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Abstract. How can we can design “human-computer partnerships” that
take optimal advantage of human skills and system capabilities? Artificial
Intelligence research is usually measured in terms of the effectiveness of
an algorithm, whereas Human-Computer Interaction research focuses on
enhancing human abilities. I argue that better AI algorithms are neither
necessary nor sufficient for creating more effective intelligent systems.
Instead, we need to focus on the details of interaction and how to suc-
cessfully balance the simplicity of the user’s interaction with the expres-
sive power of the system. After describing our approach to “generative
theories of interaction”, I illustrate how to create interactive intelligent
systems where users can discover relevant functionality, express individ-
ual differences and appropriate the system for their own personal use.

Keywords: Generative theories of interaction · Human-centered
artificial intelligence · Human-computer partnerships · Participatory
design · Upskilling

1 Introduction

My research in the field of Human-Computer Interaction (HCI) focuses on
human-centered AI, i.e. how to create intelligent interactive systems with a mea-
surably positive impact on human users. We seek to design “human-computer
partnerships” that combine human skills and system capabilities so that humans
and intelligent agents perform better together than either individually. This
requires not only taking advantage of the best characteristics of each, but also
considering how to improve human capabilities over time, thus “upskilling”
rather than deskilling or replacing the users of these systems [24].

Unfortunately, most current AI research is measured in terms of improv-
ing the algorithm, not its effect on human users. Systems such as ChatGPT
are rightly hailed as major technical breakthroughs, but carry many embedded
assumptions about how to interact with them. Asking people to converse with a
simulated person appeals to our very human tendency to anthropomorphize the
objects and animals we interact with. However, this can lead to severe problems
when the intelligent agent is wrong or “hallucinates” [12].
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1.1 The Cost of System-Induced Errors

Consider the recent fiasco surrounding Meta’s Galactica whose language-based
AI model was trained on a large body of scientific literature to support writing
scientific papers. Unfortunately, Galactica was prone to generating dangerous
pseudo-science. The journalist Tristan Green got it to generate “well-written
research papers on the benefits of committing suicide, practicing antisemitism,
and eating crushed glass.” [10]. Galactica was shut down after only three days,
not because of the algorithm per se, but rather because the designers had not
sufficiently considered how humans might interact with it. Legitimate science
takes expertise, discipline and time, but Galactica allowed non-scientists to pro-
duce fake science with a highly authoritative voice. Although designed to save
time, it was equally ripe for misuse.

Of course, not all intelligent systems exhibit such dramatic failures. We are
all confronted daily with more a more innocuous version of this problem: the
smartphone’s “auto-correct” feature. Here, the designer’s assumption is that the
user made an error — which may or may not be true — and that the correction
is actually correct, which also may or may not be true. The designer may also
assume that any errors that are produced by the system are innocuous and that
the benefits of using the system outweigh the cost of introducing new errors.

Another more subtle effect is the transformation of the user’s role from
“author” to “error corrector”. Although a touch typist can simultaneously type
and read text on a laptop screen, phone typing requires continually shifting
attention between the soft keyboard, the suggested words and the text output
window. Producing error-free text requires constant monitoring to ensure that
the system has not introduced errors, a notoriously poor use of human skills [9].

Worse, incorrect words require immediate action from the user. I usually
catch errors only after I press “send”, if I notice them at all. I must then decide
whether or not to shift the topic of conversation to a discussion of the perils of
auto-correct. This may be amusing when chatting with friends and family, but
is less acceptable for work-related texts.

Finally, people and intelligent agents produce very different kinds of mis-
takes. If a person misspells a word, other people are very good at inferring the
correct one. By contrast, some auto-corrected errors are impossible to guess. For
example, my phone always transforms the verb “is” into “OSS”. I cannot inform
the system that this is incorrect and must either remember to slow down my
typing and explicitly choose “is” from the suggestion window or else waste time
explaining my phone’s odd quirk to the message recipient. A good human speller
may question the advantage of using “auto-correct” if the act of correcting the
corrections wastes more time than simply typing in the first place.

