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Abstract

Constant (naive) imputation is still widely used in practice as this is a first
easy-to-use technique to deal with missing data. Yet, this simple method could be
expected to induce a large bias for prediction purposes, as the imputed input may
strongly differ from the true underlying data. However, recent works suggest that
this bias is low in the context of high-dimensional linear predictors when data is
supposed to be missing completely at random (MCAR). This paper completes the
picture for linear predictors by confirming the intuition that the bias is negligible
and that surprisingly naive imputation also remains relevant in very low dimension.
To this aim, we consider a unique underlying random features model, which offers
a rigorous framework for studying predictive performances, whilst the dimension
of the observed features varies. Building on these theoretical results, we establish
finite-sample bounds on stochastic gradient (SGD) predictors applied to zero-
imputed data, a strategy particularly well suited for large-scale learning. If the
MCAR assumption appears to be strong, we show that similar favorable behaviors
occur for more complex missing data scenarios.

1 Introduction

Missing data appear in most real-world datasets as they arise from merging different data
sources, data collecting issues, self-censorship in surveys, just to name a few. Specific
handling techniques are required, as most machine learning algorithms do not natively
handle missing values. A common practice consists in imputing missing entries. The
resulting complete dataset can then be analyzed using any machine learning algorithm.

While there exists a variety of imputation strategies (single, multiple, conditional,
marginal imputation ; see, e.g., Bertsimas et al., 2018, for an overview), mean imputation
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is definitely one of the most common practices. Such a procedure has been largely
criticized in the past as (single) mean imputation distorts data distributions by lowering
variances, which can lead to inconsistent parameter estimation. Indeed, a large part
of the literature on missing values focuses on inference in parametric models, such as
linear (Little, 1992; Jones, 1996) or logistic models (Consentino and Claeskens, 2011;
Jiang et al., 2020). From an empirical perspective, benchmarks of imputation techniques
(Woźnica and Biecek, 2020) indicate that simple imputation, such as the mean, induces
reasonable predictive performances, compared to more complex imputation techniques
such as MICE (Perez-Lebel et al., 2022).

On the contrary, a recent line of work (Josse et al., 2019) aims at studying the
predictive performances of impute-then-regress strategies that work by first imputing
data (possibly with a very simple procedure) and then fitting a learning algorithm on the
imputed dataset. Whereas mean imputation leads to inconsistent parameter estimation,
Josse et al. (2019) and Bertsimas et al. (2021) show that impute-then-regress procedures
happen to be consistent if the learning algorithm is universally consistent. Le Morvan
et al. (2021) generalize the consistency results of mean-imputation by Josse et al. (2019);
Bertsimas et al. (2021) and prove that for any universally consistent regression model,
almost all single imputation strategies can lead to consistent predictors. Therefore,
the impact of a specific imputation strategy has to be analyzed for specific regression
models.

Without dispute, linear models are the most classic regression framework. However,
their study becomes challenging in presence of missing values as they can require to
build 2d non-linear regression models (one for each missing data pattern), where d is
the number of input variables (Le Morvan et al., 2020; Ayme et al., 2022). In the
context of linear models with missing inputs, Le Morvan et al. (2020) establish finite-
sample generalization bounds for zero-imputation, showing that this strategy is generally
inconsistent. However, assuming a low-rank structure on the input variables, Ayme et al.
(2023) prove that zero-imputation prior to learning is consistent in a high-dimensional
setting. Note that the impact of zero-imputation with low-rank inputs has also been
analyzed by Agarwal et al. (2019) in the context of Principal Components Regression,
where the same type of generalization bounds were established. In this paper, we want
to go beyond the low-rank structure by considering a (possibly infinite) latent space,
and using the random feature framework.

Related work - Random features First introduced by Rahimi and Recht (2007),
random features are used in nonparametric regression to approximate, with a few features,
a kernel method where the final predictor belongs to an infinite-dimensional RKHS.
Rudi and Rosasco (2017); Carratino et al. (2018) obtain generalization upper bounds
for kernel regression learned with a small number of features, leading to computational
efficiency. Random features are also used to describe a one-hidden-layer neural network
(Bach, 2017).
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Related work - high-dimensional linear models Linear models have been widely
studied in a fixed design, considering the input variables are fixed (see, e.g., Hastie et al.,
2015, for an analysis in the high-dimensional case). Quite notably, few works analyze
(high-dimensional) linear models in the random design setting, a necessary framework
to assess the predictive performance of linear models on unseen data (Caponnetto and
De Vito, 2007; Hsu et al., 2012; Mourtada and Rosasco, 2022). These works mainly
focus on the statistical properties of the Empirical Risk Minimizer (ERM) with a
ridge regularization using uniform concentration bounds. On the other hand, Bach
and Moulines (2013); Raskutti et al. (2014); Dieuleveut et al. (2017) directly control
the generalization error of predictors resulting of stochastic gradient strategies, while
performing a single pass on the dataset. The obtained bounds have therefore the
advantage of being dependent on the training algorithm involved.

Contributions In this paper, we analyze the impact of the classic imputation-by-zero
procedure on predictive performances, as a function of the input dimension. To this
aim, we consider a latent space from which an arbitrary number of input variables are
built. The output variable is assumed to result from a linear transformation of the
latent variable. Such a framework allows us to analyze how predictive performances vary
with the number of input variables, inside a common fixed model. Under this setting,
we assume that all entries of input variables are observed with probability ρ ∈ (0, 1),
within a MCAR scenario, and study the performance of a linear model trained on
imputed-by-zero data.

• We prove that when the input dimension d is negligible compared to that of the
latent space p, the Bayes risk of the zero-imputation strategy is negligible compared
to that induced by missing data themselves. Therefore, naive imputation is on
par with best strategies.

• When d ≫ p, both above errors vanish, which highlights that neither the pres-
ence of missing data or the naive imputation procedure hinders the predictive
performances.

• From a learning perspective, we use Stochastic Gradient Descent to learn param-
eters on zero-imputed data. We provide finite-sample generalization bounds in
different regimes, highlighting that the excess risk vanishes at 1/

√
n for very low

dimensions (d≪ p) and high dimensions (d > (1 − ρ)
√
n/ρ).

• Two different regimes arise from the finite dimension of the latent space. To move
beyond this disjunctive scenario, we consider a latent space of infinite dimension
and analyze predictors built on d zero-imputed input variables. We prove that
the corresponding Bayes excess risk is controlled via the excess risk of a kernel
ridge procedure, with a penalization constant depending on ρ and d. A finite-
sample generalization bound on the SGD strategy applied on zero-imputed data
is established and shows that zero-imputation is consistent in high-dimensional
regimes (d≫

√
n).
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• The MCAR assumption considered throughout the paper, and often in the litera-
ture, can be attenuated at the cost of weaker theoretical results but which allows
to show that naive imputation is relevant in high dimension even for non-trivial
Missing Not At Random (MNAR) scenarios.

Notations. For n ∈ N, we denote [n] = {1, . . . , n}. We use ≲ to denote inequality
up to a universal constant.

2 Imputation is adapted for very low and high-

dimensional data

2.1 Setting

We adopt the classical regression framework in which we want to predict the value of
an output random variable Y ∈ R given an input random variable X ∈ X = Rd of
dimension d. More precisely, our goal is to build a predictor f̂ : X → R that accurately
estimates the regression function f ⋆ (also called Bayes predictor) defined as a minimizer
of the quadratic risk

R(f) := E
[
(Y − f (X))2

]
, (1)

over the class of measurable functions f : X → R. When f is linear, we simply denote
R(θ) the risk of the linear function parameterized by θ, i.e., such that for all x ∈ Rd,
f(x) = x⊤θ.

Random features Real datasets are often characterized by high correlations between
variables, or equivalently by a hidden low-rank structure (Johnstone, 2001; Udell and
Townsend, 2019). The random feature framework (Rahimi and Recht, 2007) constitutes
a general and flexible approach for modeling such datasets. We, therefore, assume that
the inputs (Xi)i∈[n], i.i.d. copies of X, actually result from a random feature (RF) model.
For pedagogical purposes, we start by restricting ourselves to finite-dimensional latent
models.

Assumption 1 (Gaussian random features). The input variables (Xi)i∈[n] are assumed
to be given by

Xi,j = Z⊤
i Wj, for i ∈ [n] and j ∈ [d] (2)

where the p-dimensional latent variables Z1, . . . , Zn are i.i.d. copies of Z ∼ N (0, Ip), and
where the p-dimensional random weights W1, . . . ,Wd are i.i.d. copies of W uniformly
distributed on the sphere Sp−1, i.e., W ∼ U(Sp−1).

The latent space in Assumption 1 corresponds to Rp. We have only access to n
observations (Xi)i∈[n] of dimension d that can be seen as random projections using d
directions of the latent features (Zi)i∈[n]. The total amount of information contained in
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the latent variables (Zi)i∈[n] cannot be recovered in expectation by that contained in the
observations (Xi)i∈[n] if d < p. This no longer holds when d≫ p, and the observations
(Xi)i∈[n] can be therefore regarded as low-rank variables of rank p.

Linear models with RF In the following, we present the model governing the
distribution of the output variable Y .

Assumption 2 (Latent linear well specified model). The target variable Y is assumed
to follow a linear model w.r.t. the latent covariate Z, i.e.,

Y = Z⊤β⋆ + ϵ, (3)

where the model parameter is denoted by β⋆ ∈ Rp and the noise ϵ ∼ N (0, σ2) is assumed
to be independent of Z.

Considering such a random feature setting is particularly convenient when studying
the influence of the input dimension d on learning without modifying the underlying
model (indeed, the distribution of Y –and Z– does not depend on the input dimension
d). Note that a similar model (with fixed weight (Wj)j) has already been introduced in
Hastie et al. (2022).

