα +

∂xαΨ√
T0

)
Dk−eα −

√
kα + 1A⋆

α Dk+eα = − ν |k|Dk ,

for all k ∈ Nd, where we set eα = (δβ=α)1≤β≤d and Dk−eα = 0 whenever kα − 1 < 0. In the
latter system, operators Aα and A⋆

α are given by

(2.3)


Aα u = +

√
T0 ∂xαu +

∂xαΦ∞

2
√
T0

u

A⋆
α u = −

√
T0 ∂xαu +

∂xαΦ∞

2
√
T0

u

, ∀α ∈ {1, · · · , d} .

We refer to the latter formulation as the algebraic form of (Aα,A⋆
α). The operators also

admit the following entropic form

(2.4)

 Aα u = +
√
T0
√
ρ∞∂xα

(√
ρ−1
∞ u
)

A⋆
α u = −

√
T0
√
ρ−1
∞ ∂xα

(√
ρ∞ u

) , ∀α ∈ {1, · · · , d} .

In this framework, the equilibrium D∞ to (2.5) is simply given by

D∞,k =

{ √
ρ∞ , if k = 0,

0, else.
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2.3. Reformulation of the field. In order to prepare the analysis of the model at the
discrete level, we also rewrite the field contribution in (2.2) in terms of operators Aα. Our
main motivation being to preserve the linearized energy estimate (1.9) at the discrete level.
According to (2.4), it holds

∂xαΨ√
T0

=
1

T0
√
ρ∞
Aα

(√
ρ∞Ψ

)
,

for all α = 1, · · · , d. Plugging the latter identity in (2.2), we rewrite the full system (1.4) as
a coupled system between normalized Hermite coefficients D = (Dk)k∈Nd and the field Ψ.
After separating linear from non-linear terms, we obtain

(2.5)


∂tDk + Lk [D,Ψ] + Nk [D,Ψ] = 0 , ∀k ∈ Nd ,

−λ∆xΨ =
√
ρ∞D0 − ρ∞ ,

where Lk gathers linear terms and is given by

Lk [D,Ψ] =
d∑

α=1

(√
kαAα

(√
ρ∞
T0

δk,eαΨ+Dk−eα

)
−
√

kα + 1A⋆
α Dk+eα

)
+ ν |k|Dk ,

whereas Nk gathers non-linear terms and is given by

Nk [D,Ψ] =
d∑

α=1

√
kα

T0
√
ρ∞
Aα

(√
ρ∞Ψ

)
(Dk−eα −D∞,k−eα) ,

for all k ∈ Nd, where we set Dk−eα = 0 whenever kα − 1 < 0.

3. A class of spatial discretizations

In this section, we propose and analyze a class of semi-discrete scheme for the reformulation
(2.5) of (1.4). We prove that the method preserves the structure of the linearized equation
(1.7). Our discretization is based on a finite volume method to discretize the spatial variable
in (2.5).

3.1. Geometry of the grid. To discretize the spatial domain, we consider an interval (a, b)
and for each direction α = 1, · · · , d, a subdivision of the interval (a, b)

a = xα
1/2 < xα

3/2 < ... < xα
j−1/2 < xα

j+1/2 < ... < xα
Nx−1/2 < xα

Nx+1/2 = b ,

for a given number of point Nx ∈ N⋆. Our discretization of Ta,b is then given by the family
of control volumes (Kj)j∈J

Kj =
d∏

α=1

]
xα
jα−1/2, x

α
jα+1/2

[
,

indexed by the set

J = {j ∈ Nd , e ≤ j ≤ Nxe} ,

where e = e1+ · · ·+ed. Furthermore, we denote by xα
j the middle of

]
xα
j−1/2, x

α
j+1/2

[
so that

the center of the control volume Kj is given by

xj := x1
j1
e1 + · · ·+ xd

jd
ed .
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For all α = 1, · · · , d and all j = 1, ..., Nx, we define

∆xα
j = xα

j+1/2 − xα
j−1/2 .

Hence, for all j ∈ J , the volume of Kj is given by

∆xj =
d∏

α=1

∆xα
jα ,

and we denote by l2(J ) the discrete L2-norm on our grid

(3.1) ∥u∥2l2(J ) =
∑
j∈J

|uj|2∆xj ,

for all u ∈ RJ . Finally the grid refinement parameter h > 0 is defined as

h = max
1≤j≤Nx

max
1≤α≤d

∆xα
j .

3.2. Discrete operators for Vlasov and Poisson equations. in this section, we define
the class of discrete analogs of A that will be used in our scheme. We also define the class of
discrete analogs of ∆x used to discretize the Poisson equation in (1.4).
To discretize A, we start from a finite volume method for the gradient ∇x. More precisely,
we denote by ∇h a given discrete gradient over the grid (Kj)j∈J , that is

∇h : (uj)j∈J 7−→
(
∇h

ju
)
j∈J .