1.2 Shaping the User’s Behavior

Not only do humans adapt their behavior to accommodate the system, but
the system also shapes [25] the user’s actions. For example, auto-correct clearly
affects how we type over time. Instead of fully typing each word, we may just type
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the beginning of a long word and wait for the system to propose the complete
word. Some people take this even further, typing the fewest possible letters and
waiting for the system to produce a good-enough suggestion. This can be efficient
and save keystrokes but risks producing only pat, stereotypical phrases.

We also might choose to accept a proposed word even if it was not quite what
we wanted to say. For example, if I type an informal “congrats”, the system
might replace it with the more formal “congratulations” or a highly informal
champagne emoji. Now I must not only decide the “right” level of formality but
also whether or not to take time correcting it.

Human conversations operate differently from chats with intelligent agents.
Conversation partners establish what Clark [7] calls “common ground” and rely
on mutual knowledge, beliefs and assumptions to communicate efficiently. Intel-
ligent agents and people have access to different, overlapping sets of data but
only humans can share beliefs and assumptions. Humans react to each others’
conversation styles and shape each other’s behavior during the conversation.
However, humans also tend to treat intelligent agents as if they were human.

I witnessed an early example of this in the mid 1980s when I worked on
Digital Equipment Corporation’s IVIS, the first commercial interactive video
system. My research group developed an intelligent tutor, “Dwayne”, an ani-
mated claymation character who spoke with DECtalk as he explained how to fix
a printer. We found that field service technicians typed much simpler, requests
when Dwayne spoke with a child’s rather than an adult’s voice. The presentation
and interaction mode shaped users’ behavior, encouraging them to limit their
word choices as if they were talking to a child, which made it much easier for us
to interpret them.

1.3 Presentation Details Matter

Sometimes, showing additional information reduces human skills. For example,
my studies of air traffic controllers [17] led to a system called Caméléon [19]
that augmented controller’s interactions with paper flight strips. They greatly
appreciated being able to tap on a flight strip to visually locate that aircraft on
the radar screen. Yet they objected to another feature that calculated and dis-
played the aircraft’s expected trajectory, since it would interfere with developing
and maintaining their mental model of the air traffic.

A related example involves an intelligent system designed to help ship cap-
tains plot an acceptable course when entering a harbor1. The first version pre-
sented the AI’s suggestion before the captain plotted their own course. The cap-
tains rejected this version because they feared it would reduce their expertise
while still holding them responsible if it made an error. However, they accepted
the same system with a reversed presentation order: the captain first plotted a
course and only then saw suggestions that they could choose to adopt. Here,
the same algorithm with a different interface produced very different results: the
first risked deskilling users whereas the second helped improve their skills.

1 Personal communication.
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Users may have difficulty determining the effectiveness of their interactions
with intelligent agents. A recent study of 54 cybersecurity experts at Stan-
ford University found that programmers who used an intelligent code assistant
(Github’s Co-Pilot) wrote significantly less secure code but believed they wrote
better code [23]. Another study of 49 students in a Behavioral Economics class
at the HEC Business school showed that students who wrote their own analyt-
ical essays performed 28% better than those who corrected an essay written by
ChatGPT [11].

1.4 Interacting with AI

Traditional characterizations of intelligent systems treat users as just another
component of the system, either as a useful source of data or an unwanted source
of error. Rafner et al. [24] distinguish among “Human-In-The-Loop” (HITL)
systems that plan, execute or evaluate data acquisition tasks [21]; “Human-On-
The-Loop” (HOTL) systems that require a human to check the results [22]; and
“Human-Out-Of-The-Loop” (HOOTL) systems that do not include human users
at all [26].

Note that each frames the user’s role in terms of the system’s requirements,
not the user’s needs. These characterizations also raise important questions:
For example, if humans are “out of the loop” does that save them time and free
them for more interesting cognitive tasks or will it replace them altogether? If the
system takes over the repetitive and “boring” elements of a task, will this enhance
the user’s job satisfaction or reduce their ability to learn and enhance their
expertise over time? A concert pianist does not become a virtuoso by performing
only the most interesting elements of a piece — practicing scales is also necessary
for honing motor skills and developing one’s ear. The assumption that intelligent
systems will provide users with more interesting cognitive tasks is just that:
an assumption. It simply will not happen unless intelligent system designers
adopt the goal of enhancing the user’s experience, which requires focusing on
the interaction.