Missing data Often one does not have access to the full input vector X but rather to a
version of X containing missing entries. On the contrary, the output Y is always assumed
to be observed. To encode such missing information on X, we introduce, the random
variable P ∈ {0, 1}d, referred to as the missing pattern (or actually an observation
indicator), such that Pj = 1 if Xj is observed and Pj = 0 otherwise. Assuming that
all variables are equally likely to be missing, we define ρ := P(Pj = 1) for any j ∈ [d],
i.e., 1 − ρ is the expected proportion of missing values for any feature. In this paper,
we thoroughly analyze the classical Missing Completely At Random (MCAR) setting,
where the missing pattern P and the complete observation (X, Y ) are independent.
Note that we will extend some of our theoretical findings for the MCAR case to relaxed
missing scenarios in Section 4.

Assumption 3 (MCAR pattern with independent components). The complete observa-
tion (X, Y ) and the missing pattern P are assumed to be independent, i.e., (X, Y ) ⊥⊥ P
and such that P follows a Bernoulli distribution B(ρ)⊗d, i.e., for any j ∈ [d], ρ = P(Pj =
1), with 0 < ρ ≤ 1 denoting the expected proportion of observed values.

Imputation Most machine learning algorithms are not designed to deal directly with
missing data. Therefore, we choose to impute the missing values (both in the training
and test sets) by zero (or by the mean for non centered inputs). The imputed inputs in
the train and test sets are thus denoted, for all i, by

X̃i = Pi ⊙Xi, (4)
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where ⊙ represented the component-wise product. The impact of missing data, and
their handling by naive imputation, in this supervised learning task can be scrutinized
through the evolution of the following key quantities:

• The Bayes risk based on complete random features (without missing entries):

R⋆(d) := inf
f
E
[
(Y − f(X)2|W1, . . . ,Wd

]
,

where the infimum is taken over all measurable functions.

• The Bayes risk given Xmiss = (X̃, P ) ∈ Rd × {0, 1}d:

R⋆
miss(d) := inf

f
E
[
(Y − f(Xmiss))

2|W1, . . . ,Wd

]
,

where the infimum is taken over all measurable functions. It has been shown to
be attained for a pattern-by-pattern predictor (Le Morvan et al., 2020). The bias
or deterministic error due to learning with missing inputs can be characterized as

∆miss(d) := E [R⋆
miss(d) −R⋆(d)] .

• The risk of the best linear predictor relying on zero-imputed inputs:

R⋆
imp(d) := inf

θ∈Rd
E
[
(Y − X̃⊤θ)2|W1, . . . ,Wd

]
.

The approximation error associated with this specific class of predictors, among
those handling missing inputs, is denoted by

∆imp/miss(d) := E
[
R⋆

imp(d) −R⋆
miss(d)

]
.

Note that these three risks decrease with the dimension and are ordered as follows,

R⋆(d) ≤ R⋆
miss(d) ≤ R⋆

imp(d). (5)

In what follows, we give a precise evaluation of R⋆(d) and R⋆
mis(d) and provide bounds

for R⋆
imp(d) as well.

2.2 Theoretical analysis

Our goal is to dissect the systematic errors introduced by either the occurrence of missing
inputs or their handling via naive zero imputation. To do so, we start by characterizing
the optimal risk over the class of linear predictors when working with complete inputs.

Proposition 2.1. Under Assumptions 1 and 2, the Bayes risk for linear predictors
based on complete random features is

E [R⋆(d)] =

{
σ2 + p−d

p
∥β⋆∥22, when d < p,

σ2 when d ≥ p,

where the expectation is taken over (Wj)j∈[d].
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Proposition 2.1 highlights that learning with a number d of random features larger
than the latent dimension p is equivalent to learning directly with the latent covariate Z.
Besides, when d < p, the Bayes predictor suffers from an increased risk, as learning is
flawed by a lack of information in the (fully observed) inputs. This can be compensated
by increasing the number d of random features, as the explained variance of Y , i.e.,
EY 2 − ER⋆(d) = d

p
∥β⋆∥22, increases with d for d ≤ p.

Proposition 2.2. Under Assumptions 1 to 3, the Bayes risk for predictors working
with missing data is given by

E [R⋆
miss(d)] =

{
σ2 + p−ρd

p
∥β⋆∥22 when d < p,

σ2 +
E[(p−B)1B≤p]

p
∥β⋆∥22 when d ≥ p,

where the expectation is taken over the random weights (Wj)j∈[d] and B ∼ B(d, ρ).
Therefore,

∆miss(d) =

{
(1 − ρ)d

p
∥β⋆∥22 when d < p,

E[(p−B)1B≤p]

p
∥β⋆∥22, when d ≥ p.

To our knowledge, this result is the first one to precisely evaluate the error induced
by missing inputs when learning a linear latent model. More specifically, two regimes
are identified. In the first regime d < p, i.e., when working with random features of
lower dimension than that of the latent model, R⋆

miss takes the same form as R⋆, where
the input dimension d is replaced by ρd. This can be interpreted as the cost of learning
with ρd observed features in expectation instead of the d initial features.

In the second regime, when d ≥ p, the error due to missing data becomes more
and more negligible as d increases, as the redundancy of the random feature model is
sufficient to retrieve the information contained in the latent covariate of lower dimension
p. Furthermore, if d ≥ (p+ 1) (1−ρ)e

ρ
, we can bound ∆miss(d) from above and below,

ρ

2e
(1 − ρ)d−1∥β⋆∥22 ≤ ∆miss(d) ≤ p

(
dρ

p(1 − ρ)

)p

(1 − ρ)d∥β⋆∥22, (6)

showing that ∆miss(d) decays exponentially fast with d in the high-dimensional regime:
the impact of missing data on learning is therefore completely mitigated in high dimen-
sion.

Theorem 2.3. Under Assumptions 1 to 3, the Bayes risk for predictors based on
zero-imputed random features satisfies

E
[
R⋆

imp(d)
]
− σ2 ≤

 inf
k≤d

{
p−ρk
p

+ (1−ρ)ρ(k−1)
p−ρ(k−1)−2

k
p

}
∥β⋆∥22 if d < p,

p
ρd+(1−ρ)p

∥β⋆∥22 if d ≥ p.
(7)
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Thus, when d < p,

∆imp/miss(d) ≤ (1 − ρ)ρ(d− 1)

p− ρ(d− 1) − 2

d

p
∥β⋆∥22 (8)

=
ρ(d− 1)

p− ρ(d− 1) − 2
∆miss(d). (9)

And, when d ≥ p,

(1 − ρ)p

ρd+ (1 − ρ)p
∥β⋆∥22 ≤ ∆imp/miss(d) + ∆miss(d) (10)

≤ p

ρd+ (1 − ρ)p
∥β⋆∥22. (11)

Theorem 2.3 is the first result to provide a complete view of the impact of naive
imputation on learning linear latent model. In particular, it sheds light on the following
low-dimensional behavior. When ρd≪ p, the error due to naive imputation appears to
be negligible in comparison to the error ∆miss(d) due to missing data. Low-dimensional
(missing) random features are unlikely to be strongly correlated, thus making imputation
before training competitive (compared to the best predictor based on missing values).
This is all the more true as the expected number of observed entries ρd is negligible
compared to p.

In high dimensions where d ≫ p, both errors ∆imp/miss(d) and ∆miss(d) vanish:
neither the occurrence of missing data, nor their naive handling through imputation,
hinder the learning task. This provides a refined and more rigorous analysis of this
favorable behavior already identified in Ayme et al. (2023). Remark that, contrary
to ∆miss(d) (Equation (6)), ∆imp/miss(d) does not seem to decrease exponentially as d
increases, but only as 1/d. Not that, according to (10), this rate is optimal.

Illustration We illustrate the bounds obtained in Proposition 2.1, Proposition 2.2
and Theorem 2.3 in Figure 1. In particular, we remark that the upper bounds (7)
represented in (a) decrease with the number of features d but is loose for d close to and
smaller than p. Indeed, for this regime, features are not enough isotropic to say that
imputation by the mean (here by 0) is relevant, and not enough correlated to exploit
shared information between features. Figure (b) illustrates the shift point in p for Rmis

and Rimp/mis and the difficulties to learn with missing values (imputed or not) around
d = p.

2.3 Learning from imputed data with SGD

We leverage on our analysis of the Bayes risk of impute-then-regress strategy to propose
a learning algorithm based on an SGD strategy. Our algorithm is computationally
efficient, as it requires only one pass over the dataset, and shown to have theoretical
guarantees. Note that due to missing data, the model becomes miss-specified (see Ayme
et al., 2023), a challenging study case that can still be handled by SGD procedures.
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Figure 1: Evolution of different risks w.r.t. the number d of random features, with
p = 100, ∥β⋆∥ = 1, ρ = 0, 8 and σ = 0.

SGD estimator. An averaged stochastic gradient descent (SGD) on the imputed
dataset (X̃i)i∈[n] is performed to directly minimize the theoretical risk θ 7−→ Rimp(θ)
over Rd. The algorithm starts from θ0 = 0 with a step-size γ > 0, then follows the
recursion

θt =
[
I − γX̃tX̃

⊤
t

]
θt−1 + γYtX̃t, (12)

and outputs after n iterations the Polyak-Ruppert averaging θ̄ = 1
n+1

∑n
t=1 θt, used to

estimate θ⋆imp. This algorithm (performing one pass over the training data) is optimal in
terms of computational complexity. Note that the choice of the step size should depend
intimately on the input dimension, with a slight variation, according to whether the
setting is low or high-dimensional (see, Dieuleveut and Bach, 2016, for example).

Theorem 2.4. Under Assumptions 1 to 3, for d < p − 1, the SGD recursion with
Polyak-Ruppert averaging and step size γ = 1

d
satisfy

E[Rimp(θ̄) −R⋆
miss(d)] ≲

ρ(1 − ρ)d(d− 1)

p(p− ρ(d− 1) − 2)
∥β⋆∥22

+
d

ρn

d

(p− ρ(d− 1) − 2)
∥β⋆∥22 + ρ

d

n
(σ2 + ∥β⋆∥22). (13)

For d ≥ p, the choice γ = 1
d
√
n
leads to

E[Rimp(θ̄) −R⋆(d)] ≲
1

ρ

p

d
∥β⋆∥22 +

p

ρ2(1 − ρ)
√
n
∥β⋆∥22 +

σ2 + ∥β⋆∥22√
n

. (14)

Regardless of the regime, these generalization upper bounds are composed of three
terms. The first one encapsulates the (deterministic) error due to the imputation of
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missing values. The last two are stochastic errors inherent to learning, corresponding
respectively to the initial condition and the variance of the SGD recursion.