For 1 ≤ α ≤ d, we denote by ∂h
α the discrete partial derivative induced by ∇h, and by ∂h,⋆

α

its adjoint operator in l2(J ), that is∑
j∈J

∂h
α,ju vj ∆xj =

∑
j∈J

uj ∂
h,⋆
α,j v∆xj .

We suppose that ∇h is linear

(3.2) ∇h (u+ v) = ∇hu+∇hv .

Remark 3.1. Since ∇h is linear, it is canceled by constants

∇h (u)j∈J = 0 ,

for all u ∈ R.

We also suppose that ∇h is stable and consistent with ∇x, that is

(3.3)


sup
i∈J

∣∣∣∂h
α,i (u(xj))j∈J

∣∣∣ ≤ C

sup
i∈J

∣∣∣∂h
α,i (u(xj))j∈J − ∂xαu(xi)

∣∣∣ ≤ C h
, ∀α ∈ {1, · · · , d} ,

for all u ∈ C 1
(
Td

a,b

)
and for some constant C > 0 depending only on u.

We now propose two discretizations of the operator A, corresponding respectively to its alge-
braic (2.3) and entropic (2.4) forms. Consider an approximation (ρ∞,j)j∈J of the equilibrium

state ρ∞ defined in (1.3). Entropic and algebraic discretizations of Aα are given by

(3.4)


Aen

α,ju =
√

T0
√
ρ∞,j∂

h
α,j

(√
ρ−1
∞ u
)

Aal
α,ju =

√
T0

(
∂h
α,ju −

√
ρ−1
∞,j ∂

h
α,j

(√
ρ∞
)
uj

) , ∀α ∈ {1, · · · , d} .
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These discretizations preserve the equilibrium state of the equation since it holds

(3.5) Aal
α

√
ρ∞ = Aen

α

√
ρ∞ = 0 .

Dual operators in l2 (J ) of each form are explicitly given by

(3.6)


Aen,⋆

α,j u =
√

T0
√
ρ−1
∞,j∂

h,⋆
α,j

(√
ρ∞u

)
Aal,⋆

α,ju =
√

T0

(
∂h,⋆
α,ju −

√
ρ−1
∞,j ∂

h
α,j

√
ρ∞ uj

) , ∀α ∈ {1, · · · , d} .

The following property is satisfied by A⋆ but only holds true for the entropic discretization

Aen,⋆
α

√
ρ−1
∞ = 0 .

To discretize the Laplacian operator in Poisson equation in (1.4), we consider a discrete
gradient ∇̃h which meets assumptions (3.2)-(3.3) and define

(3.7) ∆̃h = −∇̃h,⋆ · ∇̃h .

3.3. Semi discrete scheme. We now turn to the discretization of (2.5). We fix a number
of Hermite modes NH ∈ N⋆ in each direction α = 1, · · · , d and we denote by Dh

k(t) =
(Dk,j(t))j∈J the approximation of Dk(t), where the index k lies in

H = {k ∈ Nd , 0 ≤ k ≤ NHe} ,

and represents the k-th mode of the Hermite decomposition, whereas Dk,j(t) is an approxi-
mation of the mean value of Dk(t) over the cell Kj at time t.

First of all, the initial condition is discretized on each cell Kj by:

Din
k,j =

1

∆xj

∫
Kj

Dk(t = 0,x) dx, j ∈ J .

In order to solve Dh(t) = (Dk,j(t))(k,j)∈H×J at time t > 0, we replace (Aα)1≤α≤d in (2.5)

by one of the two finite volume methods (Aen
α )1≤α≤d or

(
Aal

α

)
1≤α≤d

detailed in Section 3.2

and denote by
(
Ah

α

)
1≤α≤d

the chosen method. We also replace the Laplacian operator of the

Poisson coupling in (2.5) by the discrete Laplacian operator ∆̃h introduced in Section 3.2.
After separating linear and non linear terms, this yields

(3.8)


∂tD

h
k + Lh

k

[
Dh,Ψh

]
+ N h

k

[
Dh,Ψh

]
= 0 , ∀k ∈ H ,

−λ∆̃hΨh =
√
ρ∞Dh

0 − ρ∞ ,

where, as in the continuous case, Lh
k gathers linear terms and is given by

Lh
k

[
Dh,Ψh

]
=

d∑
α=1

(√
kαAh

α

(√
ρ∞
T0

δk,eαΨ
h +Dh

k−eα

)
−
√
kα + 1Ah,⋆

α Dh
k+eα

)
+ ν |k|Dh

k ,

whereas N h
k gathers non-linear terms and is given by

N h
k

[
Dh,Ψh

]
=

d∑
α=1

√
kα

T0
√
ρ∞
Ah

α

(√
ρ∞Ψh

) (
Dh

k−eα −D∞,k−eα

)
,

for all k ∈ H, where we set Dk−eα = 0 (resp. Dk+eα = 0) whenever kα − 1 < 0 (resp.
kα + 1 > NH).
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3.4. Properties of the scheme. In this section, we prove that our method preserves the
energy estimate (1.9) verified by the linearized equation (1.7). Indeed, we prove that the
linearized energy estimate (1.9) is verified by the equation obtained from (3.8) keeping only
linear terms, that is

