
HAL Id: hal-04440349
https://hal.science/hal-04440349v1

Preprint submitted on 5 Feb 2024 (v1), last revised 30 Jul 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Breakpoint based online anomaly detection
Etienne Krönert, Dalila Hattab, Alain Celisse

To cite this version:
Etienne Krönert, Dalila Hattab, Alain Celisse. Breakpoint based online anomaly detection. 2024.
�hal-04440349v1�

https://hal.science/hal-04440349v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Breakpoint based online anomaly detection

Etienne Krönerta,b,c,∗, Dalila Hattaba, Alain Celisseb,d

aFSLab, Worldline, 59000, Seclin, France
bModal Team, INRIA, 59000, Lille, France

c University of Lille, CNRS, UMR 8524 , Laboratoire Paul Painlevé, 59000, Lille, France
dLaboratoire SAMM, Université Paris 1 - Panthéon Sorbonne, 90 rue de Tolbiac, Paris, 75013, France

Abstract

The goal of anomaly detection is to identify observations that are generated by a distribution
that differs from the reference distribution that qualifies normal behavior. When examining a
time series, the reference distribution may evolve over time. The anomaly detector must therefore
be able to adapt to such changes. In the online context, it is particularly difficult to adapt to
abrupt and unpredictable changes. Our solution to this problem is based on the detection of
breakpoints in order to adapt in real time to the new reference behavior of the series and to
increase the accuracy of the anomaly detection. This solution also provides a control of the False
Discovery Rate by extending methods developed for stationary series.

Keywords: Anomaly detection, Time series, Breakpoint detection, FDR

1. Introduction

Anomaly detection has historically, and often still today, been achieved by manually defining
fixed thresholds for each monitored parameter. The limitation of this method is that the notion
of anomaly is relative to the context: as an example, on a monitored card transaction flow of
a bank, it is not expected to have the same number of transactions at night as during the day.
The thresholds must therefore be adapted and redefined for each metric, on a regular basis.
This task is time consuming and requires expert knowledge. The use of Machine Learning in
anomaly detection aims at automating this step [1, 2, 3, 4]. Unsupervised models [5] learn
reference behavior from historical data, then they are used to compare reference behavior from
seen data and raise alarm when the difference is high. The diversity of anomaly detectors [1, 6]
is useful to adapt to different patterns in time series data that can be learned such as trend,
seasonality and autocorrelation. Anomalies are detected by comparing the observed metric to its
expectation derived from the reference distribution. Using this method, the anomaly detector is
able to adapt to changes reference distribution experienced in the past. There are many methods
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in the literature, from the simple EWMA [7, 8] or ARMA to the more complex LSTM [9, 10],
which perform learning of the reference distribution from historical data. But these strategies
are unable to adapt to unexpected and unpredictable new normal changes. Such a change is
called a breakpoint in the literature, it is detected using breakpoint detectors [11, 12].

Therefore, this article proposes a new anomaly detector based on breakpoint detection to
adapt to the new reference distribution. The article [13] gives a good review of existing methods
for breakpoint detection. The Kernel Changepoint (KCP) introduced in [14] is used as a
breakpoint detector. Thanks to the use of reproducing kernels and the possibility to estimate
the number of breakpoints as described in [15], any kind of change, such as in the mean or in
the variance, can be detected.

Figure 1: Anomaly detection based on breakpoints.

As illustrated in Figure 1, the novelty of the anomaly detector presented in this paper is to
partition the time series into homogeneous segments in order to identify anomalies within each
segment. Unlike the proposals cited in [16, 17], the breakpoints do not correspond to anomalies,
but to changes in the reference distribution.

However, if poorly calibrated an anomaly detector can lead to alarm fatigue. An overwhelming
number of alarms desensitizes the people tasked responding to them, leading to missed or ignored
alarms or delayed responses [18, 19]. One of the reasons for alarm fatigue is the high number of
false positives which take time to be managed [20, 21]. To reduce the number of false positives, the
aim is to control the False Discovery Rate (FDR) [22], while minimizing the False Negative Rate
(FNR). The classical method to control the FDR is the Benjamini-Hochberg (BH) procedure
[22, 23], which also guarantees a low false negative rate. In the article [24, 25], the FDR is
controlled in the case of offline anomaly detection using BH. In a recent work of ours [26], a new
strategy has been designed in the online framework for controlling the FDR for stationary series
using a modified version of BH applied to subseries. In the present paper, we extend this work
to the nonstationary case.
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The main contributions of this paper are summarized as follows:

• a versatile online anomaly detector based on breakpoint detection is built to adapt to
changes in the reference behavior of the time series. Each component of the detector is
studied in depth to provide the best possible parameters and improve the performance of
the anomaly detector.

• the notions of active set and calibration set are introduced to deal with the difficulties of
the online nature of the anomaly detector.

• the anomaly detector is empirically evaluated in numerous scenarios to determine its
capabilities and limitations.

In Section 2, the anomaly detector is introduced and some challenges are raised related to non-
stationarity and uncertainty of the estimation of the breakpoint positions in the online context.
In Section 3, the breakpoint detector is described. While detecting breakpoints, a good scoring
function is necessary to filter the anomalies. This question is discussed widely and illustrated
with experiments in Section 4. In addition, the online nature of anomaly detection makes the
decision of an abnormal state much more difficult. Solutions are elaborated in Section 5 on
how to tackle the uncertainty of abnormal status. Thanks to results published in [26] on how
to better control the FDR, Section 6 integrates these results to have an optimal p-value and
threshold selection used in the anomaly detector. Finally, multiple experiments and numerical
results are elaborated in Section 8.

2. Anomaly detection based on breakpoint detection

This section introduces the problem of anomaly detection in time series containing breakpoints,
it explains why it differs from the i.i.d anomaly detection problem and why it cannot be solved
with an anomaly detector that does not consider the breakpoints. Finally, a high level view of
the proposed main ideas is given.

2.1. Modeling of the problem
Let (X , Ω, P) be a probability space and assume a realization of the independent random

variables (Xt)t≥1, with Xt taking values in X for all t, is observed at equal time steps. T ∈
N ∪ {∞} is the length of the time series. Normality is a concept that is dependent on a
context that changes over time. The instants at which the reference distribution changes are
called breakpoints. Supposing there are D breakpoints where D ∈ N ∪ ∞, the position of
the breakpoints is noted (τi)D

1 ∈ [1, T ]D. To model these different reference behaviors, several
reference probability distributions are introduced and noted P0,i. For each segment i in J1, DK,
for each point t in this segment Jτi, τi+1− 1K, the observation Xt is called “normal” if Xt ∼ P0,i.
Otherwise Xt is an “anomaly”. Between two consecutive breakpoints, all “normal” observations
are generated by the same law defining a homogeneous segment. The time series (Xt) is piecewise
stationary.

As illustrated in Figure 2, an observation xt is an anomaly if it is not generated from the
reference distribution corresponding to the current segment. Figure 2 shows two anomalies
detected in the second segment between breakpoints τ2 and τ3. Four anomalies have been
detected in the last segment 3.

The aim of an online anomaly detector is to find all anomalies among the new observations
along the time series (Xt)t≥1: for each instant t > 1, a decision is taken about the status of Xt

based on past observations: (Xs)1≤s≤t. Let H0 be the set of all normal data of the time series,
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Figure 2: Illustration of piecewise stationary time series.

H1 be the set of all abnormal data and R be the set of all data points detected by the anomaly
detector. The FDR (resp. FNR) introduced in Section 1 can be expressed as the expectation of
the False Discovery Proportion (FDP) (resp. False Negative Proportion (FNP)):

FDRT
1 = E[FDP T

1 ] = E

[
|H0 ∩R|
|R| ∨ 1

]
FNRT

1 = E[FNP T
1 ] = E

[
|H1 ∩R|
|H1| ∨ 1

]
The control of the FDR at a targeted level α can be expressed by FDR ≤ α. In the following, the
construction of an anomaly detector that controls the FDR at a desired level while minimizing
the FNR is studied, in the case of piecewise stationary time series.

2.2. Online anomaly detection in piecewise stationary time series
The goal of this section is to develop a suitable anomaly detector for the nonstationary series

described in Section 2.1. First, a generic anomaly detector tailored to the stationary case is
described. Then, it is modified to be adapted to the presence of breakpoints in the time series.

Starting point: anomaly detection in stationary time series. Usually, to retrieve anomalies,
a unique probability distribution P0 is considered as the reference distribution assuming no
breakpoint in the time series data. Anomalies are defined by observations not generated under
the reference distribution: Xt ≁ P0. In the paper [26], the following general online anomaly
detector description was suggested. It uses multiple testing ideas from [24] and the online context
from [27]. This online detector relies on the following notions:

• An atypicity score a to compare the observation Xt from a training set X train = {X1, ...., Xq}
generated by P0. The more Xt deviates from the points in the training set, the more the
abnormality score st = a(X train, Xt) is high.

• A p-value estimator p̂, based on a calibration set of scores Scal = {st−m−n, ..., st−m}
containing scores of data points generated from P0, to estimate the p-value p̂t = p-value(st,Scal).
In the online context, the calibration set can change over time.
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• The value of the threshold ε can be chosen either as a fixed value for all p-values or to
be data driven for subseries of p-values, called the test set. Data driven threshold allows
better control of the number of false positives through the False Discovery Rate (FDR).
ε̂t = ε̂({pt−m+1, . . . , pt})

Usually, the training set and calibration set are either chosen from the start of the time series
labeled with anomalies or evolve over time using sliding windows. When the training set cannot
be labeled, a robust atypicity score is required. An example of a training set, calibration set and
test set, in the context of online anomaly detection is shown in the following:

X1, . . . , Xq︸ ︷︷ ︸
Training set

, . . . Xt−n−m, . . . , Xt−n︸ ︷︷ ︸
Calibration set

, Xt−m, . . . , Xt︸ ︷︷ ︸
Test set

Algorithm 1 Generic Online Anomaly Detector for stationary time series
Require: T > 0, (Xt)T

1 time series, a an abnormality score, ε a threshold
for 1 ≤ t ≤ T do

St ← a(Xtrain, Xt)
pt ← p-value(St, Scal)
if pt < ε̂(p̂t−m, . . . , p̂t) then

dt = 1
else

dt = 0
end if

end for
Output: (dt)T

1 detected anomalies boolean

As described in Algorithm 1, for each new observation Xt, the function a is used to get the
atypicity score. The value of the score cannot be interpreted directly because the distribution
of the scores under H0 is unknown. So its p-value is estimated using the calibration set. The
more the data point is atypical, the closer the p-value is to 0. The final step of Algorithm 1 is to
compare the p-value with a threshold. The observation is considered abnormal if the p-values is
less than the threshold.

The next section discusses the reason why this anomaly detector cannot be applied in case
of time series containing breakpoints. Indeed, the definitions of training and calibration used in
Algorithm 1 have to be reconsidered.

What are training, calibration and test sets in the case piecewise stationarity?
. Suppose the strategy used for stationary data is applied to a time series where a shift in the
mean of the reference distribution occurs. Before the first shift, there are no differences with
the stationary case. After the shift, all data points appear as anomalies when using the scoring
function trained on the initial training set based on data before the shift. To adapt to the shift,
the training and the calibration sets have to be rebuilt on the new segment of data in order to
reapply the anomaly detector.

X1, . . . , Xτ1︸ ︷︷ ︸
Segment 1

, Xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xτ1+q+n︸ ︷︷ ︸
calibration

, Xτ1+q+n+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2
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However, it would take a lot of time to gather enough data for the training and calibration
sets. This is the reason why two improvements are suggested. The first improvement in the case
where the score is stationary across different segments, data for the calibration set can be taken
from previous segments. For example, suppose the shift occurs in the mean and the score is the
z-score: (x− µ)/σ.

X1, . . . , Xq︸ ︷︷ ︸
train

, Xq+1, . . . , Xq+m︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1

, xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2

If the scoring function is robust to the presence of anomalies inside the training set, the
training can have anomalies. The whole segment can be used as training set. The test set can be
part of the training set, using a leave-one-out strategy. The segment length required for anomaly
detection can thus be further reduced, this constitute the second improvement.

X1, ...., Xn︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1 and train

, . . . , Xt−m......Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2 and train

2.3. The uncertainty of estimations
The setup of the training and calibration sets described in the previous section relies on the

knowledge of the breakpoint positions. In practice, neither the number of segments D, nor the
positions of the breakpoints τi nor the laws of the segments P0,i are known. All these quantities
must be learned using the breakpoint detector and the scoring function to perform anomaly
detection.

Moreover, in an online context, the lack of knowledge of the whole series influences a good
estimation of these quantities and has a negative impact on the quality of the detection. With
each new observation, different situations may occur: the position of a previous breakpoint may
be adjusted or removed, or a new breakpoint may appear. These new observations influence the
composition of each segment and therefore modify the score value and status assigned to each
point. Consequently, the values of quantities associated with a data point Xu change over the
time t. To reflect this evolution, a subscript t is added. For example, p̂u,t is the p-value estimated
for Xu at time t. Similarly du,t is the status of the point Xu at time t. The concept of the active
set is introduced to collect the last points observed in an Online context and whose “abnormal”
or “normal” status is uncertain since it may evolve due to the introduction of new data points.

2.4. High level description for Breakpoint Based Anomaly Detection
Using the different concepts introduced in Sections 2.1, 2.2 and 2.3, the anomaly detection

algorithm based on breakpoint detection is proposed in Algorithm 2, using the following notions.

1. breakpointDetection: is a breakpoint detector that estimates the number, D̂t, and the
positions, noted τ̂(t)1, . . . , τ̂(t)D̂t

, of breakpoints in the current time series Xt
1.

2. activSelection: returns the active set. This is the set of observations whose normal versus
abnormal status needs to be reevaluated because it is too uncertain.
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3. calibrationSelection: constructs a calibration set representative of the current reference
distribution. It can extract a subsequence of data from the current segment, or from
previous segments that have a statistical law distribution very similar to the current
segment.

4. atypicityScore: A score a : X → R is a function reflecting the atypicity of an observation
Xt. The atypicity score is defined as a non conformity measure, note a, to the segment.

su = a(Xu) = a(Seg(u), Xu)

where Seg(t) is the unique homogeneous segment that contains Xt.

5. pvalueEstimator: Estimates the probability of observing a normal data point with an
atypicity score a(X) greater than a(Xt). This is done using a p-value estimator and the
calibration set.

p-value(st,Scal
t ) = 1

|Scal
t |

∑
s∈Scal

t

1[s > st]

6. thresholdChoice: A multiple testing procedure is applied to determine a detection threshold
on the active set, which plays the role of the test set.