When d < p− 1, the learning error

d

ρn

d

(p− ρ(d− 1) − 2)
∥β⋆∥22 + ρ

d

n
(σ2 + ∥β⋆∥22)

decreases fast with the number n of observation. However, the error due to the imputation
of missing data ρ(1 − ρ) d(d−1)

p(p−(d−1)−2)
∥β⋆∥22 becomes negligible only for extremely low-

dimensional regimes (d≪ p) and remains significant when d ≲ p. Therefore, for such
a regime, even with a lot of observations, the imputation produces a large bias, and
we recommend using other methods natively capable of handling missing values (e.g.,
dedicated tree-based methods, see Stekhoven and Bühlmann, 2012).

In the regime d≫ p, the error 1
ρ
p
d
∥β⋆∥22 due to missing data and the zero-imputation

procedure is low. Besides, the learning error p
ρ2(1−ρ)

√
n
∥β⋆∥22 +

σ2+∥β⋆∥22√
n

decreases at a

(slow) rate 1/
√
n. This slow rate of learning error is due to the fact that the covariance

matrix of the imputed data Σimp = E[X̃X̃⊤] has a rank equal to d and eigenvalues lower
bounded by ρ(1− ρ). Hence imputed data are not of low rank, even for d≫ p. However,
the upper bound (14) becomes dimension-free for the regime d > ρ(1 − ρ)

√
n. In this

case, the bias due to missing data and zero imputation is negligible compared to the
learning error. This gives a clear practical recommendation: if the observed rate is such
that ρ(1− ρ) < d/

√
n, then zero-imputation does not deteriorate the learning procedure

for d large enough.
Overall, we have fully characterized the inherent error due to missing values in learning

linear latent models, and proposed an efficient predictor based on SGD strategies. This
section outlines that naive imputation thus remains a competitive and relevant technique
not only for high-dimensional models but also for extremely low-dimensional ones, a
favorable regime that was not identified so far in the literature. Note in passing that
for the latter, the error bound (13) of the SGD predictor enjoys both a fast rate and a
negligible approximation error, which can only be marginally improved. However, the
analysis conducted so far relies on strong assumptions (finite-dimensional latent model
with Gaussian random features and uniform weights, linear model). In the next section,
we propose an extension of our high-dimensional results to a more general framework.

3 Extension to infinite-dimensional latent space

In this section, we analyze the influence of missing data in learning, when the random
feature model involves an infinite-dimensional latent space.

3.1 The extended random feature framework

Consider a latent space Z (taking the place of Rp), possibly of infinite dimension. We
denote by (Zi)i∈[n] i.i.d. latent variables, distributed as a generic random variable Z ∈ Z.
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We only observe the variables (Xi)i∈[n], i.i.d. copies of X ∈ X = Rd, resulting from the
following transformation of the latent variables.

Assumption 4 (General random features). The input variables are assumed to be given
by

Xij = ψ(Zi,Wj), for all i ∈ [n] and j ∈ [d], (15)

where the weights W1, . . . ,Wd ∈ W are i.i.d. drawn according to a distribution ν, and
where ψ : Z ×W → R. Furthermore, we assume that ψ(Zi, .) ∈ L2(ν), and there exists
L > 0 such that E[ψ(Z,W )2|W ] ≤ L2 almost surely.

Assumption 4 is an extension of Assumption 1 considering Z = W = Rp, ψ(Zi,Wj) =
Z⊤

i Wj, ν the uniform distribution on Sp−1 and L2 = 1. But, such a setting of general
random features encompasses many more scenarios, and has been extensively studied
(Rahimi and Recht, 2007).

In this framework, we aim to study the linear prediction of an output Y given X,
i.e., to build a prediction function of the form g(X) = X⊤θ with θ ∈ Rd. Note that this
type of prediction can be also obtained as a function of the (latent) variable Z, indeed,

g(X) =
d∑

j=1

θjψ(Z,Wj) =: f(Z). (16)

We can therefore define the corresponding class of functions with input space Z as

F (d)
ν :=

{
f : Z → R, f(z) =

d∑
j=1

θjψ(z,Wj), θ ∈ Rd
}

Note that the class F (d)
ν is random because the weights (Wj)j∈[m] themselves are random.

When the number d of random features tends to infinity, we can define the set F (∞)
ν of

functions which take the form:

f(Z) =

∫
αf (w)ψ(Z,w)dν(w), (17)

for any αf ∈ L2(ν). The associated norm is given by

∥f∥2ν := inf
α∈L2(ν)

∫
|α(w)|2 dν(w) s.t. ∀z ∈ Z, f(z) =

∫
α(w)ψ(z, w)dν(w). (18)

This norm corresponds to an RKHS norm, we refer the interested reader to Bach (2017)
for further details. We denote by R⋆(∞), the risk of the best predictor belonging to the

class F (∞)
ν , i.e., R⋆(∞) = inf

f∈F(∞)
ν

E [(Y − f(Z))2].

The setting considered in this section includes, for instance, Fourier random features
(Rahimi and Recht, 2007; Rudi and Rosasco, 2017).
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Example 3.1 (Fourier random features). Consider Z ∈ Z where Z is a compact subset
of Rp, W = (A,B,C) ∈ W = Rp × R× {−1, 1} and fix

ψ(Z,W ) = cos(A⊤Z +B) + 2C,

with A ∼ N (0, I), B ∼ U([0, 2π]) and C ∼ U({−1, 1}). Note that Assumption 4 holds

here with L2 = 3. The resulting function class F (∞)
ν described by these random features

is dense for ∥ · ∥∞ in the space of continuous functions.

As shown in this example, with a proper choice of ν and ψ, the class F (∞)
ν can

approximate any function that makes the following assumption feasible.

Assumption 5. The Bayes predictor f ⋆(z) = E[Y |Z = z] belongs to F (∞)
ν .

Under Assumption 5, the model Y = f ⋆(Z) + ϵ, is well defined, i.e., E[ϵ|Z] =
0. Remark that Assumption 5 can be seen as a natural extension of linear model
Assumption 2.

3.2 Impact of missing data and imputation in the RF frame-
work

The general random features (Xi)i∈[n] are assumed to be corrupted by MCAR entries,
whether during training and test phases. Our goal is to study the quantity R⋆

imp(d).
Note that (5) can be rewritten here as

R⋆(∞) ≤ R⋆(d) ≤ R⋆
miss(d) ≤ R⋆

imp(d).

Thus, introducing the quantity

∆
(∞)
imp (d) := ER⋆

imp(d) −R⋆(∞)

= ∆miss(d) + ∆imp/miss(d) + ER⋆(d) −R⋆(∞), (19)

we encapsulate (i) the error ER⋆(d) −R⋆(∞) due to learning from a finite number of
random features, (ii) the error ∆miss(d) due to learning with missing inputs and, (iii)
the approximation error ∆imp/miss(d) due to the imputation by zero.

Theorem 3.2. Under Assumptions 3 and 4,

∆
(∞)
imp (d) ≤ inf

f∈F(∞)
ν

{
R(f) −R⋆(∞) +

λimp

d
∥f∥2ν

}
,

with λimp = L2

ρ
. In particular, under Assumption 5,

∆
(∞)
imp (d) ≤ λimp

d
∥f ⋆∥2ν .

12



Theorem 3.2 provides an upper bound on ∆
(∞)
imp (d) for general random feature models.

In particular, the latter can be compared to a ridge bias when performing a kernel
ridge regression in F (∞)

ν , and choosing the penalization strength of the order of λimp/d.
Furthermore, under Assumption 5 (well-specified model), this bias converges to zero
with a rate of ∥f ⋆∥2ν /(ρd). By applying this result to a finite-dimensional latent model
under Assumptions 1 and 2, and remarking that ∥f ⋆∥2ν = p ∥β⋆∥22, we recover the same
rate p/(ρd) ∥β⋆∥22 exhibited in Theorem 2.3. According to Theorem 2.3, this rate cannot
be improved in general. More globally, missing data in RF models become harmless
when learning with a large number of random features. It should be noted that when
Assumption 5 does not hold anymore, one can still conclude that the bias ∆

(∞)
imp tends

to zero but at an arbitrarily slow rate. Regarding Assumption 4, it remains a mild
requirement; in particular, it does not require centered inputs. This underlines that there
is no need to impute by the mean to obtain ∆

(∞)
imp converging to 0 in high-dimensional

regimes.

3.3 SGD generalization upper bound

In this section, we assess the generalization performance of the SGD iterates when
working with an underlying general random feature model.

Assumption 6. There exists ℓ > 0 such that, almost surely

E[ψ(Z,W )2|W ] ≥ ℓ2.

This assumption holds when features are renormalized (i.e., when ℓ = L = 1) or in
the case of random Fourier features (see Example 3.1) with ℓ = 1.

Assumption 7. Assume that almost surely,

|ψ(Z,W )|2 ≤ κL2.

This assumption is satisfied in Example 3.1 with κ = 2 and L2 = 3.

Theorem 3.3. Under the general framework covered by Assumptions 4 to 7 with MCAR
data (Assumption 3), the SGD recursion with Polyak-Ruppert averaging and step size
γ = 1/(κd

√
n) satisfy

E[Rimp(θ̄) −R⋆(∞)] ≲
L2

ρd
∥f ⋆∥2ν +

L2

ℓ2
L2

ρ2(1 − ρ)
√
n
∥f ⋆∥2ν +

κL2EY 2

√
n

. (20)

Theorem 3.3 outlines that, even for very general random features model (with
possibly a latent space of infinite dimension), the impact of (i) the finite number
of features, (ii) the missing data, and (iii) the imputation by 0, represented by the
quantity L2

ρd
∥f ⋆∥2ν , remains negligible in high dimension. Similarly to (14), the learning

error L2

ℓ2
L2

ρ2(1−ρ)
√
n
∥f ⋆∥2ν + κL2EY 2

√
n

decreases with a slow rate. More precisely, when d≫

13



L2

ℓ2
ρ(1 − ρ)

√
n, the upper bound is dimension free and the bias ∆

(∞)
imp due to imputation

becomes completely negligible. Note that, for renormalized features (L2 = l2 = 1),
the transition from a low-dimensional regime to a high-dimensional one is given by
d = ρ(1 − ρ)

√
n (as for Theorem 2.4), which is very easy to evaluate.