(3.9)


∂tD

h
k + Lh

k

[
Dh,Ψh

]
= 0 , ∀k ∈ H ,

−λ∆̃hΨh =
√
ρ∞Dh

0 − ρ∞ ,

where Lh
k was defined for all k ∈ H below (3.8) as follows

Lh
k

[
Dh,Ψh

]
=

d∑
α=1

(√
kαAh

α

(√
ρ∞
T0

δk,eαΨ
h +Dh

k−eα

)
−
√
kα + 1Ah,⋆

α Dh
k+eα

)
+ ν |k|Dh

k ,

At the discrete level, the energy of a solution Ψh, Dh =
(
Dh

k

)
k∈H to (3.9) is defined as

(3.10) Eh(t) =
∑
k∈H

∥∥Dh
k(t)−D∞,k

∥∥2
l2(J )

+
λ

T0

∥∥∥ ∇̃hΨh(t)
∥∥∥2
l2(J )

,

where the discrete l2 (J ) norm is given in (3.1). Estimate (1.9) ensures that this quantity
is conserved in the collisionless regime ν = 0 and dissipated when ν > 0. Therefore, the
following result ensures stability at the discrete level in the Coulomb case λ < 0.

Theorem 3.2. Under assumptions (3.2)-(3.3), denote by
(
Ah

α

)
1≤α≤d

one of the two dis-

cretization proposed in (3.4) and consider the linear operators
(
Lh

k

)
k∈H defined below (3.8).

Then, any solution Ψh, Dh =
(
Dh

k

)
k∈H to (3.9) satisfies

Eh(t) = Eh(0) − 2 ν

∫ t

0

∑
k∈H

|k|
∥∥Dh

k(s)−D∞,k

∥∥2
l2(J )

ds ,

for all time t ∈ R+, where Eh(t) is defined by (3.10).

Proof. To compute the time derivative of
∑

k∈H

∥∥Dh
k(t)−D∞,k

∥∥2
l2(J )

, we take the l2(J ) scalar
product between 2

(
Dh

k(t)−D∞,k

)
and the first line of (3.9). After summing over all k ∈ H,

we obtain
d

dt

∑
k∈H

∥∥Dh
k(t)−D∞,k

∥∥2
l2(J )

= E1 + E2 + E3 ,

where E1, E2 and E3 are given as follows

E1 = 2 ν
∑
k∈H

|k|
〈
Dh

k(t) , D
h
k(t)−D∞,k

〉
l2(J )

,

E2 = −2
∑
k∈H

d∑
α=1

〈√
kαAh

αD
h
k−eα(t)−

√
kα + 1Ah,⋆

α Dh
k+eα(t) , D

h
k(t)−D∞,k

〉
l2(J )

,

E3 = −2
∑
k∈H

d∑
α=1

〈√
kαAh

α

(√
ρ∞
T0

δk,eαΨ
h(t)

)
, Dh

k(t)−D∞,k

〉
l2(J )

.

The first term corresponds to the dissipation due to the Fokker-Planck operator on the right
hand side of (1.7). It actually has a signed contribution. Indeed, using that D∞,k = 0
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whenever k ̸= 0, we obtain

E1 = −2 ν
∑
k∈H

|k|
∥∥Dh

k(t)−D∞,k

∥∥2
l2(J )

.

The second term E2 corresponds to the coupled contribution between free transport and
the field ∇xΦ∞ to the L2 (f−1

∞ )-distance between f and f∞ in (1.7). We check that this
contribution is zero. Indeed using (3.5) and the duality structure, we rewrite E2 as follows

E2 = −2
d∑

α=1

∑
k∈H

〈√
kαAh

αD
h
k−eα , D

h
k(t)−D∞,k

〉
l2(J )
−
〈√

kα + 1Dh
k+eα(t) , A

h
αD

h
k(t)

〉
l2(J )

.

Then, we re-index the first term in the latter sum setting k← k − eα and obtain

E2 = 2
d∑

α=1

∑
k∈H

〈√
kαAh

αD
h
k−eα , D∞,k

〉
l2(J )

,

where we used that Dk−eα = 0 whenever kα is 0 and Dk+eα = 0 whenever kα is NH . Since
D∞,k = 0 if k ̸= 0, we deduce

E2 = 0 .

The last term E3 corresponds to the contribution of the self-consistent electric field Ψ in (1.7),
it rewrites as follows

E3 = −2
d∑

α=1

〈
Ah

α

(√
ρ∞
T0

Ψh(t)

)
, Dh

eα(t)

〉
l2(J )

= −2

〈√
ρ∞
T0

Ψh(t) ,
d∑

α=1

Ah,⋆
α Dh

eα(t)

〉
l2(J )

,

where we used that D∞,eα = 0 for all α = 1, · · · , d. Then, we replace
∑d

α=1Ah,⋆
α Dh

eα in the
latter right-hand side according to the first line in (3.9) with k = 0, that is

E3 = −2
〈√

ρ∞
T0

Ψh(t) , ∂tD
h
0(t)

〉
l2(J )

.

