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1. Experiment about segment assignment change probability

In Appendix B.1 of the main article, two algorithms for estimating the
probability of a segment assignment change were described: the exact
estimation using Algorithm 3 and an efficient estimation using Algorithm 5. In
this section, these different methods are evaluated by experiments on simulated
data.

The following notations are used: Let T be the length of the time series, θ
the average segment length, ∆ the size jumps to generate a breakpoint and σ
the standard deviation of the data point within a segment.

Time series are generated according to the following rules:

• The number of breakpoints follows the exponential distribution D ∼
Exp(T/θ).

• Each breakpoint position is generated according to uniform distribution
∀i ∈ [1, D], τi ∼ U(1, T )

• The mean of the time series µi is piecewise constant with respect to the
segmentation τi, with µτi − µτi+1 = ξ∆σ

• The time series is generated according to the following rule Xt ∼ N (µt, σ)

Then f̂τ (λ) is estimated using the two different methods: Algorithm 3 and
Algorithm 5.

An example of generated time series is illustrated in Figure 1a. Figure 1b
gives the estimated probability of segment assignment change according to the
two estimation Algorithms 3 and 5. The two algorithms give results that are
almost the same, as shown in Figure 1b. The selected λ⋆

η is equal to 143, in
the two cases. This supports assumption that (Last) is verified. In practice, we
recommend to use the Algorithm 5 since it is more computationally efficient. To
compute the probability f̂τ (λ) on a PC (4 CPU, 16G), the Algorithm 5 gives
results within 30 seconds compared to the exact computation which gives the
results within 15mn, for a time series of length 104.
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(a) Generated time series

(b) Probability of assignment change
as a function of distance to time series
end.

Fig 1: Results for estimation of the “segment assignment change” probability

2. Experiment about the status change

The training procedure in Appendix B.2 of the main article is applied for
different scoring functions adapted to different types of time series considered
in Appendix B.4. The goal is to check if the estimation approach of f̂d(ℓ) can
be applied to different scoring functions.

2.1. Description of the experiment

Different series that require different scoring functions are considered: Gaussian
and Mixture of Gaussian.

• Figure 2a shows a Gaussian white noise with anomalies in distribution
tail.

∀t ∈ J1, T K, At ∼ Ber(π),

if At = 0, Xt ∼ N (0, 1)

else Xt = ∆

The z-score applied on Xt to detect anomalies that are in the tail of the
distribution, is computed by,

a(Xt, S) = |Xt − µ̂S |/σ̂S (1)

where S is a segment of data, µ̂S the mean estimator on S and , µ̂S the
standard deviation on S

• Figure 2b shows a Mixture of Gaussians with anomalies between the
distribution modes.

∀t ∈ J1, T K, At ∼ Ber(π),

if At = 0, Xt ∼ 0.5N (∆, 1) + 0.5N (−∆, 1)

else Xt = 0
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(a) Gaussian with anomalies in tail
(b) Gaussian mixture with anomalies
in center

Fig 2: Different time series distributions and anomalies.

The kernel based score, inspired from other works on kernel based anomaly
detection [1, 2], applied to detect anomalies having large distance from the
normal data, is computed by,

a(Xt, S) =
1

|S|2
∑

s,s′∈S2

K(s, s′)− 2

|S|
∑
s∈S

K(Xt, s) +K(Xt, Xt) (2)

2.2. Results and analysis

As stated previously, two types of time series are considered in the experiments:
results of Gaussian data shown in Figure 3 and results of Gaussian mixture data
shown in Figure 4. For both, three line charts representing the probability of
status change as a function of the current segment length in relation to the initial
status: (a) the status is normal, (b) the status is abnormal and (c) unknown
status.

For Gaussian data and in the unknown status, Figure 3c shows clearly that
the probability of status change decreases with the length of the current segment.
This probability is higher when the status is abnormal, as shown in Figure 3b.
Nevertheless, with a segment length of 100, the probability is less than 1%. For
Gaussian mixture data and in the abnormal status scenario shown in Figure 4b,
the length of the current segment needs to be at least equal to 500 to get a

(a) normal status (b) abnormal status (c) unknown status

Fig 3: Probability that status changes under stable breakpoints as a function of
segment length, for Gaussian data.
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(a) normal status (b) abnormal status (c) unknown status

Fig 4: Probability that status change under stable breakpoint as a function of
segment length, for Gaussian mixture data.

probability of changing status around 5%. For the normal status scenario in
Figure 4a, the probability of changing quickly decreases to 0. The results are
also promising in the unknown status scenario in Figure 4c, where the change
probability is low.

2.3. Conclusion

Empirical results show that the choice of an optimal ℓ̂η which reduces the
uncertainty of a data point status depends on the type of data and the scoring
function that is used. The method can help to select an atypicity score. A good
atypicity score, satisfying requirements discussed in Appendix B.4 of the main
article (been robust and efficient) should have low ℓ̂η value.

3. Experiments about the atypicity score

In Appendix B.4 of the main article, it has been affirmed that to build a good
score function, the estimators used must verify the robustness and efficiency
properties. To assess the robustness and the efficiency of the atypicity score,
synthetic data are used for experimentation and analysis. The robustness of an
estimator is its ability to be unbiased in the presence of anomalies. An estimator
is said efficient when it is close to the parameter value with a limited number
of data points. In this analysis, three categories of estimators are tested: one
“efficient and not robust”, a second “not efficient and robust” and a third “robust
and efficient”. These three estimators are analyzed considering the absence or
presence of anomalies. The assessment is based on the parameter estimation
error and on the anomaly detection performances using FDR and FNR.

