
HAL Id: hal-04440349
https://hal.science/hal-04440349v2

Preprint submitted on 30 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Breakpoint based online anomaly detection
Etienne Krönert, Dalila Hattab, Alain Celisse

To cite this version:
Etienne Krönert, Dalila Hattab, Alain Celisse. Breakpoint based online anomaly detection. 2024.
�hal-04440349v2�

https://hal.science/hal-04440349v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Breakpoint based online anomaly
detection

Etienne Krönert1, Dalila Hattab1 and Alain Celisse2

1FS Lab, Financial Services, Worldline, France, e-mail:
etienne.kronert@worldline.com; dalila.hattab@worldline.com

2SAMM, Paris 1 Panthéon-Sorbonne University, France, e-mail:
alain.celisse@univ-paris1.fr

Abstract: This paper proposes a new online anomaly detector for time
series. Classically, anomaly detectors do not adapt well in real time to
changes in the reference distribution. The novelty of our approach is to
use breakpoint detection to adapt online to the new reference behavior of
the time series. The statistical performance of the detector is theoretically
ensured by a control on the FDR. The anomaly detector is empirically
evaluated in depth to assess its capabilities and limitations.
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1. Introduction

Anomalies refer to observations that appear so atypical when compared to the
others that it suggests they originate from a different process [1]. Anomaly
detection has many applications, such as security [2] or health [3]. Machine
learning is widely used in anomaly detection [4]. A model [5] learns unsupervised
the reference behavior from historical data. Then, the learned reference behavior
is compared to the observed data to raise an alarm if the difference is too
large. The variety of anomaly detectors presented in the reviews [2, 6] is useful
to adapt to different patterns in time series such as trend, seasonality, and
autocorrelation.

The limitation of this approach is that the reference model is learned only
once on the historical dataset, which assumes that the reference of the time
series is the same over time. However, there are data drifts where the reference
behavior of the time series changes. If the model is not updated, the data
points observed after the drift are detected as false positives. To overcome this
problem, most popular strategies consist of periodically retraining the model
on a fixed-length window of data. Others use a sliding window of fixed length
to continuously learn the reference. For example, Random Cut Forest [7] is a
method inspired by Isolation Forest and adapted to real time. DiLOF [8] adapts
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LOF for real time. Periodic retraining and fixed length sliding windows do not
account for the true dynamics of the time series.

Second, a poorly calibrated anomaly detector can lead to alarm fatigue. An
overwhelming number of alarms desensitizes the people tasked with responding
to them, leading to missed or ignored alarms or delayed responses [9, 10]. One of
the reasons for alarm fatigue is the high number of false positives that take time
to resolve [11, 12]. To reduce alarm fatigue, it is necessary to theoretically ensure
that the number of false positives is low. In the article [13, 14], the FDR in offline
anomaly detection is controlled by the Benjamini-Hochberg (BH) procedure
[15, 16]. However, this does not apply to the online case. In our previous article
[17] we obtained control of the FDR using a multiple testing procedure.This
previous article was limited to stationary time series, while this article assumes
that the distribution of the time series can shift. The previous article provides
a good introduction to the tools used in this article.

This paper introduces a new anomaly detector that can update the learned
reference behavior in an online context. As shown in Figure 1, the main idea
is to use a breakpoint detector to detect changes in the reference behavior of
the time series. Breakpoints are the points at which a property of the time
series changes. Between two breakpoints, the data form a homogeneous segment
whose characteristics are easy to learn. After detecting the breakpoints in the
time series, an atypicity score can be constructed by measuring the conformity
of each point to its segment. The final step is to classify as anomalies the points
with an atypicity score that is too high. Note that unlike the proposals cited
in [18, 19], the breakpoints do not correspond to anomalies, but to changes
in the reference distribution. The use of a breakpoint detector introduces new
difficulties, which are addressed in this paper. First, the detection of a breakpoint
may be delayed, leading to temporary errors in segment assignment. Second,
when a segment contains few points, it is difficult to estimate its behavior,

Fig 1: Anomaly detection based on breakpoints.



E. Krönert et al./Breakpoint based online anomaly detection 3

generating anomaly detection errors. In an online context, this is particularly
the case when points are observed just after a new breakpoint. This paper
responds to these difficulties by assigning a confidence score to the estimation
made by the detector. This score is used to judiciously select the estimates to
be updated when their assigned confidence is too low. This confidence score is
learned from a historical data set.

The anomaly detector presented in this paper comes with theoretical
guarantees. In a recent work of ours [17], a new strategy has been designed in
the online context to control the FDR for stationary series using a modified
version of Benjamini-Hochberg applied to subseries. In the present paper, this
work is extended to the nonstationary case.

The main contributions of this paper are summarized as follows:

• A versatile online anomaly detector based on breakpoint detection is built
to adapt to changes in the reference behavior of the time series. Each
component of the detector is studied in depth to provide the best possible
parameters and improve the performance of the anomaly detector.

• The detector is theoretically studied to demonstrate its ability to control
the FDR of the entire series at a level α, under ideal hypotheses.

• The notions of active set and calibration set are introduced to deal with
the difficulties of the online nature of the anomaly detector.

• The anomaly detector is empirically evaluated in numerous scenarios to
determine its capabilities and limitations.

In Section 2, the problem of anomaly detection on piecewise iid time series
is introduced, and the anomaly detector is described. In Section 3 the main
theorems are presented. The ability of the detector to control the FDR is
empirically assessed in Section 4. Finally, the detector is compared against
competitors in Section 5.

2. Anomaly detection based on breakpoint detection

This section introduces the new anomaly detector. First, the problem of anomaly
detection in time series containing breakpoints is introduced in Section 2.1.
Then, Section 2.2 gives a high-level description of the detector. Finally, some
design choices regarding the detector are discussed in Sections 2.3 and 2.4.

2.1. Modeling of the problem

Let (Ω,F ,P) be a probability space, with Ω the set of all possible outcomes, F
a σ-algebra on Ω and P a probability measure on F . Assume a realization of
the independent random variables (Xt)1≤t≤T , with Xt taking values in a set X
for all t. T ∈ N ∪ {∞} is the length of the time series. Normality is a concept
that is dependent on a context that changes over time. The instants at which
the reference distribution changes are called breakpoints. Supposing there are
D breakpoints where D ∈ N ∪ {∞}, the position of the breakpoints is noted
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Fig 2: Illustration of piecewise stationary time series.

(τi)
D
1 ∈ [1, T ]D. Unlike the modeling in [17], which introduced a single reference

distribution for the entire series, to model these different reference behaviors,
several reference probability distributions are introduced and noted P0,i. For
each segment i in J1, DK, for each point t in this segment Jτi, τi+1 − 1K, the
observation Xt is called “normal” if Xt ∼ P0,i. Otherwise Xt is an “anomaly”.
Between two consecutive breakpoints, all “normal” observations are generated by
the same law defining a homogeneous segment. The time series (Xt) is piecewise
stationary (except on anomalies). As illustrated in Figure 2, an observation Xt

is an anomaly if it is not generated from the reference distribution corresponding
to the current segment. Figure 2 shows two anomalies detected in the second
segment between breakpoints τ2 and τ3. Four anomalies have been detected in
the last segment 3.

The aim of an online anomaly detector is to find all anomalies among the new
observations along the time series (Xt)t≥1: for each instant t > 1, a decision is
taken about the status of Xt based on past observations: (Xs)1≤s≤t. Let H0 be
the set of all normal data of the time series, H1 be the set of all abnormal data
and R be the set of all data points detected by the anomaly detector. The FDR
(resp. FNR) introduced in Section 1 can be expressed as the expectation of the
False Discovery Proportion (FDP) (resp. False Negative Proportion (FNP)):

FDRT
1 = E[FDPT

1 ] = E

[ |H0 ∩R|
|R| ∨ 1

]
FNRT

1 = E[FNPT
1 ] = E

[ |H1 ∩R|
|H1| ∨ 1

]
The control of the FDR at a targeted level α can be expressed by FDRT

1 ≤ α.
In the following, the construction of an anomaly detector that controls the FDR
at a desired level while minimizing the FNR is studied, in the case of piecewise
stationary time series.
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2.2. High level description of the method

Using the statistical framework introduced in Section 2.1, the BreaKpoint
detection based Anomaly Detector (BKAD) is introduced in Algorithm 1
through the following steps.

1. Breakpoint detection: A breakpoint detector estimates the number, D̂t,
and the locations, noted τ̂(t)1, . . . , τ̂(t)D̂t

, of breakpoints in the current
time series Xt

1 = (X1, . . . , Xt). Consequently, the segments formed by two
consecutive breakpoints are expected to be homogeneous. In particular,
the segment formed between the last breakpoint noted b̂t and the last
observed point t is called the current segment. With each new observation,
the position of all the breakpoints is estimated again. In this way, a
breakpoint estimated at one instant t may disappear the next instant.
Thanks to dynamic programming, the computational cost of estimating
all breakpoints is limited. For more precision, see Appendix B.3.

2. Active set selection: At this stage, the points whose status is to be
reevaluated are selected. This set of points is called the active set. In the
current segment, the points whose confidence in the previously evaluated
status is too low are selected. The status of the other points remains the
same as in the previous step. Two types of uncertainty are considered.
First, uncertainty about the value of the atypicity score on short-length
segments, if the current segment is shorter than the minimal requirement
ℓη, the active set contains the entire current segment. Second, uncertainty
about the location of the breakpoints for observations that are too
recent. Otherwise it contains only the last λη data points whose segment
assignment is uncertain. The values of ℓη and λη are derived by f̂d and
f̂τ . Methods for estimating f̂τ and f̂d are described in Appendix B.1 and
Appendix B.2.

3. Calibration set selection: The calibration set is used to calculate the
p-values. Therefore, the calibration set should contain points that are
representative of the reference behavior. Ideally, only points from the
current segment should be used. But when the current segment doesn’t
contain enough points, points from other segments are used. To limit
the bias caused by the introduction of points from another distribution,
segments most similar to the current one are selected. The similarity
between segments is measured using the similarity function sim. See
Appendix B.5 for more details.

4. Atypicity Score: As described in Appendix B.4, a score a : X → R is
a function reflecting the atypicity of an observation Xt, it aims to give a
high value to anomalies. It is defined as a non conformity measure to the
segment. The Nonconformity Measure a, is a real valued function a(z,B)
that measures how different z is from the set B. A nonconformity measure
can be used to compare a data point to the rest of the segment.

su,t = a(Xu) = a(Xu, Segt(u)) ∈ R
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where Segt(u) is the unique homogeneous segment that contains Xu, at
time t. The NCM must be carefully chosen to be robust to the presence of
anomalies in the current segment and to distinguish anomalies even with
few points in this segment.

5. p-value estimator: The value of the atypicity score cannot be interpreted
directly. The atypicity score assigned to a data point is compared with
those assigned to the points in the calibration set. The probability of
observing a normal data point with an atypicity score a(X) greater than
a(Xt) is estimated. This is done using the empirical p-value estimator and
the calibration set. See Appendix B.6 for more details.

p̂e(su,t,Scal
t ) =

1

|Scal
t |

∑
s∈Scal

t

1[s > su,t]

6. Threshold Choice: In order to control the FDR of the complete
time series, the data-driven threshold is calculated from the empirical
p-values of the active set. A multiple testing procedure, inspired from
Benjamini-Hochberg, is applied to determine this detection threshold.
See Appendix B.6 for more details. This procedure was introduced in
[17]. Abnormal status (du,t = 1) is assigned to data points with a p-value
below the threshold.
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Algorithm 1 Breakpoints based anomaly detection
Require: Let T > 0 be the time series length, (Xt)T1 be the time series, breakpointDetection

implements breakpoint detector, f̂τ estimate the probability of segment assignment change
and f̂d are estimate the probability of status change when the breakpoint do not change,
sim a similarity function between segments, a is a non conformity measure, p̂e implements
the empirical p-value estimator and ε̂ selects the best threshold to be applied.

1: ℓ̂η ← argmin
{
ℓ, f̂τ (ℓ) < η

}
2: λ̂η ← argmin

{
λ, f̂d(λ) < η

}
3: for t = 1 to T do
4: τ̂(t)← breakpointDetection(Xt

1) ▷ Detection of the breakpoints
5: bt ← τ̂(t)D
6: if t− b̂t ≤ ℓ̂η then ▷ Definition of the active set
7: mt = t− b̂t
8: else
9: mt = min(t− b̂t, λ̂η)

10: end if
11: Iactive = {Xt−mt , Xt−mt+1, . . . , Xt}
12: for i = 1 ito D̂t do ▷ Definition of the calibration set
13: for u = τ̂i(t) to τ̂i+1(t) do
14: simu ← sim(X

τi+1(t)−1

τi(t)
, Xt

b̂t
)

15: end for
16: end for
17: sortedU = sort(J1, tK, sim)
18: filteredU = filter(u ∈ sortedU, du,t−1 = 0)
19: Ical ← {filteredUi, i ∈ J1, nK}
20: Scal ← {a(Xu, Seg(u)), u ∈ Ical}
21: for u in Iactive do ▷ Computation of the scores
22: su,t ← a(Xu, Seg(u))
23: end for
24: for u in Iactive do ▷ Estimation of the p-values
25: p̂u,t = p̂e(su,Scal)
26: end for
27: ε̂t = ε̂({p̂u,t, u ∈ Iactive}) ▷ Threshold estimation enabling FDR control
28: for u in Iactive do
29: if p̂u,t < ε̂t then ▷ Computation of the status
30: du,t = 1
31: else
32: du,t = 0
33: end if
34: end for
35: for u in [1, t]\Iactive do
36: if t− b̂t < m and u ≥ b̂t −m then ▷ Segment closed
37: du,t = du,b̂t
38: else
39: du,t = du,t−1

40: end if
41: end for
42: end for
43: Output: (dt,T )Tt=1 boolean list that represent the detected anomalies.
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1) New observation measured

Input time series: X1, X2, ...., Xt

2) Time series segmented

Estimated number of segments D̂t
Detected breakpoints: τ̂(t)1, ..., τ̂(t)D̂t

3) Identification of active and calibration sets

Activ set Iactive = {t−mt, ..., t}
Calibration set: Ical = {t1, ..., tn}

4) Computation of Scores

Score

Scores of the calibration set:
∀u ∈ Ical, su,t = a(Xu, Seg(u))

Scores of the active set: ∀u ∈
Iactive, su,t = a(Xu, Seg(u))

5) Pvalues and threshold estimation

rank

pvalues

P -values of active set: ∀u ∈
Iactive, pu,t = p̂(sn+u,Scal)

Estimation of the threshold:
εt = ε̂({pu, u ∈ Iactive})

6) Decision rule

Detection: ∀u ∈ Iactive, du,t = 1[pu,t < εt]

Fig 3: Description flow of Algorithm 1.