Algorithm 2 Breakpoints based anomaly detection
Require: Let T > 0 be the time series length, (Xt)T

1 be the time series, breakpointDetection
implements breakpoint detector, activSelection retrieves the active set, activSelection
retrieves the calibration set, pvalueEstimator implements the p-value estimator and
thresholdChoice selects the best threshold to be applied.

1: for t = 1 to T do
2: τ̂(t)← breakpointDetection(Xt

1)
3: Iactive ← activSelection(Xt

1, τ̂(t))
4: Ical ← calibrationSelection(Xt

1, τ̂(t))
5: Scal ← {a(Seg(u), Xu), u ∈ Ical}
6: for u in Iactive do
7: su,t ← a(Seg(u), Xu)
8: end for
9: for u in Iactive do

10: p̂u,t = pvalueEstimator(su,Scal)
11: end for
12: ε̂t = thresholdChoice({p̂u,t, u ∈ Iactive})
13: for u in Iactive do
14: if p̂u,t < ε̂t then
15: du,t = 1
16: else
17: du,t = 0
18: end if
19: end for
20: end for
21: Output: (dt,T )T

t=1 boolean list that represent the detected anomalies.
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1) New observation measured

Input time series: X1, X2, ...., Xt

2) Time series segmented

Estimated number of segments D̂t
Detected breakpoints: τ̂(t)1, ..., τ̂(t)D̂t

3) Identification of activ and calibration sets

Activ set Iactiv = {t−mt, ..., t}
Calibration set: Ical = {t1, ..., tn}

4) Computation of Scores

Score

Scores of the calibration set:
∀u ∈ Ical, su,t = a(Xu, Seg(u))

Scores of the active set: ∀u ∈
Iactive, su,t = a(Xu, Seg(u))

5) Pvalues and threshold estimation

rank

pvalues

P -values of active set: ∀u ∈
Iactive, pu,t = a(sn+u,Scal)

Estimation of the threshold:
εt = ε̂({pu, u ∈ Iactive)

6) Decision rule

Detection: ∀u ∈ Iactive, du,t = 1[pu,t < εt]

Figure 3: Description flow of Algorithm 2.

The description of the flow illustrated in Figure 3 is given as the following:

Step 1 : a new observation point is given.

Step 2 : the segmentation of the time series is updated. Each segment is homogeneous.

Step 3 : the points coming from the Online streaming data with a status that are unsure are
identified. An active set and the calibration set are built.

Step 4 : The calibration set and active set data points are scored.

Step 5 : The p-values of the active set are estimated using the calibration set. The multiple testing
procedure is applied to the active set, to get the data driven threshold.

Step 6 : A decision is applied to give the abnormal status to the data point above the threshold

The modularity of our method allows a better adaptation to the diversity of time series. In
the following Sections 3, 4, 5, 6 and 7 the different components of the algorithm are discussed
and described in more detail.

3. How are breakpoints estimated?

As described at Section 2.1 the time series (Xt)1≤t≤T has D breakpoints denoted τ1, ..., τD+1.
These breakpoints are ordered such that i < j implies τi < τj . The segment formed by the
data between two consecutive breakpoints are iid. The segment X

τi+1−1
τi is said homogeneous.
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Informative features for anomaly detection, such as the mean or the variance, can be extracted
if the breakpoints are correctly identified. A good breakpoint detector is important to increase
the accuracy of anomaly detection. If a shift is not well detected, the analyzed segment will be
heterogeneous and the estimation of the law under H0 will be biased. If too many breakpoints
are detected in a segment while it is homogeneous, the analyzed segments will contain fewer
points and the variance of the predictions will be too high. To maximize the performance
of the anomaly detection, the number and the positions of breakpoints have to be accurately
estimated. The article [13] is a review of existing offline breakpoint detectors. The authors show
that a breakpoint detector can be described as an optimization problem, using three notions.

• Cost function. A cost function c(·) measures the homogeneity of a given subseries Xt2
t1

.
With a well chosen cost function, c(Xt2

t1
) is high when there is at least one breakpoint

between t1 and t2. The cost function is low when there is no breakpoint in this subseries.

• Search method: The search method enables to explore a set of possible segmentations,
denoted T , of the optimization problem. Each search method is a trade-off between
accuracy and computational complexity [13].

• Penalty function: The penalty function is useful when the number of breakpoints is
unknown. It avoids overestimating the number of breakpoints by penalizing segmentations
with a large number of breakpoints. The penalty function pen(·) increases based on the
number of breakpoints, noted Dτ .

The segmentation returned by the breakpoint detector is the one that minimizes the penalized
cost function among the explored solutions:

τ̂ ∈ arg min
τ∈T

Dτ∑
i=1

c(Xτi+1−1
τi

) + pen(Dτ ) (1)

In this article, the Kernel Change Point (KCP) introduced in [15] is used for its advantages.
The kernel-based cost function could be used for any kind of time series, univariate or multivariate,
without changing the breakpoint detector. To handle the diversity of time series data, the kernel
and its hyperparameters have to be carefully chosen to be able to detect any kind of change
points in the time series. This accuracy is guaranteed by the oracle inequality given in [15]. For
a given segmentation τ and a kernel K, the cost is given by:

R̂(τ) = 1
t

t∑
u=1

K(Xu, Xu)− 1
t

Dτ∑
i=1

1
τi+1 − τi

τi+1−1∑
u,v=τi

K(Xu, Xv) (2)

First, the candidate segmentations that minimize the criterion are identified for each possible
number of D segments. T D is the space of all candidate segmentations with D segments, τ̂D,t

is the best candidate segmentation with D segments and LD,t is the cost associated with this
segmentation.

LD,t = min
τ∈T D

R̂(τ)

τ̂D,t = arg min
τ∈T D

R̂(τ)

To estimate the number of segments and thus the best segmentation, one searches for the
segmentation τ̂D,t that minimizes the penalized criterion described in Eq. 1. The penalty function
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is given by:

pen(τ) = c1Dτ + c2 log
(

t− 1
Dτ − 1

)
(3)

where the coefficients c1 and c2 are estimated by fitting the penalty function on the estimated
cost for over-segmented segmentations [28].

KCP is designed as an offline breakpoint estimator. By using Dynamic Programming, the
segmentation costs can be estimated without performing the same computation between time
t and t + 1 as described in [14]. This feature is necessary to be applied in an online anomaly
detection. The data driven penalty function enables good accuracy in estimating the number
of breakpoints. The breakpoints are detected by solving the optimization problem with the
algorithm:

Algorithm 3 Dynamic Programming for breakpoint detection.
Require: T > 0, (Xt) time series, C Kernel based cost function, Dmax maximum breakpoint

number explored and SlopeHeuristic implement the slope heuristic.
for t ∈ J1, T K do

for D ∈ J1, DmaxK do
LD,t ← mint′≤t LD−1,t′ + Ct′,t

τ̂D,t ← arg mint′≤t LD−1,t′ + Ct′,t

end for
c1, c2 ← SlopeHeuristic(L)

D̂ ∈ arg minD LD,t + c1D + c2 log
(

t− 1
D − 1

)
τ̂t ← τ̂D̂,t

end for
Output: ∀t ∈ J1, T K, (τ(t)) estimated segmentation at each time step.

The main degree of freedom in KCP is the choice of the kernel. Characteristic kernels [29],
like the Gaussian kernel, are able to detect any kind of change: shift in the mean, shift in the
variance, shift in the third moment,. . .

K(x, y) = exp(−||x− y||2

2h2 ) (4)

However, due to the fact that the number of points within a segment is finite, the performance
of a characteristic kernel depends on the choice of hyperparameters. In the case of the Gaussian
kernel, the only parameter is the bandwidth h. For changes that occur in the mean, the median
heuristic, shown in Eq. 5, gives good results [30]. Defining a method to select the most relevant
kernel for any kind of breakpoint is still an open question.

h = mediani̸=j(||Xi −Xj ||) (5)

Breakpoint detection is used to define homogeneous segments. In the next section, the characterization
of atypicity in each segment is studied.

4. How to choose a good abnormality score in the context of breakpoints ?

In this paper, an anomaly is a data point that does not follow the reference distribution of the
segment to which it belongs. To construct an atypicity score that is higher for abnormal points,
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a point must be compared to the rest of the segment.The Nonconformity Measure (NCM) from
[31] is introduced. The Nonconformity Measure ã, is a real valued function ã(B, z) that measure
how different z is from the set B. A nonconformity measure can be used to compare a data
point with the rest of the segment. If all points within a segment are generated by the reference
distribution, then the Nonconformity Measure provides an atypicity score for this segment.

∀i ∈ J1, DK, ∀Jτi, τi+1J, a(Xt) = ã({Xτi
, . . . , Xτi+1−1}\{Xt}, Xt) (6)

The following properties are required to enable the usage of the nonconformity measure to
build a good atypicity score:

• anomalies should have higher atypicity score than normal data points.

• the NCM must be robust [32, 33, 34] to the presence of anomalies. The anomalies present
in the segment do not affect the value of the returned measure.

• the values returned between different segments must be comparable, so that a p-value
can be estimated, with a calibration set containing values from different segments. The
uniformity property of scoring is introduced:

Definition 1 (Stationarity and piecewise dependency of the score). Let T be the length
of the time series and τ1 < ... < τD+1 the breakpoints defining D segments. And let
P0,1 . . . ,P0,D be probability distributions Let (Xt)1≤t≤T be a segmented time series. Let ã
be a nonconformity measure. ã is stationary on (Xt)1≤t≤T if st, given in Eq. 6, is stationary:

∀i ∈ J1, DK, ∀Jτi, τi+1J, st = ã({Xτi , . . . , Xτi+1−1}\{Xt}, Xt) (7)

Furthermore, st is said piecewise dependent if score values between two different segments
are independent.

The property of score stationarity depends on the time series. For example, the z-score with
true known mean and standard deviation satisfies the stationarity property only if the changes
generated by the breakpoints are shifts in the mean or in the standard deviation. If the change
occurs in higher moments, the property is not satisfied. Furthermore, the property is not satisfied
for the z-score if the mean and standard deviation need to be estimated. Since the stationarity
of the score is difficult to obtain, it is approached with the following strategies:

• Ensure that the segment contains enough points to ensure the convergence of the nonconformity
measures. For example, since the mean and variance must be estimated, the z-score is not
stationary. However, if these parameters converge to the true mean and standard deviation,
then the z-score can be considered stationary once the segments have enough points. The
faster convergence is achieved, the easier it is to ensure the stationarity property. An NCM
is said to be efficient when convergence is achieved for a low number of points.

• Instead of using the entire segment, the training set can be built by resampling a specified
number of points. It can be used on NCM that are highly dependent on the training set
cardinality, like kNN.

• Rather than trying to ensure that the law of non-conformity measures is identical in each
segment, identify the segments with the most similar laws.

Many NCMs depend on segment parameters to be estimated, e.g. the z-score requires knowledge
of the mean and variance. To satisfy the properties of a good atypicity function, the estimators
need to satisfy the following requirements:
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1. the estimator should be robust to anomalies in the training set: the estimation should not
be affected by the presence of anomalies in the training set.

2. The estimator should be efficient [35]. High precision estimation of the parameter should
be obtained with a minimal number of samples.

4.1. Experiments
It has been seen that to build a good score function, the estimators used must verify the

robustness and efficiency properties. To assess the robustness and the efficiency of the atypicity
score, synthetic data are used for experimentation and analysis. The robustness of an estimator
is its ability to be unbiased in the presence of anomalies. An estimator is said efficient when
it is close to the parameter value with a limited number of data points. In this analysis, three
categories of estimators are tested: one “efficient and not robust”, a second “not efficient and
robust” and a third “robust and efficient”. These three estimators are analyzed considering the
absence or presence of anomalies. The assessment is based on the parameter estimation error
and on the anomaly detection performances using FDR and FNR.

4.1.1. Description
In this experiment, the focus is on the z-score. The atypicity of a data point x is calculated

from the mean µ and standard deviation σ as follows az(x, µ, σ) = (x − µ)/σ. In an anomaly
detection context, the mean and standard deviation are unknown and need to be estimated.
There are many estimators of the mean and standard deviation. These estimators have different
properties in terms of robustness and efficiency. In order to study the relationship between these
properties and the performance of the anomaly detector, three estimators are chosen for each of
these two values.
For the mean value the three estimators are defined as the following:

• Maximum Likelihood Estimator: µmle = 1
n

∑
i xi. This estimator is efficient but not robust

against anomaly contamination.

• Median: µr = median(x1, ..., xn). This estimator is robust but less efficient than the MLE
estimator.

• Biweight location, introduced in [36]. This estimator is robust and efficient.

µbw =
∑ℓ

i=1(1− u2
i )xi1[|ui| < 1]∑ℓ

i=1(1− u2
i )

ui = xi − x

9MAD

Where x is median of the xi and MAD is the median absolute deviation.

For the standard deviation, the three estimators are defined as the following:

• Maximum Likelihood Estimator: σmle =
√

1
n

∑
i(xi − µ)2. This estimator is efficient but

not robust against anomaly contamination.

• Median: σmad = median(||xi − µ|). This estimator is robust but less efficient than the
MLE estimator.

12



• Biweight Midvariance estimator: introduced in [37]. This estimator is robust and efficient.

σ2
bw =

ℓ
∑ℓ

i=1(xi − x)2(1− u2
i )41[|ui| < 1]

(
∑ℓ

i=1(1− u2
i )(1− 5u2

i )1[|ui| < 1])2

ui = xi − x

9MAD

Where x is the median of the xi and MAD is the median absolute deviation.

All the six estimators are evaluated according to two measures:

1. First, the precision and the robustness of the estimator is evaluated using the Mean Squared
Error (MSE), applying the following procedure: Let θ be either the mean or the standard
deviation parameter, and θ̂ be an one estimator of the parameter θ. Let ℓ be the cardinality
of the segment used to estimate θ. Let B be the number of repetitions for the experiments.

(a) Generate the segment data: For b in [1, B] and for i in [1, ℓ], Xb,i ∼ N (0, 1), if the
segment contains only normal data. For b in [1, B], for i in [1, ℓ0], Xb,i = 4 and for i
in [ℓ1, ℓ], Xb,i ∼ N (0, 1), if the segment is contaminated by anomalies

(b) Estimate the parameter using the estimator: For b in [1, B], θ̂b = θ̂(Xb,1, ..., Xb,ℓ).

(c) Compute the MSE, MSE = 1
k

∑B
b=1(θ̂b − θ)2

Different values of the segment length ℓ are tested, from 10 to 1000. For each value of ℓ,
two values of ℓ1 are tested. One with ℓ1 = 0, for the case where there are no anomaly in
the training set. The other with ℓ1 = ⌊0.02ℓ⌋ for the case of contamination with anomalies.
For each set of parameter values, the experiment is repeated B = 1000 times.