3.1. Description

In this experiment, the focus is on the z-score. The atypicity of a data point x
is calculated from the mean µ and standard deviation σ as follows az(x, µ, σ) =
(x − µ)/σ. In an anomaly detection context, the mean and standard deviation
are unknown and need to be estimated. There are many estimators of the mean
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and standard deviation. These estimators have different properties in terms
of robustness and efficiency. In order to study the relationship between these
properties and the performance of the anomaly detector, three estimators are
chosen for each of these two values.
For the mean value the three estimators are defined as the following:

• Maximum Likelihood Estimator: µmle = 1
n

∑
i xi. This estimator is

efficient but not robust against anomaly contamination.
• Median: µr = median(x1, ..., xn). This estimator is robust but less efficient

than the MLE estimator.
• Biweight location, introduced in [3]. This estimator is robust and efficient.

µbw =

∑ℓ
i=1(1− u2

i )xi1[|ui| < 1]∑ℓ
i=1(1− u2

i )

ui =
xi − x

9MAD

Where x is median of the xi and MAD is the median absolute deviation.

For the standard deviation, the three estimators are defined as the following:

• Maximum Likelihood Estimator: σmle =
√

1
n

∑
i(xi − µ)2. This estimator

is efficient but not robust against anomaly contamination.
• Median: σmad = median(||xi − µ|). This estimator is robust but less

efficient than the MLE estimator.
• Biweight Midvariance estimator: introduced in [4]. This estimator is robust

and efficient.

σ2
bw =

ℓ
∑ℓ

i=1(xi − x)2(1− u2
i )

41[|ui| < 1]

(
∑ℓ

i=1(1− u2
i )(1− 5u2

i )1[|ui| < 1])2

ui =
xi − x

9MAD

Where x is the median of the xi and MAD is the median absolute
deviation.

All the six estimators are evaluated according to two measures:

1. First, the precision and the robustness of the estimator is evaluated using
the Mean Squared Error (MSE), applying the following procedure: Let θ

be either the mean or the standard deviation parameter, and θ̂ be an one
estimator of the parameter θ. Let ℓ be the cardinality of the segment used
to estimate θ. Let B be the number of repetitions for the experiments.

(a) Generate the segment data: For b in [1, B] and for i in [1, ℓ], Xb,i ∼
N (0, 1), if the segment contains only normal data. For b in [1, B] and
for i in [1, ℓ0], Xb,i ∼ N (0, 1) and for i in [ℓ1, ℓ], Xb,i = 4, if the
segment is contaminated by anomalies.
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(b) Estimate the parameter using the estimator: For b in [1, B], θ̂b =

θ̂(Xb,1, ..., Xb,ℓ).

(c) Compute the MSE, MSE = 1
B

∑B
b=1(θ̂b − θ)2

Different values of the segment length ℓ are tested, from 10 to 1000. For
each value of ℓ, two values of ℓ1 are tested. One with ℓ1 = 0, for the case
where there are no anomaly in the training set. The other with ℓ1 = ⌊0.02ℓ⌋
for the case of contamination with anomalies. For each set of parameter
values, the experiment is repeated B = 1000 times.

2. Then, the Anomaly Detection capacity is evaluated using the FDR and
FNR criteria. This is done by simulating multiple detections inside a
segment applying the following procedure: using n the calibration set
cardinality, ℓ the length of the segment, ℓ1 the number of anomalies in the
training set, m the test set cardinality and m1 the number of anomalies
in the test set:
(a) Generate training segment data with ℓ1 anomalies.

∀i ∈ J1, ℓ1K, Xi ∼ N (4, 0.1), and ∀i ∈ Jℓ1, ℓK, Xi ∼ N (0, 1)

And estimate the segment mean and standard deviation

µ̂ = µ̂(Xℓ
1), σ̂ = σ̂(Xℓ

1)

(b) Generate the calibration set

∀j ∈ J1, nK, Yj ∼ N (0, 1)

(c) Generate the test segment data

∀i ∈ J1,m1K, Zi ∼ N (4, 0.1), and ∀i ∈ Jm1,mK, Zi ∼ N (0, 1)

(d) Compute the p-values of the test set, using calibration set and affected
by the parameter estimations

∀i ∈ J1,mK, p̂i =
1

n

n∑
j=1

1[Xj > (Zi − µ̂)/σ̂]

(e) Anomalies are detected using the Benjamini-Hochberg procedure on
the p-values. The threshold of the BH procedure is noted ε̂BHα as
defined in our previous work [5]:

ε̂ = ε̂BHα
(p̂1, . . . , p̂m)

(f) Compute FDP and FNP. Remembering that anomalies are generated
in the first m1 values of the test set:

FDP =

∑m
j=m1

1[p̂j ≤ ε̂]∑m
j=1 1[p̂j ≤ ε̂]

FNP =

∑m1

j=1 1[p̂j > ε̂]

m1
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(a) Without anomaly contamination. (b) With anomaly contamination.

Fig 5: Estimation error of the mean as a function of segment length and mean
estimator used.

Different values of segment length ℓ are tested, from 10 to 500. For each
value of ℓ, two values of ℓ1 are tested. One with ℓ1 = 0, for the case where
there are no anomaly in the training set. The other with ℓ1 = ⌊0.02ℓ⌋ for
the case of contamination with anomalies. The test set contain m = 100
data points with m1 = 1 anomaly and the calibration set contains n = 999
data points. For each set of parameter values, the experiment is repeated
B = 104 times.

3.2. Results

Figures 5 and 6 illustrate the estimators performances of the mean estimators.
Figure 5 compares different mean estimators according to the segment length.
The MSE decreases rapidly with the sample size for all estimators in Figure 5a.
However the MLE and BW estimators have very close and slightly better
performances compared to the median estimator. This illustrates the efficiency
of the MLE and BW estimators. But in the presence of anomalies, the
performance of the MLE estimator is severely degraded as shown in Figure 5b
compared to the median and BW estimators showing more robustness in the
presence of outliers.

Figure 6 illustrates the FDR and FNR of the anomaly detector according
to the mean estimator used. As shown in Figure 6a and 6b, in the case of
non contamination by anomalies, the FDR and FNR results are very close to
the target for all the estimators. However, in presence of anomalies, the MLE
performance is degraded. In Figure 6c, the FDR is below the targeted level and
in Figure 6d, the FNR is higher than other estimators. Either Med or BW can
be used to do anomaly detection.