4 Beyond the MCAR assumption

To go beyond the MCAR missing data framework used in the previous section, we now
consider missing not at random (MNAR) data, in which the missingness indicator of
any variable can depend on the (possibly missing) value of the variable. In particular,
we assume that the missing patterns (Pi)i depend on the latent features (Zi)i, which
results in a MNAR scenario.

Assumption 8. Suppose that P and Y are independent. Furthermore, consider that
there exists an i.i.d. sequence (W ′

j)j∈[d] i.i.d. drawn according to some distribution µ
supported on a set W ′ and assume that P1, . . . , Pd|Z,W ′

1, . . . ,W
′
d are independent. We

assume that the sequences (W ′
j)j∈[d] and (Wj)j∈[d] are independent and that

P
(
Pj|Z,W ′

j

)
= ϕ(Z,W ′

j), for all j ∈ [d],

where ϕ : Z ×W ′ → (0, 1] is a continuous function.

The following result shows that the asymptotic property of R⋆
imp in a MCAR setting

(Theorem 2.3) remains valid in the MNAR setting of Assumption 8.

Theorem 4.1. Under Assumption 8, consider one of the following settings:

(i) (finite-dimensional latent space) Under Assumptions 1 and 2, assume the distri-
bution of the missing mechanism to be given for W ′ = (W ′

0,W
′) ∈ R × Rd, by

ϕ(Z,W ′) = Φ(Z⊤W ′ +W ′
0) with Φ a Lipschitz function. Additionally, 0 is required

to belong to the support of W ′.

(ii) (general latent space) Under Assumptions 4 and 5, assume in addition that Z
is compact, f ⋆ continuous and F (ν) dense in the space of continuous functions
equipped with the norm ∥ · ∥∞.

Then, almost surely,
lim

d→+∞
R⋆

imp(d) = R⋆(∞).

As a consequence,

lim
d

∆
(∞)
imp (d) = lim

d
∆miss(d) = lim

d
∆miss/imp(d) = 0.

This result shows that the benign impact of missing data and imputation on predictive
performances in high dimension holds true outside the MCAR assumption, even for
missing scenarios (MNAR) often considered as more challenging. Let us consider two
non-trivial examples.
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Example 4.2 (Gaussian random features with logistic model). Consider the finite-
dimensional latent model of Assumptions 1 and 2, where Z = Rp and W ′

j = (W ′
0j,W

′
j) ∈

R×Rd, and assume that the conditional distribution of the missing patterns Pj is given
by

P
(
Pj|Z,W ′

j

)
= Φ(W ′

0j +W ′⊤
j Z) =

1

1 + eW
′
0j+W ′⊤

j Z
.

In this example, the features Xj are assumed to be missing according to a logistic model
on the latent variables Z. In this setting, we can show that Theorem 4.1 (i) applies,
since in particular, 0 belongs the support of W ′

j . Note that, if W ′
j = 0 almost surely then

this model corresponds to a MCAR scenarios but with different proportion of missing
values for each feature. The model is no longer MCAR as soon as random variable W ′

j

is not exactly equal to 0.

Example 4.3 (Fourier random features for any function ϕ). Let us consider the framework
of Example 3.1 with a continuous function f ⋆. Then Theorem 4.1 (ii) applies for any
continuous function ϕ (in particular, we can consider the logistic model of Example 4.2
without any condition on W ′).

For these two MNAR examples,

lim
d

∆
(∞)
imp (d) = lim

d
∆miss(d) = lim

d
∆miss/imp(d) = 0,

which means that missing values and imputations vanishes with the dimension.

5 Conclusion

Thanks to the rigorous framework of random features models, we prove that naive
imputation is relevant both in high- and low-dimensional regimes. In particular, the
bias induced by imputation is negligible compared to the one induced by missing data,
therefore showing that zero-imputation strategies may lead to near-optimal predictors.
Following this analysis, we prove that an SGD procedure trained on zero-imputed data
reaches near-optimal rate of consistency in low-dimensional regimes, but still suffer from
slow rates in high-dimensional ones. Obtaining fast rates for the latter setting is still an
open and interesting question. Whilst our analysis extends beyond the MCAR scenario,
rates of consistency for SGD procedures remain to be derived for such settings.
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A Notations

For two vectors (or matrices) a, b, we denote by a ⊙ b the Hadamard product (or
component-wise product). [n] = {1, 2, ..., n}. For two symmetric matrices A and B,
A ⪯ B means that B−A is positive semi-definite. The symbol ≲ denotes the inequality
up to a universal constant. Table 1 summarizes the notations used throughout the paper
and appendix.

Table 1: Notations

∥u∥2M u⊤Mu the semi-norm induced by a positive matrix M
∥M∥2Fr The Frobenius norm of M
Tr(M) The sum of diagonal elements of M
M + λ Abuse of notation for M + λIp
M † The Moore-Penrose pseudoinverse of M
Sp The unit sphere of Rp

Span(uj, j ∈ [k]) The linear span induced by (uj)j∈[k]
P The mask
W (W1, . . . ,Wd)

⊤ the matrix of weights
R(θ) the risk of linear predictor θ on complete data
Rimp(θ) the risk of linear predictor θ on imputed data
θ⋆ Best linear predictor on complete data
θ⋆imp Best linear predictor on imputed data
Σ E[XX⊤|W]
λj eigenvalues of Σ
uj eigendirections of Σ
ρ Theoretical proportion of observed entries
L2(ν) The set of two square ν integrable functions

B Preliminary results - random matrices

We provide here a reminder on singular values decomposition and Moore-Penrose
pseudoinverse. We can found these results and more on linear algebra in Giraud (2021,
appendix).

Theorem B.1. Any n× p real-valued matrix of rank r can be decomposed as

A =
r∑

j=1

σjujv
⊤
j ,

where

• σ1 ≥ · · · ≥ σr > 0,
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• (σ1, . . . , σr) are the nonzero eigenvalues of A⊤A and AA⊤, and

• (u1, . . . , ur) and (v1, . . . , vr) are two orthonormal families of Rn and Rp, such that
AA⊤uj = σ2

juj and A⊤Avj = σ2
j vj.

Furthermore, the Moore-Penrose pseudo inverse defined as

A† =
r∑

j=1

σ−1
j vju

⊤
j ,

satisfied

1. A†A is the orthogonal projector on lines of A,

2. AA† is the orthogonal projector on columns of A,

3. (AO)† = O⊤A† for any orthogonal matrix O.

For any function f : R 7−→ R, and any positive matrix A ∈ Rd×d with the following
spectral decomposition A =

∑d
j=1 λjvjv

⊤
j , we denote by f(A) the matrix corresponding

to the spectral decomposition

f(A) :=
d∑

j=1

f(λj)vjv
⊤
j .

Theorem B.2 (Jensen inequality for random positive matrix, see Theorem 2.10 in
Carlen (2010)). Let A be a random positive matrix. For all convex functions f , we have

Tr(f(EA)) ≤ ETr(f(A)).

Proposition B.3. Let A =
∑d

j=1 ZjZ
⊤
j with Z1, . . . , Zd i.i.d. random vector of Rp with

∥Z1∥22 ≤ 1 almost surely and EZZ⊤ = αIp, then, for all λ > 0

p

dα + λ
≤ ETr

(
(A+ λIp)

−1
)
≤ (1 + 1/λ)

p

dα + λ
. (21)

Proof of Proposition B.3. This result is a direct application of Mourtada and Rosasco
(2022, Lemma 2) considering Σ̂ = 1

d
A

Lemma B.4. Let M ∈ Rp×p be a random symmetric matrix, such that for all vectors
u, v ∈ Sp−1, Law(u⊤Mu) = Law(v⊤Mv). Then, for all β ∈ Rp,

E
[
β⊤Mβ

]
= ∥β∥22

ETr(M)

p
.

This is in particular satisfied if, for any orthogonal matrix O, OMO⊤ has the same law
as M .
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Proof. By assumption, for all u, v ∈ Sd−1, Eu⊤Mu = Ev⊤Mv. Thus, there exists α
such that, for all v ∈ Sd, v⊤EMv = Ev⊤Mv = α, which entails that EM = αI by
characterization of symmetric matrices. Therefore, ETr(M) = Tr(EM) = pα, and

EM = ETr(M)
p

I. Hence, for all β ∈ Rp

E
[
β⊤Mβ

]
= β⊤EMβ = ∥β∥22

ETr(M)

p
.

The last point easily follows, see for example Page Jr (1984, Proposition 2.14) for the
case of invariant distributions by orthogonal transforms.

The following result is inspired by the result of Cook and Forzani (2011), that is an
adaptation of that of Von Rosen (1988).

Lemma B.5. For all 0 < d < p− 1, let W ∈ Rp×d such that columns of W are i.i.d.
and uniform over Sp−1, then

E∥W†∥2Fr = d

(
1 +

d− 1

p− d− 1

)
.

Proof. Up to a polar coordinate change of variable, one can show that the distribution
of the columns of W corresponds to that of normalized Gaussian vectors, i.e., for all
j ∈ [d],

Wj =
Gj

∥Gj∥2
,

where (Gj) are i.i.d. of law N (0, Ip). Note that the columns of W are the rows of
M = W⊤. As d < p,

MM† = Id.

because the rows of M are almost surely linearly independent. For all j ∈ [d], we let lj
be the j-th row of M, and cj the j-th column of M†. Therefore, for all k ̸= j, l⊤k cj = 0,
then cj ∈ Span(lk, k ≠ j)⊥. Note, that Span(lj, j ∈ [d]) = Span(cj, j ∈ [d]) by property
of Moore-Penrose pseudoinverse (Theorem B.1). Thus, cj as the form,

cj = θjPjlj,

where Pj is the orthogonal projection on Span(lk, k ̸= j)⊥. Besides, l⊤j cj = 1 gives us
that

θj =
1

∥Pjlj∥22
.