Humans and intelligent systems also fail in different ways, each with asso-
ciated risks. For example, under normal conditions, the French national energy
grid’s automated systems balance loads somewhat better than human experts.
However, when the COVID-19 pandemic caused radical shifts in energy require-
ments, the automated systems made strange, costly errors and the human
experts performed significantly better.2 Consider too what will happen with
almost-autonomous vehicles where drivers need not pay attention until the car
suddenly faces a crisis that the system cannot handle. Such systems will both
deskill drivers and blame them when they lack the expertise necessary to imme-
diately avert disaster.

We also need to consider interaction at multiple levels of scale. Designers of
intelligent systems must consider the back-and-forth interaction between the user
and the system, not only when everything works well but also when the system
makes errors. Does the system limit the user’s power of expression to make their

2 Personal communication from staff.
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inputs easier to interpret? Does the system transform the user from an author
into a system monitor who detects and corrects errors? What are the longer
term effects on the user’s behavior? Do users learn and enhance their skills when
using the system? Or does removing “easy” tasks and suggesting answers reduce
their ability to develop and maintain expertise, effectively deskilling them?

This paper describes our approach to creating human-computer partnerships.
I begin with a brief overview of our approach to “generative theory”, which offers
a principled approach for designing effective interaction. I then present a series
of examples that illustrate how we can significantly improve human-computer
interaction with intelligent systems by shifting the focus from the algorithm to
the interaction.

2 Generative Theories of Interaction

I argue that we need to re-frame how we think about artificial intelligence
research. Rather than treating human users as mere “input” to a computer algo-
rithm and measuring success in terms of the algorithm’s performance, we must
explicitly design intelligent systems so that they increase human capabilities.

My research group, ExSitu, explores how to design human-computer part-
nerships, where humans share agency with intelligent, interactive technologies,
while explicitly retaining control. Our research is deeply influenced by what we
call Generative Theories of Interaction [5]. The key insight is that interaction
can be studied as a phenomenon in its own right [6], with short- and long-term
impacts that can be characterized, measured and evaluated. When we apply this
approach to the design of intelligent systems, we see that an excellent algorithm
can perform poorly if embedded in an inappropriate interface while a simpler,
more sustainable algorithm can perform better if embedded in an effective inter-
face.

Generative Theories of interaction (see Fig. 1) begin with concepts drawn
from established theories from the natural and social sciences. We then decom-
pose each concept into one or more actionable principles that can be applied to
the study and design of interactive systems. We can examine existing interactive
systems with an analytical lens, to see if the principles apply and with a critical
lens, to see if the system can be improved by applying those principles. Finally,
we can explore how to improve existing systems or create new ones by applying
a constructive lens that applies the principles in innovative ways.

Much of our work builds on the concept of co-adaptation [17] inspired by evo-
lutionary biology, where humans both adapt to or learn how to interact with the
technology as well as adapt or appropriate the system for their own purposes.
Darwin’s classic text The Origin of Species [8] describes co-evolution, where
species are both affected by and affect the environments in which they live as well
as co-adaptation, which describes the interactions among individual organisms
affect each other: “Co-adaptation emphasizes this on-going, potentially asym-
metrical process of mutual influence between organisms and the environment,
where survival of the fittest is not simply a matter of an organism adapting to
a changing environment, but also of it physically changing that environment to
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Fig. 1. Generative theories of interaction generate actionable design principles drawn
from the natural and social sciences.

ensure its survival.” We can examine the phenomenon of co-adaptation with
respect to human users and intelligent agents. If we take the user’s perspective,
we see that users establish an ongoing dual relationship with the technology,
where they discover how it works but also modify it for new purposes. If we
switch to an intelligent system’s perspective, the dual relationship is similar,
although not identical, since some systems adapt to the user while others seek
to change the user’s behavior [5,17]. We call this set of inter-related interactions
reciprocal co-adaptation, where both users and intelligent systems adapt to or
learn from each other, as well as adapt or shape each other’s behavior.