Figures 7 and 8 illustrate the performances of the standard deviation
estimators. Figure 7 compares the precision using the MSE of the different
standard deviation estimators according to the segment length. The MSE
decreases rapidly with the sample size for all estimators in Figure 7a. However
the MLE and BW estimators have very close and better performances when
compared with the MAD estimator. This illustrates the efficiency of the MLE
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(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Fig 6: Anomaly detector performances as a function of the segment length and
the mean estimator used.

(a) Without anomaly contamination. (b) With anomaly contamination.

Fig 7: Estimation error of standard deviation as a function of the segment length
and the standard deviation estimator used.

and BW estimators. But in the presence of anomalies, the performance of the
MLE estimator is severely degraded as shown in Figure 7b. On the contrary,
the MAD and BW estimators are less degraded and show more robustness in
presence of outliers.

Figure 8 shows the performances measured by FDR and FNR once the
anomaly detection is applied. As illustrated in Figures 8a and 8b, FDR and FNR
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(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Fig 8: Anomaly detector performances as a function of segment length and
standard deviation estimator used.

for MAD are higher compared to MLE and BW. But in presence of anomalies,
the MLE performance is degraded. The FDR is below the targeted level, as
shown Figure 8c, and the FNR is higher than other estimators, as shown in
Figure 8d. The strange behavior of the MLE curve in Figure 8d with spikes
in the FNR is due to the number of anomalies increasing with every 50 data
points because ℓ1 = ⌈0.02ℓ⌉. The best estimator for standard deviation in case
of anomaly detection is BW.

3.3. Conclusion

The experiments show the importance of the robustness and efficiency to build
a good atypicity score. High MSE implies lower performance in terms of FDR
and FNR control. The classical standard deviation estimators, MLE and MAD,
are underperforming. For the following sections of this paper, the BW (Biweight
midvariance) estimator is used to implement the scoring function.
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4. More details on experiments about FDR control assessment on
different scenarios

This section collects the detailed results of the experiment presented in
Section 4.2 of the main article. Each subsection corresponds to a different
scenario.

4.1. Gaussian time series with breakpoints in the mean

This scenario considers Gaussian data with breakpoints in the mean. The z-
score is used to capture anomalies. The ability of the detector to control the
FDR with a low FNR on different difficulties is assessed by varying the desired
level of FDR control α and the size of the shift between two segments ∆.

By applying the framework presented in Section 4.1 of the main article,
multiple choices have been made:

• The Gaussian distribution is considered as the reference P0,1 and the
proportion of anomalies is equal to π = 0.01. These anomalies are
generated in the tail of the reference distribution and follow ∆′ζ, where
ζ is the Rademacher distribution and ∆′ = 4 is the spike size of the
anomalies.

• The transition rule between two breakpoints is a jump in the mean of size
∆ taking values in {2, 3, 5}.

• For the breakpoint detector, the Gaussian kernel with bandwidth
estimated using the median heuristic is considered, as presented in
Appendix B.3 of the main article. The z-score is used as the scoring
function with the mean estimated using the median estimator and the
standard deviation estimated using the biweight midvariance estimator,
as defined in Section 3.

• According to preliminary experiments in Section 1 and Section 2, the
active set is built using λ̂ = ℓ̂ = 100. Based on the rules defined in
Appendix B.6 of the main article, Benjamini-Hochberg is applied on the
active set with the modified parameter α′ = α

1+ 1−α
mπ

. The calibration set
is built according to the rules in Appendix B.6 of the main article, where
the value n is chosen equal to m/α′ − 1. Two cases are considered α = 0.2
and α = 0.1. In the case α = 0.2, then the following values are chosen
α′ = 0.1 and n = 999. In the case α = 0.1, then α′ = 0.05 and n = 1999.

Figure 9 shows an example of anomaly detection for one time series. The
x-axis is the timestamp and the y-axis the value of the generated time series,
shown in blue. The light blue data points are those that are not observed at
the time the results are presented. The vertical black lines are the detected
breakpoints, the red band is the subseries defined as the active set, the green
band is the subseries used to build the calibration set. Detected anomalies are
the green crosses, false positives are the black crosses and red crosses are the
false negatives. As shown in Figure 9a, there are no false negative and the false
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(a) ∆ = 5

(b) ∆ = 2

Fig 9: Application of our anomaly detector on Gaussian time series having
breakpoints in the mean, for different shift size values ∆.

positives seem to be a small fraction of the true detected anomalies. As expected,
the breakpoints are positioned exactly where the means of the series change. The
active set contains the most recent observations. And the calibration set gathers
data from several segments since the current segment does not contain enough
data.

Table 1 gives the FDR and the FNR after having applied the anomaly
detector to a collection of B = 50 Gaussian time series with breakpoint in the

α ∆ FDR FNR

0.10 2 0.133 0.123
3 0.134 0.111
5 0.129 0.106

0.20 2 0.242 0.039
3 0.242 0.042
5 0.236 0.037
Table 1

FDR and FNR for anomaly detection on Gaussian time series having breakpoints in the
mean according to the α level and the shift size ∆.
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(a) FDR (b) FNR

Fig 10: Histograms of the FDR and FNR for different targeted FDR α levels.

mean for different shift sizes ∆. The FNR is always close to 0. This is necessary
to ensure the FDR control with the modified BH procedure. For all the cases,
the FDR remains close to the desired α level. The FDR is well influenced by
the choice of α level but less by the value of ∆. However, it is always slightly
higher than alpha. Indeed, for ∆ = 5, it is equal to 0.23 instead of α = 0.20, as
shown in Table 1.