Thus,

∥M †∥2Fr =
∑
j

∥cj∥22 =
∑
j

1

∥Pjlj∥22
(22)
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As lj = Wj =
Gj

∥Gj∥2 , we can write

1

∥Pjlj∥22
=

∥Gj∥22
∥PjGj∥22

Using that ∥Gj∥22 = ∥PjGj∥22 + ∥(Ip − Pj)Gj∥22, we have

1

∥Pjlj∥22
= 1 +

∥(Ip − Pj)Gj∥22
∥PjGj∥22

.

Conditioning by (Gk) with k ̸= j, and using Cochran theorem (Ip−Pj)Gj|Gk, k ̸= j and
PjGj|Gk, k ̸= j are two independent standard normal vector of respective dimensions
p− (p− d+ 1) = d− 1 and p− d+ 1. Thus,

E
[

1

∥Pjlj∥22
|Gk, k ̸= j

]
= 1 + E

[
∥(Ip − Pj)Gj∥22|Gk, k ̸= j

]
E
[

1

∥PjGj∥22
|Gk, k ̸= j

]
(23)

= 1 +
d− 1

p− d− 1
, (24)

because E [∥(Ip − Pj)Gj∥22|Gk, k ̸= j] = d− 1 and E
[

1
∥PjGj∥22

|Gk, k ̸= j
]

= 1
p−d−1

as the

expectation of an inverse-chi-squared of parameter p− d+ 1 > 2 (with d < p− 1). Then,
taking the expectation of (22) leads to the result,

E∥M †∥2Fr = d+
d(d− 1)

p− d− 1
.

Lemma B.6. Let A,B, V three symetrics non-negative matrix, if A ⪯ B then A⊙ V ⪯
B ⊙ V .

Proof. Let X ∼ N (0, V ) and θ ∈ Rd,
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∥θ∥2A⊙V = θ⊤A⊙ V θ

= θ⊤
((
EXX⊤)⊙ A

)
θ

= E
[
θ⊤
((
XX⊤)⊙ A

)
θ
]

= E

[∑
i,j

θi
((
XX⊤)⊙ A

)
i,j
θj

]

= E

[∑
i,j

θiXiXjAi,jθj

]

= E

[∑
i,j

(θiXi) (θjXj)Ai,j

]
= E

[
∥X ⊙ θ∥2A

]
≤ E

[
∥X ⊙ θ∥2B

]
= ∥θ∥2B⊙V

C Proof of Section 2

The following result, established by Ayme et al. (2023), is used to derive an expression
of ∆missing + ∆imp/miss.

Lemma C.1 (Proposition 3.1 of (Ayme et al., 2023)). For all θ ∈ Rd,

Rimp(θ) = R(ρθ) + ρ(1 − ρ)∥θ∥2diag(Σ). (25)

Recalling that

∆miss + ∆imp/miss = E
[
R⋆

imp(d) −R⋆(d)
]
, (26)

we deduce from Lemma C.1 that

∆miss + ∆imp/miss = E inf
θ∈Rd

{
R(θ) −R⋆(d) +

1 − ρ

ρ
∥θ∥2diag(Σ)

}
. (27)

Additionally, when diag(Σ) = Ip (in particular for model (1)), by optimization, we
obtain,

∆miss + ∆imp/miss = λE∥θ⋆∥2Σ(λI+Σ)−1 , (28)

with λ = 1−ρ
ρ

.
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Lemma C.2. Under Assumption 3,

ER⋆
miss(d) =

d∑
k=0

P(B = k)ER⋆(k),

where B is a binomial random variable of parameters d and ρ.

Proof. Using the decomposition of the Bayes predictor from Le Morvan et al. (2020),
we have

R⋆
miss(d) =

∑
m∈{0,1}d

P(P = m)R⋆
m, (29)

where
R⋆

m = inf
f
E
[
(Y − f(Xobs(m)))

2|P = m,W1, . . . ,Wd

]
,

is the local Bayes risk given (P = m). Using MCAR assumption (Assumption 3), and
Gaussian assumption, according to Le Morvan et al. (2020), each local Bayes predictor
are linear, thus

R⋆
m = inf

θ
E
[
(Y − θ⊤Xobs(m)))

2|Wj, j ∈ obs(m)
]
.

As (Wj) are i.i.d. (and independent of Y ), R⋆
m has the same law as R⋆(|m|) where |m|

is the number of observed components of m. Thus,

ER⋆
miss(d) =

∑
m∈{0,1}d

P(P = m)ER⋆(|m|)). (30)

Grouping the missing patterns of the same size, we conclude that,

ER⋆
miss(d) =

d∑
k=0

P(B = k)ER⋆(k),

where B is a binomial law of parameters d and ρ.

C.1 Proof of Proposition 2.1

By definition,

R⋆(d) = E
[
(X⊤θ⋆ − Y )2|W1, . . . ,Wd

]
= E

[
(X⊤θ⋆ − Z⊤β⋆ − ϵ)2|W1, . . . ,Wd

]
(using (2))

= σ2 + E
[
(X⊤θ⋆ − Z⊤β⋆)2|W1, . . . ,Wd

]
,
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using that ϵ is an independent noise of variance σ2. We have X⊤θ⋆ = Z⊤∑
j θ

⋆
jWj.

Then,

R⋆(d) = σ2 + E

( d∑
j=1

θ⋆jWj − β⋆)

)⊤

Z

2 ∣∣∣∣∣W1, . . . ,Wd


= σ2 +

∥∥∥∥∥β⋆ −
d∑

j=1

θ⋆jWj

∥∥∥∥∥
2

2

,

by isotropy of Z (Z ∼ N (0, Ip) and thus EZZ⊤ = I). Using that
∑d

j=1 θ
⋆
jWj belongs to

Span(W1, . . . ,Wd), we get that
∑d

j=1 θ
⋆
jWj = Pdβ

⋆ where Pd is the orthogonal projection
on Span(W1, . . . ,Wd). Then,

R⋆(d) = σ2 + ∥(I − Pd)β
⋆∥22 = σ2 + (β⋆)⊤(I − Pd)β

⋆.

Remark that Pd is a random matrix (since W1, . . . ,Wd are random). Denoting by W
the matrix admitting W1, . . . ,Wd as rows, the projection matrix can be rewritten as
Pd = W†W. Thus, for all orthogonal matrix O, OPdO

⊤ = (WO⊤)†WO⊤. The matrix
WO⊤ has rows O⊤W1, . . . , O

⊤Wd, which is an i.i.d. sequence of random vectors on
the unit sphere (since O⊤ is an orthogonal). Indeed, WO⊤ and W have the same
distribution, in consequence P and OPdO have the same distribution too. Thus, by
Lemma B.4, if d < p,

ER⋆(d) = σ2 +
1

p
∥β⋆∥22ETr(I − Pd)

= σ2 +
p− d

p
∥β⋆∥22,

using that Tr(I − Pd) = rank(I − Pd) = p − d. Besides, if d ≥ p, Pd = Ip, and
ER⋆(d) = σ2.

C.2 Proof of Proposition 2.2

Using Lemma C.2, we have

ER⋆
miss(d) =

d∑
k=0

P(B = k)ER⋆(k),

where B is a binomial random variable of parameters d and ρ. Using Proposition 2.1,
we have

E [R⋆(k)] =

{
σ2 + p−k

p
∥β⋆∥22, when k < p,

σ2 when k ≥ p.
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Combining the two previous equalities, we obtain that

ER⋆
miss(d) = σ2 +

E[(p−B)1B≤p]

p
∥β⋆∥22.

In the case where d ≤ p, 1B≤p = 1 almost surely, and we obtain

ER⋆
miss(d) = σ2 +

p− ρd

p
∥β⋆∥22.

C.3 Proof of Theorem 2.3

C.3.1 Preliminaries

In the rest of the proof, we denote by W = (W1, . . . ,Wd)
⊤ ∈ Rd×p the weight matrix

that admits the weight vectors Wj ∼ U(Sp−1) for rows. We call Σ = E
[
XX⊤|W

]
the

covariance matrix of an input X ∈ Rd given the weight matrix W. Recall that the
latter, resulting from a random feature model, is such that X = WZ, for Z ∈ Rp the
corresponding latent vector.

Lemma C.3. Under assumptions of Theorem 2.3,

∆imp/miss + ∆miss =

{
λ∥β⋆∥22

p
ETr ((Σ + λId)

−1) if d < p
λ∥β⋆∥22

p
ETr

(
(W⊤W + λIp)

−1
)

if d ≥ p,

with λ = 1−ρ
ρ
.

Proof. One has for θ ∈ Rp,

R(θ) = σ2 + E
[
(Z⊤β⋆ − θ⊤X)2|W

]
.

Using that X = WZ, we have

R(θ) = σ2 + E
[((

β⋆ −W⊤θ
)⊤
Z
)2

|W
]

= σ2 +
∥∥β⋆ −W⊤θ

∥∥2
2
,

by isotropy of Z. Since θ⋆ minimizes the risk R, θ⋆ minimizes the least-squares criterion
above. Therefore, in the case where p > d (the “design” W⊤ being long), θ⋆ is unique
and given by θ⋆ = (WW⊤)−1Wβ⋆. In the case where d < p (the design matrix W⊤

being fat), there exists an infinite number of minimizers (all are solutions of the system
β⋆ = W⊤θ), but one can look at the solution of minimal ℓ2-norm. Then, KKT conditions
provide the particular solution θ⋆ = W(W⊤W)−1β⋆. In both cases, θ⋆ can be written
in the following unified way:

θ⋆ =
(
W⊤)† β⋆.
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Futhermore,

Σ = E
[
XX⊤|W

]
= E

[
WZ(WZ)⊤|W

]
= E

[
WZZ⊤W⊤|W

]
= WW⊤.