Algorithm 1 is illustrated in Figure 3, the description of the flow is given as
the following:

Step 0 (not illustrated): the minimum number of points ℓη that a segment must
contain to ensure that the atypicity score is estimated with sufficient
accuracy is estimated. Similarly, the minimum delay λη to ensure with
high probability that the assignment of a point to a segment does not
change is estimated.

Step 1 : for each time step t, a new data point Xt is observed.
Step 2 : the current time series is segmented τ̂(t). Each segment is homogeneous.
Step 3 : the data points having a status with low confidence are identified to

build the active set. If the current segment is shorter than the minimal
requirement ℓη, the active set contains the entire current segment.
Otherwise it contains only the last λη data points whose segment
assignment is uncertain. The calibration set is built by sorting the data
points according to the similarity, then n data points with the highest
similarity are added to the calibration set.

Step 4 : The calibration set and active set data points are scored, using the non
conformity measure a.

Step 5 : The p-values of the active set are estimated using the calibration set. The
multiple testing procedure is applied to the active set to obtain the data-
driven threshold, in the figure the threshold is chosen using the Benjamini-
Hochberg procedure.

Step 6 : A decision is made to give the abnormal status to the data point with a
p-value lower than the threshold. For points outside the active set, their
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status remains the same as in the previous step. If a current segment
has less than m points, it is considered a new segment. In this case, the
previous segment has just been closed by a new breakpoint. The status of
the data point preceding the new breakpoint is updated using the most
relevant historical status. This status is the last one before observing the
data of the current segment and biasing the status estimation (du,t =
du,b̂t).

The modularity of our method allows a better adaptation to the diversity of time
series. Two design choices are discussed: the use of training, calibration, and test
sets in Section 2.3 and the need to re-evaluate estimations in Section 2.4.

2.3. Training, calibration and test set.

Let’s look back at some of the design choices made for the anomaly detector
to understand the rationale behind them. Emphasis is placed on the differences
between this anomaly detector and one that analyzes stationary data. First,
let’s look at the three time series subsets that play a role in anomaly detection.
The following is a description of each:

• Training set: This is the set of points used as a reference by the atypicity
score. The atypicity score a compares the observation Xt to the training
set X train = {X1, ...., Xq}. The more Xt deviates from the points in the
training set, the more the abnormality score st = a(Xt,X train) is high.

• Calibration set: The calibration set is used by the p-value estimator to
calibrate the score obtained. A p-value estimator p̂, based on a calibration
set of scores Scal = {st−m−n, ..., st−m} containing scores of data points
generated from P0, to estimate the p-value, p̂t = p̂(st,Scal).

• Test set: The value of the threshold ε can be chosen to be data driven to
allow better control of the False Discovery Rate (FDR). The threshold is
estimated using a subseries of p-values, {pt−m+1, . . . , pt}, called the test
set. This denomination has been chosen to correspond to that of the offline
case [14].

In case of stationary data, the training set and calibration set are either
chosen from the start of the time series labeled with anomalies or evolve over
time using sliding windows. When the training set cannot be labeled, a robust
atypicity score is required. An example of a training set, calibration set and test
set, in the context of online anomaly detection is shown in the following:

X1, . . . , Xq︸ ︷︷ ︸
Training set

, . . . Xt−n−m, . . . , Xt−n︸ ︷︷ ︸
Calibration set

, Xt−m, . . . , Xt︸ ︷︷ ︸
Test set

For each new observation Xt, the function a is used to measure the atypicity of
the point relative to the training set. The value of the score cannot be interpreted
directly because the distribution of the scores under H0 is unknown. So its p-
value is estimated using the calibration set. The more the data point is atypical,
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the closer the p-value is to 0. The data-driven threshold is estimated from the
test set.

Suppose this strategy used for stationary data is applied to a time series
where a shift in the mean of the reference distribution occurs. Before the first
shift, there are no differences with the stationary case. After the shift, all data
points appear as anomalies when using the scoring function trained on the initial
training set based on data before the shift. To adapt to the shift, the training
and the calibration sets have to be rebuilt on the new segment of data in order
to reapply the anomaly detector.

X1, . . . , Xτ1︸ ︷︷ ︸
Segment 1

, Xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xτ1+q+n︸ ︷︷ ︸
calibration

, Xτ1+q+n+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2

However, it would take a lot of time to gather enough data for the training
and calibration sets. This is the reason why two improvements are suggested.
The first improvement in the case where the score is stationary across different
segments, data for the calibration set can be taken from previous segments.
For example, suppose the shift occurs in the mean and the score is the z-score:
(x− µ)/σ.

X1, . . . , Xq︸ ︷︷ ︸
train

, Xq+1, . . . , Xq+m︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1

, xτ1+1, . . . , Xτ1+q︸ ︷︷ ︸
train

, Xτ1+q+1, . . . , Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2

Furthermore, if the scoring function is robust to the presence of anomalies inside
the training set, the training can contain little amount of anomalies. The whole
segment can be used as training set. The test set can be part of the training
set, using a leave-one-out strategy. The segment length required for anomaly
detection can thus be further reduced, this constitute the second improvement.
These set constructions appear throughout Algorithm 1.

X1, ...., Xn︸ ︷︷ ︸
calibration

, . . .

︸ ︷︷ ︸
Segment 1 and train

, . . . , Xt−m......Xt︸ ︷︷ ︸
test︸ ︷︷ ︸

Segment 2 and train

2.4. The need to re-evaluate estimates

In Algorithm 1, unlike classic online anomaly detection, the status assigned to
a data point can change over time. Indeed, if all data points are generated by
the same distribution, there’s no need to perform error-prone segmentation on
the time series. Furthermore, it can be guaranteed that once the series size is
sufficient, there are enough points to accurately calculate the atypicity score
and the p-value. As a result, there’s no need to continuously evaluate the status



E. Krönert et al./Breakpoint based online anomaly detection 11

of the points after each observation. The status of a point is estimated at the
time of observation and does not change thereafter.

When the time series under study has shifts in its reference distribution,
the construction of the training and calibration sets described in the previous
section relies on the knowledge of the breakpoint locations. In practice, neither
the number of segments D, nor the positions of the breakpoints τi nor the
laws of the segments P0,i are known. All these quantities must be learned
using the breakpoint detector and the scoring function to perform anomaly
detection. Moreover, in an online context, the lack of knowledge of the whole
series influences a good estimation of these quantities and has a negative impact
on the quality of the detection. With each new observation, different situations
may occur: the position of a previous breakpoint may be adjusted or removed, or
a new breakpoint may appear. As a result, the segment assigned to a data point
changes. These new observations influence the composition of each segment and
therefore modify the score value and the status assigned to each point, especially
if the segment is small. Consequently, the values associated with a data point
Xu change over the time t. To reflect this evolution, a subscript t is added. For
example, p̂u,t is the p-value estimated for Xu at time t. Similarly du,t is the
status of the point Xu at time t. In addition, the concept of the active set is
introduced to capture the most recently observed points in an online context,
whose “abnormal” or “normal” status is uncertain as it may evolve due to the
introduction of new data points. This uncertainty arises from the possibility
that the segment to which a point is assigned may change over time, or from
the estimation of scores on small segments.

Having described the anomaly detector in this section, the following
Section 3.1 examines the anomaly detector theoretically.

3. Theoretical results

After describing the anomaly detector in Section 2, the main theoretical results
are given in this section. It is shown in Section 3.1 that under ideal assumptions
BKAD can control the FDR to a desired level α. Section 3.2 shows that the
proportion of errors committed by the detector due to the online context can
be controlled to a desired level by correctly building the active set. Section 3.3
discusses the validity of the ideal hypotheses.

3.1. Control of the FDR

We have studied the control of the FDR of an online detector in the case of
iid time series (without breakpoints) in a previous article [17]. In this section,
the results are extended to the case where the time series has breakpoints. The
various assumptions involved in the control of the FDR are introduced, followed
by the presentation of the theorem.

The first hypothesis concerns the generation of the true anomalies. To be
able to control the FDR of the whole time series from a control on subseries, it
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is necessary that the proportion of anomalies in subseries is the same as to the
rest of the series. The classical assumption is that the data points are generated
by a mixture of a reference distribution and an alternative distribution [20, 21]
.

Definition 1. [Time series with uniform proportion of anomalies] Let D
be the number of segments. Let τ1, . . . , τD be the breakpoint locations.
Let P0,1, . . . ,P0,D be the reference distributions and P1,1, . . . ,P1,D be the
alternative distributions. Let π be the proportion of anomalies. A time series
is said to have a uniform proportion of anomalies if (Au) the series describing
anomaly locations and (Xu) the series of observations are generated as follows:

∀i ∈ J1, DK,∀u ∈ Jτi, τi+1 − 1K, Au ∼ Ber(π) and Xu ∼
{
P0,i, if Au = 0

P1,i, if Au = 1

(3.1)

The second key assumption for FDR control is that breakpoints must be
identified without error. However, in an online context, breakpoint detection is
subject to some time delay. To account for this, it is assumed that there may
be errors in the most recent observations, but that beyond λ∗ data points, all
breakpoints are correctly detected.

Definition 2. [Ideal breakpoint detector with delay λ∗] Let τ be the true
segmentation. Let τ̂ be the breakpoint detector, where for all t, τ̂(t) is the
estimated segmentation of X1, . . . , Xt. τ̂ is called an ideal breakpoint detector
with delay λ∗ if the true segmentation is found with delay λ∗.

∀t ∈ J1, T K, J1, t− λ∗K ∩ τ̂(t) = J1, t− λ∗K ∩ τ (Segmentation)

As discussed in Section 2.3, it is desirable for the computed scores to follow
the same distribution for all segments to correctly estimate the p-value. For
example, if each segment i follows a reference distribution N (µi, 1), then only
the mean changes at the breakpoints and the oracle score ã(Xu, i) = |Xu − µi|
is iid. In practice, however, the mean µi is not known, so the empirical mean of
the segments is used. In doing so, the independence property between the scores
is lost. But since µ̂i converges to µi, it can be assumed that for a segment of
sufficient length, the scores can be considered iid. This idea is formalized by the
property “Score idd for minimal segment length”.

Definition 3. [Score idd for minimal segment length] Let (Xu) be a time series
satisfying Definition 1. Assumption Score assumes that there exist an oracle
score ã, such that ã(Xu, iu) = su is iid, where iu is the number of the segment to
which u belongs. Furthermore Score assumes there is a non conformal measure
a and an integer ℓ∗ such that:

∀i ∈ J1, DK,∀u1, u ∈ Jτi, τi+1 − 1K, |τi − u1| ≥ ℓ∗,

a(Xu, {Xτi , . . . , Xu1
}) = ã(Xu, i) (Score)
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This property is verified if, on the one hand, there is an oracle score whose
distribution is iid. And secondly, the non-conformity measure must converge
towards this oracle score.

Finally, an ideal version of BKAD is introduced to facilitate theoretical study.
The ideal BKAD algorithm is described in the following Definition 4. This
is an ideal version of the algorithm presented in Algorithm 1, assuming no
computational constraints and that the true labels are known when building
the calibration set. At each time step t, the scores and p-values are updated
with information from the new observed data point, then the du,t status is
changed in two cases:

• for the most recent observations,
• When a new segment is detected, the status of the last points of the closed

segment is updated.

In other cases, du,t keeps its value computed at the previous instant.

Definition 4. [Ideal BKAD] Let λ′ and ℓ′ be two parameters. Noting m =
max(λ′, ℓ′), for each t in J1, T K, the series of scores (su,t), p-values (pu,t) and
decision (du,t) of the ideal BKAD are calculated as the following.

First, the sequence of scores is computed as follows. The calculation is
presented separately for the segments identified between two breakpoints and
for the current segment:

∀i ∈ J1, D̂t − 1K,∀u ∈ Jτ̂i(t), τ̂i+1(t)− 1K,
su,t = a(Xu, {Xτ̂i(t), . . . , Xmin(τ̂i+1(t)−1,t−m)}) (3.2)

∀u ∈ Jb̂t, tK, su,t = a(Xu, {Xb̂t
, . . . , Xt−m}) (3.3)

Then, the sequence of p-values is computed as follows: p̂u,t = p̂e(su,t,St).
With St be the calibration at time step t, it is computed as follows:

St = {sh(t−m,1),t, . . . , sh(t−m,n),t} (3.4)

The calibration set is a sliding window containing the n previous scores
generated according to the reference distribution. For each t and i, h(t, i) gives
the i-th observation lower than t that satisfies the H0 hypothesis.

Finally, (du,t) the series of decisions, is computed as follows:

• The status of the most recent observations is updated:

∀u ∈ Jmax(t−m, b̂t), tK, du,t = 1[pu,t < ε̂(pt−m,t, . . . , pt,t)] (3.5)

• If needed, the status of the last points of the previous segment is updated:

∀u ∈ Jb̂t −m, b̂t − 1K, du,t = 1[pu,t < ε̂(pb̂t−m,t, . . . , pb̂t−1,t)] (3.6)

• The status of other data points remains unchanged.

du,t = du,t−1 (3.7)
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The detector associates each observed data point Xu with a status du,t that
can evolve according to the number of observed points t. The goal of the ideal
detector is that the du,t value converges to a final du,T value in a small number
of steps and that the final decision series controls the FDR at a desired level
α with a minimum of false negatives. Under assumptions Segmentation and
Score, the ideal version of BKAD, described in Definition 4, controls the FDP
of the complete series at the level of the mFDR of the subseries of length m.