The histogram in Figure 10 shows more detailed results applied to the
collection of time series for different values of α parameter. Figure 10a shows
the distribution of the FDR values compared to the target FDR in vertical
lines. Figure 10b shows the distribution of the FNR values. As shown in
Figure 10a,the performance of the anomaly detector is poor for some time series
since the FDR values are higher and far from the target FDR. This explains
why the measured FDR is slightly higher than the targeted FDR in Table 1.
The diagnosis of this inefficiency will be examined in Section 5. In the next
Sections 4.2, 4.3, 4.3, 4.4 and 4.5 the anomaly detector is applied and checked
to more complex time series.

4.2. Gaussian mixture time series with breakpoints in the mean

In this section, the aim is to show how to handle anomalies that occur between
two modes of a Gaussian mixture. These anomalies, which do not occur in the
tail of a distribution, cannot be detected by z-scores because they are close to
the mean. Therefore, it is necessary to adapt to this new situation by using
another atypicity score, such as the kNN score introduced in [6]. Indeed, in this
case, anomalies can be characterized by their distance from other segment data.

The anomaly detector applied to Gaussian mixture data considers the
reference distribution P0,1 = 0.5N (∆′, 1) + 0.5N (−∆′, 1), with an anomaly
spike size of ∆′ = 6. The anomalies are chosen to be equal to 0 to ensure they
lie in the middle between the two Gaussian distributions.

As explained previously, to adapt to this new difficulty of time series data
with Gaussian mixture, the atypicity score needs to be chosen accordingly. The
kNN score introduced in [6] is applied. To ensure that the distribution of the
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Fig 11: Histogram that represent the Gaussian mixture reference distribution
with anomalies in the center.

score is the same between two segments and not affected by segment cardinality,
the kNN distance is computed after having resampled Bs = 100 points from the
segment. To obtain a robust score, the number k of nearest neighbors should
be chosen carefully because the kNN distance should not be affected by the
presence of anomalies in the segment. In particular, the k nearest neighbors of
an anomaly should not be an anomaly, otherwise the distance will be close to 0,
which leads to a false positive. By choosing k = 10 and ensuring k/B = 0.1 >>
0.01 = π, this issue is avoided with high probability. Experimental parameters
not specified in this section have the same values as in Section 4.1.

The result in Figure 12 clearly shows that for this example, the anomaly
detector is able to detect the breakpoints, in the dashed black lines, and
the anomalies, represented by the green crosses, with few false positives.
The anomaly detector has been applied to 50 time series and the results are
summarized in Table 2. The FDR is controlled at the desired level of 0.1 or

Fig 12: Application of our anomaly detector on Gaussian mixture time series
having breakpoints in the mean.
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α FDR FNR

0.1 0.118 0.246
0.2 0.202 0.137

Table 2
FDR and FNR for anomaly detection on Gaussian mixture time series with breakpoints in

the mean according to α level.

0.2 while the FNR is slightly higher compared to the Gaussian case in Table 1.
This is probably due to the kNN score, which is less efficient than the z-score.

4.3. 2D Gaussian time series with breakpoint in the covariance

In this section, the aim is to show how to handle anomalies that occur on
multidimensional data. Previously, the kernel method in KCP demonstrated
high accuracy in detecting breakpoints for univariate time series data. Hopefully,
the paper [7] shows that this kernel method is also applicable to multivariate
time series. Once the time series is segmented, a scalar atypicity score is
computed for the multidimensional data points. An alternative would be to
apply univariate anomaly detection to each univariate time series. However,
some breakpoints, such as those occurring in the covariance, cannot be detected
by this alternative method.

Data are generated according the following rule:

∀t ∈ J1, T K, Xt =

(
X1,t

X2,t

)
∼ N (0,Σt) (3)

With the covariant matrix equal to:

Σt =



(
1 0.7

0.7 1

)
if t ≤ τ1(

1 −0.7

−0.7 1

)
else

(4)

The reference distribution generates two-dimensional Gaussian data Xt. For
each component the mean is 0 and the standard deviation is 1. To simplify
the generation, one breakpoint τ1 is considered linked to the change of the
covariance from 0.7 to −0.7. Figure 13a shows that the covariance is positive
before the breakpoint and negative after the breakpoint in Figure 13a. Anomalies
are considered in the second segment, and are set to the value (1, 1). This value
has interesting properties to evaluate the capacity of the anomaly detector.
First, “1” appears as a typical value at each one dimensional component of the
time series. This implies that the anomalies cannot be detected by working on
each component independently. Second, the value (1, 1) is fairly typical before
the breakpoint τ1, as shown Figure 13a. Consequently, the breakpoint detector
enables the detection of anomalies while they are hidden in the data mixture as
shown in Figure 13c.
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(a) Before the breakpoint. (b) After the breakpoint. (c) Data mixture.

Fig 13: 2D Gaussian data with breakpoint in covariance matrix

For this scenario, the Gaussian kernel is used to detect the breakpoint in
the covariance. As a characteristic kernel, it should detect the change in the
covariance, which is the change at the second moment order. The median
heuristic is used to select the bandwidth. Since each component cannot be
treated independently to detect anomalies, the Mahalanobis distance [8] is
preferred over the Euclidean distance. The Mahalanobis distance is defined as
the following, where µ̂ is the estimated mean vector and Σ̂ is the estimated
covariance matrix.

st =

√
(Xt − µ̂)T Σ̂−1(Xt − µ̂)

To ensure a good atypicity score, the estimator of the covariance has to be
robust and efficient, as shown in Appendix B.4 of the main article. Inspired by
the results of Section 3, the biweight-midcovariance [9] is used to estimate each
coefficient of the matrix Σ̂.

The result is represented for one example in Figure 14. The multidimensional
time series is represented using one plot for each dimension. The anomaly
detector successfully detects the breakpoints in the dashed black lines, and the
anomalies that are represented by green dots with few false positives.