Then, using (28),

∆imp/miss + ∆miss = λE ∥θ⋆∥Σ(Σ+λI)−1

= λE
∥∥∥(W⊤)† β⋆

∥∥∥2
WW⊤(WW⊤+λI)−1

= λE ∥β⋆∥2
W†WW⊤(WW⊤+λI)−1(W⊤)

†

=
λ ∥β⋆∥22

p
ETr

(
W†WW⊤(WW⊤ + λI)−1

(
W⊤)†) ,

using Lemma B.4 remarking that, for all orthogonal matrix O ∈ Rp×p

OW†WW⊤(WW⊤ + λI)−1
(
W⊤)†O⊤ = OW†WO⊤OW⊤(WO⊤OW⊤ + λI)−1

(
W⊤)†O⊤

= (WO⊤)†WO⊤(WO⊤)⊤(WO⊤(WO⊤)⊤ + λI)−1
(
(WO⊤)⊤

)†
,

by orthogonality of O (O⊤O = Ip). Then, OW†WW⊤(WW⊤ + λI)−1
(
W⊤)†O⊤ has

the same distribution as W†WW⊤(WW⊤ + λI)−1
(
W⊤)†, since WO⊤ dist

= W.
Consider the singular value decomposition (SVD) of W,

W =
r∑

j=1

σjujv
⊤
j ,

where r = p ∧ d is the rank of W†, (uj) is an orthonormal basis of Rd, and (vj) is an
orthonormal basis of Rp. The SVD of its pseudo-inverse is therefore

W† =
r∑

j=1

σ−1
j vju

⊤
j .

Then, we obtain

W†WW⊤(WW⊤ + λI)−1
(
W⊤)† =

r∑
j=1

1

λ+ σ2
j

uju
⊤
j .

Thus,

Tr
(
W†WW⊤(WW⊤ + λI)−1

(
W⊤)†) =

r∑
j=1

1

λ+ σ2
j

.

We recognize (λ + σ2
j )j∈[r] as the eigenvalues of Σ + λId = WW⊤ + λId when d < p

and rank(W) = d, or as the eigenvalues of W⊤W + λIp when d ≥ p and rank(W) = p.
Hence,

∆imp/miss + ∆miss =

{
λ∥β⋆∥22

p
ETr ((Σ + λId)

−1) if d < p
λ∥β⋆∥22

p
ETr

(
(W⊤W + λIp)

−1
)

if d ≥ p.
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C.3.2 Proof of (7) (d < p− 1)

(First step) Decomposition of R⋆
imp(d). Note that for x ≥ 0 (to be chosen later),

one has

R⋆
imp(d) ≤ Rimp(xθ⋆) ≤ R(xρθ⋆) + ρ(1 − ρ)∥xθ⋆∥22 = R(xρθ⋆) + ρ(1 − ρ)x2∥θ⋆∥22,

using Lemma C.1. Then,

R⋆
imp(d) −R⋆(d) ≤ R(xρθ⋆) −R⋆(d) + ρ(1 − ρ)x2∥θ⋆∥22.

Note that,

R(xρθ⋆) −R⋆(d) = ∥xρθ⋆ − θ⋆∥2Σ
= (1 − xρ)2∥θ⋆∥2Σ.

Thus, we have,

R⋆
imp(d) −R⋆(d) ≤ (1 − xρ)2∥θ⋆∥2Σ + x2ρ(1 − ρ)∥θ⋆∥22. (31)

(Second step) Calculus of E∥θ⋆∥22. Since θ⋆ = (W⊤)†β,

E∥θ⋆∥22 = Eβ⊤(W†(W⊤)†)β.

Again, for an orthonormal matrix O, OW†(W⊤)†O⊤ = (WO⊤)†((WO⊤)⊤)† has the
same law as that of W†(W⊤)† because WO⊤ has the same law of W. Using Lemma B.4,

E∥θ⋆∥22 = ∥β∥22
ETr

(
(W†)⊤W†)
p

= ∥β∥22
E∥W†∥2Fr

p
,

by definition of the Frobenius norm. Then, by Lemma B.5, we obtain

E∥θ⋆∥22 =
d

p

(
1 +

d

p− d− 1

)
∥β∥22. (32)

(Third step) Calculus of E∥θ⋆∥2Σ. We have by optimization result,

EY 2 = ∥θ⋆∥2Σ +R⋆(d).

Using that, EY 2 = σ2 + ∥β∥22, and taking the expectation, we obtain

σ2 + ∥β∥22 = E∥θ⋆∥2Σ + ER⋆(d).

Furthermore, by Proposition 2.1,

ER⋆(d) = σ2 +
p− d

p
∥β∥22.
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Thus, we obtain,

E∥θ⋆∥2Σ =
d

p
∥β∥22. (33)

(Fourth step) Conclusion. Putting things together, one gets

E
[
R⋆

imp(d) −R⋆(d)
]
≤ (1 − xρ)2E∥θ⋆∥2Σ + x2ρ(1 − ρ)E∥θ⋆∥22

=
d

p
∥β∥22

(
(1 − xρ)2 + x2(1 − ρ)ρ

(
1 +

d− 1

p− d− 1

))
.

The bound on the right hand side can be optimized with respect to x. It corresponds to a
strongly convex function of the form f : x 7−→ (1−ax)2 +bx2. We have f ′(x) = −2a(1−
ax) + 2bx, so that the only critical point is x⋆ = a

a2+b
, leading to min f = f(x⋆) = b

a2+b
.

Therefore,

E
[
R⋆

imp(d) −R⋆(d)
]
≤ d

p
∥β∥22

(1 − ρ)ρ
(

1 + d−1
p−d−1

)
ρ2 + (1 − ρ)ρ

(
1 + d−1

p−d−1

)
=
d

p
∥β∥22

(1 − ρ)
(

1 + d−1
p−d−1

)
ρ+ (1 − ρ)

(
1 + d−1

p−d−1

)
=
d

p
∥β∥22

(1 − ρ) (p− 2)

ρ(p− d− 1) + (1 − ρ) (p− 2)

=
d

p
∥β∥22

(1 − ρ) (p− 2)

p− ρ(d− 1) − 2

=
d

p
∥β∥22

(
(1 − ρ) + (1 − ρ)

(p− 2) − (p− ρ(d− 1) − 2)

p− ρ(d− 1) − 2

)
= (1 − ρ)

d

p
∥β∥22

(
1 +

ρ(d− 1)

p− ρ(d− 1) − 2

)
,

which leads to the desired result. We obtain also (8) and (9) using equality obtain in
Proposition 2.2.

C.3.3 Proof of upper and lower bounds (10) (11) (d ≥ p)

Using Lemma C.3, we have

∆imp/miss + ∆miss =
λ ∥β⋆∥22

p
ETr

(
(W⊤W + λIp)

−1
)

Remark that W⊤W =
∑d

j=1WjW
⊤
j . Furthermore, note that when W1 ∼ U(Sp−1),

for any 1 ≤ k ≤ p, W1 = (W11, . . . ,W1k, . . . ,W1p)
⊤ has the same distribution as
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(W11, . . . ,−W1k, . . . ,W1p)
⊤. Therefore, for all 1 ≤ k ̸= k′ ≤ p, E[W1kW1k′ ] = −E[W1kW1k′ ],

leading to E[W1kW1k′ ] = 0. Furthermore E[W 2
11 + . . .+W 2

1p] = E[W 2
11]+ . . .+E[W 2

1p] = 1,
so that by exchangeability, for all 1 ≤ k ≤ p, E[W 2

1k] = 1/p and finally EW1W
⊤
1 = 1

p
Ip.

Applying Proposition B.3, we obtain

λ ∥β⋆∥22
p

p

d/p+ λ
≤ ∆imp/miss + ∆miss ≤

λ ∥β⋆∥22
p

(1 + 1/λ)
p

d/p+ λ
,

and

∥β⋆∥22 (1 − ρ)
p

ρd+ (1 − ρ)p
≤ ∆imp/miss + ∆miss ≤ ∥β⋆∥22

p

ρd+ (1 − ρ)p
.

D Proof of Section 3

D.1 Proof of Theorem 3.2

Start by writing

∆
(∞)
imp = ER⋆

imp(d) −R⋆(∞)

= ∆imp/miss + ∆miss + ER⋆(d) −R⋆(∞)

= E inf
θ∈Rd

{
R(θ) −R⋆(∞) +

1 − ρ

ρ
∥θ∥2diag(Σ)

}
,

using (27). Considering Assumption 4, diag(Σ) ⪯ L2Id, that leads to

∆
(∞)
imp ≤ E inf

θ∈Rd

{
R(θ) −R⋆(∞) + L21 − ρ

ρ
∥θ∥22

}
.

Fixing λ = L2 1−ρ
ρ

, we aim at providing an upper bound for

∆λ := E inf
θ∈Rd

{
R(θ) −R⋆(∞) + λ∥θ∥22

}
.

Let f ∈ F (∞)
ν with one representative α ∈ L2(ν). We set θ(α) ∈ Rd such that for all

j ∈ [d], θ
(α)
j = 1

d
α(Wj). We have,

∆λ +R⋆(∞) = E inf
θ∈Rd

{
R (θ) + λE

[
∥θ∥22 |W

]}
≤ E

[
R
(
θ(α)
)

+ λE
[∥∥∥θ(α)∥∥∥2

2
|W
]]

= ER
(
θ(α)
)

+ λE
[∥∥∥θ(α)∥∥∥2

2

]
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First term. Remark that by definition of random features (15), X⊤θ(α) =
∑d

j=1 θ
(α)
j ψ(Z,Wj) =

1
d

∑d
j=1 α(Wj)ψ(Z,Wj). In consequence, E

[
X⊤θ(α)|Z

]
=
∫
α(W )ψ(Z,W )dν(W ) =

f(Z). Then

ER
(
θ(α)
)

= E
[
E
[(
X⊤θ(α) − Y

)2
|W
]]

= E
[
E
[(
X⊤θ(α) − Y

)2
|Z
]]

using Fubini’s theorem

= E
[
E
[(
X⊤θ(α) − f(Z) + f(Z) − Y

)2
|Z
]]

= E
[
E
[(
X⊤θ(α) − f(Z)

)2
+ (f(Z) − Y )2 |Z

]]
using E

[
X⊤θ(α)|Z

]
= f(Z)

= E
[
V
[
X⊤θ(α)|Z

]]
+R(f).