2. Then, the Anomaly Detection capacity is evaluated using the FDR and FNR criteria.
This is done by simulating multiple detections inside a segment applying the following
procedure: using n the calibration set cardinality, ℓ the length of the segment, ℓ1 the
number of anomalies in the training set, m the test set cardinality and m1 the number of
anomalies in the test set:

(a) Generate training segment data with ℓ1 anomalies.

∀i ∈ J1, ℓ1K, Xi ∼ N (4, 0.1), and ∀i ∈ Jℓ1, ℓK, Xi ∼ N (0, 1)

And estimate the segment mean and standard deviation

µ̂ = µ̂(Xℓ
1), σ̂ = σ̂(Xℓ

1)

(b) Generate the calibration set

∀j ∈ J1, nK, Yj ∼ N (0, 1)

(c) Generate the test segment data

∀i ∈ J1, m1K, Zi ∼ N (4, 0.1), and ∀i ∈ Jm1, mK, Zi ∼ N (0, 1)

(d) Compute the p-values of the test set, using calibration set and affected by the parameter
estimations

∀i ∈ J1, mK, p̂i = 1
n

n∑
j=1

1[Xj > (Zi − µ̂)/σ̂]
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(e) Anomalies are detected using the Benjamini-Hochberg procedure on the p-values. The
threshold of the BH procedure is noted ε̂BHα

as defined in our previous work [26]:

ε̂ = ε̂BHα(p̂1, . . . , p̂m)

(f) Compute FDP and FNP. Remembering that anomalies are generated in the first m1
values of the test set:

FDP =
∑m

j=m1
1[p̂j ≤ ε̂]∑m

j=1 1[p̂j ≤ ε̂]

FNP =
∑m1

j=1 1[p̂j > ε̂]
m1

Different values of segment length ℓ are tested, from 10 to 500. For each value of ℓ, two
values of ℓ1 are tested. One with ℓ1 = 0, for the case where there are no anomaly in the
training set. The other with ℓ1 = ⌊0.02ℓ⌋ for the case of contamination with anomalies.
For each set of parameter values, the experiment is repeated B = 104 times.

4.1.2. Results
Figures 4 and 5 illustrate the estimators performances of the mean estimators. Figure 4

compares different mean estimators according to the segment length. The MSE decreases rapidly
with the sample size for all estimators in Figure 4a. However the MLE and BW estimators have
very close and slightly better performances compared to the median estimator. This illustrates
the efficiency of the MLE and BW estimators. But in the presence of anomalies, the performance
of the MLE estimator is severely degraded as shown in Figure 4b compared to the median and
BW estimators showing more robustness in the presence of outliers.

(a) Without anomaly contamination. (b) With anomaly contamination.

Figure 4: Estimation error of the mean as a function of segment length and mean estimator used.

Figure 5 illustrates the FDR and FNR of the anomaly detector according to the mean
estimator used. As shown in Figure 5a and 5b, in the case of non contamination by anomalies,
the FDR and FNR results are very close to the target for all the estimators. However, in presence
of anomalies, the MLE performance is degraded. In Figure 5c, the FDR is below the targeted
level and in Figure 5d, the FNR is higher than other estimators. Either Med or BW can be used
to do anomaly detection.
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(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Figure 5: Anomaly detector performances as a function of the segment length and the mean estimator used.

Figures 6 and 7 illustrate the performances of the standard deviation estimators. Figure 6
compares the precision using the MSE of the different standard deviation estimators according
to the segment length. The MSE decreases rapidly with the sample size for all estimators in
Figure 6a. However the MLE and BW estimators have very close and better performances
when compared with the MAD estimator. This illustrates the efficiency of the MLE and BW
estimators. But in the presence of anomalies, the performance of the MLE estimator is severely
degraded as shown in Figure 6b. On the contrary, the MAD and BW estimators are less degraded
and show more robustness in presence of outliers.

(a) Without anomaly contamination. (b) With anomaly contamination.

Figure 6: Estimation error of standard deviation as a function of the segment length and the standard deviation
estimator used.
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Figure 7 shows the performances measured by FDR and FNR once the anomaly detection is
applied. As illustrated in Figures 7a and 7b, FDR and FNR for MAD are higher compared to
MLE and BW. But in presence of anomalies, the MLE performance is degraded. The FDR is
below the targeted level, as shown Figure 7c, and the FNR is higher than other estimators, as
shown in Figure 7d. The strange behavior of the MLE curve in Figure 7d with spikes in the FNR
is due to the number of anomalies increasing with every 50 data points because ℓ1 = ⌈0.02ℓ⌉.
The best estimator for standard deviation in case of anomaly detection is BW.

(a) FDR, without anomaly (b) FNR, without anomaly

(c) FDR, with anomalies (d) FNR, with anomalies

Figure 7: Anomaly detector performances as a function of segment length and standard deviation estimator used.

4.1.3. Conclusion
The experiments show the importance of the robustness and efficiency to build a good

atypicity score. High MSE implies lower performance in terms of FDR and FNR control. The
classical standard deviation estimators, MLE and MAD, are underperforming. For the following
sections of this paper, the BW (Biweight midvariance) estimator is used to implement the scoring
function.

5. How to manage uncertainty of decisions?

The online nature of anomaly detection adds much more uncertainty. Indeed, breakpoint
detection in an Online context induces two sources of error:

• a delay in detecting a breakpoint and other breakpoint detection updates.
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• a difficulty in identifying parameters of a small length segment. This difficulty may lead
to higher errors in the scoring function estimation.

These errors can be corrected by reevaluating the decision after new data points have been
collected. However the status of each point in the whole time series should not reevaluated at
each new observation. To ensure that the status of each data point should only be reevaluated
when it is useful, two notions are introduced: the confidence score assigned to a data point and
the setup of the active set.

5.1. Definition of confidence score, active set and important properties
A confidence score assigned to each data point in the time series reflects the confidence in its

abnormal or normal status. If the confidence score is high, the status of the point should not
change when acquiring new data points.

Definition 2 (Confidence Score). The confidence score cu,t assigns to the decision made for the
data point Xu, at time t, the probability that it remains unchanged until the end of the analysis.

cu,t = P [∀t′ > t, du,t = du,t′ ]

The active set is the set of points belonging to the current segment whose “abnormal” or
“normal” status has to be reevaluate at time t because the confidence in the decision made at
time t− 1 is too low. The active set, is the points from the current segment having a confidence
score lower than a threshold 1−η. Figure 8 illustrates in red the active set capturing the incoming
streamed data points. With each new data point, the multiple test procedure is applied to the
active set, in order to reevaluate the status of its points. The active set is also the set set defined
in Section 2.3.

Definition 3 (Active Set). Let η > 0 be the confidence threshold. The active set is the set of
points with a confidence score lower than 1− η.

Aη,t = {u, cu,t < 1− η} (8)

Figure 8: Illustration of calibration set and active set.

To be able to estimate the confidence score of a given point and to build the active set, the
reasons that cause the decision change are investigated. The process for determining the status
of a given data point described in greater detail.
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After applying the breakpoint detector to the whole time series X1, . . . , Xt at time t, the set
of estimated breakpoints is given by τ̂t = (τ̂t,1, . . . , τ̂t,D̂−1, τ̂t,D̂+1 = t). The last breakpoint τ̂t,D̂

is noted b̂t. The segment of data Xb̂t
, . . . , Xt is called the current segment, and the length of the

current segment is noted ℓt, which is calculated as ℓt = t− b̂t. For each data point position u in
the current segment, the distance from a data point position u to the last observed data point
is noted λu,t, which is calculated as λu,t = t − u. Xu is the data point at position u, it has the
status du,t−1 at time t − 1. This status could change or remain the same at time t. Let us on
elaborate the cases where a status could change:

• if at time t, a new breakpoint is detected between the position u and the last breakpoint at
time t−1, the point Xu is assigned to a new segment. The detection of this new breakpoint
has an influence on the training and calibration sets, which needs to be adjusted.

• Otherwise, if no new breakpoint is detected, an additional point is added to the current
segment. If the cardinality of the current segment is too small, this new point may affect
the atypicity score such that the status changes.

To formalize this analysis and compute the confidence score, two events are introduced:

• “The status of data point Xu at step t changes over time”

CStu,t = {∃t′ > t, du,t ̸= du,t}

• “The segment to which the data point Xu is assigned at time t changes over time”

CASgu,t =
{
∃t′ > t, τ(t′)∩Kb̂t, uK ̸= ∅

}
(9)

Then, it is possible to express the confidence score according to the probabilities of the two
events.

1− cu,t = P [CStu,t] = P
[
CStu,t|CASgu,t

]
P
[
CASgu,t

]
+ P

[
CStu,t|CASgu,t

]
P
[
CASgu,t

]
≤ P

[
CASgu,t

]
+ P

[
CStu,t|CASgu,t

]
If it can be ensured that P

[
CASgu,t

]
≤ η/2 and P

[
CStu,t|CASgu,t

]
≤ η/2 then it gives

cu,t > 1 − η. By Definition 3, this point does not belong to the active set. Otherwise, if
P
[
CASgu,t

]
> η or P

[
CStu,t|CASgu,t

]
> η then Xu belongs to the active set.

In order to define the probabilities P
[
CASgu,t

]
or P

[
CStu,t|CASgu,t

]
and to build the active

set some assumptions are made:

Proposition 1 (Stationarity). Let η > 0.

• Assuming fτ : λ 7→ P
[
CASgt−λ,t

]
is decreasing to 0 and does not depend on t.

Then, there exists λη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P
[
CASgu,t

]
≤ η/2. (10)

The smallest value respecting this property is noted λ⋆
η .

• Assuming fd : ℓ 7→ P
[
CStu,t|CASgu,t, ℓt = ℓ

]
is decreasing to 0 and does not depend on t.

Then, there exist a segment length ℓη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, ℓ ≥ ℓη, P
[
CStu,t|CASgu,t, ℓt = ℓ

]
≤ η/2. (11)

The smallest value of ℓη is noted ℓ⋆
η.
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The conclusions of Proposition 1 follow directly from the definition of convergence to 0.

Proof of Proposition 1. By assumption the probability P
[
CASgt−λ,t

]
does not depend on t and

is noted fτ (λ). According to the second assumption, fτ (λ) converges to 0 when λ tends to +∞.
Therefore, by definition of convergence:

∀η > 0,∃λη > 0 λ ≥,∀λη, fτ (λ) ≤ η/2.

Moreover, by definition λ = t− u, it follows that:

∀η > 0, ∃λ > 0, ∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P
[
CASgu,t

]
≤ η/2.

The second result is proven using similar arguments.

The function fτ : λ 7→ P
[
CASgt−λ,t

]
gives the probability that the segment assigned to

Xt−λ changes as a function of the distance λ from the last observation. It is assumed to be
decreasing because the probability of missing a breakpoint decreases with the number of points.
The function fd : ℓ 7→ P

[
CStu,t|CASgu,t, ℓt = ℓ

]
gives the probability of changing the status of

a point conditional on the assigned segment remaining unchanged, as a function of the length ℓ
of the segment. It is assumed to decrease with the number of points inside the segment.

Assuming that the probabilities P
[
CASgt−λ,t

]
and P

[
CStu,t|CASgu,t, ℓt = ℓ

]
do not depend

on t, it is possible to use the same model for the entire series. Thus, there is no need to
recalculate these probabilities for each observation time. Since the probability of detecting
a breakpoint depends on the position of the actual breakpoint, this assumption can only be
verified by assuming that the position of the breakpoints is determined by a stationary process.
Furthermore, the probability of detecting a breakpoint depends on the of the shift that occurs
in the time series. Therefore, another necessary condition is to assume that at each breakpoint
the segment law changes according to transition rules that are the same throughout the series.

5.2. How to build the active set?
As mentioned earlier, if the cardinality of the active set is too small, this can lead to an

uncertain decision. A proposal on how to build an active set is given in the following. Let η be a
confidence threshold. According to Proposition 1, there are λ⋆

η such that fτ (λ⋆
η) < η and ℓ⋆

η such
that fd(ℓ⋆

η) < η. To compute λ⋆
η, fτ is estimated on historical data, this estimation is noted f̂τ .

To compute ℓ⋆
η, fd is estimated on historical data, this estimation is noted f̂d.

ℓ̂η = arg min
{

ℓ, f̂τ (ℓ) < η
}

, λ̂η = arg min
{

λ, f̂d(λ) < η
}

As shown in Algorithm 4, the procedure starts by comparing the length ℓt of the current
segment with the threshold length ℓ̂η. If the length ℓt is lower than this threshold, the whole
segment is considered as the active set since the segment does not contain enough points to
estimate the atypicity score with high precision. Otherwise, the segment contains enough points
and the source of the status change is segment reassignment. Considering the data points whose
distance to the end of the time series is less than λ̂η, the risk of being reassigned to another
segment is high. Consequently, the active set will contain all points that are after the position
t − λ̂η. In the case λ̂η is larger than the length of the current segment, the calibration set will
include the current segment. Given mt the active set cardinality, the active set is equal to:

Iactive = {t−mt + 1, . . . , t}
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Algorithm 4 Computation of active set cardinality.
1: if ℓt < ℓ̂η then
2: mt ← ℓt

3: else
4: mt ← min(λ̂η, ℓt)
5: end if
6: return mt

The estimation of the probability f̂τ (λ) is described in Section 5.3. The estimation of the
probability f̂d(ℓ) is described in Section 5.4.

5.3. How estimate the probability of segment assignment change?
As introduced in Section 5.1, fτ (λ) is the probability that the segment assignment changes

when a data point is at distance λ from the end of the time series. This probability fτ (λ)
is needed to build the active set containing data points with uncertain status, as described in
Section 5.2. In the following, a procedure is proposed to estimate fτ (λ).

5.3.1. Description of the method
As a reminder, the existence of fτ (λ) is ensured by the stationarity assumption described

in Proposition 1. However, stationarity is not sufficient to calculate these probabilities directly
from historical data in the same time series and thus to estimate f̂τ . It must also be assumed
that the series 1

[
CASgt−λ,t

]
is ergodic.