Using this time the Poisson coupling in the second line of (3.9), we deduce

E3 =
2λ

T0

〈
Ψh(t) , ∂t∆̃

hΨh(t)
〉
l2(J )

.

According to the definition (3.7) of ∆̃h, we deduce

E3 = − λ

T0

d

dt

∥∥∥∇̃hΨh(t)
∥∥∥2
l2(J )

.

To conclude this proof, we sum our our estimates on E1, E2 and E3, this yields
d

dt

∑
k∈H

∥∥Dh
k(t)−D∞,k

∥∥2
l2(J )

= −2 ν
∑
k∈H

|k|
∥∥Dh

k(t)−D∞,k

∥∥2
l2(J )
− λ

T0

d

dt

∥∥∥∇̃hΨh(t)
∥∥∥2
l2(J )

.

We obtain the result integrating the latter relation between 0 and t. □

4. Fully discrete and structure preserving scheme

In this section, we present a fully discrete scheme for (1.4). Our motivations are twofold:
computational efficiency and structure preservation. We propose a time splitting method
which takes advantage of the variational structure of the problem and which enables to
achieve both simultaneously. We present our method in dimension one for sake of clarity and
then show how it can be generalized to any dimension d ≥ 2 without difficulty.
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4.1. One dimensional case. First of all, we consider a family of control volumes (Kj)j∈J

for T as defined in Section 3.1 and the operators
(
Ah,Ah,⋆

)
and

(
∂̃h
x , ∂̃

h,⋆
x

)
defined in Section

3.2. Then, we fix a number of Hermite modes NH ≥ 1. To discretize the time variable, we
fix a time step ∆t and we set tn = n∆t with n ∈ N. Our time discretization of R+ is then
given by the increasing sequence of (tn)n∈N.
We apply an efficient time splitting scheme based on an implicit scheme avoiding to solve a
high dimensional system. Indeed, we first solve the following system for (Ψn+1, Dn+1

0 ) and

D
(1)
1 as

(4.1)



Dn+1
0 −Dn

0

∆t
− Ah,⋆D

(1)
1 = 0 ,

D
(1)
1 −Dn

1

∆t
+ Ah Dn+1

0 + Ah

(√
ρ∞
T0

Ψn+1

)
= 0 ,

λ ∂̃h,⋆
x ∂̃h

x Ψ
n+1 =

√
ρ∞ Dn+1

0 − ρ∞ .

It allows us to get an approximation (Ψn+1, Dn+1
0 ) at time tn+1 whereasD

(1)
1 is an intermediate

approximation. To compute higher order Hermite coefficients, we solve the following systems
for each k ≥ 1 such that 2k ≤ NH

(4.2)


D

(1)
2k −Dn

2k

∆t
−
√
2k + 1Ah,⋆D

(1)
2k+1 = − 2k ν D

(1)
2k ,

D
(1)
2k+1 −Dn

2k+1

∆t
+
√
2k + 1Ah D

(1)
2k = 0 ,

with D
(1)
2k+1 = 0 when 2k + 1 > NH . From this first stage, we get (D

(1)
k )NH≥k≥1 by only

solving a linear systems of size 2Nx. In the second step, we solve the following systems for
each k ≥ 1 such that 2k − 1 ≤ NH

(4.3)


D

(2)
2k−1 −D

(1)
2k−1

∆t
−
√
2kAh,⋆D

(2)
2k = − (2k − 1) ν D

(2)
2k−1 ,

D
(2)
2k −D

(1)
2k

∆t
+
√
2kAh D

(2)
2k−1 = 0 .

Again (D
(2)
k )NH≥k≥1 is obtained as a solution of a linear system of size 2Nx. Finally, using

again a fully implicit Euler scheme, we compute for k ≥ 1,

(4.4)
Dn+1

k −D
(2)
k

∆t
+ N h

k

[
Dn+1,Ψn+1

]
= 0 ,

and Dn+1
k = 0 when k > NH .

We now make four crucial remarks regarding the computational cost associated to this
method. First, we observe that since Dn+1

0 and Ψn+1 does not change during step (4.4), the
system is trivially invertible and hence does not require any linear solver. Furthermore,
we emphasize that the matrices associated to systems (4.1), (4.2) and (4.3) are time inde-
pendent so that they only need to be inverted once at time t = 0. In practice, we compute
their LU decomposition with the superLU library [11]. Infact, the inversion time is negligible
due to two main reasons. On the one hand this splitting scheme allows us to compute an
approximation Ψn+1 and Dn+1

k by solving NH linear and nonlinear systems of small size
2Nx instead of one big system of size NH Nx. On the other hand, we benefit from the fact
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that, except for system (4.1), all the systems have the same sparsity pattern. Indeed the
matrices associated to systems (4.2) and (4.3) all take the form(

(1 + k ν∆t) INx −
√
k + 1∆tAh,⋆

√
k + 1∆tAh INx

)
,

where only parameter k varies. Therefore, we may re-use row and column permutations to
compute the LU decomposition for all values of k. For these reasons, we expect that this ap-
proach drastically reduces the computational effort, particularly for high dimension problems.