Then,

V
[
X⊤θ(α)|Z

]
= V

[
1

d

d∑
j=1

α(Wj)ψ(Z,Wj)|Z

]

=
1

d
Vν [α(W )ψ(Z,W )|Z] (Wj) being i.i.d

≤ 1

d
Eν

[
α(W )2ψ(Z,W )2|Z

]
.

Then using Fubini’s theorem,

V
[
X⊤θ(α)

]
≤ 1

d
E
[
E
[
α(W )2ψ(Z,W )2|W

]]
=

1

d
E
[
α(W )2E

[
ψ(Z,W )2|W

]]
.

Under Assumption 4,

V
[
X⊤θ(α)

]
≤ L2

d
E
[
α(W )2

]
.

Thus,

ER
(
θ(α)
)
≤ L2

d
Eν

[
α(W )2

]
+R(f).

Second term.

E
[∥∥∥θ(α)∥∥∥2

2

]
= E

[
d∑

j=1

θ2j

]

=
1

d
E

[
1

d

d∑
j=1

α(Wj)
2

]

=
1

d
E
[
α(W )2

]
,
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using that (Wj)j are i.i.d..
Conclusion. Combining these two terms, we have

∆λ +R⋆(∞) ≤ R(f) +
λ+ L2

d
Eν

[
α(W )2

]
.

This result is valid for any f and α, thus

∆
(∞)
imp +R⋆(∞) ≤ ∆λ +R⋆(∞) ≤ inf

f∈F(ν)

{
R(f) +

λ+ L2

d
∥f∥2ν

}
.

E Proof of error bounds for SGD estimators

E.1 Proof of equation (13) of Theorem 2.4

In this section, we apply results from the SGD literature, in particular, Bach and
Moulines (2013, Theorem 1), to our framework.

Theorem E.1. In the framework of Section 2, for γ = 1
6d
, and when d < n, we have

Rimp(θ̄) −R⋆
imp(d) ≲

d

n
∥θ⋆imp∥22 +

d

n
σ2
imp, (34)

with σ2
imp := σ2 + ρ−1(R⋆

imp(d) −R⋆(d) + ∥θ⋆∥2Σ).

Proof. The proof of this theorem consists of verifying that assumptions of Bach and
Moulines (2013, Theorem 1) hold in our case. Assumptions (A1-5) are easily satisfied.

Let us show that E
[
X̃X̃⊤

∥∥∥X̃∥∥∥2
2
|W
]
⪯ R2Σimp. Indeed,

E
[
X̃X̃⊤

∥∥∥X̃∥∥∥2
2
|W
]
⪯ E

[
X̃X̃⊤ ∥X∥22 |W

]
,

using that
∥∥∥X̃∥∥∥2

2
≤ ∥X∥22, and 0 ⪯ X̃X̃⊤. Then,

E
[
X̃X̃⊤ ∥X∥22 |W

]
= EE

[
X̃X̃⊤ ∥X∥22 |P,W

]
= EE

[
PP⊤ ⊙XX⊤ ∥X∥22 |P,W

]
= E

[
ΣP ⊙XX⊤ ∥X∥22 |W

]
= ΣP ⊙

(
E
[
XX⊤ ∥X∥22 |W

])
.

X is Gaussian vector, thus E
[
XX⊤ ∥X∥22

]
⪯ R2Σ with R2 = 3d, and Lemma B.6

lead to

E
[
X̃X̃⊤

∥∥∥X̃∥∥∥2
2

]
⪯ R2ΣP ⊙ Σ = R2Σimp.
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Define ϵimp = Y−X̃⊤θ⋆imp = X⊤θ⋆+ϵ−X̃⊤θ⋆imp . First, we have ϵ2imp ≤ 3

(
ϵ2 +

(
X̃⊤θ⋆imp

)2
+
(
X⊤θ⋆

)2)
,

then

E
[
ϵ2impX̃X̃

⊤
]
⪯ 3E

[
ϵ2X̃X̃⊤

]
+ 3E

[(
X̃⊤θ⋆imp

)2
X̃X̃⊤

]
+ 3E

[(
X̃⊤θ⋆

)2
X̃X̃⊤

]
. (35)

Using that ϵ is an independent noise, E
[
ϵ2X̃X̃⊤

]
= σ2Σimp. Let u, v in Rd, note that

v⊤E
[(
u⊤X̃

)2
X̃X̃⊤

]
v = E

[(
u⊤X̃

)2 (
v⊤X̃

)2]
≤ E

[(
u⊤X

)2 (
v⊤X̃

)2]
≤ ρE

[(
u⊤X

)2 (
v⊤X

)2]
≤ ρ

√
E
[
(u⊤X)4

]
E
[
(v⊤X)4

]
,

using the Cauchy-Schwarz inequality. Then, by the kurtosis boundedness of Gaussian

vectors, we have E
[(
u⊤X

)4] ≤ 3 ∥u∥4Σ and E
[(
v⊤X

)4] ≤ 3 ∥v∥4Σ. Then,

v⊤E
[(
u⊤X̃

)2
X̃X̃⊤

]
v = 3ρ ∥u∥2Σ ∥v∥2Σ

≤ 3ρ−1 ∥u∥2Σ ∥v∥2Σimp
.

This shows that

E
[(
u⊤X̃

)2
X̃X̃⊤

]
⪯ 3ρ−1 ∥u∥2Σ Σimp. (36)

Using similar arguments,

E
[(
u⊤X

)2
X̃X̃⊤

]
⪯ 3ρ−1 ∥u∥2Σ Σimp. (37)

These two above equations can be used when u is equal to θ⋆imp and θ⋆, to transform
(35) into

E
[
ϵ2impX̃X̃

⊤
]
⪯ (3σ2 + 9ρ−1

∥∥θ⋆imp

∥∥2
Σ

+ 9ρ−1 ∥θ⋆∥2Σ)Σimp.

Remarking, that
∥∥θ⋆imp

∥∥2
Σ
≤ 2

∥∥θ⋆imp − θ⋆
∥∥2
Σ

+ 2 ∥θ⋆∥2Σ = 2(R⋆
imp(d) −R⋆(d) + ∥θ⋆∥2Σ), we

get

3σ2 + 9ρ−1
∥∥θ⋆imp

∥∥2
Σ

+ 9ρ−1 ∥θ⋆∥2Σ ≲ σ2 + ρ−1(R⋆
imp(d) −R⋆(d) + ∥θ⋆∥2Σ),

leading to the desired results.
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Lemma E.2. Under assumptions of Theorem 2.4. The norm of θ⋆imp, the best predictor
working with imputed by 0 inputs, satisfies

E∥θ⋆imp∥2 ≤

{
d
pρ

p−2
p−d−1

∥β∥22 when d < p− 1,
p

dρ2(1−ρ)
∥β∥22, when d ≥ p− 1.

Proof. Let’s begin by,

ρ(1 − ρ)∥θ⋆imp∥22 ≤ R(ρθ⋆imp) −R(ρθ⋆) + ρ(1 − ρ)∥θ⋆imp∥22. (38)

because R(θ⋆) ≤ R(ρθ⋆imp). Using, Lemma C.1, we obtain

ρ(1 − ρ)E∥θ⋆imp∥22 ≤ ∆miss + ∆imp/miss (39)

First case: d < p− 1. In this, case

∆miss + ∆imp/miss ≤ (1 − ρ)
d

p
∥β∥22

(
1 +

ρ(d− 1)

p− ρ(d− 1) − 2

)
.

We obtain using (39),

E∥θ⋆imp∥22 ≤
d

ρp
∥β∥22

(
1 +

ρ(d− 1)

p− ρ(d− 1) − 2

)
≤ p− 2

ρp
∥β∥22

ρ(d− 1)

p− ρ(d− 1) − 2
.

Second case: d > p− 1. In this case,

∆miss + ∆imp/miss ≤
p

ρd+ (1 − ρ)p
∥β⋆∥22 ≤

p

ρd
∥β⋆∥22.

We obtain using (39),

E∥θ⋆imp∥22 ≤
p

ρ2(1 − ρ)d
∥β⋆∥22.

Proof of (13).

Rimp(θ̄) −R⋆(d) = Rimp(θ̄) −R⋆
imp(d) +R⋆

imp(d) −R⋆(d)

Using Theorem E.1 to bound the first term, we find

Rimp(θ̄) −R⋆(d) ≲

(
1 +

d

ρn

)
(R⋆

imp(d) −R⋆(d)) +
d

n
∥θ⋆imp∥22 +

d

n
(σ2 + ∥θ⋆∥2Σ).

Thus, taking the expectation,

E[Rimp(θ̄) −R⋆(d)] ≲

(
1 +

d

ρn

)
(∆imp/miss + ∆miss) +

d

n
E∥θ⋆imp∥22 +

d

n
(σ2 + E ∥θ⋆∥2Σ).
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Note that E∥θ⋆imp∥22 ≤ 1
(1−ρ)ρ

(∆imp/miss + ∆miss) (using (39)) and E ∥θ⋆∥2Σ = d
p
∥β⋆∥22

(using Proposition 2.1). Thus,

E[Rimp(θ̄) −R⋆(d)] ≲

(
1 +

d

ρn
+

d

(1 − ρ)ρn

)
(∆imp/miss + ∆miss) +

d

n

(
σ2 +

d

p
∥β⋆∥22

)
≲

(
1 +

d

(1 − ρ)ρn

)
(∆imp/miss + ∆miss) +

d

n

(
σ2 +

d

p
∥β⋆∥22

)
.

Thus,

E[Rimp(θ̄) −R⋆
miss(d)] ≲ ∆imp/miss +

d

ρn
+

d

(1 − ρ)ρn
(∆imp/miss + ∆miss) +

d

n

(
σ2 +

d

p
∥β⋆∥22

)
≲ (1 − ρ)

d

p
∥β∥22

ρ(d− 1)

p− ρ(d− 1) − 2
+

d

(1 − ρ)ρn

d

p
∥β∥22

(1 − ρ) (p− 2)

p− ρ(d− 1) − 2
+
d

n

(
σ2 +

d

p
∥β⋆∥22

)
≲ (1 − ρ)

d

p
∥β∥22

ρ(d− 1)

p− ρ(d− 1) − 2
+

d

(1 − ρ)ρn

d

p
∥β∥22

(1 − ρ) (p− 2)

p− ρ(d− 1) − 2
+
d

n
σ2

≲
d2∥β∥22

p(p− ρ(d− 1) − 2)

(
(1 − ρ)ρ+

p− 2

ρn

)
+
d

n
σ2.