The anomaly detector has been applied to 50 time series and the results are

Fig 14: Application of our anomaly detector on 2D Gaussian time series having
breakpoints in the covariance.
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α FDR FNR

0.2 0.126 0.054
Table 3

FNR and FDR for anomaly detection on 2D Gaussian time series with breakpoint in the
covariance.

summarized in Table 3. The FNR is close to 0 and the FDR is smaller than
expected, 0.12 instead of 0.2. This confirms that the detector can be applied to
multidimensional data with minor adaptation.

4.4. Gaussian data with breakpoints in the mean and in the variance

In the experiments conducted so far, all scenarios considered homoscedastic time
series where the change is in the mean while the variance is constant between two
segments. In this section, the case of heteroscedasticity in time series is studied
where the variance changes between two segments. Therefore, time series will
have parts where the variance is very low and parts where it is very high. The
struggle is that a kernel may be good at detecting breakpoints in a low variance
context, but have difficulty when the variance is high, and vice versa. Therefore,
several kernels are tested by varying the bandwidth size.

Let’s consider a time series generation process and an anomaly detector
described in Section 4.1 of the main article. To adapt to the heteroscedasticity
hypothesis, the transition rule is modified so that at each breakpoint the variance
changes as follows, where ∆σ is the variance shift size equal to 2:

σi+1 = exp(ζσ,i ln∆σ) ∗ σi

To ensure that the variance covers a wide range of values, the variable ζi is
chosen asymmetric. In the case of this experiment, ζi has a probability of 0.9
of being +1. Thus, the variance is more likely to increase than to decrease
at each breakpoint. To ensure the visibility of the breakpoint in the mean to
any variance, the size of the shift in the mean needs to be proportional to the
maximum of the variance of the segment before and after the breakpoint, as
described in the following:, where ∆µ is the mean shift size equal to 2:

µi+1 = ζµ,i+1∆µ max(σi, σi+1) + µi

According to the median heuristic, breakpoints are easily detected by a Gaussian
kernel when the standard deviation of the data is of the same order as the
bandwidth h. Several kernels are tested:

• Gaussian kernel with bandwidth h = 1. This kernel with a small
bandwidth is relevant to detect breakpoints when the variance of the time
series is small, but may fail when the variance is high.

• Gaussian kernel with bandwidth h = 100. In this situation, the kernel is
more relevant to detect breakpoints when the variance is high.
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Fig 15: Illustration of the different kernels

• To consider both scenarios, where breakpoints appear in some parts of the
series with high variance and in parts of the series with low variance, a
linear combination of the two Gaussian kernels may be a good response.
This kernel is characteristic as a sum of two characteristic kernels and is
defined by:

K(x, y) = 0.5Kh1
(x, y) + 0.5Kh2

(x, y) (5)

The anomaly detector is applied three times to the same time series, changing
only the kernel used in Figures 16, 17 and 18:

• Figure 16 illustrates the result using the Gaussian kernel with small
bandwidth, h = 1. The breakpoint was not detected at 1○, which leads to
a false negative 2○ and a large number of false positives at 3○.

• Figure 17 illustrates the result using the Gaussian kernel with large
bandwidth, h = 100. At the position 1○, the breakpoint with low variance
is not detected. It leads to false positives at 2○ because data with different
variances belong to the same calibration set.

• Figure 18 illustrates the result when using the linear combination of the
two Gaussian kernels. All breakpoints are detected, reducing the number
of false positives and false negatives.

Fig 16: Application of our anomaly detector on Gaussian time series having
breakpoints in the mean and in the variance, using a Gaussian kernel having a
small bandwidth.
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Fig 17: Application of our anomaly detector on Gaussian time series having
breakpoints in the mean and in the variance, using a Gaussian kernel having a
large bandwidth.

Fig 18: Application of our anomaly detector on Gaussian time series having
breakpoints in the mean and in the variance, using a linear combination of two
Gaussian kernels.

The anomaly detector has been applied to 50 time series and the FDR and
FNR results are summarized in Table 4. Different kernels, bandwidth h, are
considered in combination with α levels in {0.1, 0.2}:

• Gaussian kernel (labeled Gaussianh) with bandwidth h in {1, 10, 100}
• Linear combination of two Gaussians (labeled CombG1G100)

The performances are strongly influenced by the kernel bandwidth: The FNR
is lower when using the Gaussian kernel with bandwidth h = 1 or using the
combination of Gaussian kernels while it is high when using kernels with larger
bandwidth. The FDR is slightly higher than expected α for all tested kernels.
However, the FDR is smaller when using the combination of Gaussians compared
to the Gaussian kernel with h = 1. Thus, anomaly detection remains possible
when the variance of the time series changes under heteroscedasticity. However,
there is no general way to build a dedicated kernel that responds to this scenario,
but combining specialized kernels to adapt to the different regimes of the time
series seems to be a promising approach.
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α Kernel FDR FNR

0.10 Gaussian1 0.188 0.054
Gaussian10 0.127 0.136
Gaussian100 0.148 0.456
CombG1G100 0.134 0.057

0.20 Gaussian1 0.323 0.017
Gaussian10 0.232 0.102
Gaussian100 0.232 0.397
CombG1G100 0.253 0.018

Table 4
FDR and FNR for anomaly detection on Gaussian time series with breakpoints in the mean

and in the variance according to the α level and the chosen kernel

4.5. Gaussian data with breakpoints in the variance

In this section, the more challenging scenario of time series with changes in
variance without a shift in mean is addressed.

To generate the data, a Gaussian distribution is used as the reference one.
The breakpoints in the variance are generated according to the rule described
in Eq. 6.

∀i ∈ J1, D − 1K, σi+1 = exp(ζi ln∆/2) ∗ σi (6)

Since the variance of the time series changes along the time series, it may be
difficult to detect all the breakpoints with the same kernel. To evaluate the
detector in this scenario, it is based on the same kernels defined in Section 4.4
and on the z-score atypicity function.