We now highlight the structure preserving property of the method. More precisely, we
prove that the linearized energy is preserved by the first three steps of the numerical method
(4.1)-(4.4). Indeed, we define the discrete free energy of the solution Dn = (Dn

k )0≤k≤NH
to

(4.1)-(4.4) as follows

(4.5) En = ∥Dn −D∞∥2l2 +
λ

T0

∥∥∥ ∂̃h
x Ψ

n
∥∥∥2
l2(J )

,

where

∥Dn −D∞∥2l2 =

NH∑
k=0

∥Dn
k −D∞,k∥2l2(J ) , and ∥Dk∥2l2(J ) =

∑
j∈J

|Dk,j|2∆xj ,

and recall that Ah and A⋆,h are adjoint operators in l2(J ). Then, we prove the following
result

Theorem 4.1. Consider the solution (Dn)n∈N to (4.1)-(4.4) with N h = 0. The following
discrete energy estimate holds for all n ≥ 0

En+1 − En

∆t
+ ∆tRn

h = − 2 ν

⌊
NH
2

⌋∑
k=0

(
2k
∥∥∥D(1)

2k

∥∥∥2
l2(J )

+ (2k + 1)
∥∥∥D(2)

2k+1

∥∥∥2
l2(J )

)
,

with D
(2)
2k+1 = 0 if 2k + 1 > NH , and where Rn

h is the following positive remainder due to
numeric dissipation

Rn
h =

λ

T0

∥∥∥∥ ∂̃h
x

Ψn+1 −Ψn

∆t

∥∥∥∥2
l2(J )

+

∥∥∥∥Dn+1
0 −Dn

0

∆t

∥∥∥∥2
l2(J )

+

NH∑
k=1

∥∥∥∥∥D(2)
k −D

(1)
k

∆t

∥∥∥∥∥
2

l2(J )

+

∥∥∥∥∥D(1)
k −Dn

k

∆t

∥∥∥∥∥
2

l2(J )

 .

Proof. We use the notation D
(1)
0

def
= Dn+1

0 and D(1) def
= (D

(1)
k )0≤k≤NH

for convenience in this
proof. We first decompose the variations of En between time step n and n+1 into two terms,
each one corresponding to one step in the splitting

En+1 − En

∆t
=
En+1 − E (1)

∆t
+
E (1) − En

∆t
,

where E (1) is defined as

E (1) =
λ

T0

∥∥∥ ∂̃h
xΨ

n+1
∥∥∥2
l2(J )

+
∥∥D(1) −D∞

∥∥2
l2
.
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Let us first compute
(
E (1) − En

)
/∆t. For each k ∈ {0, . . . , NH}, we take the l2(J ) scalar

product between the equation on the Dk in (4.1) or (4.2) and D
(1)
k − D∞,k, and then sum

over all k, this yields

1

2∆t

(∥∥D(1) −D∞
∥∥2
l2
− ∥Dn −D∞∥2l2 +

∥∥D(1) −Dn
∥∥2
l2

)
= I1 + I2 − ν

⌊
NH
2

⌋∑
k=1

2k
∥∥∥D(1)

2k

∥∥∥2
l2(J )

,

where we used D∞,2k = 0 when k ≥ 1 to obtain the dissipation term on the right hand side
and where I1 and I2 are given by
(4.6)
I1 :=

⌊
NH
2

⌋∑
k=0

√
2k + 1

(〈
Ah,⋆D

(1)
2k+1 , D

(1)
2k −D∞,k

〉
l2(J )
−
〈
Ah D

(1)
2k , D

(1)
2k+1 −D∞,k

〉
l2(J )

)
,

I2 := −
〈
Ah

(√
ρ∞
T0

Ψn+1

)
, D

(1)
1

〉
l2(J )

,

where D
(1)
2k+1 is set to 0 when 2k+1 > NH . The term I2 accounts for the contribution of the

electric field whereas I1 gathers the other terms.

Since Ah and A⋆,h are adjoint operators in l2(J ) and using that Ah D∞,0 = 0 and
Ah D∞,k = 0 when k ≥ 1, we obtain

I1 = 0 .

Furthermore, considering the first equation in (4.1), we find that I2 rewrites as follows

I2 = −
〈√

ρ∞
T0

Ψn+1 ,
Dn+1

0 −Dn
0

∆t

〉
l2(J )

.