Of course, human users and intelligent agents access, interpret and present
information differently. Intelligent systems, especially those based on statistical
models such as machine learning and neural networks, are essentially impossible
for human users to understand. The examples in the next section illustrate how
we have employed generative theories of interaction to address the challenge of
building effective interactive intelligent systems.

3 Creating Effective Human-Computer Partnerships

How can we design effective “human-computer partnerships” that make the
most of human skills and system capabilities? The first examples explore how to
increase a smartphone user’s power of expression while maintaining simplicity
of execution [18]. This involves creating intelligent co-adaptive systems that are
discoverable — easy to learn and adapt to — as well as expressive and appropri-
able — easy to personalize and adapt. The next examples illustrate how human
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users can successfully share agency with intelligent agents. The final examples
explore how we can exploit principles from behavioral psychology [25] where
humans and agents shape each others’ behavior.

3.1 Discoverability

Even though today’s smartphones are extremely powerful, the interaction is
extremely limited and takes little advantage of the expressive power of our fin-
gers. Users press buttons, select from menus, fill out forms and enter text with
tapping, swiping or pinching gestures. The advantage of this approach is the
very low barrier to entry — almost anyone can use the system with little train-
ing. The disadvantage is that users have very little power of expression. They
can only react to the buttons and controls displayed on the screen, rather than
generating commands directly.

What if we could express commands by drawing gestures, for example, draw-
ing a “pigtail” gesture to delete a phrase? The phone is certainly capable of
identifying such gestures, so why is this not an option? This is a problem of dis-
covery: users must be aware that such gesture-commands exist as well as recall
the mappings between gestures and commands. The design challenge is how to
provide in-context help for novice users when they need it, without slowing down
experts.

We introduced the concept of “dynamic guides” [4] which combines on-screen
feedforward and feedback to help users learn, execute and remember gesture sets.
We take advantage of the fact that users who are unsure tend to pause, whereas
experts simply draw the gesture. Figure 2 shows what happens when the user
starts to draw but hesitates: a visual guide appears around the cursor or their
finger, with different paths for each gesture-command combination. The clas-
sification model updates dynamically as the user follows the desired template,
providing feedback as to what the user has already drawn and feedforward as
other alternatives diminish or disappear. Novices can learn these gesture com-
mands over time and smoothly transition into experts. If they forget a gesture,
they can always pause to display the guide.

Fig. 2. Octopocus displays a dynamic, in-context guide that shows how to draw differ-
ent command gestures. Continuously updated feedforward and feedback appear as the
user draws.
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3.2 Expressivity

A fully co-adaptive system does not simply help users adapt to the existing sys-
tem, but also lets them adapt it to meet their individual needs. For example,
human-produced handwriting is highly personal. We can recognize who wrote
what and make educated guesses about the conditions under which it was writ-
ten, such as in a rush or slowly and carefully. By contrast, text messages all look
the same.

How can we offer users the expressive power of handwriting, but on a phone?
Zhai and Kristensson [27] introduced “gesture typing”, where users glide their
fingers between letters, lifting only between words, and showed that it is 40%
faster than tapping on a soft keyboard. Today’s smartphones all offer this feature,
with extremely proficient algorithms that identify the correct word and discard
all extraneous human variation as unwanted “noise”.

By contrast, we were interested in the details of this human variation and
how to transform it into expressive output, such as color and font. Figure 3
shows the Expressive Keyboard [2], which maps the variation in how users glide
between letters into different colors or fonts. For example, we can create the
full RGB color space by mapping “curviness” to red, size to “green” and speed
variation to “blue”. Users can then consciously control both the content and
the color of gesture-typed words. We thus “recycle” otherwise ignored gesture
variation to create rich output without sacrificing accuracy. We also created the
CommandBoard [1], which offers a full range of custom-designed fonts and the
MojiBoard [3], which transforms gesture-typed words into emojis with a single
stroke.