Proposition 2 (Ergodicity). Assume 1
[
CASgt−λ,t

]
is stationary and ergodic. Then

P[CASgt−λ,t] = lim
T →∞

1
T

T∑
t̃=1

1[CASgt̃−λ,t̃] (12)

The conclusion of the Proposition 2 follows directly from the definition of ergodic process [38].
A sufficient condition to verify the ergodicity is the weak dependence or mixing [39]. There are
several ways to characterize this property. The general idea is that the dependence between two
points 1[CASgt1−λ,t1 ] and 1[CASgt2−λ,t2 ] must go to 0 as t1 − t2 goes to infinity. This property
is assumed to be verified when these criteria are satisfied:

• the positions of the breakpoints are iid,

• the transitions between two segment distributions are iid.

• the breakpoint detector is based on KCP,

The breakpoint position iid property assumes the existence of random variables that generate the
positions of these breakpoints. These random variables are assumed to be iid and uniform over
J1, T K. The iid property for the transition of the reference distribution implies the existence of
random variables that generate the reference law of segment i from that of segment i− 1. These
random variables must be iid to guarantee uniformity in the difficulty of detecting breakpoints.
As an example the time series generated in Section 8.1 satisfy these criteria: the segment length
follows an exponential law, the positions of breakpoints follow a stationary Poisson process. The
transition law is described as a homogeneous Markov chain on the parameters of the reference
distribution.
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The time series is split into two parts: historical and recent data. The historical data set
is built using the first T̃ data points of the time series. The estimation of fτ is based on the
previous segment assignment changes that occurred while detecting breakpoints on historical
data. To estimate this probability, the list of all previous segmentations D = (τ̂1, . . . , τ̂T̃ ) is used.
Assuming stationarity and ergodicity of 1

[
CASgt−λ,t

]
, where the event CASgt−λ,t is described

in Eq. 9, these historical data are used to estimate fτ (λ) using Eq. 12.

P
[
CASgt−λ,t

]
≈ 1

T̃

T̃∑
t=1

1
[
CASgT̃

t̃,t̃−λ

]
= f̂τ (λ) (13)

where CASgT̃
t̃,t̃−λ =

{
∃t′ ∈ Jt̃, T̃ K, τ̂t′ ∩ Jb̂t̃, t̃− λK ̸= ∅

}
.

However, to improve computation time, the following expression of CASgT̃
t̃,t̃−λ is preferred:

CASgT̃
t̃−λ,t̃ =


 ⋃

T̃ ≥t′>t̃

τ̂t′

 ∩ Jb̂t̃, t̃− λK ̸= ∅

 (14)

With this formulation, each breakpoint is checked only once to see if it belongs to Jb̂t̃, t̃ − λK.
Indeed, many breakpoints remain at the same position from one step to the next step while
applying the breakpoint detection procedure.

Algorithm 5 implements Eq. 14 to give an estimation of fτ . Where It̃,u = 1[CASgT̃
t̃,u] and

Sλ =
∑T̃

t̃=λ It̃,t−λ so f̂τ (λ) = Sλ

T̃ −λ
.

Algorithm 5 Exact computation of probability of segment assignment change.
Require: (τ(t̃))T̃

1 list of successive segmentations
I, S ← 0
τglobal ← ∅
for t̃ ∈ [T̃ , 1] do

τglobal ← τglobal ∪ τ̂(t̃)
for u ∈ [b̂t̃, t̃] do

for b′ ∈ τglobal do ▷ b′ is a breakpoint
if b̂t̃ < b′ ≤ u then

It̃,u ← 1
end if

end for
end for

end for
for λ ∈ [0, T̃ ] do

for t̃ ∈ [λ, T̃ ] do
Sλ ← Sλ + It̃,t̃−λ

end for
f̂τ,λ ← Sλ/(T̃ − λ)

end for
Output: f̂τ,λ list of f̂τ (λ) values for different λ

return f̂τ,λ
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The complexity of the exact computation of f̂τ , described in Algorithm 5, is quadratic in
time and space, which is a drawback regarding any practical use. Another version of the
implementation of f̂τ is given in Algorithm 7 which is more convenient for an online context
since it is linear in time and space.

By observing the evolution of the breakpoints over time (not shown in this paper), it appears
that the position of the last breakpoint is the most likely to change, while that of the other
breakpoints are generally stable. This leads us to modify the characterization of the “assigned
segment change” event by considering only the change caused by the last breakpoint instead of
the entire segmentation.

∀t, λ ∈ J1, T K2 1[CASgT
t,t−λ] = 1

[
∃t′ ∈ Jt, T K, b̂t < b̂t′ ≤ t− λ

]
(Last)

Under this assumption, the computation of f̂τ (λ) can be simplified using Proposition 3.

Proposition 3. Let (Xt)1≤t≤T be a time series of length T . Let (τ(t))1≤t̃≤T̃ be the sequence
of successive segmentations of the time series. Let (1[CT

t,u])1≤t≤T,1≤u≤T the family of “assigned
segment change” events. Assume that the assumption (Last) is verified. Then the estimator f̂τ

described in Eq. 14 is computed as

f̂τ (λ) = 1
T̃

T̃∑
t̃=1

1 [rt̃ > λ] (15)

where rt̃ is the maximum distance from the the end of the time series with Xt having segment
reassigned. It is computed as:

rt̃ = max
t′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃

t̃− b̂t′ (16)

Notice that rt̃ does not depend on λ. It is sufficient to calculate rt̃ once for all λ. Therefore,
it’s easy to deduce the value of fτ (λ) for all λ. The most demanding part is the computation of rt̃.
Two implementations of rt̃ computation are proposed. Algorithm 6 gives the most naive version,
each rt̃ is calculated one after the other. The problem is that the calculation of rt̃ is itself linear
in the length of the series. Therefore, the time complexity is quadratic. Algorithm 7 improves the
computation by swapping the two loops. This limits the total number of comparisons performed.
In the second loop, t̃ takes on the values between b′

t and t′. The number of values taken by t̃ is
the length of a segment, not a the length of the time series. Algorithmic complexity is therefore
linear.

Proof of Proposition 3. Based on Eq. 14, the estimator f̂τ is given by:

f̂τ (λ) = 1
T̃

T̃∑
t=1

1
[
CASgT̃

t̃,t̃−λ

]
With assumption (Last) it gives:

1
[
CASgT̃

t̃,t̃−λ

]
= 1

[
∃t′ ∈ Jt̃, T̃ K, b̂t̃ < b̂t′ ≤ t̃− λ

]
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The inequality b̂t̃ < b̂t′ ≤ t̃− λ is equivalent to b̂t̃ < b̂t′ and t̃− b̂t′ > λ which gives

1
[
CASgT̃

t̃,t̃−λ

]
= 1

 ⋃
t′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃

t̃− b̂t′ > λ



Since, a set contains a number greater than λ, if and only if its maximum is greater than λ, it
gives:

1
[
CASgT̃

t̃,t̃−λ

]
= 1

[(
max

t′>t̃,b̂t′ >b̂t̃

t̃− b̂t′

)
> λ

]

Since λ > 0, when b̂t̃ < b̂t′ and t̃−b̂t′ > λ it also implies that t̃ ≥ b̂t′ so 1
[(

maxt′>t̃,b̂t′ >b̂t̃
t̃− b̂t′

)
> λ

]
=

1
[(

maxt′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃ t̃− b̂t′

)
> λ

]
. The number rt̃ is introduced as equal to maxt′>t̃,b̂t′ >b̂t̃,b̂t′ <t̃ t̃−

b̂t′ . The f̂τ estimator can be written as follows

f̂τ (λ) = 1
T̃

T̃∑
t̃=1

1 [rt̃ > λ]

Algorithm 6 Naive computation of rt̃.
for t̃ in J1, T̃ K do

for t′ in Jt̃, T̃ K do
if b̂t′ < t̃ and b̂t̃ > b̂t′ then

rt̃ = max(rt̃, t̃− b̂t′)
end if

end for
end for

Algorithm 7 Efficient computation of rt̃.
for t′ in J1, T̃ K do

for t̃ in Jb̂t′ , t′K do
if b̂t̃ > b̂t′ then

rt̃ = max(rt̃, t̃− b̂t′)
end if

end for
end for

5.3.2. Application on simulated data
In the previous Section 5.3.1, two algorithms for estimating the probability of a segment

assignment change were described: the exact estimation using Algorithm 5 and an efficient
estimation using Algorithm 7. In this section, these different methods are assessed by experiments
on simulated data.

Description of the experiment. The following notations are used: Let T be the length of the
time series, θ the average segment length, ∆ the size jumps to generate a breakpoint and σ the
standard deviation of the data point within a segment.

Time series are generated according to the following rules:

• The number of breakpoints follows the exponential distribution D ∼ Exp(T/θ).

• Each breakpoint position is generated according to uniform distribution ∀i ∈ [1, D], τi ∼
U(1, T )
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• The mean of the time series µi is piecewise constant with respect to the segmentation τi,
with µτi

− µτi+1 = ξ∆σ

• The time series is generated according to the following rule Xt ∼ N (µt, σ)

Then f̂τ (λ) is estimated using the two different methods: Algorithm 5 and Algorithm 7.

Results and analysis:. An example of generated time series is illustrated in Figure 9a. Figure 9b
gives the estimated probability of segment assignment change according to the two estimation
Algorithms 5 and 7. The two algorithms give results that are almost the same, as shown
in Figure 9b. The selected λ⋆

η is equal to 143, in the two cases. This supports assumption
that (Last) is verified. In practice, we recommend to use the Algorithm 7 method since it is
more computationally efficient. To compute the probability f̂τ (λ) on a PC (4 CPU, 16G), the
Algorithm 7 gives results within 30 seconds compared to the exact computation which gives the
results within 15mn, for a time series of length 104.

(a) Generated time series
(b) Probability of assignment change as a function of
distance to time series end.

Figure 9: Results for estimation of the “segment assignment change” probability

5.4. How to estimate the probability of a status change under a stable breakpoint?
As introduced in Section 5.1, fd(ℓ) is the probability that the status of a point changes under

the conditions the last breakpoint remains unchanged and the segment cardinality is equal to ℓ.
This probability fd(ℓ) is necessary to build the active set containing data points with uncertain
status, as described in Section 5.2. In this section, a procedure to estimate fd(ℓ) is proposed.
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(a) Starting new segment with small
length.

(b) Data points added to the current
segment becoming larger.

(c) Z-score for small segment (d) Z-score for larger segment

Figure 10: Atypicity score estimation according to the length of the current segment.

Figure 10 illustrates how the the length of the current segment has an influence on the
accuracy of the atypicity score estimation and consequently on the uncertainty of a data point
status. Indeed, Figure 10a shows a time series with a newly detected current segment highlighted
in gray color, and a calibration set in green color inside the previous segment. The atypicity
scores, z-scores based on the mean and the standard deviation, are shown in Figure 10c computed
for the current segment in gray and the calibration set in green. Since the current segment has
few points, its z-score estimation shows a high discrepancy compared to the score distributions
of the calibration set, despite the fact that there are no anomalies. As shown in Figure 10d,
when new data points are added, the estimation of the abnormality score of the current segment
is more accurate.

This example highlights that the status of a data point can change even if the breakpoints
remain unchanged, whereas Section 5.3 deals only with the case where the change in status is due
to a change in the detected breakpoints. Uncertainty also comes from having too few points in
the current segment, leading to score estimation errors. Estimating the probability f̂d(ℓ) is useful
to build the active set that takes this into account. The following section suggests a procedure
to estimate the probability fd(ℓ).

5.4.1. Description of the method
The method is based on the learning phase using a set D of historical detected segments

having a low probability to change. This training set D is defined by,

D = {(X1, . . . , Xτ̂1,T
), (Xτ̂1,T +1, . . . , Xτ̂2,T

), . . . , (Xτ̂D−1,T +1, . . . , Xτ̂D,T
)} (17)

In the following, the training procedure is based on six different steps needed to estimate the
f̂d(ℓ) probability. Let a be the NCM (Non Conformity measure), used to define the atypicity
score, as described in Section 4. As a reminder, a(S, x), measures the “nonconformity” between
the set S and the point x.

Training procedure:. The principle of the training phase is to simulate, using resampling, numerous
examples where the current segment changes from a length ℓ to a larger length. At each case,
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anomaly detection is applied to the test set of cardinality m and the proportion of statuses that
have changed by modifying the length of the current segment is measured. Since the breakpoints
are assumed to be stable, the simulation is inspired by the description of the detector given
in Section 2.2, without the parts concerning breakpoint detection. These steps are repeated B
times. Let b ∈ J1, BK:

Step 1: Figure 11a illustrates that two segments are resampled from the historical data set D. S1,b

is considered as the calibration set and S2,b as a current segment in the simulation:

S1,b,S2,b ∼ U(D)

Step 2: The current segment S2,b is sub-sampled into a smaller segment of length ℓ and noted S̃2,ℓ,b,
as shown in Figure 11b. S̃2,ℓ,b is considered as the same segment than S2,b at a previous
step, having only ℓ points.

S̃2,ℓ,b ∼ U(S2,b)

.

Step 3: The current segment S2,b is sub-sampled into an other segments of size m and noted S2,m,b.
S2,m,b is considered as the test set.