Theorem 1 (False Discovery Proportion convergence). Let (X)t≥1 be a time
series of infinite size with uniform proportion of anomalies π as stated in
Definition 1. It is assumed that assumptions Segmentation and Score are
verified. Applying the ideal BKAD with λ′ = λ∗ and ℓ′ = ℓ∗ on (Xt), and
noting Rb

a the number of rejections on a subset [a, b] and FP b
a the number of

false positives on the same subset.

Rb
a = lim

t→∞

b∑
u=a

du,t

FP b
a = lim

t→∞

b∑
u=a

(1−Au)du,t

Then, the FDP, computed as FDP t
1 =

FP t
1

Rt
1

, converges and its limit can be
calculated as follows:

lim
t→∞

FDP t
1 = mFDRm

1 (3.8)

The proof of this theorem is given in Appendix A.1. It follows from this
theorem that to control the FDP at a desired α level, it is sufficient to control
the mFDR on a subseries of length m at the same level. Theorem 1 is an
extension of Theorem 4 in [17] to time series containing breakpoints where the
reference distribution of the time series changes. According to [17], the modified
BH procedure allows to control the mFDR if the p-values in the subseries are
calculated with a unique calibration set, as stated in [14].

Corollary 1. Under the same notations and assumptions as Theorem 1, let m
and ν be two integers, let n and α′ defined by:

α′ =
α

1 + 1−α
mπ

and n = νm/α′ − 1

the threshold procedure is the Benjamini-Hochberg procedure with level α′, also
called the modified Benjamini-Hochberg procedure introduced in [17].

The number of data points detected as anomaly by BH in J1,mK is noted Rm
1 .

Similarly, Rm
1 (u) represents the number of data points detected as anomaly,

when p̂u,t is replaced with 0. Assuming that the following assumption hold (for
more precision refer to [17]):

E[Rm
1 ] ≈ mπ

1− α
. and E[Rm

1 (u)] = E[Rm
1 ] + 1 (3.9)



E. Krönert et al./Breakpoint based online anomaly detection 15

then the FDP of the complete time series is controlled almost surely at the
level α:

lim
t→∞

FDP t
1 = (1− π)α (3.10)

From Corollary 1, the modified Benjamini-Hochberg procedure introduced
in [17] allows to control the FDP at the desired level α. In anomaly detection
1 − π is close to 1 since the number of anomalies is small. The almost surely
convergence of the FDP implies the control of the FDR at level α. To maximize
the performance of the anomaly detector, it is important to carefully choose the
cardinality of the calibration set. Indeed, n must be of the form νm/α′ − 1 to
ensure FDR control. See Section 3.2.2 in [17] for more details. The paper [17]
conducts experiments to test the validity of the assumptions of Eq. 3.9.

FDR control by the anomaly detector is an important property. This result
guides the choice of the threshold selection procedure and the tuning of the
calibration set cardinality in Algorithm 1, see more Appendix B.6 for more
details. However, Segmentation and Score are strong assumptions, it is
not possible to get perfect estimations, the following Section 3.2 studies the
uncertainty of the estimations.

3.2. Manage uncertainty of estimations

In Section 2.4, uncertainty about the location of breakpoints and the value of
scores leads to the need to re-evaluate the status of data points. In the previous
section, it was specified that under conditions Segmentation and Score then
the status of points need to be re-evaluated only if the current segment is shorter
than ℓ∗ or the point was observed less than λ∗ steps ago. Otherwise, since the
true breakpoint locations and segment values were known, there was no reason
to re-evaluate the data point status. In practice, however, such conditions cannot
be verified, and there are always errors in the estimates. At each step, there is a
set of data points whose status must be re-evaluated, called the active set. This
raises the question of how to define the active set in a way that minimizes the
estimation error of the status while limiting the number of re-evaluations.

Assuming that it is possible to estimate the minimum segment length ℓ̂η,
which guarantees that the score value is estimated with “good accuracy”, and
the delay λ̂η, which guarantees that the data point is “correctly assigned to a
segment”, then the “correct way” to construct the active set of data points to re-
evaluate is suggested as follows. As shown in Algorithm 2, the procedure starts
by comparing the length ℓt of the current segment with the threshold length ℓ̂η.
If the length ℓt is lower than this threshold, the whole segment is considered
as the active set since the segment does not contain enough points to estimate
the atypicity score with high precision. Otherwise, the segment contains enough
points and the source of the status change is segment reassignment. Considering
the data points whose distance to the end of the time series is less than λ̂η, the
risk of being reassigned to another segment is high. Consequently, the active
set will contain all points that are after the position t − λ̂η. In the case λ̂η is
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Algorithm 2 Computation of active set cardinality.
1: if ℓt < ℓ̂η then
2: mt ← ℓt
3: else
4: mt ← min(λ̂η , ℓt)
5: end if
6: return mt

larger than the length of the current segment, the calibration set will include
the current segment. Given mt the active set cardinality, the active set is equal
to:

Iactive = {t−mt + 1, . . . , t}
The rest of this section will clarify and prove the claims. The first step is

to define what is meant by a “correct estimate”. Starting from the observation
that in an online context, where quantities are estimated knowing only part of
the time series, it is impossible to estimate the quantity more accurately than
knowing the whole time series. For each data point Xu, the oracle status is
introduced, noted as d̃u. This is the status that Xu would have been given by
BKAD, assuming that the breakpoint locations and score values were estimated
with knowledge of the entire time series.

Definition 5 (Oracle status). The oracle status, noted d̃u, is the status of
Xu under the hypothesis that the entire time series is known. Therefore, the
breakpoint locations are estimated using the entire time series, and the atypicity
score values are estimated using the entire segments. With T , the length of the
full time series (potentially infinite).

su,T = a(Xu, {Xτ̂i(T ), . . . , Xτ̂i+1(T )}) (3.11)

d̃u = 1 [p̂e(su,T , Su) < ε(p̂e(su,T ), . . . , p̂e(su+m,T ))] (3.12)

The oracle status allows to define the the confidence score associated with an
estimated status. It is the probability that the estimated status is the same as
the oracle status. A “correct estimate” is a status associated to a high confidence
score. The “correct way” to build the active set is to ensure high confidence score
on status. This is ensured by Theorem 2 for Algorithm 2.

Definition 6 (Confidence Score). The confidence score cu,t assigns to the
decision made for the data point Xu, at time t, the probability that it remains
the same under the oracle status

cu,t = P
[
du,t = d̃u

]
Now it’s time to clarify what is meant by “good accuracy” on score and a point

“correctly assigned to a segment”. To this end, let’s start by recalling how the
status of a data point is established and introduce some notations. As described
in Definition 4, the status of each data point in the current segment is calculated
as follows in three steps, let b̂t be the last breakpoint:
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1. For all u in Jb̂t, tK compute the atypicity score su = a(Xu, {Xb̂t
, . . . , Xt−m).

2. For all u in Jb̂t, tK compute the p-value pu = p̂e(su,St)

3. For all u in Jb̂t, tK compute the status du,t = 1[pu < ε̂(pu,t, . . . , pu+m,t)].

Various situations can lead to a change in the status of some data point Xu.
Before describing these situations, it is useful to introduce the following events:

• “The status of data point Xu at step t is different than the oracle status”

Vu,t =
{
du,t ̸= d̃u

}
• “The segment to which the data point Xu is assigned at time t changes

over time”
Wu,t =

{
∃t′ > t, τ̂(t′)∩Kb̂t, uK ̸= ∅

}
(3.13)

First, if a breakpoint is detected between b̂t and u, as described by the event
Wu,t, this means that the score associated with Xu has to be computed from
a different training set. Similarly, if a breakpoint is detected between u and
u + m, it means that the data-driven threshold has to be computed from a
different subseries. For these reasons, the probability of a point changing its
assigned segment P [Wu+m,t] is of interest and if P [Wu+m,t] is low the point
is said to be “correctly assigned to a segment”. If no breakpoint is detected
between b̂t and u+m, the assignment of points u to u+m remains unchanged.
This event is recorded in Wu,t with u = u + m. Under the condition of the
Wu,t event, it is possible for the status to be different from the oracle status
if the addition of a data point in the current segment modifies the score value:
su,T = a(Xu, {Xτ̂i(T ), . . . , Xτ̂i+1(T )), with Jb̂t, t−mK ⊂ Jτ̂i(T ), τ̂i+1(T )K. For this
reason, the score is said to be known with a “good accuracy” if the probability
P
[
Vu,t|Wu,t

]
is small.

The next proposition describes when it is possible to define λη and ℓη to
bound the probabilities P [Wu,t] and P

[
Vu,t|Wu,t

]
, as required by Algorithm 2:

Proposition 1 (Stationarity). Let η > 0.

• Assuming fτ : λ 7→ P [Wt−λ,t] is decreasing to 0 and does not depend on
t.
Then, there exists λη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P [Wu,t] ≤ η. (3.14)

The smallest value respecting this property is noted λ⋆
η .

• Assuming fd : ℓ 7→ P
[
Vu,t|Wu,t, ℓt = ℓ

]
is decreasing to 0 and does not

depend on t. Then, there exist a segment length ℓη such that:

∀t ∈ J1, T K,∀u ∈ J1, tK, ℓ ≥ ℓη, P
[
Vu,t|Wu,t, ℓt = ℓ

]
≤ η. (3.15)

The smallest value of ℓη is noted ℓ⋆η.
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The conclusions of Proposition 1 follow directly from the definition of
convergence to 0. Before considering the consequences of this proposition
in Theorem 2, the validity of the assumptions is discussed. The function
fτ : λ 7→ P [Wt−λ,t] gives the probability that the segment assigned to Xt−λ

changes as a function of the distance λ from the last observation. It is assumed
to be decreasing because the probability of missing a breakpoint decreases
with the number of points. The function fd : ℓ 7→ P

[
Vu,t|Wu,t, ℓt = ℓ

]
gives

the probability of changing the status of a point conditional on the assigned
segment remaining unchanged, as a function of the length ℓ of the segment. It
is assumed to decrease with the number of points inside the segment. Assuming
that the probabilities P [Wt−λ,t] and P

[
Vu,t|Wu,t, ℓt = ℓ

]
do not depend on t,

it is possible to use the same model for the entire series. Thus, there is no need
to recalculate these probabilities for each observation time.

According Theorem 2, by re-evaluating only the points in the active set,
defined by Algorithm 2 using λη and ℓη, the final status of a data point will be
the same as the oracle status with a high probability.

Theorem 2. Let η be the confidence threshold, λη and ℓη are defined as in
Proposition 1. Let m be the integer defined by m = max(λη, ℓη).

It is assumed that:

• the probability to move the latest breakpoint beyond m is lower than η.

P

(
∃t′b̂t′ < b̂t and |b̂t′ − t′| > m

∣∣∣∣|bt − t| < m

)
≤ η (3.16)

• The probability of changing the segment assignment depends only on λu,t =
t − u, the distance between Xu and the end of the time series t. This
assumption can be used to calculate the probability of changing the segment
assignment within the previous segments (segments that are not the current
segment):

P

(
∃t′ > t, τ̂(t′)∩Kτ̂i(t), uK ̸= ∅

∣∣∣∣t− τ̂(t) = λ

)
= P

(
∃t′ > t, τ̂(t′)∩Kb̂t, uK ̸= ∅

∣∣∣∣t− b̂t = λ

)
(3.17)

Then, applying the ideal BKAD as stated in Definition 4 with the parameters
λ′ = λη and ℓ′ = ℓη, for each u, the probability that the final status is different
than the oracle status is lower than η:

P(du,T ̸= d̃u) ≤ η (3.18)

Furthermore, introducing the following notation: For all t, for all u, let
τ̂ :u(t) = {τ̂i(t), τ̂i(t) < u} and τ̂u+q1:(t) = {τ̂i(t), τ̂i(t) > u+ q1}.

Assuming that there is a number q1 such that

∀u, t, τ̂(t):u ⊥ τ̂u+q1:(t) (3.19)
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Then, the proportion of status that are different between the final status and
the oracle status is lower than η:

lim
t→T

1

t

t∑
u=1

1[du,t ̸= d̃u] ≤ η (3.20)

The proof of Theorem 2 can be found in Appendix A.4. The results
of Theorem 2 support the way the active set is built at the beginning of
Algorithm 1. Note that the first result applies locally to one data point. The
second result applies to the entire time series. However, the true values of λη

and ℓη are not known, so they need to be estimated. This problem is addressed
in Appendix B.1 and B.2. Furthermore, this result is for an ideal version of
BKAD, which limits its scope in practice. The following section discusses the
validity of the various hypotheses.

3.3. Discussion about theoretical hypotheses

The previous theoretical results prove that under ideal conditions BKAD allows
to detect anomalies with a control on the FDR. Also the strategy consisting in
updating only the active set ensures that the final status are the same as knowing
the complete time series, with a low proportion of errors. These ideal conditions
cannot be verified in practice. The approach in this paper is as follows: each
component of the BKAD detector is studied to find the best parameters. Then,
the detector is empirically tested to see under which conditions it succeeds in
detecting anomalies with a control on the FDR. Now, the different assumptions
are examined, their validity is discussed, and the properties that the components
must verify are deduced.

First, the assumption Segmentation cannot be verified. It is impossible
to ensure that a breakpoint detector estimates the location of all breakpoints
with perfect accuracy, even with a delay of λ > 0. To get closer to these
working hypotheses, a powerful breakpoint detector is needed. BKAD uses KCP
[22] because it has several interesting properties: the number of breakpoints is
estimated by model selection, it can detect changes in any feature thanks to
kernels and it does not require parametric assumptions that are difficult to
verify. For more details, see the dedicated Appendix B.3.