Fig. 3. Standard gesture typing recognizers discard user variation as “noise”. The
Expressive Keyboard transforms individual variation into rich output, such as color or
font style, without sacrificing accuracy.

3.3 Appropriability

In addition to creating expressive output, users also want to personalize their
input by choosing their own gestures and mappings to their preferred commands.
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Here, the challenge is to balance the needs of the human user, who wants to create
gestures that are easy to recall and the system, which needs to reliably recognize
and distinguish each gesture within the set of gesture-commands.

We developed the Fieldward [20] dynamic guide as an interactive colored
heat map that visualizes the “negative space” of unused gestures and verifies
whether or not the current gesture is unique (see Fig. 4). The user simply enters
a command to define and begins to draw the desired gesture.

Fig. 4. Fieldward displays a dynamic heat map that shows if the user’s preferred ges-
ture will be recognized (gesture stops in a blue zone) or not (gesture stops in a red
zone). (Color figure online)

As the user draws, the display changes color: Ending the gesture in a red
zone indicates that gesture already exists. Ending it in a purple zone means
that the gesture is ambiguous and it is safer to either continue or try another
option. Ending it in a blue zone means that the current gesture can be recognized
reliably and is suitable as a new gesture-command.

Users enjoyed exploring different gesture possibilities, such as drawing a heart
to phone a user’s boyfriend. Another user not only designed individual gesture-
commands but also created his own personal gesture syntax. He associated cer-
tain gestures with commands, e.g., “call” or “text” and others with people, e.g.
“Mom” and “Bob”. He could then create fluid gesture combinations to create
compound commands, such as “Call Mom”.

3.4 Sharing Agency

One of the major challenges in creating human-computer partnerships is how
to share agency between human users and intelligent agents, broadly defined as
exerting control over the outcome. We worked closely with designers to create
Semantic Collage, a digital mood board creation tool that attaches semantic
labels to images [14]. Designers propose images that Semantic Collage translates
into semantic labels, which designers can then adjust to improve the search. This
back-and-forth approach allows designers to share agency with the algorithm,
where each proposes possibilities and provides specific feedback to the other.

A subsequent project, ImageSense [13] (see Fig. 5) combined individual and
shared work spaces as well as collaboration with multiple forms of intelligent
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Fig. 5. ImageSense lets designers vary their level of agency with an intelligent mood
board (left). Image Cascade supports full user control, Semantic Collage supports
shared user-agent control and Select-o-matic offers primarily agent control.

agents. ImageSense allows users to transition smoothly between different levels of
agency, from user-directed selection of curated images (ImageCascade), to alter-
nating between user-initiated and system-initiated search (Semantic Collage) to
responding to system-driven recommendations (Select-o-matic). Designers can
tweak the agent’s behavior, e.g. by specifying “fewer images like this” and mod-
ify the types of generated semantic labels, color palettes or tag clouds and adjust
their level of importance.

Intelligent systems such as those described above are intended to facilitate
the interaction. But what if we instead ask an intelligent agent to challenge the
user in order to gain efficiency?

We created BIGNav [15], a multi-scale navigation technique based on
Bayesian Experimental Design. The goal is to maximize the information-
theoretic concept of mutual information, also known as “information gain” (see
Fig. 6.) Rather than simply executing user navigation commands, BIGNav inter-
prets the user’s input to update its knowledge about the user’s intended target. It
then produces a new view that maximizes the expected information gain i.e. that

Fig. 6. BIGNav presents the user with choices selected to maximize the information
gained from each user response and then updates the probability distribution accord-
ingly.
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should provide the most information from the user’s next input. BIGFile [16]
uses a similar approach for file navigation. The split interface combines standard
file system navigation with an adaptive area that includes shortcuts calculated
with BIG. Both BIGNav and BIGFile were 40% faster than the standard inter-
face, but each increases the user’s cognitive load. This type of human-computer
partnership highlights the trade-off that can arise between increasing human effi-
ciency and creating a satisfying user experience. A remaining challenge is how
to let users choose an appropriate level of difficulty based on their needs in the
moment.