Then, we replace Dn+1
0 −Dn

0 in the latter relation according to the third line in (4.1), which
yields

I2 = −
〈√

ρ∞
T0

Ψn+1 ,
λ
√
ρ∞

∂̃h,⋆
x ∂̃h

x

Ψn+1 −Ψn

∆t

〉
l2(J )

.

Therefore, we deduce the following relation

I2 = − λ

2∆t T0

(∥∥∥∂̃h
xΨ

n+1
∥∥∥2
l2(J )
−
∥∥∥∂̃h

xΨ
n
∥∥∥2
l2(J )

+
∥∥∥∂̃h

x

(
Ψn+1 −Ψn

)∥∥∥2
l2(J )

)
.

Gathering these computations, we deduce

E (1) − En

∆t
+R(1)

h = − 2ν

⌊
NH
2

⌋∑
k=1

2k
∥∥∥D(1)

2k

∥∥∥2
l2(J )

,

where

R(1)
h =

λ

T0

∥∥∥∥ ∂̃h
x

Ψn+1 −Ψn

∆t

∥∥∥∥2
l2(J )

+

∥∥∥∥Dn+1
0 −Dn

0

∆t

∥∥∥∥2
l2(J )

+

NH∑
k=1

∥∥∥∥∥D(1)
k −Dn

k

∆t

∥∥∥∥∥
2

l2(J )

.

Following the same procedure, we also obtain

En+1 − E (1)

∆t
+R(2)

h = − 2ν

⌊
NH
2

⌋∑
k=0

(2k + 1)
∥∥∥D(2)

2k+1

∥∥∥2
l2(J )

,
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where

R(2)
h =

NH∑
k=1

∥∥∥∥∥D(2)
k −D

(1)
k

∆t

∥∥∥∥∥
2

l2(J )

.

We conclude this proof taking the sum between the last two estimates

E (1) − En

∆t
+Rn

h = − 2ν

⌊
NH
2

⌋∑
k=0

(
2k
∥∥∥D(1)

2k

∥∥∥2
l2(J )

+ (2k + 1)
∥∥∥D(2)

2k+1

∥∥∥2
l2(J )

)
.

□

Now let us see how to adapt this splitting scheme in two dimension.

4.2. Two dimensional case. First of all, we consider a family of control volumes (Kj)j∈J

for T2 as defined in Section 3.1 and the operators
(
Ah

1 ,Ah
2 ,A

h,⋆
1 ,Ah,⋆

2

)
defined in Section 3.2.

Then, we denote by Dn
k = (Dn

k,j)j∈J the approximation of Dk, at time tn = n∆t, where the
index k lies in

H = {k ∈ N2 , 0 ≤ k ≤ NHe} ,

and represents the k-th mode of the Hermite decomposition, whereasDn
k,j is an approximation

of the mean value of Dk(t
n) over the cell Kj at time tn. The initial condition is discretized

on each cell Kj by:

Din
k,j =

1

∆xj

∫
Kj

Dk(t = 0,x) dx, j ∈ J .

Furthermore, we consider the following partition of our Hermite grid H

H = H1 ⊔H2 ⊔H3 ,

where the disjoint sets H1,H2,H3 are defined as follows

(4.7)


H1 = (3Z e1 + Z (e1 + e2)) ∩H

H2 = (e1 + 3Z e1 + Z (e1 + e2)) ∩H

H3 = (2e1 + 3Z e1 + Z (e1 + e2)) ∩H

,

To discretize the Vlasov equation (3.8) at time time tn for n > 0, our approach is based
on a time splitting scheme, where we first split and solve the linearized system and then the
remaining nonlinear part. The whole process includes four steps, the first three solve the
linearized operators

(
Lh

k

)
k∈H whereas the last step solves the remaining non linear terms.
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Let us first present step i = 1, for which we execute the following procedure for each k ∈ H1

and first consider the case k = 0 by solving the following system yields
(
Dn+1

0 , D
(1)
e1 , D

(1)
e2 ,Ψ

n+1
)

(4.8)



Dn+1
0 −Dn

0

∆t
− Ah,⋆

1 D(1)
e1
− Ah,⋆

2 D(1)
e2

= 0 ,

D
(1)
e1 −Dn

e1

∆t
+ Ah

1 D
n+1
0 + Ah

1

(√
ρ∞
T0

Ψn+1

)
= 0 ,

D
(1)
e2 −Dn

e2

∆t
+ Ah

2D
n+1
0 + Ah

2

(√
ρ∞
T0

Ψn+1

)
= 0 ,

−λ ∆̃hΨn+1 =
√
ρ∞Dn+1

0 − ρ∞ ,

Then for k ∈ H1 \ {0}, we solve

(4.9)