The first part of Score, which assumes that there is an iid oracle score, is
always verified. Indeed, for each segment i in J1, DK, the reference distribution
is noted P0,i and for each normal data point of the indices u in this segment:
ã(Xu, i) = PX∼P0,i

(X ≤ Xu) follows a uniform distribution U(0, 1). However,
there is not always uniqueness of such an oracle score. For example, if the
changes occur only in the mean, then by noting µi the mean of the ith segment,
|Xu−µi| is also an oracle atypicity score that verifies the iid property. However,
in practice, the oracle score has to be estimated correctly, which can be difficult
depending on the oracle score. It is not possible to verify the property Score.
Indeed, it is not possible to know the exact value of the oracle atypicity score.
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To approximate this property, one needs a measure of nonconformity a that
converges as quickly as possible to the value of the oracle atypicity score. As
described in Appendix B.4, the non conformity measure must be robust and
efficient. As a consequence of the fact that the estimated atypicity scores are not
iid, the scores from different segments cannot be rigorously used to construct
the calibration set. To limit this issue, the calibration set is built from the
segments with the most similar distribution to the one of the current segment.
This mechanism is described in Appendix B.5.

Another assumption of the ideal BKAD in Definition 4 is that the calibration
set is built using only normal data points, which requires knowledge of the
true labels. In the Algorithm 1, this is obtained by using the labels previously
estimated by the anomaly detector. This exposes the calibration set to
contamination from undetected anomalies. It can also bias the calibration set
by incorrectly removing false positives. This may limit the ability of BKAD to
control the FDR. From a theoretical point of view, this leads to a dependency
between the calculation of the p-value at time t and the state of the data points
at the previous time t− 1, which complicates the analysis.

Finally, in the previous section, the values of λ∗
η and ℓ∗η were obtained from

the functions fτ and fd. These quantities are needed to reduce the uncertainty
of the BKAD estimates. In Appendix B.1 and B.2, estimators of fτ and fd are
introduced.

The different components of the detector are discussed and described in more
detail in Appendix B. The next section 4 empirically evaluates the performance
of the detector.

4. Empirical Assessment of FDR control

An anomaly detector based on breakpoint detection has been proposed in
Section 2. The core components are described separately in the Appendix. The
theoretical results are introduced in Section 3. In this section, the empirical
performance of the whole anomaly detector is assessed. The experiments are
conducted in two steps. First, the anomaly detector is applied to several
synthetic time series. The flexibility of the detector is evaluated and the roles
played by the kernel and the atypicity score are highlighted. Then, the anomaly
detector is applied by replacing some estimators with true knowledge in order to
explore more deeply the reasons for the errors made by the anomaly detector.
More details about the experiments can be found in the Supplementary
Materials. Furthermore, in the next section, the anomaly detector is evaluated
against alternative anomaly detectors.

An experimental framework is designed to conduct the experiments and to
evaluate different aspects of the anomaly detector. The framework described in
Section 4.1 is adapted for different time series and anomaly detector parameters.
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4.1. Experimental framework

Let’s consider a time series generation process and an anomaly detector. The
following steps are repeated on different samples of the time series:

1. Generate the time series, according to the the first reference distribution
P0,1, the proportion of anomalies π, the alternative distribution P1,1

and the transition rule describing how the parameters of the reference
distribution will change between two segments.

(a) The number D of breakpoints is generated by Exp(T/θ), where θ is
the average distance between two breakpoints.

(b) The position of the D breakpoints follows U([1, T ]). In addition to the
previous step, this implies that the process of breakpoint positions is
a Poisson process.

(c) The rule is applied iteratively to get the reference and alternative
distributions for each segment. Two types of rules are considered:

• Breakpoint in the mean with a jump size of ∆. For each i in
J1, D− 1K, let µi be the mean of the reference distribution in the
ith segment. The mean of a segment is equal to the mean of the
previous one shifted with ∆.

∀i ∈ J1, D − 1K, µi+1 = µi + ζi∆ (4.1)

With ζi, a random variable following the Rademacher
distribution and defining the sign of the jump.

• Breakpoint in the variance with a jump scale size of ∆. For
each i in J1, D − 1K, let σi be the standard deviation of the
reference distribution in the ith segment. The standard deviation
of a segment is equal to the standard deviation of the previous
segment multiplied or divided by ∆.

∀i ∈ J1, D − 1K, σi+1 = exp(ζi ln∆/2) ∗ σi (4.2)

With ζi, a random variable following the Rademacher
distribution and defining if the standard deviation is multiplied
or divided by ∆.

(d) The position of anomalies are generated by a Bernoulli distribution:
At ∼ Ber(π)

(e) All the values of the time series are computed as follows:

∀i ∈ J1, DK, ∀t ∈ Jτi, τi+1J,

{
Xt ∼ P0,i, if At = 0

Xt ∼ P1,i, otherwise

2. Apply the anomaly detector on the generated time series. Three core
components need to be defined:
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(a) the appropriate kernel to identify the breakpoints using KCP,

(b) the scoring function a

(c) and parameters n for the length of the calibration set and λ and ℓ to
define the active set.

3. Compare the detections with true anomalies and calculate the proportion
of false discoveries and of false negatives.

The two criteria FDR and FNR are estimated as the average of the FDP and
of the FNP over all repetitions.

The experimental framework is used in different experiments: In Section 4.2,
different synthetic time series are tested and analyzed. In Section 4.3 the causes
of underperformances of the anomaly detector are studied. Furthermore, in
Section 5, the proposed anomaly detector is compared to alternative anomaly
detectors using various public data collections. Finally, in the Supplementary
Material in Section 7, the effect of hyperparameter choice on performance is
evaluated.

4.2. Evaluation on different scenarios

The goal of this section is to check if the breakpoint based anomaly detector is
able to detect anomalies with a controlled FDR considering different scenarios of
time series. In these different scenarios, the reference distribution, the alternative
distribution that generates the anomalies, and the shifts between two segments
vary. The parameters of the anomaly detectors must be adapted to each scenario.
Special attention should be paid to the choice of the non-conformity measure
and the kernel.

The first scenario considers Gaussian time series with breakpoints in the mean
and anomalies in the tail of the distribution. This simplest scenario is used as
a reference before evaluating a more complex one. In the second scenario, a
Student’s distribution is considered. The goal is to evaluate BKAD on a heavy-
tailed reference distribution. The third scenario considers a Gaussian mixture
time series with breakpoints in the mean and anomalies in the center of the
distribution between the two Gaussian modes. In this case, the detector is
checked for anomalies that are not in the tail of the distribution. The 4th scenario
evaluates the detector on heteroscedastic time series, considering Gaussian time
series with breakpoints in the mean and variance simultaneously. In the 5th
scenario, Gaussian data with breakpoints in the variance are used to evaluate
how the anomaly detector can be applied with changes in the variance, which is
a more difficult case study. The last scenario uses 2D Gaussian time series with
breakpoints in the covariance to evaluate the detector on multidimensional data.
Indeed, the breakpoint in the covariance ensures that breakpoints and anomalies
cannot be detected by applying the anomaly detector to each dimension.

Anomalies at the tail of the distribution are detected using the z-score. In
the third scenario, anomalies occur close to the mean of the distribution, and
therefore cannot be detected by z-scores. Therefore, the kNN score introduced
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in [23], is used. Indeed, in this case, anomalies can be characterized by their
distance from other segment data. For 2D data, the Mahalannobis distance is
applied to reflect the distribution of the data.

For the breakpoint detector, the Gaussian kernel with bandwidth estimated
using the median heuristic is considered, as presented in Appendix B.3. This
kernel enables accurate breakpoint detection in scenarios where the variance
remains constant. In the case of heteroscedasticity in time series, where the
variance changes between two segments, the median heuristic may be more
limited. Indeed, time series will have parts where the variance is very low
and parts where it is very high. The problem is that a kernel may be good
at detecting breakpoints in a low variance context, but have difficulty when the
variance is high, and vice versa. It was found to be more advantageous to use
a kernel written as the sum of two kernels, one for detecting breakpoints when
the variance is low and another for detecting breakpoints when the variance is
high.

According to preliminary experiments in Sections B.1 and B.2, the active set
is built using λ̂ = 100 and ℓ̂ = 100. Based on the rules defined in Appendix B.6,
Benjamini-Hochberg is applied to the active set with the modified parameter
α′ = α

1+ 1−α
mπ

. The calibration set is built according to the rules of Appendix B.6,
where the value n is chosen equal to m/α′−1. Two cases are considered, α = 0.2
and α = 0.1. In the case α = 0.2, then the following values are chosen α′ = 0.1
and n = 999. In the case α = 0.1, then α′ = 0.05 and n = 1999.

The results of the experiment are summarized in Table 1. Each row
corresponds to a scenario for which the results of 50 time series have been
averaged to estimate the FDR and FNR, with the standard deviation in
parentheses. In most of the cases, the FNR is close to 0. This is necessary
to ensure the FDR control with the modified BH procedure according to
Corollary 1. For example, in the Gaussian scenario with α = 0.2, the FNR is
equal to 0.039, and the FDR remains close to the desired α level. However, it is
always slightly higher than alpha. In fact, for the Gaussian scenario with mean
shift, it is equal to 0.23 instead of α = 0.20, as shown in Table 1. The FDR

Scenario α FDR (std) FNR (std)

Gaussian data + shift in mean 0.1 0.134 (0.117) 0.123 (0.213)
Gaussian data + shift in mean 0.2 0.242 (0.121) 0.039 (0.124)
Student data + shift in mean 0.1 0.158 (0.097) 0.059 (0.196)
Student data + shift in mean 0.2 0.289 (0.129) 0.026 (0.123)
MoG data + shift in mean 0.1 0.118 (0.102) 0.246 (0.303)
MoG data + shift in mean 0.2 0.202 (0.152) 0.137 (0.220)
Gaussian data + shift in mean and var 0.1 0.134 (0.112) 0.057 (0.125)
Gaussian data + shift in mean and var 0.2 0.253 (0.125) 0.018 (0.061)
Gaussian data + shift in var 0.1 0.229 (0.173) 0.298 (0.314)
Gaussian data + shift in var 0.2 0.282 (0.144) 0.225 (0.260)
Gaussian data + shift in cov 0.1 0.126 (0.092) 0.054 (0.145)

Table 1
FDR and FNR of BKAD according to the time series generation scenario.
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is more or less controlled in most scenarios when the distribution is varied:
Student, Gaussian mixture, or the atypicity score: z-score, kNN. For shift in
variance, the anomaly detection shows a poor accuracy, since there is a lack
of control of the FDR and the FNR is very high. This shows that it is more
difficult to detect a breakpoint in the variance than in the mean. The variance
of the FDP and FNP is high, of the order of 0.1, which is due to the fact that
the result of Theorem 1 is asymptotic and does not guarantee control over
series of finite length (here 3000 points).

4.3. Diagnose the causes of underperformance

Our breakpoint based anomaly detector has been tested on different time
series data in Section 4.2, it shows good performances to ensure low FNR
with an almost controlled FDR in different cases. However, the FDR is never
completely under control, and is always slightly higher than expected. This
section examines why this lack of complete control of the FDR occurs by
replacing some estimators with knowledge of the true values and evaluate the
effect on the FDR. The BKAD is applied to the synthetic time series, where
some estimators are replaced by true knowledge, called oracle version. Three
estimators are chosen to be replaced by their oracle versions:

• The breakpoint estimator: can be replaced by the true breakpoint position,
• The mean and standard deviation estimators: can be replaced by their

true values,
• The anomaly removed: As described in Appendix B.5 in the main article

when building the calibration set, estimated anomalies are removed to
avoid biasing the estimation of the p-values. The oracle version of this is
to remove the true anomalies.

The performances of the different detectors are evaluated on a different laws
generating the time series (Student, Gaussian, Mixture of Gaussians noted
MoG). Table 2 gives a synthetic view of the results for Gaussian data. Each row
represents a different detector. For each component, if the quantity is estimated,
it is marked with “E”, if the true value is used, it is marked with “O”. Statistically
significant differences according to a permutation test [24] are marked in bold.
The complete empirical results can be found in Section 6 of the Supplementary
Material.

According Table 2, it is clear that the control of the FDR is worse when the
calibration set is built based on detected anomalies. Indeed, the false positives
and false negatives detected at time t will badly affect the detection at time
t+ 1. Despite the fact that a robust score is chosen, these observations lead to
a conclusion that the p-value estimator is sensitive to:

• False negatives: If there is a missed anomaly in the calibration set, the
p-values of all data points in the active set will be underestimated. This
situation leads to generate more false negatives, which will confound the
calibration sets of subsequent instants.
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α Breakpoint Mean-and-
variance

Anomaly
removing FDR FNR

0.1 E E E 0.134 0.123
E E O 0.104 0.105
O E O 0.100 0.091
O O E 0.165 0.041
O O O 0.121 0.048

0.2 E E E 0.242 0.039
E E O 0.182 0.054
O E O 0.198 0.032
O O E 0.301 0.018
O O O 0.197 0.018

Table 2
Anomaly detector performances with (“O”) and without (“E”) knowledge of true breakpoints,

true mean and variance or true anomalies for removing anomalies on Gaussian data.

• False positives: The p-value estimator is also sensitive to false positives
due to the way the calibration set is constructed. As a reminder, detected
anomalies are replaced by a random points belonging to a segment similar
to the current segment. The problem arises when an anomaly is falsely
detected. Generally speaking a false positive is a point with a high score.
When a false positive is replaced with a random point, its score will be
statistically lower. Thus, removing the false positives from the calibration
set reduces the average score in the calibration set and consequently
reduces the p-values of the data points in the active set. This leads to
more false positives, which will affect the construction of calibration sets
at later times.

On the other hand, estimating the position of breakpoints or the mean and
variance have little impact on the detector’s performance.