S2,m,b ∼ U(S2,b)

Step 4: As illustrates in Figure 11c and 11d, the scores of the three segments are computed:

• The score of S1,b:

∀i ∈ J1, nK, Xi ∈ S1,b, ci,b = â(S1,b\{Xi}, Xi)

• The score of the test set using S2,b as training set:

∀i ∈ J1, mK, Yi ∈ S2,m,b, si,b = â(S2,b\{Yi}, Yi)

• The score of the test set using S̃2,ℓ,b as a training set:

∀i ∈ J1mK, Yi ∈ S2,m,b, s̃i,ℓ,b = â(S̃2,ℓ,b\{Yi}, Yi)

Step 5: Figure 11e illustrates that the empirical p-values are computed for the two scores obtained
from the test set using the same calibration set:

• p-values of the test set when using the complete current segment as training set:
∀i ∈ J1, mK, pi,b = 1

n

∑n
j=1 1[si,b < cj,b]

• p-values of the test set when using the length ℓ sub-sample of the current segment as
training set: ∀i ∈ J1, mK, p̃i,ℓ,b = 1

n

∑n
j=1 1[s̃i,ℓ,b < cj,b]

Step 6: Detect the anomalies in the two cases, by applying the Benjamini-Hochberg procedure
ε̂BHα

on the estimated p-values, as shown in Figure 11f:

• In case the training set is the entire current segment:

∀i ∈ J1, mK, di,b = 1[pi,b < ε̂BHα(p1,b, ..., pm,b)]
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• In case the training set is the size ℓ sub-sample:

∀i ∈ J1, mK, d̃i,ℓ,b = 1[p̃i,ℓ,b < ε̂BHα
(p1,ℓ,b, ..., pm,ℓ,b)]

Step 7: The number of decisions that differ between the two cases, S2,b or S̃2,ℓ,b used as the training
set, is computed:

nd =
m∑

i=1
1[di,b ̸= d̃i,ℓ,b]

The training procedure simulates the behavior of the online anomaly detector: S1 plays the role
of the calibration set. S2 plays the role of current segment. S2,ℓ plays the role of the current
segment at the beginning of a new segment. The first m elements Y1, . . . , Ym from S2 constitute
the test set.
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(a) Step 1: Segments resampling

(b) Step 2 and 3: Sub-sampling

(c) Step 4: Calibration set scoring

(d) Step 5: Test set scoring

(e) Step 6: p-value estimation

(f) Step 7: Anomaly detection

Figure 11: Illustration of the different steps of the training procedure to estimate the status change probability
under stable breakpoints.
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Assuming stationarity and piecewise dependence, as stated in Definition 1, by repeating
this resampling process many times, as the length of the time series converges to infinity, the
proportion of status changes converges to the expectation, according to the law of large numbers
[40]:

lim
T,B→∞

1
mB

B∑
b=1

m∑
j=1

1[dj,b ̸= d̃j,ℓ,b] = ES1,S2∼U(D)ES2,ℓ∼U(S2)

m∑
i=1

1[di ̸= d̃i]

Under the assumptions of score stationarity stated in Definition 1, the limit is equal to fd(ℓ).
Indeed, under score stationarity, the calibration set can be built from any segment of the time
series. This implies that it is possible to use described training procedure as an estimator of
f̂d(ℓ).

f̂d(ℓ) = 1
mB

B∑
b=1

m∑
j=1

1[dj,b ̸= d̃j,ℓ,b] ≈ fd(ℓ)

5.4.2. Application on simulated data
The training procedure in Section 5.4.1 is applied for different scoring functions adapted to

different types of time series considered in Section 4. : The goal is to check if the estimation
approach of f̂d(ℓ) can be applied to different scoring functions.

Description of the experiment. Different series that require different scoring functions are considered:
Gaussian and Mixture of Gaussian.

• Figure 12a shows a Gaussian white noise with anomalies in distribution tail.

∀t ∈ J1, T K, At ∼ Ber(π),
if At = 0, Xt ∼ N (0, 1)
else Xt = ∆

The z-score applied on Xt to detect anomalies that are in the tail of the distribution, is
computed by,

â(S, Xt) = |Xt − µ̂S |/σ̂S (18)

where S is a segment of data, µ̂S the mean estimator on S and , µ̂S the standard deviation
on S

• Figure 12b shows a Mixture of Gaussians with anomalies between the distribution modes.

∀t ∈ J1, T K, At ∼ Ber(π),
if At = 0, Xt ∼ 0.5N (∆, 1) + 0.5N (−∆, 1)
else Xt = 0

The kernel based score, inspired from other works on kernel based anomaly detection [41,
42], applied to detect anomalies having large distance from the normal data, is computed
by,

â(S, Xt) = 1
|S|2

∑
s,s′∈S2

K(s, s′)− 2
|S|
∑
s∈S

K(Xt, s) + K(Xt, Xt) (19)
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(a) Gaussian with anomalies in tail (b) Gaussian mixture with anomalies in center

Figure 12: Different time series distributions and anomalies.

Results and analysis. As stated previously, two types of time series are considered in the experiments:
results of Gaussian data shown in Figure 13 and results of Gaussian mixture data shown in
Figure 14. For both, three line charts representing the probability of status change as a function
of the current segment length in relation to the initial status: (a) the status is normal, (b) the
status is abnormal and (c) unknown status.

(a) normal status (b) abnormal status (c) unknown status

Figure 13: Probability that status changes under stable breakpoints as a function of segment length, for Gaussian
data.

(a) normal status (b) abnormal status (c) unknown status

Figure 14: Probability that status change under stable breakpoint as a function of segment length, for Gaussian
mixture data.

For Gaussian data and in the unknown status, Figure 13c shows clearly that the probability
of status change decreases with the length of the current segment. This probability is higher
when the status is abnormal, as shown in Figure 13b. Nevertheless, with a segment length of 100,
the probability is less than 1%. For Gaussian mixture data and in the abnormal status scenario
shown in Figure 14b, the length of the current segment needs to be at least equal to 500 to get
a probability of changing status around 5%. For the normal status scenario in Figure 14a, the
probability of changing quickly decreases to 0. The results are also promising in the unknown
status scenario in Figure 14c, where the change probability is low.
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Conclusion. A solution to compute the probability of status change under “stable” breakpoints
has been built. Empirical results show that the choice of an optimal ℓ̂η which reduces the
uncertainty of a data point status depends on the type of data and the scoring function that
is used. The method can help to select an atypicity score. A good atypicity score, satisfying
requirements discussed in Section 4 (been robust and efficient) should have low ℓ̂η value.

6. How to build the calibration set?

Section 2.4 introduces the notion of calibration set by giving a high level description of the
Breakpoint Based Anomaly Detector. It is a collection of data points representing the reference
behavior, inspired by Conformal Anomaly Detection[27, 43]. It is built using data from the
current segment, or from another segment in the history with a similar distribution probability
compared to the current segment. The cardinality of the calibration set follows two constraints:

• it should be large enough to ensure that the p-values are estimated with sufficient precision
to generate a low false positive and false negative rate.

• it should not be too large to maximize the homogeneity of the data and to limit computation
time.

Figure 15: Illustration of the current segment, the active set and the calibration set.

As shown in Figure 15, while data are collected online, the length of the current segment
after the new breakpoint is too small to build the whole calibration set. By identifying similar
segments and merging them to build the calibration set, the current segment can be completed
with enough data points to estimate the p-values accurately. Similar segments are found using a
similarity function, like the Bhattacharyya distance proposed in [44]. This similarity function is
defined between two segments S1, S2 with means µ1 and µ2 and standard deviations σ1 and σ2
by:

d(S1,S2) = 1
8σ2 (µ1 − µ2)2 + 1

2 ln σ
√

σ1σ2
(20)

The similarity function allows to sort all historical segments according to their similarity to the
current segment. To build a calibration set of cardinality n, it is initialized using the scores of
data points of the current segment that are not assigned to the active set. The data points scores
with a “normal” status from the previous segments are added to the calibration set in descending
order of similarity until n scores are reached. After having described how a calibration set of a
given cardinality n is built, Section 7 describes how the optimal cardinality n is chosen.

7. p-value, threshold and optimal calibration set cardinality

After having defined the active set and the calibration set, the empirical p-values of each data
point of the active set are computed using the calibration set. The threshold is chosen using the
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p-values of the active set to ensure the control of the FDR at a given level α. Finally, the status
of each data point of the active set is reevaluated comparing its p-value to the threshold.

In [26] we detail a new strategy for controlling the FDR of an anomaly detector in the online
framework. This goal is achieved by efficiently controlling the modified FDR criterion (mFDR)
of subseries so that the FDR value of the full time series is controlled at the prescribed level α.
To be lore specific, [26] designs a modified version of the Benjamini-Hochberg procedure. Instead
of applying BH to the active set with a slope α, it is applied with a slope α′ = α

1+ 1−α
mπ

, where
m denotes the length of the active set, α is the desired global FDR level, and π refers to the
proportion of anomalies.

Figure 16: Example of Benjamini-Hochberg procedure.

The calibration set is used to compute the p-values. The FDR and the FNR of the modified
BH procedure is very sensitive to the cardinality of the calibration set used to estimate the p-
value. In [26], we study under which conditions the cardinality of the calibration set ensures a
control of the FDR. Given m the cardinality of the active set and α′ the modified slope for BH,
the calibration set cardinality has to be chosen among:

n ∈ {k m

α′ − 1, k ∈ N∗} (21)

As explained more deeply in [26], the number of false negatives decreases with higher k. But
a larger k also increases the computation time, which can make any real-time decision difficult.
We recommend to try different values of k, to monitor the decision time and to choose the largest
k which allows real time decisions.

In order to verify that the results of article [26] apply to the present case, two conditions
need to be satisfied. First, it must be verified that the mFDR can be controlled locally by the
mBH. For this purpose, it must be verified that the p-values verify superuniformity and positive
regression dependency (PRDS) properties. A sufficient condition is to assume that the score is
iid, a property stronger than the property of stationarity with piecewise dependence described in
Definition 1. Moreover, since in our configuration the calibration set is the same for all values in
the active set, the local control of the mFDR on the active set is strict. Second, to obtain FDR
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control over the whole series, the status series du,t needs to be weakly dependent. It needs to
be show that there exists a number e, such that du1,t and du2,t are independent if |u1 − u2| > e.
Ones assumed that true breakpoints are detected and that the score is iid, then the status verify
this property, with e = n + m in the case the calibration set is chosen just after the active set.
In practice, such properties are difficult to verify, but the choice of a good breakpoint detector,
a good atypicity score and an active set allow to come closer.

8. Empirical study

An anomaly detector based on breakpoint detection has been proposed in Section 2.4. The
core components have been separately elaborated and evaluated in Sections 3, 4, 5, 6 and 7 .
In this section, the performance of the whole anomaly detector is assessed. The experiments
are conducted in several steps. First, the anomaly detector is applied to several synthetic time
series. The flexibility of the detector is evaluated and the roles played by the kernel and the
atypicity score are highlighted. Second, the anomaly detector is applied by choosing different
hyperparameters involved in the core components, not necessarily the same as those proposed in
the previous analyses. The relevance of the different components and their associated analyses
are evaluated. Third, the anomaly detector is applied by replacing some estimators with true
knowledge in order to explore more deeply the reasons for the errors made by the anomaly
detector. Finally, the anomaly detector is evaluated against alternative anomaly detectors.

An experimental framework is designed to conduct the experiments and to evaluate different
aspects of the anomaly detector. The framework described in Section 8.1 is adapted for different
time series and anomaly detector parameters.

8.1. Experimental framework
Let’s consider a time series generation process and an anomaly detector. The following steps

are repeated on different samples of the time series:

1. Generate the time series, according to the the first reference distribution P0,1, the proportion
of anomalies π, the alternative distribution P1,1 and the transition rule describing how the
parameters of the reference distribution will change between two segments.

(a) The number D of breakpoints is generated by Exp(T/θ), where θ is the average
distance between two breakpoints.

(b) The position of the D breakpoints follows U([1, T ]). In addition to the previous step,
this implies that the process of breakpoint positions is a Poisson process.

(c) The rule is applied iteratively to get the reference and alternative distributions for
each segment. Two types of rules are considered:

• Breakpoint in the mean with a jump size of ∆. For each i in J1, D− 1K, let µi be
the mean of the reference distribution in the ith segment. The mean of a segment
is equal to the mean of the previous one shifted with ∆.

∀i ∈ J1, D − 1K, µi+1 = µi + ζi∆ (22)

With ζi, a random variable following the Rademacher distribution and defining
the sign of the jump.
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• Breakpoint in the variance with a jump scale size of ∆. For each i in J1, D − 1K,
let σi be the standard deviation of the reference distribution in the ith segment.
The standard deviation of a segment is equal to the standard deviation of the
previous segment multiplied or divided by ∆.

∀i ∈ J1, D − 1K, σi+1 = exp(ζi ln ∆/2) ∗ σi (23)

With ζi, a random variable following the Rademacher distribution and defining if
the standard deviation is multiplied or divided by ∆.

(d) The position of anomalies are generated by a Bernoulli distribution: At ∼ Ber(π1)

(e) All the values of the time series are computed as follows:

∀i ∈ J1, DK, ∀t ∈ Jτi, τi+1J,

{
Xt ∼ P0,i, if At = 0
Xt ∼ P1,i, otherwise

2. Apply the anomaly detector on the generated time series. Three core components need to
be defined:

(a) the appropriate kernel to identify the breakpoints using KCP,

(b) the scoring function a

(c) and parameters n for the length of the calibration set and λ and ℓ to define the active
set.

3. Compare the detections with true anomalies and calculate the proportion of false discoveries
and of false negatives.

The two criteria FDR and FNR are estimated as the average of the FDP and of the FNP over
all repetitions.

The experimental framework is used in different scenarios: At Section 8.2, different synthetic
time series are tested and analyzed. At Section 8.3, the effect of hyperparameter choice on
performance is evaluated. At Section 8.4 the causes of underperformances of the anomaly detector
are studied. Finally, in Section 8.5, the proposed anomaly detector is compared to alternative
anomaly detectors using various public data collections.

8.2. Application on synthetic data
The goal of this section is to check if the breakpoint based anomaly detector is able to detect

anomalies with a controlled FDR considering different scenarios of time series. For the first
scenario, Gaussian time series are considered with breakpoints in the mean and anomalies in the
tail of the distribution. This simplest scenario is used as a reference before evaluating a more
complex one. The second scenario considers Gaussian mixture time series with breakpoints in
the mean and anomalies in the center of the distribution between the two Gaussian modes. In
this case, the detector is checked for anomalies that are not present in the tail of the distribution.
For the third scenario, 2D Gaussian time series with breakpoints in the covariance are used to
evaluate the detector on multidimensional data. Indeed, the breakpoint in the covariance ensures
that breakpoints and anomalies cannot be detected by applying the anomaly detector to each
dimension. The third scenario evaluates the detector on heteroscedastic time series, considering
Gaussian time series with breakpoints in the mean and in the variance. For the last scenario,
Gaussian data with breakpoints in the variance are used to evaluate how the anomaly detector
can be applied with changes in the variance, which is a more difficult case study.
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8.2.1. Gaussian time series with breakpoints in the mean
This scenario considers Gaussian data with breakpoints in the mean. The z-score is used to

capture anomalies. The ability of the detector to control the FDR with a low FNR on different
difficulties is assessed by varying the desired level of FDR control α and the size of the shift
between two segments ∆.

Description of the experiment. By applying the framework of Section 8.1, multiple choices have
been made:

• The Gaussian distribution is considered as the reference P0,1 and the proportion of anomalies
is equal to π = 0.01. These anomalies are generated in the tail of the reference distribution
and follow ∆′ζ, where ζ is the Rademacher distribution and ∆′ = 4 is the spike size of the
anomalies.

• The transition rule between two breakpoints is a jump in the mean of size ∆ taking values
in {2, 3, 5}.

• For the breakpoint detector, the Gaussian kernel with bandwidth estimated using the
median heuristic is considered, as presented in Section 3. The z-score is used as the scoring
function with the mean estimated using the median estimator and the standard deviation
estimated using the biweight midvariance estimator, as defined in Section 4.1.1.