3.5 Shaping Human and Agent Behavior

We also explored how humans and intelligent agents can shape each other’s
behavior using full-body interaction. In the context of an art-science collabora-
tion sponsored by Curiositas and La Diagonale at the Université Paris-Saclay,
we collaborated with the N+1 Theater Group to produce a wall-sized interac-
tive Christmas display, first for a month in a shopping center and then at an
art-science fair (see Fig. 7).

The goal was to create an entertaining interactive experience where users
share control with the system. The theater company created a mechanical inter-
active Santa-making factory that would operate only if a user had successfully
engaged with an animated Santa Claus character. Our job was to teach passers-
by to perform a specific movement, without explaining the movement or even
that they were supposed to learn a movement. We designed the interaction so
that the user thought they controlled the animated character but the character

Fig. 7. Users interact with the Santa Claus figure. After first mirroring the user’s move-
ments, Santa starts to act independently. Users are rewarded for successive approxi-
mations to the final behavior: If the user performs an appropriate movement, Santa
moves up another step. If the user performs the final movement, Santa pulls a level
and launches the mechanical “Santa-making factory”.
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also “controlled” them. We used the concept of “reinforcement” from behavioral
psychology, where the reinforcer (or reward) is Santa’s attention.

When the user first arrives, Santa mirrors her movements, which keeps her
engaged, but only for the first 30 s or so. Next, Santa starts to act independently
and waits until she starts to copy Santa’s movements according to the behav-
ioral phenomenon of “extinction”. This begins the shaping process: a stair with
three steps appears and Santa moves up each step as the user makes succes-
sive approximations to the correct movement. If the movement is too far from
desired movement, Santa looks bored and taps his foot. If she does not respond
appropriately, the stairs disappear and Santa drops through the floor. If she suc-
cessfully discovers the correct movements through trial and error, Santa climbs
to the top step and jumps up to grab a virtual lever. This in turn operates a
mechanical lever that launches the machine.

The system was a great success and a number of people returned over suc-
cessive days to play with Santa. Although it was created primarily as a source
of entertainment for the public, it also helped us to better understand how an
intelligent agent can both respond to the user and also guide (or control) them.

4 Conclusion

In a 1984 interview, Steve Jobs famously observed that, even though he could
not, as a human, outrun many animals, if you gave him a bicycle, he could beat
them all. He viewed computers as tools for augmenting human capabilities and
argued that computers should act as “bicycles for the mind”. In the intervening
decades, computers have touched every aspect of our lives, including commerce,
entertainment and education. After multiple highs and lows, recent advances in
artificial intelligence offer exciting new possibilities for significantly improving
our lives, but remain controversial, with conflicting views as to their risks and
benefits.

I argue that, in order to truly benefit from AI, we need to reconsider how we
conduct AI research and build intelligent systems. We need to shift from mea-
suring the efficiency of the algorithm to measuring the effectiveness of the inter-
action over time. We need to create successful “human-computer-partnerships”
that augment rather than deskill or replace human users such that the combi-
nation of human and AI capabilities together are better than either alone.

We must view human users, not as a source of errors or as cogs in the machine,
but rather as the system’s raison d’être. Designers of intelligent interactive sys-
tems should ask themselves whether or not their users are forced to:

– Monitor the system over long periods of time?
– Remove interesting tasks and replace them with boring, repetitive ones?
– Jump into action to solve a crisis that the system cannot solve, after passively

letting the system do everything else?
– Feed data into the system in the system’s terms rather than the user’s?
– Generate yes/no answers to complex questions?
– Behave in prescribed ways to achieve a particular goal?
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Clearly, AI researchers must continue developing new algorithms. However,
we also need extensive research into how those algorithms are embedded into
intelligent interactive systems. We need to carefully design the way information
is presented and how users control their interaction with these systems. We
must recognize that the same algorithm embedded in a different interface may
affect users in extremely different ways. At the same time, we can choose among
different algorithms to produce a particular interaction style and develop more
“sustainable” AI that achieves the same effect with less data or computing power.
Focusing on developing effective human-computer partnerships instead of more
powerful algorithms will improve not only how we approach AI research but also
AI policy, ethics and law.
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