The conclusion of this analysis is that most of the underperformance relative
to the ideal case, such as higher than expected FDR, is explained by the non-
robustness of the empirical p-value estimator and the contamination of the
calibration set by false negatives and false positives.

5. Evaluation against competitors

After studying the conditions that must be met to ensure high detection
performance and control of the FDR in the previous sections, the breakpoint
detection based anomaly detector (BKAD) proposed in this paper is compared
to alternative anomaly detectors from the literature on different data
collections. The goal is to determine if and under which conditions the new
anomaly detector can improve the state of the art.
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5.1. Methods

BKAD is evaluated against state-of-the-art anomaly detectors presented in
the review [25]. The most representative unsupervised anomaly detectors for
univariate time series data are selected. The implementation of [25] is used, with
default hyperparameters. The detectors selected are those that theoretically
capable of detecting anomalies in piecewise iid data. These algorithms fall into
two categories: the one that build a context such as a segment, a sliding window
or a cluster, and on the other that use subseries instead of single points. On the
other hand, predictive or regression models are of little interest on piecewise
iid data.

Median [26] A sliding windows is used to estimate the median and dispersion
parameter of last observations. The atypicity score used is the z-score. The main
difference with the BKAD approach is the use of sliding windows instead of using
a breakpoint detector to define the segments.

CBLOF [27] Cluster based local outlier factor identifies the cluster to which
individual points belong, then it computes the local outlier factor associated
with that cluster. The use of clusters is similar to that of breakpoints in that it
attempts to group similar points together, but has no temporal notion.

Sub. LOF [28] The method divides the time series in subsequences and uses
Local Outlier Factor on the subsequences set.

LOF [28] The method applies Local Outlier Factor to punctual data.
Interesting to compare with “Sub. LOF” and “CBLOF”.

Sub. IF [29] The method divides the time series in subsequences and uses
Isolation Forest on the subsequences set.

DWT [30] Method based on wavelet to remove noise. Atypicity score is
computed using the Gaussian distribution on the Discrete Wavelet Transform,
with Haar wavelet. Anomalies can be detected as abnormal Haar coefficients.

FFT [31] Method based on Fast Fourier Transform. It uses Local outlier factor
on the Fast Fourier Transform of the subsequences. Anomalies can be detected
as abnormal frequency coefficients.

5.2. Threshold

After applying these different methods, an atypicity score is obtained. This
score is sufficient to compute the AUC metric, but does not allow detection
and calculation of the FDR and FNR without thresholds. To calculate these
thresholds, the method introduced in [17] is used, which guarantees FDR control
at a fixed α level in case the time series of scores is iid. The threshold of BKAD
is chosen as described in Appendix B.6. Here α is set to 0.2 for all detectors and
time series.
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5.3. Data

To ensure a comprehensive analysis, different kind of time series data are
considered:

• Time series with breakpoints
• Time series with seasonality
• Residual from time-series with seasonality
• Real data time series

Time series with breakpoints The time series with breakpoints are
generated according to the experimental design presented in Section 4.1
with the following hyperparameters: the reference distribution is Gaussian
P0,1 = N (0, 1) and all anomalies follow the law of 4ζ, where zeta follows
the Rademacher distribution. Anomalies are generated with a proportion of
π = 0.01. The breakpoint positions are generated according to the Poisson
process with an average segment length of 125. To avoid having too few
segments, breakpoints are removed if a segment has less than 100 points. For
the benchmark breakpoint-mean, breakpoints occur in the mean with a ∆ = 2.
And, for the benchmark breakpoint-var, breakpoints occur in the variance with
∆ = 1.5.

Time series with seasonality To study how the anomaly detector behaves
on time series not following the statistical model introduced in Section 2.1, time
series with seasonality and trend are considered.

Let the following components be given:

1. Rt ∼ N (0, σ), the residual, σ = 1
2. At ∼ B(π) the abnormality variable, π = 0.01
3. S1,t = A1 sin(2πf1t) the seasonality with long period, where the amplitude

A1 and the frequency f1 are random variables, A1 ∈ {1, 3, 5} and f1 ∈
{5, 10, 20}

4. S2,t = a21A1 sin(2πw21f1t) the seasonality with short period, where
the frequency multiple w21 and the amplitude attenuation are random
variable, a21 ∈ {0.5, 0.3, 0.1} and w21 ∈ {2, 3, 5}

5. σt = sin(t) + 1.5 the seasonal variance
6. Tt = Bt the linear trend

The following collections are generated:

1. simple-seasonality : Xt = S1,t + (1−At)Rt +Atζt∆
′

2. complex-seasonality : Xt = S1,t + S2,t + (1−At)Rt +Atζt∆
′

3. variance-seasonality : Xt = ((1−At)Rt +Atζt∆
′)σt

4. trend-seasonality : Xt = Tt + St + (1−At)Rt +Atζt∆
′

Residual from time series with seasonality In practical applications, to
simplify the detection of anomalies, seasonality and other predictable patterns
are removed during a preprocessing step. To evaluate how the anomaly detector
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performances are affected by this preprocessing step, a new benchmark is
built from the residuals extracted for each time series in the “Time series
with seasonality” benchmark. In this experiment, the residual is extracted
by removing the trend and the seasonality using the “seasonal_decompose”
function from the Python library statsmodels.

Time series from real data: The anomaly detectors are evaluated on various
time series datasets coming from different sources. The Numenta Anomaly
Benchmark (NAB) from [32], the dodger dataset from the UCI at [33] and Mars
Science Laboratory (MSL) and Soil Moisture Active Passive (SMAP) provided
by NASA in [34] are used to build the complete benchmark.

5.4. Metrics

To measure the performances of different anomaly detectors, two metrics are
reported: The Area Under Curve (AUC)[35, 36] in Table 3 and the FDR/FNR
in Table 4. The advantage of the Area Under the Curve (AUC) is to be able
to evaluate the anomaly detector without evaluating the threshold selection
method. However, this can also be a limitation for real use, since a threshold is
needed for practical applications. To determine the ability of anomaly detectors
to control the false positive rate to a desired level while keeping the false negative
rate low, the FDR and FNR metrics are reported. The disadvantage of these
metrics is that it can be difficult to compare two detectors if one performs better
on FDR and the other on FNR. Furthermore, they only take into account values
for a single threshold, which have to be precised for detectors that return only
an atypicity score. The threshold policy used for this experiment is the one
implemented in [17], as stated in Section 5.2.

5.5. Results and analysis

The results are summarized in two tables. Table 3 represents the AUC metric
according to benchmarks and anomaly detectors and Table 4 represents the
FDR and FNR metrics.

The BKAD detector gets the highest AUC scores on series with breakpoints
(“Breakpoint in mean” and “Breakpoint in variance”), as shown in Table 3.
It can also be seen that this detector remains efficient even when the time
series contain seasonality (“simple seasonality”, “complex seasonality”,...). This
shows the benefits of splitting the time series into simpler segments based on
breakpoints, even if it does not follow the model introduced in Section 2.1. The
results show the importance of preprocessing the data. Indeed, the performance
of the detector increases when it is applied to the residuals of the seasonal series
instead of the original seasonal time series, as shown for “Res. simple seasonality”
or “Res. complex seasonality”. Nevertheless, Table 4 shows that it can be difficult
to obtain control of the FDR and FNR even for the best AUC score. This
illustrates that FDR control relies heavily on the (piecewise) iid hypothesis.
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Benchmark BKAD (Ours) Median CBLOF Sub. LOF LOF Sub. IF DWT FFT

Breakpoint in mean 1.00 0.95 0.80 0.65 0.70 0.64 0.61 0.83
Breakpoint in variance 0.98 0.89 0.78 0.60 0.56 0.52 0.54 0.16

Simple seasonality 0.88 0.98 0.73 0.71 0.68 0.56 0.57 0.72
Complex seasonality 0.94 0.98 0.85 0.72 0.79 0.57 0.55 0.64
Seasonality in variance 1.00 0.99 0.92 0.56 0.87 0.54 0.57 0.71
Seasonality and trend 0.88 0.98 0.67 0.71 0.63 0.53 0.57 0.72

Res. simple seasonality 0.99 0.98 0.99 0.69 0.92 0.62 0.57 0.89
Res. complex seasonality 1.00 0.99 1.00 0.71 0.94 0.63 0.56 0.91
Res. seasonality and trend 0.99 0.98 0.99 0.69 0.93 0.61 0.56 0.89

DODGER 0.56 0.30 0.48 0.54 0.51 0.67 0.65 0.30
NAB 0.57 0.45 0.54 0.67 0.48 0.66 0.73 0.20
NASA-MSL 0.57 0.56 0.68 0.61 0.56 0.84 0.81 0.56
NASA-SMAP 0.60 0.39 0.61 0.69 0.51 0.83 0.90 0.47

Table 3
AUC metric according to the anomaly detectors on benchmarks.

BKAD(Ours) Median CBLOF Sub. LOF LOF Sub. IF DWT FFT
Benchmark FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR FDR FNR

Breakpoint in mean 0.25 0.04 0.07 0.48 0.83 0.52 0.99 0.81 0.52 0.70 0.99 0.44 0.99 0.01 0.93 0.46
Breakpoint in variance 0.36 0.17 0.19 0.36 0.72 0.37 0.95 0.54 0.72 0.71 0.91 0.58 0.93 0.28 0.89 0.27
Simple seasonality 0.34 0.47 0.21 0.45 0.62 0.72 0.99 0.73 0.48 0.76 0.99 0.96 0.97 0.30 0.92 0.58
Complex seasonality 0.27 0.44 0.19 0.44 0.41 0.64 0.99 0.68 0.37 0.64 0.99 0.95 0.95 0.43 0.95 0.65
Seasonality and trend 0.50 0.46 0.22 0.45 0.77 0.78 0.99 0.77 0.58 0.86 0.79 0.89 0.97 0.11 0.92 0.57
Seasonality in variance 0.34 0.35 0.10 0.23 0.32 0.48 0.99 0.86 0.33 0.50 0.95 0.94 0.95 0.20 0.93 0.63
Res. simple seasonality 0.26 0.42 0.19 0.56 0.25 0.41 0.99 0.77 0.39 0.70 0.99 0.94 0.95 0.35 0.93 0.61
Res. complex seasonality 0.17 0.15 0.12 0.31 0.21 0.14 0.99 0.72 0.58 0.80 0.99 0.92 0.97 0.32 0.93 0.45
Res. seasonality and trend 0.26 0.43 0.20 0.57 0.29 0.41 0.99 0.79 0.44 0.73 0.97 0.94 0.95 0.36 0.92 0.64
dodger 0.41 0.66 0.79 0.99 0.97 1.00 0.71 0.92 0.89 0.09 0.39 0.91 0.70 0.55 0.89 0.09
NAB 0.61 0.91 0.62 0.85 0.50 0.82 0.64 0.74 0.67 0.58 0.55 0.62 0.77 0.27 0.87 0.25
NASA-MSL 0.78 0.91 0.62 0.84 0.45 0.72 0.62 0.82 0.71 0.72 0.49 0.70 0.65 0.42 0.68 0.49
NASA-SMAP 0.69 0.92 0.76 0.63 0.70 0.52 0.75 0.64 0.80 0.27 0.65 0.44 0.83 0.05 0.80 0.33

Table 4
FDR and FNR metrics according to the anomaly detectors on benchmarks, (α = 0.2).

Finally, BKAD is not very efficient on tested real data such as (“DODGER”,
“NAB”, ... ) containing anomalies which do not follow the formalism introduced
in Section 2.1. The most efficient methods: “Sub. IF” and “DWT”, define an
atypicity score on subseries instead of data points. An interesting approach for
the future might be to find a better preprocessing to apply it to real data and
improve the anomaly detection.

6. Conclusion

In this paper, an online anomaly detector has been developed that detects
anomalies and controls the FDR at a given level α on piecewise stationary
time series. The research was conducted to address three challenges:

• Changes in the reference distribution: the changes are detected using
a breakpoint detector. Anomalies are retrieved in each homogeneous
segment by defining an atypicity score and a calibration set.

• Uncertainty: Due to the online nature of the detection, the abnormality
status of the data points is uncertain. The notion of an active set is
introduced to collect the data points that need to be re-evaluated since
there status is too uncertain.

• and control of the FDR: modified Benjamini-Hochberg procedure is
applied to the active set to control the FDR on the entire time series.
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The result of our research is a modular anomaly detector where all core
components have been studied through theoretical or empirical analysis to
optimize their performance. The detector has been evaluated on a variety
of scenarios to understand its strengths and limitations. It demonstrates
state-of-the-art capabilities to detect anomalies on time series presenting a
distribution shift. The main drawback of our method is that it relies on
non-robust estimation of p-values. Also, the piecewise stationary hypothesis
is often not respected in practice. Further work concerns the integration of a
robust p-value estimator and the development of a preprocessing step to apply
the anomaly detector to time series that are not piecewise stationary.
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Appendix A: Proofs

A.1. Proof of Theorem 1

Proof of Theorem 1. Similar to the proof of Theorems 3 and 4 of [17], the FDP
is written as the ratio of Rt

1 and FP t
1 .

FDP∞
1 = lim

t→∞
FDP t

1 = lim
t→∞

FP t
1

Rt
1

= lim
t→∞

∑t
u=1(1−Au)du,t∑t

u=1 du,t
(A.1)

In the next part of the proof the numerator and denominator are made to
converge so that the mFDR expression appears. The main steps of the proof
are:

1. First, it is shown that for any u, as long as t is large enough, then su,t =
ã(Xu, iu).

2. Then, it is deduced that for any u, as long as t is large enough, then pu,t
are identically distributed.
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3. Similarly, it is shown that for any u, as long as t is large enough, then du,t
are identically distributed.