• According to preliminary experiments in Section 5, the active set is built using λ̂ = ℓ̂ = 100.
Based on the rules defined in Section 7, Benjamini-Hochberg is applied on the active set
with the modified parameter α′ = α

1+ 1−α
mπ

. The calibration set is built according to the
rules of Section 7, where the value n is chosen equal to m/α′− 1. Two cases are considered
α = 0.2 and α = 0.1. In the case α = 0.2, then the following values are chosen α′ = 0.1
and n = 999. In the case α = 0.1, then α′ = 0.05 and n = 1999.

Results and analysis. Figure 17 shows an example of anomaly detection for one time series. The
x-axis is the timestamp and the y-axis the value of the generated time series, shown in blue.
The light blue data points are those that are not observed at the time the results are presented.
The vertical black lines are the detected breakpoints, the red band is the subseries defined as the
active set, the green band is the subseries used to build the calibration set. Detected anomalies
are the green crosses, false positives are the black crosses and red crosses are the false negatives.
As shown in Figure 17a, there are no false negative and the false positives seem to be a small
fraction of the true detected anomalies. As expected, the breakpoints are positioned exactly
where the means of the series change. The active set contains the most recent observations. And
the calibration set gathers data from several segments since the current segment does not contain
enough data.
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(a) ∆ = 5

(b) ∆ = 2

Figure 17: Application of our anomaly detector on Gaussian time series having breakpoints in the mean, for
different shift size values ∆.

Table 1 gives the FDR and the FNR after having applied the anomaly detector to a collection
of B = 50 Gaussian time series with breakpoint in the mean for different shift sizes ∆. The FNR
is always close to 0. This is necessary to ensure the FDR control with the modified BH procedure.
For all the cases, the FDR remains close to the desired α level. The FDR is well influenced by
the choice of α level but less by the value of ∆. However, it is always slightly higher than alpha.
Indeed, for ∆ = 5, it is equal to 0.23 instead of α = 0.20, as shown in Table 1.

α ∆ FDR FNR
0.10 2 0.133 0.123

3 0.134 0.111
5 0.129 0.106

0.20 2 0.242 0.039
3 0.242 0.042
5 0.236 0.037

Table 1: FDR and FNR for anomaly detection on Gaussian time series having breakpoints in the mean according
to the α level and the shift size ∆.

The histogram in Figure 18 shows more detailed results applied to the collection of time series
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for different values of α parameter. Figure 18a shows the distribution of the FDR values compared
to the target FDR in vertical lines. Figure 18b shows the distribution of the FNR values. As
shown in Figure 18a,the performance of the anomaly detector is poor for some time series since
the FDR values are higher and far from the target FDR. This explains why the measured FDR
is slightly higher than the targeted FDR in Table 1. The diagnosis of this inefficiency will be
examined in Section 8.4. In the next Sections 8.2.2, 8.2.3, 8.2.3, 8.2.4 and 8.2.5 the anomaly
detector is applied and checked to more complex time series.

(a) FDR (b) FNR

Figure 18: Histograms of the FDR and FNR for different targeted FDR α levels.

8.2.2. Gaussian mixture time series with breakpoints in the mean
In this section, the aim is to show how to handle anomalies that occur between two modes

of a Gaussian mixture. These anomalies, which do not occur in the tail of a distribution, cannot
be detected by z-scores because they are close to the mean. Therefore, it is necessary to adapt
to this new situation by using another atypicity score, such as the kNN score introduced in [43].
Indeed, in this case, anomalies can be characterized by their distance from other segment data.

Description of the experiment. The anomaly detector applied to Gaussian mixture data considers
the reference distribution P0,1 = 0.5N (∆′, 1) + 0.5N (−∆′, 1), with an anomaly spike size of
∆′ = 6. The anomalies are chosen to be equal to 0 to ensure they lie in the middle between the
two Gaussian distributions.
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Figure 19: Histogram that represent the Gaussian mixture reference distribution with anomalies in the center.

As explained previously, to adapt to this new difficulty of time series data with Gaussian
mixture, the atypicity score needs to be chosen accordingly. The kNN score introduced in [43] is
applied. To ensure that the distribution of the score is the same between two segments and not
affected by segment cardinality, the kNN distance is computed after having resampled Bs = 100
points from the segment. To obtain a robust score, the number k of nearest neighbors should be
chosen carefully because the kNN distance should not be affected by the presence of anomalies
in the segment. In particular, the k nearest neighbors of an anomaly should not be an anomaly,
otherwise the distance will be close to 0, which leads to a false positive. By choosing k = 10
and ensuring k/B = 0.1 >> 0.01 = π, this issue is avoided with high probability. Experimental
parameters not specified in this section have the same values as in Section 8.2.1.

Results and analysis. The result in Figure 20 clearly shows that for this example, the anomaly
detector is able to detect the breakpoints, in the dashed black lines, and the anomalies, represented
by the green crosses, with few false positives.

Figure 20: Application of our anomaly detector on Gaussian mixture time series having breakpoints in the mean.
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The anomaly detector has been applied to 50 time series and the results are summarized in
Table 2. The FDR is controlled at the desired level of 0.1 or 0.2 while the FNR is slightly higher
compared to the Gaussian case in Table 1. This is probably due to the kNN score, which is less
efficient than the z-score.

α FDR FNR
0.1 0.118 0.246
0.2 0.202 0.137

Table 2: FDR and FNR for anomaly detection on Gaussian mixture time series with breakpoints in the mean
according to α level.

8.2.3. 2D Gaussian time series with breakpoint in the covariance
In this section, the aim is to show how to handle anomalies that occur on multidimensional

data. Previously, the kernel method in KCP demonstrated high accuracy in detecting breakpoints
for univariate time series data. Hopefully, the paper [45] shows that this kernel method is also
applicable to multivariate time series. Once the time series is segmented, a scalar atypicity score
is computed for the multidimensional data points. An alternative would be to apply univariate
anomaly detection to each univariate time series. However, some breakpoints, such as those
occurring in the covariance, cannot be detected by this alternative method.

Description of the experiment. Data are generated according the following rule:

∀t ∈ J1, T K, Xt =
(

X1,t

X2,t

)
∼ N (0, Σt) (24)

With the covariant matrix equal to:

Σt =



(
1 0.7

0.7 1

)
if t ≤ τ1(

1 −0.7
−0.7 1

)
else

(25)

The reference distribution generates two-dimensional Gaussian data Xt. For each component
the mean is 0 and the standard deviation is 1. To simplify the generation, one breakpoint τ1
is considered linked to the change of the covariance from 0.7 to −0.7. Figure 21a shows that
the covariance is positive before the breakpoint and negative after the breakpoint in Figure 21a.
Anomalies are considered in the second segment, and are set to the value (1, 1). This value
has interesting properties to evaluate the capacity of the anomaly detector. First, “1” appears
as a typical value at each one dimensional component of the time series. This implies that
the anomalies cannot be detected by working on each component independently. Second, the
value (1, 1) is fairly typical before the breakpoint τ1, as shown Figure 21a. Consequently, the
breakpoint detector enables the detection of anomalies while they are hidden in the data mixture
as shown in Figure 21c.
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(a) Before the breakpoint. (b) After the breakpoint. (c) Data mixture.

Figure 21: 2D Gaussian data with breakpoint in covariance matrix

For this scenario, the Gaussian kernel is used to detect the breakpoint in the covariance. As
a characteristic kernel, it should detect the change in the covariance, which is the change at
the second moment order. The median heuristic is used to select the bandwidth. Since each
component cannot be treated independently to detect anomalies, the Mahalanobis distance [46]
is preferred over the Euclidean distance. The Mahalanobis distance is defined as the following,
where µ̂ is the estimated mean vector and Σ̂ is the estimated covariance matrix.

st =
√

(Xt − µ̂)T Σ̂−1(Xt − µ̂)

To ensure a good atypicity score, the estimator of the covariance has to be robust and efficient,
as shown in Section 4. Inspired by the results of Section 5.3.2, the biweight-midcovariance [47]
is used to estimate each coefficient of the matrix Σ̂.

Results and analysis. The result is represented for one example in Figure 22. The multidimensional
time series is represented using one plot for each dimension. The anomaly detector successfully
detects the breakpoints in the dashed black lines, and the anomalies that are represented by
green dots with few false positives.

Figure 22: Application of our anomaly detector on 2D Gaussian time series having breakpoints in the covariance.

The anomaly detector has been applied to 50 time series and the results are summarized in
Table 3. The FNR is close to 0 and the FDR is smaller than expected, 0.12 instead of 0.2. This
confirms that the detector can be applied to multidimensional data with minor adaptation.
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α FDR FNR
0.2 0.126 0.054

Table 3: FNR and FDR for anomaly detection on 2D Gaussian time series with breakpoint in the covariance.

8.2.4. Gaussian data with breakpoints in the mean and in the variance
In the experiments conducted so far, all scenarios considered homoscedastic time series where

the change is in the mean while the variance is constant between two segments. In this section,
the case of heteroscedasticity in time series is studied where the variance changes between two
segments. Therefore, time series will have parts where the variance is very low and parts where
it is very high. The struggle is that a kernel may be good at detecting breakpoints in a low
variance context, but have difficulty when the variance is high, and vice versa. Therefore, several
kernels are tested by varying the bandwidth size.

Experiment description.. Let’s consider a time series generation process and an anomaly detector
described in Section 8.1. To adapt to the heteroscedasticity hypothesis, the transition rule is
modified so that at each breakpoint the variance changes as follows, where ∆σ is the variance
shift size equal to 2:

σi+1 = exp(ζσ,i ln ∆σ) ∗ σi

To ensure that the variance covers a wide range of values, the variable ζi is chosen asymmetric.
In the case of this experiment, ζi has a probability of 0.9 of being +1. Thus, the variance is more
likely to increase than to decrease at each breakpoint. To ensure the visibility of the breakpoint
in the mean to any variance, the size of the shift in the mean needs to be proportional to the
maximum of the variance of the segment before and after the breakpoint, as described in the
following:, where ∆µ is the mean shift size equal to 2:

µi+1 = ζµ,i+1∆µ max(σi, σi+1) + µi

According to the median heuristic, breakpoints are easily detected by a Gaussian kernel when
the standard deviation of the data is of the same order as the bandwidth h. Several kernels are
tested:

• Gaussian kernel with bandwidth h = 1. This kernel with a small bandwidth is relevant
to detect breakpoints when the variance of the time series is small, but may fail when the
variance is high.

• Gaussian kernel with bandwidth h = 100. In this situation, the kernel is more relevant to
detect breakpoints when the variance is high.

• To consider both scenarios, where breakpoints appear in some parts of the series with
high variance and in parts of the series with low variance, a linear combination of the two
Gaussian kernels may be a good response. This kernel is characteristic as a sum of two
characteristic kernels and is defined by:

k(x, y) = 0.5kh1(x, y) + 0.5kh2(x, y) (26)
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Figure 23: Illustration of the different kernels

Result analysis. The anomaly detector is applied three times to the same time series, changing
only the kernel used in Figures 24, 25 and 26:

• Figure 24 illustrates the result using the Gaussian kernel with small bandwidth, h = 1. The
breakpoint was not detected at 1⃝, which leads to a false negative 2⃝ and a large number
of false positives at 3⃝.

• Figure 25 illustrates the result using the Gaussian kernel with large bandwidth, h = 100.
At the position 1⃝, the breakpoint with low variance is not detected. It leads to false
positives at 2⃝ because data with different variances belong to the same calibration set.

• Figure 26 illustrates the result when using the linear combination of the two Gaussian
kernels. All breakpoints are detected, reducing the number of false positives and false
negatives.

Figure 24: Application of our anomaly detector on Gaussian time series having breakpoints in the mean and in
the variance, using a Gaussian kernel having a small bandwidth.
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Figure 25: Application of our anomaly detector on Gaussian time series having breakpoints in the mean and in
the variance, using a Gaussian kernel having a large bandwidth.

Figure 26: Application of our anomaly detector on Gaussian time series having breakpoints in the mean and in
the variance, using a linear combination of two Gaussian kernels.

The anomaly detector has been applied to 50 time series and the FDR and FNR results are
summarized in Table 4. Different kernels, bandwidth h, are considered in combination with α
levels in {0.1, 0.2}:

• Gaussian kernel (labeled Gaussianh) with bandwidth h in {1, 10, 100}

• Linear combination of two Gaussians (labeled CombG1G100)

The performances are strongly influenced by the kernel bandwidth: The FNR is lower when using
the Gaussian kernel with bandwidth h = 1 or using the combination of Gaussian kernels while
it is high when using kernels with larger bandwidth. The FDR is slightly higher than expected
α for all tested kernels. However, the FDR is smaller when using the combination of Gaussians
compared to the Gaussian kernel with h = 1. Thus, anomaly detection remains possible when
the variance of the time series changes under heteroscedasticity. However, there is no general
way to build a dedicated kernel that responds to this scenario, but combining specialized kernels
to adapt to the different regimes of the time series seems to be a promising approach.
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α Kernel FDR FNR
0.10 Gaussian1 0.188 0.054

Gaussian10 0.127 0.136
Gaussian100 0.148 0.456
CombG1G100 0.134 0.057

0.20 Gaussian1 0.323 0.017
Gaussian10 0.232 0.102
Gaussian100 0.232 0.397
CombG1G100 0.253 0.018

Table 4: FDR and FNR for anomaly detection on Gaussian time series with breakpoints in the mean and in the
variance according to the α level and the chosen kernel

8.2.5. Gaussian data with breakpoints in the variance
In this section, the more challenging scenario of time series with changes in variance without

a shift in mean is addressed.

Description of the experiment. To generate the data, a Gaussian distribution is used as the
reference one. The breakpoints in the variance are generated according to the rule described in
Eq. 23. Since the variance of the time series changes along the time series, it may be difficult to
detect all the breakpoints with the same kernel. To evaluate the detector in this scenario, it is
based on the same kernels defined in Section 8.2.4 and on the z-score atypicity function.

Results and analysis. Figures 27 and 28 show two examples of anomaly detection. In Figure 27,
all the breakpoints are successfully detected, allowing correct anomaly detection with few false
positives. In Figure 28, the procedure fails and no breakpoint is detected in 1⃝. After the change
with higher variance, all data are considered as anomalies. It is an evidence that the efficiency
of the anomaly detector is strongly influenced by its ability to detect the true breakpoints.

Figure 27: Example of successful anomaly detection on time series with breakpoints in the variance.
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Figure 28: Examples of failure of anomaly detection on time series with change in the variance.

Table 5 summarizes the FDR and FNR results obtained for 50 time series using the same
kernels and α levels as in Table 4. In all cases, the anomaly detection shows a poor accuracy,
since on one side there is a lack of control of the FDR with respect to the target value alpha, and
on the other side the FNR is very high. However, the best FNR and FDR values are obtained
for the combination of Gaussian kernels, which allows better detection of breakpoints in the
variance.