Figures 19 and 20 show two examples of anomaly detection. In Figure 19, all
the breakpoints are successfully detected, allowing correct anomaly detection
with few false positives. In Figure 20, the procedure fails and no breakpoint is
detected in 1○. After the change with higher variance, all data are considered
as anomalies. It is an evidence that the efficiency of the anomaly detector is
strongly influenced by its ability to detect the true breakpoints.

Table 5 summarizes the FDR and FNR results obtained for 50 time series
using the same kernels and α levels as in Table 4. In all cases, the anomaly

Fig 19: Example of successful anomaly detection on time series with breakpoints
in the variance.
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Fig 20: Examples of failure of anomaly detection on time series with change in
the variance.

α Kernel FDR FNR

0.10 Gaussian1 0.272 0.321
Gaussian10 0.806 0.712
Gaussian100 0.835 0.599
CombG1G100 0.229 0.298

0.20 Gaussian1 0.313 0.241
Gaussian10 0.649 0.511
Gaussian100 0.685 0.396
CombG1G100 0.282 0.225

Table 5
FDR and FNR for anomaly detection on Gaussian time series with breakpoint in the

variance according α level and chosen kernel.

detection shows a poor accuracy, since on one side there is a lack of control
of the FDR with respect to the target value alpha, and on the other side the
FNR is very high. However, the best FNR and FDR values are obtained for the
combination of Gaussian kernels, which allows better detection of breakpoints
in the variance.

These results show how challenging the case of time series with breakpoints in
the variance is. Indeed, the change in the variance is much harder to detect than
the shift in the mean presented in Section 4.1. One approach is to carefully tune
the kernel by choosing the right combination of kernels to enable the detection
of specific types of breakpoints.

5. More details on experiments about underperformance diagnosis

This section collects the detailed results of the experiment presented in
Section 4.3 of the main article.

5.1. Description of the experiment

The BKAD is applied to the synthetic time series, where some estimators are
replaced by true knowledge, called oracle version. Three estimators are chosen
to be replaced by their oracle versions:
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Detector Breakpoint Mean and variance Anomaly Removing
Detector 1 O O O
Detector 2 O O E
Detector 3 O E O
Detector 4 E E O
Detector 5 E E E

Table 6
Description of the different detectors.

• The breakpoint estimator: can be replaced by the true breakpoint position,
• The mean and standard deviation estimators: can be replaced by their

true values,
• The anomaly removed: As described in Appendix B.5 of the main article

when building the calibration set, estimated anomalies are removed to
avoid biasing the estimation of the p-values. The oracle version of this is
to remove the true anomalies.

Using the framework from Section 4.1 of the main article, five anomaly detectors
are applied to each time series. Multiple combinations of the true knowledge
(marked “O”) versus estimated values (marked “E”) are used to produce different
versions of anomaly detectors described in Table 6. As an example, for detector
3, the breakpoints and anomalies in the calibration set are detected using their
true values, but the segment mean and variance parameters are estimated.

The significance of the results is checked using permutation tests. It is possible
that the cause of this underperformance depends on the data distribution or on
breakpoint types. Different probability distributions are tested with different
kinds of shifts.

5.2. Results and analysis

The complete empirical results can be found in Section 6. The performances of
the different detectors are evaluated on a different laws generating the time series
(Student, Gaussian, Mixture of Gaussians noted MoG). The FDR and FNR
distributions are represented by a boxplot with the significance differentiating
two detectors (“ns” the difference is not significant, “*” significance at 5%, “**”
significance at 1%, “***” significance at 0.1% ).

In the following paragraphs, the effects of the various core components
are studied: breakpoint detector, mean and variance segment estimator and
anomalies removed from the calibration set.

Breakpoint Estimation Table 7 shows the performance of anomaly
detectors 3 and 4 (see Table 6) for different types of data and shifts. The
only difference between the two detectors is that Detector 3 uses a breakpoint
detector while Detector 4 has knowledge of true breakpoints. The bold
values highlight the cases where the difference between the two estimators is
significant. Table 7 illustrates that the breakpoint estimation does not strongly
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Type of shift law α Breakpoints FDR FNR
Mean Gaussian 0.10 E 0.104 0.105

O 0.100 0.091
0.20 E 0.182 0.054

O 0.176 0.054
Student 0.10 E 0.119 0.066

O 0.117 0.065
0.20 E 0.199 0.033

O 0.198 0.032
MoG 0.10 E 0.113 0.131

O 0.108 0.124
0.20 E 0.186 0.072

O 0.190 0.071
Mean and var. Gaussian 0.10 E 0.114 0.090

O 0.099 0.078
0.20 E 0.188 0.051

O 0.167 0.040
Variance Gaussian 0.10 E 0.200 0.214

O 0.110 0.109
0.20 E 0.257 0.128

O 0.174 0.062
Table 7

Anomaly detector performances with and without knowledge of true breakpoint positions,
according different time series.

affect the FDR performance except in the case where breakpoints occur in the
variance. This is expected since breakpoints in the variance are more difficult
to to detect, as discussed earlier in Section 4.5. FNR increases in few cases
where the breakpoint positions are estimated.

Segment mean and variance parameters Table 8 shows the performance
of anomaly detectors 1 and 3 (see Table 6) for different types of data and
shifts. The only difference between the two detectors is that Detector 3 estimates
the mean and the variance parameters of the segments while Detector 1 has
knowledge of the true parameters. According to Table 8, the estimators do
not strongly affect the FDR of the anomaly detector. There are few significant
differences, displayed in bold, which are smaller than in Table 7.