4. Finally, since du,t is identically distributed and respects a mixing property,
an ergodicity theorem allows to conclude that 1/tRt

1 converges to E[d1,∞]

Some notations are introduced:

• Qs the distribution of ã(Xu, iu).
• Qp the distribution of the p-value p = p̂e(s,Scal), when s and all elements

of Scal follow Qs and are independent.
• Qd the distribution of the status d = 1[p1 < ε(p1, . . . , pm)], when all p-

values p1, . . . , pm are computed according to the same calibration set and
follow Qp.

Step 1: The scores are iid distributed for t sufficiently large.
Let u ∈ J1,∞K. u belongs to a unique true segment i, delimited by the

breakpoints τi and τi+1.
When t > u + λ∗, according to (Segmentation) τ̂(t) ∩ J1, uK = τ ∩ J1, uK,

then Eq. 3.3 gives:

su,t = a(Xu, {Xτi , . . . , Xmin(τi+ℓ∗,t)}) (A.2)

Furthermore, when t > u +max(λ∗, ℓ∗) = u +m, there are more than ℓ∗ data
points in the segment, then (Score) gives:

su,t = a(Xu, {Xτi , . . . , Xτi+ℓ∗}) = ã(Xu, i) (A.3)

The true score ã(Xu, i) is iid by assumption. For these reasons su,t follows Qs.
Since the p-value is calculated by comparing the score of a data point with the

scores from a calibration set, it can be deduced that the p-values are identically
distributed.

Step 2: The p-values are identically distributed for t sufficiently
large.

Let u be in J1, T K, according to Eq. 3.4 the p-value is estimated as the
following:

pu,t = p(su,t,St) (A.4)
with St = {sh(t−m,1),t, . . . , sh(t−m,n),t} (A.5)

By definition of h: h(t − m, j) ≤ t − m, and thus according to the previous
paragraph, all elements of St are identically distributed. All p-values associated
with a score that follows the Qs distribution follow the same distribution. In
particular, all p-values pu,t follow the same distribution Qp, as soon as t > u+m.

The status of a point depends only on the p-value of the point and the p-
values used to calculate the data-driven threshold. It has been shown that the
p-values follow the same distribution. In the next paragraph, it is deduced that
the statuses are also identically distributed.

Step 3: The decision series (du,t) is identically distributed for t
sufficiently large.
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Let i be in J1, DK and defining a segment Jτi, τi+1−1K. The cases are separated
according to the position of the point in the real segment: at the end of the
segment or in the middle of the segment.

Case 1: The data point belongs to the end of the segment, u ∈ Jτi+1 −
m, τi+1 − 1K. Two steps are required. First it is shown that du,t verifies the
property for t = u+m, then it is shown that for any t > u+m, du,t = du,u+m.

First, let t = τi+1 + m. According to (Segmentation): τ̂(t) ∩ J1, τi+1K =
τ ∩ J1, τi+1K. Thus, the current segment at time t is equal to Jτi+1, tK and has
exactly m points. Then, since the rule of closing the previous segment from
Eq. 3.6 is applied, it gives

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sτi+1−m,t,Scal,t), . . . , p̂e(sτi+1−1,t,Scal,t))]

Since all score variables sτi+1−m,t, . . . , sτi+1−1,t follow the distribution Qs,
according to (Score), and all p-values are computed using the same calibration
set Scal,t, then du,t follows Qd.

Then, for t > τi+1 +m, du,t = du,t−1. This implies that the limit value du,∞
is equal to du,τi+1+m which follows the distribution Qd.

Case 2: The data point belongs to the middle of the segment, u ∈
Jτi, τi+1 −mK.

To prove that du,t follows the distribution Qd for all t ≥ u + m, we have
three steps. First, it is shown that the property holds for t = u+m. Then it is
shown that the status du,t may possibly be modified for t in Ku +m,u + 2mK,
but that du,t always follows the Qd distribution. Finally, it is verified that du,t
is constant from t > u+ 2m.

First, let t = u + m. Although by hypothesis Ju, u + mK contains no true
breakpoints, the τ̂t detector can detect a false breakpoint. Cases are separated
according to whether a breakpoint was detected or not.

• Case 2a, there is no (false) breakpoint in Ju, u + mK. Thus, the current
segment is Jτi, u+mK, according Eq. 3.5.

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(su,t,Scal,t), . . . , p̂e(su+m,t,Scal,t))] (A.6)

du,t follows Qd

• Case 2b, there is a (false) breakpoint in Ju, u + mK, this breakpoint is
noted b̂t. The current segment Jb̂t, u + mK contains less than m points.
Thus, according to Eq. 3.6, du,t takes the value:

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sb̂t−m,t,Scal,t), . . . , p̂e(sb̂t−1,t,Scal,t))]

(A.7)

du,t follows Qd.

When t = u + m, in both cases du,t follows the distribution Qd. Next, check
that this property remains true even when t is greater than u+m.

Then, for t in Ku + m,u + 2mK, the cases are split again according to the
detection of a breakpoint in Ju, u+mK:
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• Case 2a’: There are no detected breakpoint in Ju, u+mK. According Eq. 3.7,
in this case the status is not updated and du,t = du,t−1.

• Case 2b’: A (false) breakpoint is detected in Jt−m,u+mK ⊂ Ju, u+mK
and noted b̂t. The current segment Jb̂t, u+mK contains less than m points,
du,t is updated according to the rule:

du,t = 1[p̂e(su,t,Scal,t) < ε(p̂e(sb̂t−m,t,Scal,t), . . . , p̂e(sb̂t−1,t,Scal,t))]

(A.8)

Once again, du,t follows the Qd distribution.

Finally, for t > u + 2m, assuming (Segmentation), there is no breakpoint
in Ju, u+mK and therefore: du,t = du,t−1

By induction du,t follows the law Qd as soon as t is greater than u + m.
Therefore the series of final decisions du,∞ is identically distributed and follows
the law Qd.

Step 4: Numerator, denominator and ratio convergence After having
proved that the status series du,∞ is identically distributed, the following shows
that the empirical mean of the series converges to its expectation.

It was shown in the previous step that du,∞ is identically distributed.
Furthermore, du1,∞ ⊥ du2,∞ if |u1 − u2| > m + n. Using the corollary of
Theorem 3 in [37] this gives almost surely convergence:

lim
t→∞

1

t
Rt

1 = lim
t→∞

1

t

t∑
u=1

du,∞ (A.9)

= E[d1,∞] (A.10)

Similarly, it gives the almost surely convergence of the numerator FP t
1 .

lim
t→∞

1

t
FP t

1 = lim
t→∞

1

t

t∑
u=1

Audu,∞ (A.11)

= E[A1d1,∞] (A.12)

Since both the numerator and the denominator converge almost surely, this
leads to the almost sure convergence of the ratio which is the FDP:

lim
t→∞

FDPt =
E[A1d1,∞]

E[d1,∞]
(A.13)

Step 5: Link with mFDR So far it has been proved that the FDP of the
complete series converges to the ratio of the expectation of d1,∞ and A1d1,∞.
In the following, this ratio is linked to the mFDR computed on a subseries of
size m.
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This result comes from the permutation invariance of ε(·) which gives

E

[
m∑

u=1

1[p̂u,t < ε(p̂1,t, . . . , p̂1,t)]

]
=

m∑
u=1

E [1[p̂u,t < ε(p̂1,t, . . . , p̂1,t)]]

= mE [1[p̂1,t < ε(p̂1,t, . . . , p̂1,t)]]

= mE [d1,t]

This implies that the FDP limit can be written as mFDR:

lim
t→∞

FDPt =
E[A1d1,∞]×m

E[d1,∞]×m
=

E[FPm
1 ]

E[Rm
1 ]

= mFDRm
1 (A.14)

A.2. Proof of Corollary 1

Proof of Corollary 1. According to Theorem 1, the FDP of the complete time
series is equal to the mFDR of the subseries:

lim
t→∞

FDP t
1 = mFDRm

1

The following steps of the proof show that mFDRm
1 = (1−π)α using various

results of [17].
First, according to Proposition 3 in [17], using BH the mFDRm

1 of the
subseries can be expressed using the number of rejections and the FDR on
the subseries.

mFDRm
1 =

E[Rm
1 (1)]

E[Rm
1 ]

FDRm
1 (A.15)

From the assumptions expressed in Eq. 3.9, it follows that

E[Rm
1 (1)]

E[Rm
1 ]

= 1 +
1− α

mπ

As described in Definition 2, all p-values are calculated from a single calibration
set, furthermore, the cardinality of the calibration set is equal to n = ℓm/α′−1.
Then according to Theorem 3.4 in [14] and Corollary 3 in [17]:

FDRm
1 = (1− π)α′ =

(
1 +

1− α

mπ

)−1

(1− π)α

Injecting the value of FDRm
1 and E[Rm

1 (1)]
E[Rm

1
in Eq. A.15, it gives:

mFDRm
1 =

(
1 +

1− α

mπ

)(
1 +

1− α

mπ

)−1

(1− π)α (A.16)

= (1− π)α (A.17)

This result completes the proof.
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A.3. Proof of Proposition 1

Proof of Proposition 1. By assumption the probability P [Wt−λ,t] does not
depend on t and is noted fτ (λ). According to the second assumption, fτ (λ)
converges to 0 when λ tends to +∞. Therefore, by definition of convergence:

∀η > 0,∃λη > 0 λ ≥,∀λη, fτ (λ) ≤ η.

Moreover, by definition λ = t− u, it follows that:

∀η > 0, ∃λ > 0, ∀t ∈ J1, T K,∀u ∈ J1, tK, |u− t| ≥ λη, P [Wu,t] ≤ η.

The second result is proven using similar arguments.

A.4. Proof of Theorem 2

Proof of Theorem 2. The two statements are proven separately. First, it is
shown that for every η, the probability that the final status differs from the
oracle status is less than 3η. Then, a mixing property allows to prove that the
proportion of differences along the time series is less than 3η.

Proof of the first statement: To prove the first statement, two steps are
taken: first, the final decision about the status of Xu is characterized. According
to the way BKAD works, as described in Definition 4, there are two possibilities:
either the final decision is taken when u belongs to the current segment and is
not updated thereafter, as stated in Eq. 3.7. Or the status of Xu is updated
when the segment to which u belongs is closed, as stated in Eq. 3.6. Once the
final status has been characterized, the probability that it differs from the oracle
status is calculated.

Let u be in J1, T K.
In case there is t such that: |bt − t| < m and u ∈ Jb̂t −m, b̂tK. Let t′ be the

largest one. This corresponds to the case where the status of Xu is updated
after detecting a breakpoint which closes the segment to which u is assigned.
According to Eq. 3.6

du,t′ = 1[p̂u,t′ < ε(p̂u,bt′−m, . . . , pu,bt′ )] (A.18)

Otherwise, let t′ = u+m. This corresponds to the case where the final status
associated with Xu is taken at the time it belongs to the current segment.
According to Eq. 3.7

du,t′ = 1[p̂u,t′ < ε(p̂u,u, . . . , pu,t+u)] (A.19)

By definition of t′, du,t′ is the final status associated with Xu. Therefore, it
is of interest to know the probability, noted P(V u,t′), that du,t′ is equal to the
oracle status.
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According to the law of total probabilities on the event that the assigned
segment change, noted Wu,t′ and defined in Eq. 3.13. u = bt′

P(V u,t′) = P(V u,t′ |Wu,t′)P(Wu,t′) + P(V u,t′ |Wu,t′)P(Wu,t′) (A.20)

≤ P(V u,t′ |Wu,t′) + P(Wu,t′) (A.21)

Now let’s upper bound the different terms on the right-hand side of Eq. A.21.
According the definition of ℓη ≤ m in in Proposition 1:

P(V u,t′ |Wu,t′) ≤ η (A.22)

Then the probability of Xu changing its assigned segment at Jt′,∞J is written
by distinguishing the time when this change occurs at Jt′, t′ + 2mK or at Kt′ +
2m,∞J

P(Wu,t′) = P(∃t′′ > t′, τ(t′′)∩Kτi(t′), τi+1(t
′)J ̸= ∅) (A.23)

= P(∃t′ + 2m ≥ t′′ > t′, τt′′∩Kτi(t′), τi+1(t
′)J ̸= ∅) (A.24)

+ P(∃t′′ > t′ + 2m, τt′′∩Kτi(t′), τi+1(t
′)J ̸= ∅) (A.25)

According to Eq. 3.16 it gives:

P(∃t′ + 2m ≥ t′′ > t′, τt′′∩Kτi(t′), τi+1(t
′)J ̸= ∅) ≤ η (A.26)

According to the definition on λη ≤ m in Proposition 1 and the assumption
described by Eq. 3.17.

P(∃t′′ > t′ + 2m, τt′′∩Kτi(t′), τi+1(t
′)J ̸= ∅) ≤ η (A.27)

Finally, by injecting the bounding terms in Eq. A.21 using the results from
Eq. A.22, A.26 and A.27, it gives:

P(V u,t′) ≤ 3η (A.28)

Proof of the second statement: According to the first part of the proof,
the probability that the final status is different from the oracle status is less
than 3η. But this property is local, valid for each u. The aim is to have a global
property. For this, a property of ergodicity of Vu,t is to be proved. According to
[37], it suffices to show that there exists a number q such that if |t1 − t2| > q
then Vu,t1 is independent of Vu,t2 .

According to Eq. 3.19, breakpoint positions are independent beyond a
distance q1. According to the ideal BKAD operation, for a given segmentation,
the statuses du,t1 and du,t2 are independent if |t1 − t2| > m+ n. It follows that
the random variables in the series Vu,t are independent if |u1−u2| > m+n+q1.
This completes the proof.
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Appendix B: Supplementary descriptions about the method

B.1. Estimate the probability of segment assignment change

As introduced in Section 3.2, fτ (λ) is the probability that the segment
assignment changes when a data point is at distance λ from the end of the time
series. This probability fτ (λ) is needed to build the active set containing data
points with uncertain status, as described in Algorithm 2. In the following, a
procedure is proposed to estimate fτ (λ).