α Kernel FDR FNR
0.10 Gaussian1 0.272 0.321

Gaussian10 0.806 0.712
Gaussian100 0.835 0.599
CombG1G100 0.229 0.298

0.20 Gaussian1 0.313 0.241
Gaussian10 0.649 0.511
Gaussian100 0.685 0.396
CombG1G100 0.282 0.225

Table 5: FDR and FNR for anomaly detection on Gaussian time series with breakpoint in the variance according
α level and chosen kernel.

These results show how challenging the case of time series with breakpoints in the variance is.
Indeed, the change in the variance is much harder to detect than the shift in the mean presented
in Section 8.2.1. One approach is to carefully tune the kernel by choosing the right combination
of kernels to enable the detection of specific types of breakpoints.

8.3. How hyperparameter choices affect the the anomaly detector performances?
The goal of this section is to show how incorrect hyperparameter values of the anomaly

detector lead to a degradation of the anomaly detector’s performances. This evaluation is done
for three core components: the variance estimator, the cardinality of the calibration set, and the
cardinality of the active set. The hyperparameters of these components are intentionally set very
far from the recommendations given in Sections 4 and 5 and the consequences are observed and
discussed to confirm the recommendations, the rules and the analyses stated in the paper.

8.3.1. Bad choice of variance of segments estimator
In Section 4, it was established that a good atypicity score should respect two properties:

robustness to the presence of anomalies in the training set and efficiency. In this scenario, a bad
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choice is made for an atypicity score that does not respect the requirements of being robust and
efficient. To simulate this case and evaluate the effects, the experiment with Gaussian time series
having breakpoint in the mean introduced in Section 8.2.1 is reused by replacing the biweight
estimator of the variance in the z-score function by the MLE estimator or the MAD estimator.
Indeed, MLE estimator is efficient but not robust, and the MAD estimator is robust but not
efficient while the biweight midvariance is robust and efficient.

Result and analysis. To analyze and compare the effect of the different estimators, the same
example is considered in Figure 29, for different variance estimators. Since the MLE estimator is
not robust, Figure 29a at 1⃝ shows false negatives due to variance overestimation caused by the
presence of anomalies in the current segment. The choice of the robust MAD estimator reduces
the false negatives while it generates a higher number of false positives as shown in Figure 29b
at 2⃝. The variance is underestimated due to the lack of data points and the lower efficiency of
MAD. The Biweight estimator is advantageous as it is both robust and efficient and is able to
reduce false positives and false negatives, as shown in Figure 4.1.
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(a) MLE

(b) MAD

(c) BW

Figure 29: Application of our anomaly detector on Gaussian time series having breakpoints in the mean, using
different variance estimators.

In Figure 30, the boxplots represent the distribution of FNR and the FDR over a set of 50
time series based on the standard deviation estimator (MLE, MAD or BW). Paired permutation
tests [48] are used to compare the performances of two estimators. For each pair of estimators,
the hypothesis tested is: “The mean FDR (or FNR) is the same using these two variance
estimators”. The results are represented by adding a symbol (“ns” the difference is not significant,
“*” significance at 5%, “**” significance at 1%, “***” significance at 0.1% ) between the two
tested estimators.
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(a) FDR (b) FNR

Figure 30: Boxplots of the FNR and FDR according to the choice of the variance estimator.

The FDR and FNR results are summarized in Table 6. The FNR is significantly higher when
the MLE variance estimator is used compared to the more robust MAD and biweight midvariance
estimators, which have close performances. However, the FDR is significantly higher when the
MAD is used compared to the biweight midvariance estimator, for which the FDR is better
controlled.

sigma_estimator FDR FNR
MLE 0.16 0.08
MAD 0.29 0.04
BW 0.24 0.04

Table 6: FNR and FDR according to the choice of the variance estimator.

8.3.2. Bad choice for active set cardinality
Section 5 introduced the notion of an active set to deal with the uncertainty of status. It also

provides rules to compute the cardinality of the calibration test. In this section the relevance of
this rule is evaluated.

Description of the experiment. To evaluate the performance degradation due to a bad choice
of the active set cardinality, the experiment framework introduced in Section 8.2.1 is reused.
According to the results of the experiments in Section 5.3.2 and Section 5.4.2, status can be
ensured with strong confidence with an active set cardinality equal to m = 100. For each time
series generated, two anomaly detectors are applied, one with an active set cardinality equal to
100 and the second with an active set cardinality equal to 10.

Results and analysis. In order to understand how the active set improves the anomaly detector,
the results are observed at two different instants: at time t = 1570 in Figures 31a and 31b,
and at time t = 1600 in Figures 31c and 31d. The histograms of the z-scores of the calibration
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set in green and the active set in red are shown in Figures 31b and 31d. At time t = 1570,
the new current segment contains few points, resulting in a variance estimation error and an
overestimation of the z-score of the active set in 1⃝ Figure 31b and false positives in 1⃝ Figure 31a.
At time t = 1600, the segment has acquired new data points, the variance estimate is improved
and the z-score is not overestimated in 2⃝ Figure 31d. The number of false positives is reduced
in 2⃝ Figure 31c. The status of the data point at t = 1570 is corrected at time t = 1600 because
the active set is large enough, otherwise its status would be fixed to the wrong one.

(a) Example of false positive, t = 1570 (b) Example of false positive

(c) Example of accurate detection, t = 1600 (d) Example of false negative

Figure 31: Abnormality status update after new data points acquisition in the current segment.

Figure 32 illustrates the boxplots of the FDR distribution according to the active set cardinality.
The results, summarized in Table 7, show that the FDR is significantly higher when the active
set has a cardinality of m = 10. On the contrary, using a cardinality of m = 100 allows to control
the FDR at the desired level α = 0.2. This experiment illustrates the benefits of following the
recommendations in Section 5 to improve anomaly detection performances.
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α m FDR FNR
0.2 10 0.529 0.006

100 0.186 0.053

Table 7: FDR and FNR mean according to
the active set cardinality.

Figure 32: FDR boxplots according to the active set cardinality

8.3.3. Bad choice of cardinality for the calibration set
It was established in Section 7 that the FDR can only be controlled if the cardinality of the

calibration set takes specific values. This section verifies this claim in the case of breakpoint
based anomaly detection.

Description of the experiment. To evaluate the degradation of the FDR control due to a bad
choice of the calibration set cardinality, time series are generated according to the framework
design introduced in Section 8.2.1. For each generated time series, with the target FDR α = 0.2
(resp. α = 0.1) and the active set cardinality m = 100, two anomaly detectors are applied:
one with a calibration set cardinality equal to 999 (resp. 1999) respecting the recommendation.
The second with a calibration set cardinality equal to 1000 (resp. 2000), not respecting the
recommendation. Indeed, since the proportion of anomalies is equal to π = 0.01, the goal of a
FDR equal to α = 0.2 (resp. α = 0.1) can be achieved using Benjamini-Hochberg with α′ = 0.1
(resp. 0.05) according to Section 7. The calibration set cardinality should then be equal to 999
(resp. 1999) according to Eq. 21.

Results and analysis. The results in Table 8 show that the FDR is controlled at the desired
level for n = 999 and n = 1999, while the FNR is higher. This confirms that the FDR can
only be controlled by selecting the parameter n using the rule in Section 7. To reduce the
FNR while maintaining control of the FDR, the values n must be chosen among the values
{1999, 2999, 3999, . . .} as discussed in the paper [26].

α n FDR FNR
0.2 999 0.21 0.030

1000 0.30 0.0
0.1 1999 0.1 0.1

2000 0.16 0.03

Table 8: FDR and FNR according to the calibration set cardinality.
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8.4. Diagnose the causes of underperformance
Our Breakpoint based anomaly detector has been tested on different time series data in

Section 8.2, it shows good performances to ensure low FNR with an FDR almost controlled in
different cases. However, the FDR is never completely under control, and is always slightly higher
than expected. This section examines why this lack of complete control of the FDR occurs by
replacing some estimators with knowledge of the true values and evaluate the effect on the FDR.

8.4.1. Description of the experiment
The BKAD is applied to the synthetic time series, where some estimators are replaced by

true knowledge, called oracle version. Three estimators are chosen to be replaced by their oracle
versions:

• The breakpoint estimator: can be replaced by the true breakpoint position,

• The mean and standard deviation estimators: can be replaced by their true values,

• The anomaly removed: As described in Section 6 when building the calibration set, estimated
anomalies are removed to avoid biasing the estimation of the p-values. The oracle version
of this is to remove the true anomalies.

Using the framework from Section 8.1, five anomaly detectors are applied to each time series.
Multiple combinations of the true knowledge (marked “O”) versus estimated values (marked
“E”) are used to produce different versions of anomaly detectors described in Table 9. As an
example, for detector 3, the breakpoints and anomalies in the calibration set are detected using
their true values, but the segment mean and variance parameters are estimated.

Detector Breakpoint Mean and variance Anomaly Removing
Detector 1 O O O
Detector 2 O O E
Detector 3 O E O
Detector 4 E E O
Detector 5 E E E

Table 9: Description of the different detectors.

The significance of the results is checked using permutation tests. It is possible that the cause
of this underperformance depends on the data distribution or on breakpoint types. Different
probability distributions are tested with different kinds of shifts.

8.4.2. Results and analysis
The complete empirical results can be found in Appendix A. The performances of the different

detectors are evaluated on a different laws generating the time series (Student, Gaussian, Mixture
of Gaussians noted MoG). The FDR and FNR distributions are represented by a boxplot with the
significance differentiating two detectors (“ns” the difference is not significant, “*” significance
at 5%, “**” significance at 1%, “***” significance at 0.1% ).

In the following paragraphs, the effects of the various core components are studied: breakpoint
detector, mean and variance segment estimator and anomalies removed from the calibration set.
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Breakpoint Estimation. Table 10 shows the performance of anomaly detectors 3 and 4 (see
Table 9) for different types of data and shifts. The only difference between the two detectors is
that Detector 3 uses a breakpoint detector while Detector 4 has knowledge of true breakpoints.
The bold values highlight the cases where the difference between the two estimators is significant.
Table 10 illustrates that the breakpoint estimation does not strongly affect the FDR performance
except in the case where breakpoints occur in the variance. This is expected since breakpoints in
the variance are more difficult to to detect, as discussed earlier in Section 8.2.5. FNR increases
in few cases where the breakpoint positions are estimated.

Type of shift law α Breakpoints FDR FNR
Mean Gaussian 0.10 E 0.104 0.105

O 0.100 0.091
0.20 E 0.182 0.054

O 0.176 0.054
Student 0.10 E 0.119 0.066

O 0.117 0.065
0.20 E 0.199 0.033

O 0.198 0.032
MoG 0.10 E 0.113 0.131

O 0.108 0.124
0.20 E 0.186 0.072

O 0.190 0.071
Mean and var. Gaussian 0.10 E 0.114 0.090

O 0.099 0.078
0.20 E 0.188 0.051

O 0.167 0.040
Variance Gaussian 0.10 E 0.200 0.214

O 0.110 0.109
0.20 E 0.257 0.128

O 0.174 0.062

Table 10: Anomaly detector performances with and without knowledge of true breakpoint positions, according
different time series.

Segment mean and variance parameters. Table 11 shows the performance of anomaly detectors
1 and 3 (see Table 9) for different types of data and shifts. The only difference between the two
detectors is that Detector 3 estimates the mean and the variance parameters of the segments
while Detector 1 has knowledge of the true parameters. According to Table 11, the estimators
do not strongly affect the FDR of the anomaly detector. There are few significant differences,
displayed in bold, which are smaller than in Table 10.

52



type of shift law α Mean and variance FDR FNR
Mean Gaussian 0.10 E 0.082 0.043

O 0.105 0.000
0.20 E 0.167 0.000

O 0.188 0.000
Student 0.10 E 0.117 0.065

O 0.113 0.056
0.20 E 0.198 0.032

O 0.196 0.026
Mean and var. Gaussian 0.10 E 0.091 0.000

O 0.107 0.000
0.20 E 0.167 0.000

O 0.200 0.000

Table 11: Anomaly detector performances with knowledge of the true segment mean and standard deviation
values and with estimation of these parameters, according different time series.

Anomalies Removing. Table 12 represents the results for different detectors considering different
laws, alpha levels and kind of shift. The four detectors are chosen to identify the effect of
removing detected anomalies from the calibration set instead of removing the true anomalies,
in case other components are estimators and in case other components are oracles. Note that
for Gaussian Mixture (MoG), the “Mean and Variance” component is marked with a “X”, since
the kNN atypicity score does not use mean and variance parameters. It is clear that the control
of the FDR is worse when the calibration set is built based on detected anomalies. Indeed, the
false positives and false negatives detected at time t will badly affect the detection at time t + 1.
Despite the fact that a robust score is chosen, these observations lead to a conclusion that the
p-value estimator is sensitive to:

• False negatives: If there is a missed anomaly in the calibration set, the p-values of all data
points in the active set will be underestimated. This situation leads to generate more false
negatives, which will confound the calibration sets of subsequent instants.

• False positives: The p-value estimator is also sensitive to false positives due to the way the
calibration set is constructed. As a reminder, detected anomalies are replaced by a random
points belonging to a segment similar to the current segment. The problem arises when
an anomaly is falsely detected. Generally speaking a false positive is a point with a high
score. When a false positive is replaced with a random point, its score will be statistically
lower. Thus, removing the false positives from the calibration set reduces the average score
in the calibration set and consequently reduces the p-values of the data points in the active
set. This leads to more false positives, which will affect the construction of calibration sets
at later times.
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Type of shift Law α Breakpoint Mean and
variance

Anomaly
removing FDR FNR

Mean Gaussian 0.1 E E E 0.134 0.123
E E O 0.104 0.105
O O E 0.165 0.041
O O O 0.121 0.048

0.2 E E E 0.242 0.039
E E O 0.182 0.054
O O E 0.301 0.018
O O O 0.197 0.018

Student 0.1 E E E 0.158 0.059
E E O 0.119 0.066
O O E 0.154 0.035
O O O 0.113 0.056

0.2 E E E 0.289 0.026
E E O 0.199 0.033
O O E 0.301 0.013
O O O 0.196 0.026

MoG 0.1 E X E 0.118 0.246
E X O 0.113 0.131
O X E 0.103 0.294
O X O 0.108 0.124

0.2 E X E 0.202 0.137
E X O 0.186 0.072
O X E 0.221 0.111
O X O 0.190 0.071

Mean and var. Gaussian 0.1 E E E 0.134 0.057
E E O 0.114 0.090
O O E 0.955 0.022
O O O 0.119 0.054

0.2 E E E 0.253 0.018
E E O 0.188 0.051
O O E 0.961 0.021
O O O 0.205 0.029

Table 12: Anomaly detector performances with and without knowledge of true anomalies for removing anomalies,
according different time series.