D
(1)
k −Dn

k

∆t
−
√

k1 + 1Ah,⋆
1 D

(1)
k+e1

−
√
k2 + 1Ah,⋆

1 D
(1)
k+e2

= − ν |k|D(1)
k ,

D
(1)
k+e1
−D

(1)
k+e1

∆t
+
√

k1 + 1Ah
1 D

(1)
k = 0 ,

D
(1)
k+e2
−Dn

k+e2

∆t
+
√

k2 + 1Ah
2 D

(1)
k = 0 ,

allowing to get an intermediate approximation
(
D

(1)
k

)
k∈H\{0}

. Then we pursue with the

second (i = 2) and third (i = 3) stages for k ∈ Hi,

(4.10)



D
(i)
k −D

(i−1)
k

∆t
−
√

k1 + 1Ah,⋆
1 D

(i)
k+e1

−
√
k2 + 1Ah,⋆

1 D
(i)
k+e2

= − ν |k|D(i)
k ,

D
(i)
k+e1
−D

(i−1)
k+e1

∆t
+
√
k1 + 1Ah

1 D
(i)
k = 0 ,

D
(i)
k+e2
−D

(i−1)
k+e2

∆t
+
√
k2 + 1Ah

2 D
(i)
k = 0 ,

which yields
(
D

(3)
k

)
k∈H\{0}

. After completing these three first steps, we proceed to the fourth

one, in which we solve the remaining non linear terms. To do so, we operate the following
computations

(4.11)
Dn+1

k −D
(3)
k

∆t
+ N h

k

[
Dn+1,Ψn+1

]
= 0 , ∀k ∈ H \ {0} .

We emphasize that since Ψn+1 and Dn+1
0 are kept constant, the latter system is trivially

invertible and therefore does not require any nonlinear solver.
We emphasize that the comments made in the previous section regarding computational

efficiency still hold in dimension two:

(1) since Dn+1
0 and Ψn+1 do not change along (4.11), the system is trivially invertible

and hence does not require any linear solver ;
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(2) the matrices associated to systems (4.8), (4.9) and (4.10) are time independent so
that they only need to be inverted once at time t = 0;

(3) We solve N2
H linear and nonlinear systems of small size 3NxNy instead of one big

system of size N2
H NxNy;

(4) systems (4.9) and (4.10) have the same sparsity pattern and similar values. Indeed
their associated matrices read as

(1 + |k| ν∆t) INxNy −
√
k1 + 1∆tAh,⋆

1 −
√
k2 + 1∆tAh,⋆

2

√
k1 + 1∆tAh

1 INxNy 0
√
k2 + 1∆tAh

2 0 INxNy

 ,

where only parameter k varies. Therefore, we may re-use previous inversions to
compute the inverse for all values of k.

For these reasons, we expect that this approach drastically reduces the computational effort.

We now highlight the structure preserving property of the scheme. More precisely, we
prove that the linearized energy is preserved by the first three steps of the numerical method
(4.8)-(4.11). Indeed, we define the discrete free energy of the solution Dn = (Dn

k)k∈H to
(4.8)-(4.11) as follows

(4.12) En = ∥Dn −D∞∥2l2 +
λ

T0

∥∥∥ ∇̃hΨn
∥∥∥2
l2(J )

,

where

∥Dn −D∞∥2l2 =
∑
k∈H

∥Dn
k −D∞,k∥2l2(J ) , and ∥Dk∥2l2(J ) =

∑
j∈J

|Dk,j |2∆xj ,

Then, we prove the following result

Theorem 4.2. Consider the solution (Dn)n∈N to (4.8)-(4.11) with N h = 0. The following
discrete energy estimate holds for all n ≥ 0

En+1 − En

∆t
+ ∆tRn

h = − 2 ν
3∑

i=1

∑
k∈Hi

|k|
∥∥∥D(i)

k

∥∥∥2
l2(J )

,

where Rn
h is the following positive remainder due to numeric dissipation

Rn
h =

λ

T0

∥∥∥∥ ∇̃hΨ
n+1 −Ψn

∆t

∥∥∥∥2
l2(J )

+

∥∥∥∥Dn+1
0 −Dn

0

∆t

∥∥∥∥2
l2(J )

+
∑

k∈H\{0}

∥∥∥∥∥D(3)
k −D

(2)
k

∆t

∥∥∥∥∥
2

l2(J )

+

∥∥∥∥∥D(2)
k −D

(1)
k

∆t

∥∥∥∥∥
2

l2(J )

+

NH∑
k=1

∥∥∥∥∥D(1)
k −Dn

k

∆t

∥∥∥∥∥
2

l2(J )

 .

Proof. This proof follows the same lines as the one for Theorem 4.1 and therefore, we do not
detail it. □

5. Simulations

We now illustrate the robustness of our method through various simulations, both in space
dimension one and two.
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5.1. Bump-on-tail instability. We first consider the bump-on-tail instability problem with
the initial distribution as

f(0, x, v) = fb(v)(1 + κ cos(k n x)) ,(5.1)

where the bump-on-tail distribution is

fb(v) =
np√
πvp

e−v2/v2p +
nb√
πvb

e−(v−vd)
2/v2b .(5.2)

We choose a strong perturbation with κ = 0.04, n = 3 and k = 2π/L with L = 62 and the
other parameters are set to be np = 0.9, nb = 0.1, vd = 4.5, vp =

√
2, vb =

√
2/2. The

computational domain is [0, L] × [−8, 8]. These settings have been used in [19, Section 4.3]
and [2]. For this case, we take the initial scaling function to be α0 = 5/7.