As a reminder, the existence of fτ (λ) is ensured by the stationarity
assumption described in Proposition 1. However, stationarity is not sufficient to
calculate these probabilities directly from historical data in the same time series
and thus to estimate f̂τ . It must also be assumed that the series 1 [Wt−λ,t] is
ergodic.

Proposition 2 (Ergodicity). Assume 1 [Wt−λ,t] is stationary and ergodic. Then

P[Wt−λ,t] = lim
T→∞

1

T

T∑
t̃=1

1[Wt̃−λ,t̃] (B.1)

The conclusion of the Proposition 2 follows directly from the definition of
ergodic process [38].

This ergodicity property can be used to derive a learning algorithm. The
time series is split into two parts: historical and recent data. The historical data
set is built using the first T̃ data points of the time series. The estimation of
fτ is based on the previous segment assignment changes that occurred while
detecting breakpoints on historical data. To estimate this probability, the list of
all previous segmentations D = (τ̂1, . . . , τ̂T̃ ) is used. Assuming stationarity and
ergodicity of 1 [Wt−λ,t], where the event Wt−λ,t is described in Eq. 3.13, these
historical data are used to estimate fτ (λ) using Eq. B.1.

P [Wt−λ,t] ≈
1

T̃

T̃∑
t=1

1
[
W T̃

t̃,t̃−λ

]
= f̂τ (λ) (B.2)

where W T̃
t̃,t̃−λ

=
{
∃t′ ∈ Jt̃, T̃ K, τ̂t′ ∩ Jb̂t̃, t̃− λK ̸= ∅

}
.

However, to improve computation time, the following expression of W T̃
t̃,t̃−λ

is
preferred:

W T̃
t̃−λ,t̃ =


 ⋃

T̃≥t′>t̃

τ̂t′

 ∩ Jb̂t̃, t̃− λK ̸= ∅

 (B.3)

With this formulation, each breakpoint is checked only once to see if it belongs
to Jb̂t̃, t̃ − λK. Indeed, many breakpoints remain at the same position from one
step to the next step while applying the breakpoint detection procedure.

Algorithm 3 implements Eq. B.3 to give an estimation of fτ . Where It̃,u =

1[W T̃
t̃,u

] and Sλ =
∑T̃

t̃=λ It̃,t−λ so f̂τ (λ) =
Sλ

T̃−λ
.
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Algorithm 3 Exact computation of probability of segment assignment change.
Require: (τ(t̃))T̃1 list of successive segmentations

I, S ← 0
τglobal ← ∅
for t̃ ∈ [T̃ , 1] do

τglobal ← τglobal ∪ τ̂(t̃)

for u ∈ [b̂t̃, t̃] do
for b′ ∈ τglobal do ▷ b′ is a breakpoint

if b̂t̃ < b′ ≤ u then
It̃,u ← 1

end if
end for

end for
end for
for λ ∈ [0, T̃ ] do

for t̃ ∈ [λ, T̃ ] do
Sλ ← Sλ + It̃,t̃−λ

end for
f̂τ,λ ← Sλ/(T̃ − λ)

end for
Output: f̂τ,λ list of f̂τ (λ) values for different λ

return f̂τ,λ

The complexity of the exact computation of f̂τ , described in Algorithm 3, is
quadratic in time and space, which is a drawback regarding any practical use.
Another version of the implementation of f̂τ is given in Algorithm 5 which is
more convenient for an online context since it is linear in time and space.

Indeed, by observing the evolution of the breakpoints over time (not shown
in this paper), it appears that the position of the last breakpoint is the most
likely to change, while that of the other breakpoints are generally stable. This
leads us to modify the characterization of the “assigned segment change” event
by considering only the change caused by the last breakpoint instead of the
entire segmentation.

∀t, λ ∈ J1, T K2 1[WT
t,t−λ] = 1

[
∃t′ ∈ Jt, T K, b̂t < b̂t′ ≤ t− λ

]
(Last)

Under this assumption, the computation of f̂τ (λ) can be simplified using
Proposition 3.

Proposition 3. Let (Xt)1≤t≤T be a time series of length T . Let (τ̂(t))1≤t̃≤T̃

be the sequence of successive segmentations of the time series. Let
(1[WT

t,u])1≤t≤T,1≤u≤T the family of “assigned segment change” events. Assume
that the assumption (Last) is verified. Then the estimator f̂τ described in
Eq. B.3 is computed as

f̂τ (λ) =
1

T̃

T̃∑
t̃=1

1 [rt̃ > λ] (B.4)
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where rt̃ is the maximum distance from the the end of the time series with Xt

having segment reassigned. It is computed as:

rt̃ = max
t′>t̃,b̂t′>b̂t̃,b̂t′<t̃

t̃− b̂t′ (B.5)

Notice that rt̃ does not depend on λ. It is sufficient to calculate rt̃ once for all
λ. Therefore, it’s easy to deduce the value of fτ (λ) for all λ. The most demanding
part is the computation of rt̃. Two implementations of rt̃ computation are
proposed. Algorithm 4 gives the most naive version, each rt̃ is calculated one
after the other. The problem is that the calculation of rt̃ is itself linear in the
length of the series. Therefore, the time complexity is quadratic. Algorithm 5
improves the computation by swapping the two loops. This limits the total
number of comparisons performed. In the second loop, t̃ takes on the values
between b′t and t′. The number of values taken by t̃ is the length of a segment,
not a the length of the time series. Algorithmic complexity is therefore linear.

Proof of Proposition 3. Based on Eq. B.3, the estimator f̂τ is given by:

f̂τ (λ) =
1

T̃

T̃∑
t=1

1
[
W T̃

t̃,t̃−λ

]
With assumption (Last) it gives:

1
[
W T̃

t̃,t̃−λ

]
= 1

[
∃t′ ∈ Jt̃, T̃ K, b̂t̃ < b̂t′ ≤ t̃− λ

]
The inequality b̂t̃ < b̂t′ ≤ t̃ − λ is equivalent to b̂t̃ < b̂t′ and t̃ − b̂t′ > λ which
gives

1
[
W T̃

t̃,t̃−λ

]
= 1

 ⋃
t′>t̃,b̂t′>b̂t̃,b̂t′<t̃

t̃− b̂t′ > λ



Since, a set contains a number greater than λ, if and only if its maximum is
greater than λ, it gives:

1
[
W T̃

t̃,t̃−λ

]
= 1

[(
max

t′>t̃,b̂t′>b̂t̃

t̃− b̂t′

)
> λ

]
Since λ > 0, when b̂t̃ < b̂t′ and t̃ − b̂t′ > λ it also implies that t̃ ≥ b̂t′

so 1
[(

maxt′>t̃,b̂t′>b̂t̃
t̃− b̂t′

)
> λ

]
= 1

[(
maxt′>t̃,b̂t′>b̂t̃,b̂t′<t̃ t̃− b̂t′

)
> λ

]
. The

number rt̃ is introduced as equal to maxt′>t̃,b̂t′>b̂t̃,b̂t′<t̃ t̃− b̂t′ . The f̂τ estimator
can be written as follows

f̂τ (λ) =
1

T̃

T̃∑
t̃=1

1 [rt̃ > λ]
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Algorithm 4 Naive computation of
rt̃.

for t̃ in J1, T̃ K do
for t′ in Jt̃, T̃ K do

if b̂t′ < t̃ and b̂t̃ > b̂t′ then
rt̃ = max(rt̃, t̃− b̂t′ )

end if
end for

end for

Algorithm 5 Efficient computation of
rt̃.

for t′ in J1, T̃ K do
for t̃ in Jb̂t′ , t′K do

if b̂t̃ > b̂t′ then
rt̃ = max(rt̃, t̃− b̂t′ )

end if
end for

end for
Figure 4 shows an example of the estimated probability of a segment

assignment change according to the two estimation Algorithms 3 and 5. The
two algorithms give almost identical results, as shown in Figure 4. The selected
λ̂η is equal to 143, in both cases. This supports the assumption that (Last) is
verified. This result is used in the rest of this article to define the value of λ̂η,
the minimum length of the current segment in Algorithm 2. More details about
the experiment can be found in the Section 1 in the Supplementary Material.

B.2. Estimate the probability that the point will have a status
different from that of the oracle if the point is assigned to the
same segment as the oracle.

As introduced in Section 3.2, fd(ℓ) is the probability that the status of a point
changes under the conditions the last breakpoint remains unchanged and the
segment cardinality is equal to ℓ. This probability fd(ℓ) is necessary to build
the active set containing data points with uncertain status, as described in
Algorithm 2. In this section, a procedure to estimate fd(ℓ) is proposed.

Figure 5 illustrates how the the length of the current segment has an influence

Fig 4: Probability of assignment change as a function of distance to time series
end.
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(a) Starting new segment with
small length.

(b) Data points added to
the current segment becoming
larger.

(c) Z-score for small segment (d) Z-score for larger segment

Fig 5: Atypicity score estimation according to the length of the current segment.

on the accuracy of the atypicity score estimation and consequently on the
uncertainty of a data point status. Indeed, Figure 5a shows a time series with a
newly detected current segment highlighted in gray color, and a calibration set
in green color inside the previous segment. The atypicity scores, z-scores based
on the mean and the standard deviation, are shown in Figure 5c computed
for the current segment in gray and the calibration set in green. Since the
current segment has few points, its z-score estimation shows a high discrepancy
compared to the score distributions of the calibration set, despite the fact that
there are no anomalies. As shown in Figure 5d, when new data points are added,
the estimation of the abnormality score of the current segment is more accurate.

This example highlights that the status of a data point can change even if
the breakpoints remain unchanged, whereas Appendix B.1 deals only with the
case where the change in status is due to a change in the detected breakpoints.
Uncertainty also comes from having too few points in the current segment,
leading to score estimation errors. Estimating the probability f̂d(ℓ) is useful to
build the active set that takes this into account. The following section suggests
a procedure to estimate the probability fd(ℓ).

The method is based on the learning phase using a set D of historical detected
segments having a low probability to change (using final step T ). This training
set D is defined by,

D = {(X1, . . . , Xτ̂1(T )), (Xτ̂1(T )+1, . . . , Xτ̂2(T )), . . . , (Xτ̂D−1(T )+1, . . . , Xτ̂D(T ))}
(B.6)

In the following, the training procedure is based on six different steps needed to
estimate the f̂d(ℓ) probability. Let a be the NCM (Non Conformity measure),
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used to define the atypicity score, as described in Appendix B.4. As a reminder,
a(S, x), measures the “nonconformity” between the set S and the point x.

The principle of the training phase is to simulate, using resampling, numerous
examples where the current segment changes from a length ℓ to the final length.
At each case, anomaly detection is applied to the test set of cardinality m
and the proportion of statuses that have changed by modifying the length of
the current segment is measured. The status obtained from the maximum size
segment is the oracle status. By comparing it with the status obtained with the
ℓ size segment, the confidence score can be approximated. Since the breakpoints
are assumed to be stable, the simulation is inspired by the description of the
detector given in Section 1, without the parts concerning breakpoint detection.
These steps are repeated B times. Let b ∈ J1, BK:

Step 1: Figure 6a illustrates that two segments are resampled from the historical
data set D. S1,b is considered as the calibration set and S̃2,b as a current
segment if the whole time series where observed (see Definition 5) in the
simulation:

S1,b, S̃2,b ∼ U(D)

Step 2: The current segment S̃2,b is sub-sampled into a smaller segment of length
ℓ and noted S2,ℓ,b, as shown in Figure 6b. S2,ℓ,b is considered as the same
segment than S̃2,b without knowledge of the whole time series, having only
ℓ points, .

S2,ℓ,b ∼ U(S̃2,b)

.
Step 3: The current segment S̃2,b is sub-sampled into an other segments of length

m and noted S2,m,b. S2,m,b is considered as the test set.

S2,m,b ∼ U(S̃2,b)

Step 4: As illustrates in Figure 6c and 6d, the scores of the three segments are
computed:

• The score of S1,b (“calibration set”):

∀i ∈ J1, nK, Xi ∈ S1,b, ci,b = a(Yi,S1,b\{Xi})

• The score of the test set using S̃2,b as training set:

∀i ∈ J1,mK, Yi ∈ S2,m,b, s̃i,b = a(Yi, S̃2,b\{Yi})

• The score of the test set using S2,ℓ,b as a training set:

∀i ∈ J1mK, Yi ∈ S2,m,b, si,ℓ,b = a(Yi, S2,ℓ,b\{Yi})

Step 5: Figure 6e illustrates that the empirical p-values are computed for the two
scores obtained from the test set using the same calibration set:
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• p-values of the test set when using the complete current segment as
training set: ∀i ∈ J1,mK, p̃i,b = 1

n

∑n
j=1 1[s̃i,b < cj,b]

• p-values of the test set when using the length ℓ sub-sample of the
current segment as training set: ∀i ∈ J1,mK, pi,ℓ,b = 1

n

∑n
j=1 1[si,ℓ,b <

cj,b]

Step 6: Detect the anomalies in the two cases, by applying the Benjamini-
Hochberg procedure ε̂BHα on the estimated p-values, as shown in
Figure 6f:

• In case the training set is the entire current segment:

∀i ∈ J1,mK, d̃i,b = 1[p̃i,b < ε̂BHα
(p̃1,b, ..., p̃m,b)]

• In case the training set is the sub-sample of cardinality ℓ:

∀i ∈ J1,mK, di,ℓ,b = 1[pi,ℓ,b < ε̂BHα
(p1,ℓ,b, ..., pm,ℓ,b)]

Step 7: The number of decisions that differ between the two cases, S̃2,b or S2,ℓ,b

used as the training set, is computed:

nd =

m∑
i=1

1[d̃i,b ̸= di,ℓ,b]

The training procedure simulates the behavior of the online anomaly detector:
S1 plays the role of the calibration set. S̃2 plays the role of current segment with
knowledge of the whole time series. S2,ℓ plays the role of the current segment
at the beginning of a new segment, that contains only ℓ points. The first m
elements Y1, . . . , Ym from S̃2 constitute the test set.
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(a) Step 1: Segments resampling

(b) Step 2 and 3: Sub-sampling

(c) Step 4: Calibration set scoring

(d) Step 5: Test set scoring

(e) Step 6: p-value estimation

(f) Step 7: Anomaly detection

Fig 6: Illustration of the different steps of the training procedure to estimate
the status change probability under stable breakpoints.
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(a) normal status (b) abnormal status (c) unknown status

Fig 7: Probability that status changes under stable breakpoints as a function of
segment length, for Gaussian data.