Anomalies Removing Table 9 represents the results for different detectors
considering different laws, alpha levels and kind of shift. The four detectors
are chosen to identify the effect of removing detected anomalies from
the calibration set instead of removing the true anomalies, in case other
components are estimators and in case other components are oracles. Note
that for Gaussian Mixture (MoG), the “Mean and Variance” component is
marked with a “X”, since the kNN atypicity score does not use mean and
variance parameters. It is clear that the control of the FDR is worse when the
calibration set is built based on detected anomalies. Indeed, the false positives
and false negatives detected at time t will badly affect the detection at time
t+ 1. Despite the fact that a robust score is chosen, these observations lead to
a conclusion that the p-value estimator is sensitive to:
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type of shift law α Mean and variance FDR FNR
Mean Gaussian 0.10 E 0.082 0.043

O 0.105 0.000
0.20 E 0.167 0.000

O 0.188 0.000
Student 0.10 E 0.117 0.065

O 0.113 0.056
0.20 E 0.198 0.032

O 0.196 0.026
Mean and var. Gaussian 0.10 E 0.091 0.000

O 0.107 0.000
0.20 E 0.167 0.000

O 0.200 0.000
Table 8

Anomaly detector performances with knowledge of the true segment mean and standard
deviation values and with estimation of these parameters, according different time series.

• False negatives: If there is a missed anomaly in the calibration set, the
p-values of all data points in the active set will be underestimated. This
situation leads to generate more false negatives, which will confound the
calibration sets of subsequent instants.

• False positives: The p-value estimator is also sensitive to false positives
due to the way the calibration set is constructed. As a reminder, detected
anomalies are replaced by a random points belonging to a segment similar
to the current segment. The problem arises when an anomaly is falsely
detected. Generally speaking a false positive is a point with a high score.
When a false positive is replaced with a random point, its score will be
statistically lower. Thus, removing the false positives from the calibration
set reduces the average score in the calibration set and consequently
reduces the p-values of the data points in the active set. This leads to
more false positives, which will affect the construction of calibration sets
at later times.

5.3. Conclusion

The conclusion of this analysis is that most of the underperformance relative to
the ideal case, such as higher than expected FDR, is explained by the non-
robustness of the empirical p-value estimator and the contamination of the
calibration set by false negatives and false positives.
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Type of shift Law α Breakpoint Mean and
variance

Anomaly
removing FDR FNR

Mean Gaussian 0.1 E E E 0.134 0.123
E E O 0.104 0.105
O O E 0.165 0.041
O O O 0.121 0.048

0.2 E E E 0.242 0.039
E E O 0.182 0.054
O O E 0.301 0.018
O O O 0.197 0.018

Student 0.1 E E E 0.158 0.059
E E O 0.119 0.066
O O E 0.154 0.035
O O O 0.113 0.056

0.2 E E E 0.289 0.026
E E O 0.199 0.033
O O E 0.301 0.013
O O O 0.196 0.026

MoG 0.1 E X E 0.118 0.246
E X O 0.113 0.131
O X E 0.103 0.294
O X O 0.108 0.124

0.2 E X E 0.202 0.137
E X O 0.186 0.072
O X E 0.221 0.111
O X O 0.190 0.071

Mean and var. Gaussian 0.1 E E E 0.134 0.057
E E O 0.114 0.090
O O E 0.955 0.022
O O O 0.119 0.054

0.2 E E E 0.253 0.018
E E O 0.188 0.051
O O E 0.961 0.021
O O O 0.205 0.029

Table 9
Anomaly detector performances with and without knowledge of true anomalies for removing

anomalies, according different time series.
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6. Figures related to experiment of Section 5

Fig 21: Boxplots of FDR and FNR for anomaly detection on Gaussian time series
having breakpoint in the mean according to the different Detectors described in
Table 6 and shift size ∆. Top-left: FDR while α = 0.1, Top-right: FNR while
α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2.
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Fig 22: Boxplots of FDR and FNR for anomaly detection on Student time series
having breakpoint in the mean according to the different Detectors described in
Table 6 and shift size ∆. Top-left: FDR while α = 0.1, Top-right: FNR while
α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2

Fig 23: Boxplots of FDR and FNR for anomaly detection on Gaussian Mixture
time series having breakpoint in the mean according to the different Detectors
described in Table 6. Left: FDR while α = 0.2, right: FNR while α = 0.2.



E. Krönert et al./S.M. for Breakpoint based online anomaly detection 27

Fig 24: Boxplots of FDR and FNR for anomaly detection on Gaussian time
series having breakpoint in the mean and variance according to the different
Detectors described in Table 6. Top-left: FDR while α = 0.1, Top-right: FNR
while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2
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Fig 25: Boxplots of FDR and FNR for anomaly detection on Gaussian time
series hawing breakpoint in the mean and and in the variance according to the
chosen Kernel. Top-left: FDR while α = 0.1, Top-right: FNR while α = 0.1,
Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2



E. Krönert et al./S.M. for Breakpoint based online anomaly detection 29

Fig 26: Boxplots of FDR and FNR for anomaly detection on Gaussian time series
having breakpoints in the variance according to different the chosen Kernel. Top-
left: FDR while α = 0.1, Top-right: FNR while α = 0.1, Bottom-left: FDR while
α = 0.2, Top-right: FNR while α = 0.2
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7. Supplementary experiment: empirical study on the effect of
hyperparameter choice

The goal of this section is to show how incorrect hyperparameter values of the
anomaly detector lead to a degradation of the anomaly detector’s performances.
This evaluation is done for three core components: the variance estimator, the
cardinality of the calibration set, and the cardinality of the active set. The
hyperparameters of these components are intentionally set very far from the
recommendations given in Appendixes B.1, B.2 and B.4 of the main article and
the consequences are observed and discussed to confirm the recommendations,
the rules and the analyses stated in the paper.

7.1. Bad choice of variance of segments estimator

In Appendix B.4 of the main article , it was established that a good atypicity
score should respect two properties: robustness to the presence of anomalies
in the training set and efficiency. In this scenario, a bad choice is made for
an atypicity score that does not respect the requirements of being robust and
efficient. To simulate this case and evaluate the effects, the experiment with
Gaussian time series having breakpoint in the mean introduced in Section 4.1
is reused by replacing the biweight estimator of the variance in the z-score
function by the MLE estimator or the MAD estimator. Indeed, MLE estimator
is efficient but not robust, and the MAD estimator is robust but not efficient
while the biweight midvariance is robust and efficient.