We first show the time evolution of the relative deviations of discrete mass, momentum
and total energy in Figure 1 (a). Here, the errors on mass and total energy are up to machine
precision whereas the momentum varies with respect to time up to 10−5. We remind that
our space discretization does not ensure conservation of momentum. We also plot the time
evolution of the electric field in L2 norm in Figure 1 (b). We compare them to the results
obtained in in [2] as a reference solution. We can see these results have the same structure
and they are similar to those in [2].

Finally we show the surface plots of the distribution function at t = 30, 40 and 50 in Figure
2. From the comparison of these two methods, we can find that at the beginning t ≤ 20, the
solutions are very close. But as time evolves, the solutions are moving in different phases.

Nx ×NH splitting (4.1)-(4.4) (∆t = 0.025) fully implicit [5] (∆t = 0.1)
150× 150 8 sec. 5 sec.
300× 300 32 sec. 27 sec.
600× 600 1 min. 8 sec. 5 min. 2 sec.
1200× 1200 8 min. 48 sec. 75 min. 50

Table 1. Computational time for the splitting scheme (4.1)-(4.4) with ∆t = 0.025 and for the fully
implicit scheme [5] with ∆t = 0.1.

5.2. The evolution of a beam in 2D. We now consider the evolution of a matched semi-
Gaussian beam in a uniform focusing channel in the four dimensional phase space. In this
case the Vlasov equation has the following form, for all x = (x, y), and v = (vx, vy),

(5.3)
∂f

∂t
+ v · ∇xf + (E+ Eext) · ∇v f = ν divv (vf + ∇vf)

where ν = 10−5, E is the self-consistent electric field given by the Poisson equation and Eext

is a linear external electric field allowing to focalize the beam

Eext(x) = −ω2
0 x.

The initial value of the distribution function is

f0(x, y, vx, vy) =
n0

(2 π v2th) (π a2)
e
−

v2x+v2y

2 v2
th , if x2 +

y2

r20
≤ a2,

and f0(x, y, vx, vy) = 0, else. Then, we take

v2th = ω2a2/4.
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Figure 1. Bump-on-tail instability: time evolution of the electric field in L2 norm in logarithmic
value (a) using (4.1)-(4.4) with ∆t = 0.025 and (b) the fully implicit scheme [5] with ∆t = 0.1.

In this example, we have chosen ω and ω0 such that the tune depression ω
ω0
=1/2. The beam

density n0 = 1.
Contour plots of the phase space projections as well as slices of the charge density and the

electric field are given in the following figures (Figures 4 and 5). We notice that the beam
at first becomes hollow, then regions of high density propagate to the core of the beam and
out again, creating space charge waves. These waves are damped by phase mixing after a
few lattice periods. Results seem to be very close to those obtained by the semi-lagrangian
method [18].

6. Conclusion and perspectives

In this work, we propose an efficient time splitting scheme for the approximation of the high
dimensional Vlasov-Poisson-Fokker-Planck model using Hermite expansion of the distribution
function in velocity space. The strategy consists in identifying the general structure of the
discretized Vlasov equations to design efficient schemes. More precisely, the idea is to “divide
and conquer”: rather than solving a large system, we solve many smaller and independent
subsystems, while preserving the structure of the model. We have shown that our method
preserves the structure structure of the model. To do so, we derived the energy estimate that
holds for its linearized version.

Many interesting perspectives arise from this work. On the theoretical view point, an
important continuation consists in extending our theoretical results, which apply for a linear
coupling with the Poisson equation, to the nonlinear scheme by proving its asymptotic pre-
serving properties and exponential trend towards equilibrium of discrete solutions. Another
important continuation of this work is to incorporate nonlinear collisions to the model. Let
us first observe that in [17], the Hermite spectral method is applied to a nonlinear Fokker-
Planck operator conserving mass, momentum and energy. However, extending our analysis
of the longtime regime at the discrete level to this case may require modifications and further
investigations have to be done. L2-hypocoercivity methods have been applied in the case of
nonlinear BGK and linearized Boltzmann operators at the continuous level [22, 1], however
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Figure 2. Bump-on-tail instability: Surface plot of the distribution function f at t = 30, 40
and 50 with Nx ×NH = 600 × 600 (a) using (4.1)-(4.4) with ∆t = 0.025 and (b) the fully implicit
scheme [5] with ∆t = 0.1.
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Figure 3. Time development of moments of the distribution function for ν = 10−5 (top) and ν = 10
(bottom).

such analysis at the discrete level is not available in the literature in the framework of Hermite
decomposition.
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