Assuming the score are iid as stated in Definition 3, by repeating this
resampling process many times, as the length of the time series converges
to infinity, the proportion of status changes converges to the expectation,
according to the law of large numbers [39]:

lim
T,B→∞

1

mB

B∑
b=1

m∑
j=1

1[d̃j,b ̸= dj,ℓ,b] = ES1,S2∼U(D)ES2,ℓ∼U(S2)

m∑
i=1

1[di ̸= d̃i]

Under the assumptions of score stationarity stated in Definition 3, the limit
is equal to fd(ℓ). Indeed, under score stationarity, the calibration set can be
built from any segment of the time series. This implies that it is possible to use
described training procedure as an estimator of f̂d(ℓ).

f̂d(ℓ) =
1

mB

B∑
b=1

m∑
j=1

1[d̃j,b ̸= dj,ℓ,b] ≈ fd(ℓ)

Figure 7 illustrates results when applying this algorithm on Gaussian data.
Three line charts representing the probability of status change as a function
of the current segment length in relation to the initial status: (a) the status is
normal, (b) the status is abnormal and (c) unknown status. In the unknown
status, Figure 7c shows clearly that the probability of status change decreases
with the length of the current segment. This probability is higher when the
status is abnormal, as shown in Figure 7b. Nevertheless, with a segment length of
100, the probability is less than 1%. This result is used in the rest of this article to
define the value of ℓ̂η, the minimum length of the current segment in Algorithm 2.
More details about this experiment can be found in the Supplementary Material
in Section 2.

B.3. Breakpoint estimation

As described at Section 2.1 the time series (Xt)1≤t≤T has D breakpoints denoted
τ1, ..., τD+1. The segment Xτi+1−1

τi is said homogeneous. Informative features for
anomaly detection, such as the mean or the variance, can be extracted if the
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breakpoints are correctly identified. A good breakpoint detector is important to
increase the accuracy of anomaly detection. If a shift is not well detected, the
analyzed segment will be heterogeneous and the estimation of the law under
H0 will be biased. If too many breakpoints are detected in a segment while
it is homogeneous, the analyzed segments will contain fewer points and the
variance of the predictions will be too high. To maximize the performance of
the anomaly detection, the number and the locations of breakpoints have to be
accurately estimated. The article [40] is a review of existing offline breakpoint
detectors. The authors show that a breakpoint detector can be described as an
optimization problem, using three notions.

• Cost function. A cost function C(·) measures the homogeneity of a given
subseries Xt2

t1 . With a well chosen cost function, C(Xt2
t1 ) is high when there

is at least one breakpoint between t1 and t2. The cost function is low when
there is no breakpoint in this subseries.

• Search method: The search method enables to explore a set of possible
segmentations, denoted T , of the optimization problem. Each search
method is a trade-off between accuracy and computational complexity
[40].

• Penalty function: The penalty function is useful when the number
of breakpoints is unknown. It avoids overestimating the number of
breakpoints by penalizing segmentations with a large number of
breakpoints. The penalty function pen(·) increases based on the number
of breakpoints, noted Dτ .

The segmentation returned by the breakpoint detector is the one that minimizes
the penalized cost function among the explored solutions:

τ̂ ∈ argmin
τ∈T

Dτ∑
i=1

C(Xτi+1−1
τi ) + pen(Dτ ) (B.7)

In this article, the Kernel Change Point (KCP) introduced in [22] is used for
its advantages. The kernel-based cost function could be used for any kind of time
series, univariate or multivariate, without changing the breakpoint detector. To
handle the diversity of time series data, the kernel and its hyperparameters have
to be carefully chosen to be able to detect any kind of change points in the time
series. This accuracy is guaranteed by the oracle inequality given in [22]. For a
given segmentation τ and a kernel K, the cost is given by:

R̂(τ) =
1

t

t∑
u=1

K(Xu, Xu)−
1

t

Dτ∑
i=1

1

τi+1 − τi

τi+1−1∑
u,v=τi

K(Xu, Xv) (B.8)

First, the candidate segmentations that minimize the criterion are identified
for each possible number of D segments. T D is the space of all candidate
segmentations with D segments, τ̂D,t is the best candidate segmentation with
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Algorithm 6 Dynamic Programming for breakpoint detection.
Require: T > 0, (Xt) time series, C Kernel based cost function, Dmax maximum breakpoint

number explored and SlopeHeuristic implement the slope heuristic.
for t ∈ J1, T K do

for D ∈ J1, DmaxK do
LD,t ← mint′≤t LD−1,t′ + Ct′,t
τ̂D,t ← argmint′≤t LD−1,t′ + Ct′,t

end for
c1, c2 ← SlopeHeuristic(L)

D̂ ∈ argminD LD,t + c1D + c2 log

(
t− 1
D − 1

)
τ̂t ← τ̂D̂,t

end for
Output: ∀t ∈ J1, T K, (τ(t)) estimated segmentation at each time step.

D segments and LD,t is the cost associated with this segmentation.

LD,t = min
τ∈T D

R̂(τ)

τ̂D,t = arg min
τ∈T D

R̂(τ)

To estimate the number of segments and thus the best segmentation, one
searches for the segmentation τ̂D,t that minimizes the penalized criterion
described in Eq. B.7. The penalty function is given by:

pen(τ) = r1Dτ + r2 log

(
t− 1
Dτ − 1

)
(B.9)

where the coefficients r1 and r2 are estimated by fitting the penalty function on
the estimated cost for over-segmented segmentations [41].

KCP is designed as an offline breakpoint estimator. By using Dynamic
Programming, the segmentation costs can be estimated without performing
the same computation between time t and t + 1 as described in [42]. This
feature is necessary to be applied in an online anomaly detection. The data
driven penalty function enables good accuracy in estimating the number of
breakpoints. The breakpoints are detected by solving the optimization problem
with the algorithm:

The main degree of freedom in KCP is the choice of the kernel. Characteristic
kernels [43], like the Gaussian kernel, are able to detect any kind of change: shift
in the mean, shift in the variance, shift in the third moment,. . .

K(x, y) = exp(−||x− y||2
2h2

) (B.10)

However, due to the fact that the number of points within a segment is finite, the
performance of a characteristic kernel depends on the choice of hyperparameters.
In the case of the Gaussian kernel, the only parameter is the bandwidth h. For
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changes that occur in the mean, the median heuristic, shown in Eq. B.11, gives
good results [44]. Defining a method to select the most relevant kernel for any
kind of breakpoint is still an open question.

h = mediani ̸=j(||Xi −Xj ||) (B.11)

B.4. Atypicity score

In this paper, an anomaly is a data point that does not follow the reference
distribution of the segment to which it belongs. To construct an atypicity score
that is higher for abnormal points, a point must be compared to the rest
of the segment.The Nonconformity Measure (NCM) from [45] is introduced.
The Nonconformity Measure a, is a real valued function a(z,B) that measure
how different z is from the set B. A nonconformity measure can be used to
compare a data point with the rest of the segment. If all points within a segment
are generated by the reference distribution, then the Nonconformity Measure
provides an atypicity score for this segment.

∀i ∈ J1, DK, ∀Jτi, τi+1J, a(Xt) = a(Xt, {Xτi , . . . , Xτi+1−1}\{Xt}) (B.12)

The following properties are required to enable the usage of the nonconformity
measure to build a good atypicity score:

• anomalies should have higher atypicity score than normal data points.
• the NCM must be robust [46, 47, 48] to the presence of anomalies. The

anomalies present in the segment do not affect the value of the returned
measure.

• the values returned between different segments must be comparable, so
that a p-value can be estimated, with a calibration set containing values
from different segments. The iid property of scoring is introduced in
Definition 3, to formalize this idea.

The property of score stationarity depends on the time series. For example, the
z-score with true known mean and standard deviation satisfies the stationarity
property only if the changes generated by the breakpoints are shifts in the
mean or in the standard deviation. If the change occurs in higher moments, the
property is not satisfied. Furthermore, the property is not satisfied for the z-score
if the mean and standard deviation need to be estimated. Since the stationarity
of the score is difficult to obtain, it is approached with the following strategies:

• Ensure that the segment contains enough points to ensure the convergence
of the nonconformity measures. For example, since the mean and variance
must be estimated, the z-score is not stationary. However, if these
parameters converge to the true mean and standard deviation, then the
z-score can be considered stationary once the segments have enough
points. The faster convergence is achieved, the easier it is to ensure the
stationarity property. An NCM is said to be efficient when convergence is
achieved for a low number of points.
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Fig 8: Illustration of the current segment, the active set and the calibration set.

• Instead of using the entire segment, the training set can be built by
resampling a specified number of points. It can be used on NCM that
are highly dependent on the training set cardinality, like kNN.

• Rather than trying to ensure that the score distribution is identical in
each segment, identify the segments with the most similar distribution, as
described in Appendix B.5.

Many NCMs depend on segment parameters to be estimated, e.g. the z-score
requires knowledge of the mean and variance. To satisfy the properties of a good
atypicity function, the estimators need to satisfy the following requirements:

1. the estimator should be robust to anomalies in the training set: the
estimation should not be affected by the presence of anomalies in the
training set.

2. The estimator should be efficient [49]. High precision estimation of the
parameter should be obtained with a minimal number of samples.

For example, it is shown in the Supplementary Material, in Section 3, that
when computing the z-score, the classical standard deviation estimators, MLE
and MAD, are underperforming. In this paper, the BW (Biweight midvariance)
estimator [50] is used to implement the scoring function.

B.5. Calibration set

Section 2.2 introduces the notion of calibration set by giving a high level
description of the Breakpoint Based Anomaly Detector. It is a collection
of data points representing the reference behavior, inspired by Conformal
Anomaly Detection[51, 23]. It is built using data from the current segment,
or from another segment in the history with a similar distribution probability
compared to the current segment. The cardinality of the calibration set follows
two constraints:

• it should be large enough to ensure that the p-values are estimated with
sufficient precision to generate a low false positive and false negative rate.

• it should not be too large to maximize the homogeneity of the data and
to limit computation time.
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As shown in Figure 8, while data are collected online, the length of the current
segment after the new breakpoint is too small to build the whole calibration set.
By identifying similar segments and merging them to build the calibration set,
the current segment can be completed with enough data points to estimate the
p-values accurately. Similar segments are found using a similarity function, like
the Bhattacharyya distance proposed in [52]. This similarity function is defined
between two segments S1, S2 with means µ1 and µ2 and standard deviations σ1

and σ2 by:

sim(S1,S2) = − 1

8σ2
(µ1 − µ2)

2 − 1

2
ln

σ√
σ1σ2

(B.13)

The similarity function allows to sort all historical segments according to their
similarity to the current segment. First, the similarity of each segment to the
current segment is calculated. This allows to assign to each data point Xu

the variable that characterizes the similarity simu. By definition, the sequence
(simu) is constant on each segment X

τi+1(t)−1
τi(t)

and maximal on the current
segment Xt

b̂t
.

∀i ∈ Ĵ1, DtK,∀u ∈ Jτ̂i(t), τ̂i+1(t)− 1K, simu = sim(X
τ̂i+1(t)−1
τ̂i(t)

, Xt
b̂t
) (B.14)

To build a calibration set of cardinality n, it is initialized using the scores of
data points of the current segment that are not assigned to the active set. The
data points scores with a “normal” status from the previous segments are added
to the calibration set in descending order of similarity until n scores are reached.
After having described how a calibration set of a given cardinality n is built,
Appendix B.6 describes how the optimal cardinality n is chosen.

B.6. p-value estimation and threshold selection

As a reminder from Algorithm 1, the empirical p-values of each data point of
the active set are computed using the calibration set. The threshold is chosen
using the p-values of the active set to ensure the control of the FDR at a given
level α. Finally, the status of each data point of the active set is reevaluated
comparing its p-value to the threshold.

In [17] we detail a new strategy for controlling the FDR of an anomaly
detector in the online framework. This goal is achieved by efficiently controlling
the modified FDR criterion (mFDR) of subseries so that the FDR value of
the full time series is controlled at the prescribed level α. To be more specific,
[17] designs a modified version of the Benjamini-Hochberg procedure. Instead
of applying BH to the active set with a slope α, it is applied with a slope
α′ = α

1+ 1−α
mπ

, where m denotes the length of the active set, α is the desired global
FDR level, and π refers to the proportion of anomalies. Since α′ depends on π,
an estimation of π (or expert knowledge) is required to detect anomalies. Some
guidelines are provided in [53]. Notice that when π is given, the fix threshold

πα
1+π−α control the FDR at level α, this is equivalent to using BH with a subseries
of length m = 1.
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Fig 9: Example of Benjamini-Hochberg procedure.

The calibration set is used to compute the p-values. The FDR and the FNR of
the modified BH procedure is very sensitive to the cardinality of the calibration
set used to estimate the p-value. In [17], we study under which conditions the
cardinality of the calibration set ensures a control of the FDR. Given m the
cardinality of the active set and α′ the modified slope for BH, the calibration
set cardinality has to be chosen among:

n ∈ {ν m
α′ − 1, ν ∈ N∗} (B.15)

As explained more deeply in [17], the number of false negatives decreases
with higher ν. But a larger ν also increases the computation time, which can
make any real-time decision difficult. We recommend to try different values of
ν, to monitor the decision time and to choose the largest ν which allows real
time decisions.

Supplementary Material

Supplementary Material for: Breakpoint based online anomaly
detection
This Supplementary Material provides more details on the setup and results of
the experiments presented in this paper.
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