To analyze and compare the effect of the different estimators, the same
example is considered in Figure 27, for different variance estimators. Since the
MLE estimator is not robust, Figure 27a at 1○ shows false negatives due to
variance overestimation caused by the presence of anomalies in the current
segment. The choice of the robust MAD estimator reduces the false negatives
while it generates a higher number of false positives as shown in Figure 27b at
2○. The variance is underestimated due to the lack of data points and the lower
efficiency of MAD. The Biweight estimator is advantageous as it is both robust
and efficient and is able to reduce false positives and false negatives, as shown
in Figure 27c.

In Figure 28, the boxplots represent the distribution of FNR and the
FDR over a set of 50 time series based on the standard deviation estimator
(MLE, MAD or BW). Paired permutation tests [10] are used to compare the
performances of two estimators. For each pair of estimators, the hypothesis
tested is: “The mean FDR (or FNR) is the same using these two variance
estimators”. The results are represented by adding a symbol (“ns” the difference
is not significant, “*” significance at 5%, “**” significance at 1%, “***”
significance at 0.1% ) between the two tested estimators.

The FDR and FNR results are summarized in Table 10. The FNR is
significantly higher when the MLE variance estimator is used compared to
the more robust MAD and biweight midvariance estimators, which have close
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(a) MLE

(b) MAD

(c) BW

Fig 27: Application of our anomaly detector on Gaussian time series having
breakpoints in the mean, using different variance estimators.

performances. However, the FDR is significantly higher when the MAD is used
compared to the biweight midvariance estimator, for which the FDR is better
controlled.
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(a) FDR (b) FNR

Fig 28: Boxplots of the FNR and FDR according to the choice of the variance
estimator.

sigma_estimator FDR FNR

MLE 0.16 0.08
MAD 0.29 0.04
BW 0.24 0.04

Table 10
FNR and FDR according to the choice of the variance estimator.

7.2. Bad choice for active set cardinality

Section 3.2 of the main article introduced the notion of an active set to deal
with the uncertainty of status. It also provides rules to compute the cardinality
of the active test, described more precisely in Appendix B.1 and Appendix B.2.
In this section the relevance of this rule is evaluated.

To evaluate the performance degradation due to a bad choice of the active
set cardinality, the experiment framework introduced in Section 4.1 is reused.
According to the results of the experiments in Sections 1 and 2, status can be
ensured with strong confidence with an active set cardinality equal to m = 100.
For each time series generated, two anomaly detectors are applied, one with an
active set cardinality equal to 100 and the second with an active set cardinality
equal to 10.

Figure 29 illustrates the boxplots of the FDR distribution according to the
active set cardinality. The results, summarized in Table 11, show that the FDR
is significantly higher when the active set has a cardinality of m = 10. On
the contrary, using a cardinality of m = 100 allows to control the FDR at the
desired level α = 0.2. This experiment illustrates the benefits of following the
recommendations defined in Appendix B.1 and Appendix B.2 of the main article
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to improve anomaly detection performances.

α m FDR FNR

0.2 10 0.529 0.006
100 0.186 0.053

Table 11
FDR and FNR mean according to

the active set cardinality.

Fig 29: FDR boxplots according to the
active set cardinality

In order to understand how the active set improves the anomaly detector,
the results are observed, for one time series, at two different instants: at time
t = 1570 in Figures 30a and 30b, and at time t = 1600 in Figures 30c and
30d. The histograms of the z-scores of the calibration set in green and the
active set in red are shown in Figures 30b and 30d. At time t = 1570, the new
current segment contains few points, resulting in a variance estimation error
and an overestimation of the z-score of the active set in 1○ Figure 30b and false
positives in 1○ Figure 30a. At time t = 1600, the segment has acquired new data
points, the variance estimate is improved and the z-score is not overestimated
in 2○ Figure 30d. The number of false positives is reduced in 2○ Figure 30c.
The status of the data point at t = 1570 is corrected at time t = 1600 because
the active set is large enough, otherwise its status would be fixed to the wrong
one.
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(a) Example of false positive, t = 1570
(b) Example of false
positive

(c) Example of accurate detection, t = 1600
(d) Example of false
negative

Fig 30: Abnormality status update after new data points acquisition in the
current segment.

7.3. Bad choice of cardinality for the calibration set

It is established in Appendix B.6 of the main article that the FDR can only
be controlled if the cardinality of the calibration set takes specific values. This
section verifies this claim in the case of breakpoint based anomaly detection.

To evaluate the degradation of the FDR control due to a bad choice of the
calibration set cardinality, time series are generated according to the framework
design introduced in Section 4.1. For each generated time series, with the target
FDR α = 0.2 (resp. α = 0.1) and the active set cardinality m = 100, two
anomaly detectors are applied: one with a calibration set cardinality equal to
999 (resp. 1999) respecting the recommendation. The second with a calibration
set cardinality equal to 1000 (resp. 2000), not respecting the recommendation.
Indeed, since the proportion of anomalies is equal to π = 0.01, the goal of a FDR
equal to α = 0.2 (resp. α = 0.1) can be achieved using Benjamini-Hochberg with
α′ = 0.1 (resp. 0.05) according to Appendix B.6. The calibration set cardinality
should then be equal to 999 (resp. 1999) according to Eq. B.15.

The results in Table 12 show that the FDR is controlled at the desired level
for n = 999 and n = 1999, while the FNR is higher. This confirms that the
FDR can only be controlled by selecting the parameter n using the rule in
Appendix B.6. To reduce the FNR while maintaining control of the FDR, the
values n must be chosen among the values {1999, 2999, 3999, . . .} as discussed
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α n FDR FNR

0.2 999 0.21 0.030
1000 0.30 0.0

0.1 1999 0.1 0.1
2000 0.16 0.03

Table 12
FDR and FNR according to the calibration set cardinality.

in the paper [5].
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