Conclusion. The conclusion of this analysis is that most of the underperformance relative to
the ideal case, such as higher than expected FDR, is explained by the non-robustness of the
empirical p-value estimator and the contamination of the calibration set by false negatives and
false positives.

8.5. Evaluation against competitors
After studying the conditions that must be met to ensure high detection performance and

control of the FDR in the previous sections, the breakpoint detection based anomaly detector
(BKAD) proposed in this paper is compared to alternative anomaly detectors from the literature
on different data collections. The goal is to determine if and under which conditions the new
anomaly detector can improve the state of the art.
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8.5.1. Methods
BKAD is evaluated against state-of-the-art anomaly detectors presented in the review [49].

The most representative unsupervised anomaly detectors for univariate time series data are
selected. The implementation of [49] is used, with default hyperparameters. The detectors
selected are those that theoretically capable of detecting anomalies in piecewise iid data. These
algorithms fall into two categories: the one that build a context such as a segment, a sliding
window or a cluster, and on the other that use subseries instead of single points. On the other
hand, predictive or regression models are of little interest on piecewise iid data.

Median [50]. A sliding windows is used to estimate the median and dispersion parameter of
last observations. The atypicity score used is the z-score. The main difference with the BKAD
approach is the use of sliding windows instead of using a breakpoint detector to define the
segments.

CBLOF [51]. Cluster based local outlier factor identifies the cluster to which individual points
belong, then it computes the local outlier factor associated with that cluster. The use of clusters
is similar to that of breakpoints in that it attempts to group similar points together, but has no
temporal notion.

Sub. IF [52]. The method divides the time series in subsequences and uses Isolation Forest on
the subsequences set.

DWT [53]. Method based on wavelet to remove noise. Atypicity score is computed using the
Gaussian distribution on the Discrete Wavelet Transform, with Haar wavelet. Anomalies can be
detected as abnormal Haar coefficients.

Sub. LOF [54]. The method divides the time series in subsequences and uses Local Outlier
Factor on the subsequences set.

FFT [55]. Method based on Fast Fourier Transform. It uses Local outlier factor on the Fast
Fourier Transform of the subsequences. Anomalies can be detected as abnormal frequency
coefficients.

8.5.2. Threshold
After applying these different methods, an atypicity score is obtained. This score is sufficient

to compute the AUC metric, but does not allow detection and calculation of the FDR and FNR
without thresholds. To calculate these thresholds, the method introduced in [26] is used, which
guarantees FDR control at a fixed α level in case the time series of scores is iid. The threshold of
BKAD is chosen as described in Section 7. Here α is set to 0.2 for all detectors and time series.

8.5.3. Data
To ensure a comprehensive analysis, different kind of time series data are considered:

• Time series with breakpoints

• Time series with seasonality

• Residual from time-series with seasonality

• Real data time series

55



Time series with breakpoints. The time series with breakpoints are generated according to the
experimental design presented in Section 8.1 with the following hyperparameters: the reference
distribution is Gaussian P0,1 = N (0, 1) and all anomalies follow the law of 4ζ, where zeta follows
the Rademacher distribution. Anomalies are generated with a proportion of π = 0.01. The
breakpoint positions are generated according to the Poisson process with an average segment
length of 125. To avoid having too few segments, breakpoints are removed if a segment has less
than 100 points. For the benchmark breakpoint-mean, breakpoints occur in the mean with a
∆ = 2. And, for the benchmark breakpoint-var, breakpoints occur in the variance with ∆ = 1.5.

Time series with seasonality. To study how the anomaly detector behaves on time series not
following the statistical model introduced in Section 2.1, time series with seasonality and trend
are considered.

Let the following components be given:

1. Rt ∼ N (0, σ), the residual, σ = 1

2. At ∼ B(π) the abnormality variable, π = 0.01

3. S1,t = A1 sin(2πf1t) the seasonality with long period, where the amplitude A1 and the
frequency f1 are random variables, A1 ∈ {1, 3, 5} and f1 ∈ {5, 10, 20}

4. S2,t = a21A1 sin(2πw21f1t) the seasonality with short period, where the frequency multiple
w21 and the amplitude attenuation are random variable, a21 ∈ {0.5, 0.3, 0.1} and w21 ∈
{2, 3, 5}

5. σt = sin(t) + 1.5 the seasonal variance

6. Tt = Bt the linear trend

The following collections are generated:

1. simple-seasonality: Xt = S1,t + (1−At)Rt + Atζt∆′

2. complex-seasonality: Xt = S1,t + S2,t + (1−At)Rt + Atζt∆′

3. variance-seasonality: Xt = ((1−At)Rt + Atζt∆′)σt

4. trend-seasonality: Xt = Tt + St + (1−At)Rt + Atζt∆′

Residual from time series with seasonality. In practical applications, to simplify the detection of
anomalies, seasonality and other predictable patterns are removed during a preprocessing step.
To evaluate how the anomaly detector performances are affected by this preprocessing step, a
new benchmark is built from the residuals extracted for each time series in the “Time series with
seasonality” benchmark. In this experiment, the residual is extracted by removing the trend and
the seasonality using the “seasonal_decompose” function from the Python library statsmodels.

Time series from real data:. The anomaly detectors are evaluated on various time series datasets
coming from different sources. The Numenta Anomaly Benchmark (NAB) from [56], the dodger
dataset from the UCI at [57] and Mars Science Laboratory (MSL) and Soil Moisture Active
Passive (SMAP) provided by NASA in [58] are used to build the complete benchmark.
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8.5.4. Metrics
To measure the performances of different anomaly detectors, two metrics are reported: The

Area Under Curve (AUC)[59, 60] in Table 13 and the FDR/FNR in Table 14. The advantage
of the Area Under the Curve (AUC) is to be able to evaluate the anomaly detector without
evaluating the threshold selection method. However, this can also be a limitation for real use,
since a threshold is needed for practical applications. To determine the ability of anomaly
detectors to control the false positive rate to a desired level while keeping the false negative rate
low, the FDR and FNR metrics are reported. The disadvantage of these metrics is that it can
be difficult to compare two detectors if one performs better on FDR and the other on FNR.
Furthermore, they only take into account values for a single threshold, which have to be precised
for detectors that return only an atypicity score. The threshold policy used for this experiment
is the one implemented in [26], as stated in Section 8.5.2.

8.5.5. Results and analysis
The results are summarized in two tables. Table 13 represents the AUC metric according to

benchmarks and anomaly detectors and Table 14 represents the FDR and FNR metrics.

BKAD(Ours) Median Sub. IF DWT Sub. LOF LOF VALMOD CBLOF FFT
Benchmark

Breakpoint in mean 1.00 0.95 0.64 0.61 0.65 0.70 0.42 0.80 0.83
Breakpoint in variance 0.98 0.89 0.52 0.54 0.60 0.56 0.36 0.78 0.16

Simple seasonality 0.88 0.98 0.56 0.57 0.71 0.68 0.47 0.73 0.72
Complex seasonality 0.94 0.98 0.57 0.55 0.72 0.79 0.45 0.85 0.64
Seasonality in variance 1.00 0.99 0.54 0.57 0.56 0.87 0.43 0.92 0.71
Seasonality and trend 0.88 0.98 0.53 0.57 0.71 0.63 0.47 0.67 0.72

Res. simple seasonality 0.99 0.98 0.62 0.57 0.69 0.92 0.47 0.99 0.89
Res. complex seasonality 1.00 0.99 0.63 0.56 0.71 0.94 0.45 1.00 0.91
Res. seasonality and trend 0.99 0.98 0.61 0.56 0.69 0.93 0.47 0.99 0.89

DODGER 0.56 0.30 0.67 0.65 0.54 0.51 0.41 0.48 0.30
NAB 0.57 0.45 0.66 0.73 0.67 0.48 0.47 0.54 0.20
NASA-MSL 0.57 0.56 0.84 0.81 0.61 0.56 0.48 0.68 0.56
NASA-SMAP 0.60 0.39 0.83 0.90 0.69 0.51 0.61 0.61 0.47

Table 13: AUC metric according to the anomaly detectors on benchmarks.

BKAD(Ours) Median LOF CBLOF Sub. LOF Sub. IF DWT FFT
FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR

Benchmark

Breakpoint in mean 0.25 0.04 0.07 0.48 0.52 0.70 0.83 0.52 0.99 0.81 0.99 0.44 0.99 0.01 0.93 0.46
Breakpoint in variance 0.36 0.17 0.19 0.36 0.72 0.71 0.72 0.37 0.95 0.54 0.91 0.58 0.93 0.28 0.89 0.27
Simple seasonality 0.34 0.47 0.21 0.45 0.48 0.76 0.62 0.72 0.99 0.73 0.99 0.96 0.97 0.30 0.92 0.58
Complex seasonality 0.27 0.44 0.19 0.44 0.37 0.64 0.41 0.64 0.99 0.68 0.99 0.95 0.95 0.43 0.95 0.65
Seasonality and trend 0.50 0.46 0.22 0.45 0.58 0.86 0.77 0.78 0.99 0.77 0.79 0.89 0.97 0.11 0.92 0.57
Seasonality in variance 0.34 0.35 0.10 0.23 0.33 0.50 0.32 0.48 0.99 0.86 0.95 0.94 0.95 0.20 0.93 0.63
Res. simple seasonality 0.26 0.42 0.19 0.56 0.39 0.70 0.25 0.41 0.99 0.77 0.99 0.94 0.95 0.35 0.93 0.61
Res. complex seasonality 0.17 0.15 0.12 0.31 0.58 0.80 0.21 0.14 0.99 0.72 0.99 0.92 0.97 0.32 0.93 0.45
Res. seasonality and trend 0.26 0.43 0.20 0.57 0.44 0.73 0.29 0.41 0.99 0.79 0.97 0.94 0.95 0.36 0.92 0.64
dodger 0.41 0.66 0.79 0.99 0.89 0.09 0.97 1.00 0.71 0.92 0.39 0.91 0.70 0.55 0.89 0.09
NAB 0.61 0.91 0.62 0.85 0.67 0.58 0.50 0.82 0.64 0.74 0.55 0.62 0.77 0.27 0.87 0.25
NASA-MSL 0.78 0.91 0.62 0.84 0.71 0.72 0.45 0.72 0.62 0.82 0.49 0.70 0.65 0.42 0.68 0.49
NASA-SMAP 0.69 0.92 0.76 0.63 0.80 0.27 0.70 0.52 0.75 0.64 0.65 0.44 0.83 0.05 0.80 0.33

Table 14: FDR and FDR metrics according to the anomaly detectors on benchmarks.

The BKAD detector gets the highest AUC scores on series with breakpoints (“Breakpoint in
mean” and “Breakpoint in variance”), as shown in Table 13. It can also be seen that this detector
remains efficient even when the time series contain seasonality (“simple seasonality”, “complex
seasonality”,...). This shows the benefits of splitting the time series into simpler segments based
on breakpoints, even if it does not follow the model introduced in Section 2.1. The results show
the importance of preprocessing the data. Indeed, the performance of the detector increases when
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it is applied to the residuals of the seasonal series instead of the original seasonal time series, as
shown for “Res. simple seasonality” or “Res. complex seasonality”. Nevertheless, Table 14 shows
that it can be difficult to obtain control of the FDR and FNR even for the best AUC score. This
illustrates that FDR control relies heavily on the (piecewise) iid hypothesis. Finally, BKAD is
not very efficient on tested real data such as (“DODGER”, “NAB”, ... ) containing anomalies
which do not follow the formalism introduced in Section 2.1. The most efficient methods: “Sub.
IF” and “DWT”, define an atypicity score on subseries instead of data points. An interesting
approach for the future might be to find a better preprocessing to apply it to real data and
improve the anomaly detection.

9. Conclusion

In this paper, an online anomaly detector has been developed that detects anomalies and
controls the FDR at a given level α on piecewise stationary time series. The research was
conducted to address three challenges:

• Changes in the reference distribution: the changes are detected using a breakpoint detector.
Anomalies are retrieved in each homogeneous segment by defining an atypicity score and
a calibration set.

• Uncertainty: Due to the online nature of the detection, the abnormality status of the data
points is uncertain. The notion of an active set is introduced to collect the data points
that need to be re-evaluated since there status is too uncertain.

• and control of the FDR: modified Benjamini-Hochberg procedure is applied to the active
set to control the FDR on the entire time series.

The result of our research is a modular anomaly detector where all core components have
been studied through theoretical or empirical analysis to optimize their performance. The
detector has been evaluated on a variety of scenarios to understand its strengths and limitations.
It demonstrates state-of-the-art capabilities to detect anomalies on time series presenting a
distribution shift. The main drawback of our method is that it relies on non-robust estimation
of p-values. Also, the piecewise stationary hypothesis is often not respected in practice. Further
work concerns the integration of a robust p-value estimator and the development of a preprocessing
step to apply the anomaly detector to time series that are not piecewise stationary.
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Appendix A. Figures related to experiment of Section 8.4

Figure A.33: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having breakpoint in the
mean according to the different Detectors described in Table 9 and shift size ∆. Top-left: FDR while α = 0.1,
Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2.
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Figure A.34: Boxplots of FDR and FNR for anomaly detection on Student time series having breakpoint in the
mean according to the different Detectors described in Table 9 and shift size ∆. Top-left: FDR while α = 0.1,
Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2

Figure A.35: Boxplots of FDR and FNR for anomaly detection on Gaussian Mixture time series having breakpoint
in the mean according to the different Detectors described in Table 9. Left: FDR while α = 0.2, right: FNR while
α = 0.2.
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Figure A.36: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having breakpoint in
the mean and variance according to the different Detectors described in Table 9. Top-left: FDR while α = 0.1,
Top-right: FNR while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2
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Figure A.37: Boxplots of FDR and FNR for anomaly detection on Gaussian time series hawing breakpoint in the
mean and and in the variance according to the chosen Kernel. Top-left: FDR while α = 0.1, Top-right: FNR
while α = 0.1, Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2

66



Figure A.38: Boxplots of FDR and FNR for anomaly detection on Gaussian time series having breakpoints in the
variance according to different the chosen Kernel. Top-left: FDR while α = 0.1, Top-right: FNR while α = 0.1,
Bottom-left: FDR while α = 0.2, Top-right: FNR while α = 0.2

(a) FDR (b) FNR

Figure A.39: Boxplots of the FNR and FDR according to the chosen variance estimator.
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