E.2 Proof of Equation (14) in Theorem 2.4 and proof of Theo-
rem 3.3

Let’s start with a result of Ayme et al. (2023) for the deterministic case (without random
features).

Assumption 9. There exist σ > 0 and R > 0 such that E[XX⊤ ∥X∥22] ⪯ R2Σ and
E[ϵ2 ∥X∥22] ≤ σ2R2, where ϵ = Y −X⊤θ⋆.

Theorem E.3. (Ayme et al., 2023) Under Assumption 9, choosing a constant learning
rate γ = 1

κTr(Σ)
√
n
leads to

E
[
Rimp

(
θ̄imp

)]
−R(θ⋆) ≲

R2

√
n

∥∥θ⋆imp

∥∥2
2

+
σ2 + ∥θ⋆∥2Σ√

n
+R⋆

imp(d) −R⋆(d),

where θ⋆ (resp. θ⋆imp) is the best linear predictor for complete (resp. with imputed missing
values) case.

Proof of (14) of Theorem 2.4. X is Gaussian vector, thus E
[
XX⊤ ∥X∥22

]
⪯ R2Σ with

R2 = 2d. Furthermore, in the cass p ≤ d X⊤θ⋆ = Z⊤β⋆ and ϵ = Y −X⊤ thus the noise
and X are independent and E[ϵ2 ∥X∥22] ≤ σ2Tr(Σ). Then, Assumption 9 is satisfied
with κ = 3. Taking the expectation in Theorem E.3, we found

E
[
Rimp

(
θ̄imp

)]
− ER(θ⋆) ≲

Tr(Σ)√
n

E
∥∥θ⋆imp

∥∥2
2

+
σ2 + E ∥θ⋆∥2Σ√

n
+ ∆imp/miss + ∆miss,
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Let’s recall that, R(θ⋆) = σ2 almost-surely, ∥θ⋆∥2Σ = ∥β∥22 almost surely and Tr(Σ) = d.
Then,

E
[
Rimp

(
θ̄imp

)]
− σ2 ≲

d√
n
E
∥∥θ⋆imp

∥∥2
2

+
σ2 + ∥β∥22√

n
+ ∆imp/miss + ∆miss.

Then applying (39),

E
[
Rimp

(
θ̄imp

)]
− σ2 ≲

(
1 +

d

ρ(1 − ρ)
√
n

)
(∆imp/miss + ∆miss) +

σ2 + ∥β∥22√
n

.

Applying (11), we finally found,

E
[
Rimp

(
θ̄imp

)]
− σ2 ≲

(
1 +

d

ρ(1 − ρ)
√
n

)
p ∥β⋆∥22

ρd+ (1 − ρ)p
+
σ2 + ∥β∥22√

n

≲

(
1 +

d

ρ(1 − ρ)
√
n

)
p ∥β⋆∥22

ρd+ (1 − ρ)p
+

σ2

√
n
.

Proof of Theorem 3.3. Under Assumption 7, ∥X∥22 ≤ κL2d almost surely, then E[XX⊤ ∥X∥22] ⪯
κL2dΣ. And,

E[ϵ2 ∥X∥22] ≤ E[ϵ2]κL2d = R⋆(∞)κL2d.

Thus we can applied Theorem E.3, that gives us,

E
[
Rimp

(
θ̄imp

)]
−R(θ⋆) ≲

κL2d√
n

∥∥θ⋆imp

∥∥2
2

+
R⋆(∞)Lκ+ ∥θ⋆∥2Σ√

n
+R⋆

imp(d) −R⋆(d).

Note that,

∆
(∞)
imp = ER⋆

imp(d) −R⋆(∞)

= ∆imp/miss + ∆miss + ER⋆(d) −R⋆(∞).

Thus taking the expectation,

E
[
Rimp

(
θ̄imp

)]
−R⋆(∞) ≲

κL2d√
n

E
∥∥θ⋆imp

∥∥2
2

+
R⋆(∞)κL2 + ∥θ⋆∥2Σ√

n
+ ∆

(∞)
imp .

Under Assumption 6, l2I ⪯ diag(Σ),

ℓ2ρ(1 − ρ)E
∥∥θ⋆imp

∥∥2
2
≤ ρ(1 − ρ)E

∥∥θ⋆imp

∥∥2
diag(Σ)

≤ ∆imp/miss + ∆miss

≤ ∆
(∞)
imp .
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Then,

E
[
Rimp

(
θ̄imp

)]
−R⋆(∞) ≲

κL2d

ℓ2ρ(1 − ρ)
√
n

∆
(∞)
imp +

R⋆(∞)κ+ ∥θ⋆∥2Σ√
n

+ ∆
(∞)
imp

≲

(
1 +

κL2d

ℓ2ρ(1 − ρ)
√
n

)
∆

(∞)
imp +

R⋆(∞)κL2 + ∥θ⋆∥2Σ√
n

.

Recall that using Theorem 3.2,

∆
(∞)
imp ≤ λimp

d
∥f ⋆∥2ν =

L2

ρd
∥f ⋆∥2ν ,

and ∥θ⋆∥2Σ ≤ EY 2 almost-surely. Thus

E
[
Rimp

(
θ̄imp

)]
−R⋆(∞) ≲

(
1 +

κL2d

ℓ2ρ(1 − ρ)
√
n

)
l2

ρd
∥f ⋆∥2ν +

R⋆(∞)κ+ EY 2

√
n

≲

(
1 +

κL2d

ℓ2ρ(1 − ρ)
√
n

)
L2

ρd
∥f ⋆∥2ν + (1 + κL2)

EY 2

√
n
.

F Proof of Theorem 4.1 (under MNAR assumption)

First step (bias-variance) We denote by W′ the matrix of W ′
j Let θ ∈ Rp,

Rimp(θ) = EZE
[(
Y − X̃⊤θ

)2
|Z,W,W′

]
= EZE

[(
Y − E

[
X̃⊤θ|Z,W,W′

])2
|Z,W,W′

]
+ EZV

[
X̃⊤θ|Z,W,W′

]
,

using bias-variance decomposition. Futhermore,

E
[
X̃⊤θ|Z,W,W′

]
=

d∑
j=1

θjE
[
X̃j|Z,W,W′

]
=

d∑
j=1

θjϕ(Z,W ′
j)ψ(Z,Wj)

and

V
[
X̃⊤θ|Z,W,W′

]
=

d∑
j=1

θ2jV
[
X̃j|Z,Wj,W

′
j

]
=

d∑
j=1

θ2jϕ(Z,W ′
j)(1 − ϕ(Z,W ′

j))ψ(Z,Wj)
2.
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Let α ∈ L2(µ⊗ ν), and define θ(d) ∈ Rd such that θ
(d)
j = α(Wj,W

′
j)/d. We have

R⋆
imp(d) ≤ Rimp(θ(d))

= EZ

(Y − 1

d

d∑
j=1

α(Wj,W
′
j)ϕ(Z,W ′

j)ψ(Z,Wj)

)2
+ EZ

[
1

d2

d∑
j=1

α(Wj,W
′
j)

2ϕ(Z,W ′
j)(1 − ϕ(Z,W ′

j))ψ(Z,Wj)
2

]
.

Convergence of variance term Using that ϕ(Z,W ′
j)(1−ϕ(Z,W ′

j)) ≤ 1 almost-surely,
we have

EZ

[
1

d2

d∑
j=1

α(Wj,W
′
j)ϕ(Z,W ′

j)(1 − ϕ(Z,W ′
j))ψ(Z,Wj)

2

]
≤ EZ

[
1

d2

d∑
j=1

α(Wj,W
′
j)

2ψ(Z,Wj)
2

]

=
1

d2

d∑
j=1

α(Wj,W
′
j)

2EZψ(Z,Wj)
2

≤ 1

d2

d∑
j=1

α(Wj,W
′
j)

2L2.

Using that
(
α(Wj,W

′
j)

2
)
j

are an i.i.d. sequences of integrable random variables, we

obtain that

lim
d→+∞

EZ

[
1

d2

d∑
j=1

α(Wj,W
′
j)ϕ(Z,W ′

j)(1 − ϕ(Z,W ′
j))ψ(Z,Wj)

2

]
= 0,

almost-surely.
Convergence of bias term α(Wj,W

′
j)ϕ(Z,W ′

j)ψ(Z,Wj) is integrable because
|α(Wj,W

′
j)ϕ(Z,W ′

j)| ≤ |α(Wj,W
′
j)|, and ψ(z,Wj) ∈ L2(ν). Then, using Kolmogorov’s

law and mapping continuous theorem, we obtain

lim
d→+∞

EZ

(Y − 1

d

d∑
j=1

α(Wj,W
′
j)ϕ(Z,W ′

j)ψ(Z,Wj)

)2
 = EZ

[(
Y −

∫
α(w,w′)ϕ(Z,w′)ψ(Z,w)dµ⊗ ν(w,w′)

)2
]
.

Thus we obtain,

lim sup
d→+∞

R⋆
imp(d) ≤ EZ

[(
Y −

∫
α(w,w′)ϕ(Z,w′)ψ(Z,w)dµ⊗ ν(w,w′)

)2
]
.

Denoting by G, the functions of the form

g(Z) =

∫
α(w,w′)ϕ(Z,w′)ψ(Z,w)dµ⊗ ν(w,w′),
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we obtain that
lim sup
d→+∞

R⋆
imp(d) ≤ inf

g∈G
EZ

[
(Y − g(Z))2

]
.

Using Fubini theorem, functions of the form

g(Z) =

∫
α(w)ψ(Z,w)dν(w)

∫
β(w′)ϕ(Z,w′)dµ(w′)

= f(Z)h(Z),

are include in G. For the following, we denote by H the set of functions, of the form

h(Z) =

∫
β(w′)ϕ(Z,w′)dµ(w′),

with β ∈ L2(µ). Thus we obtain, the following bound,

lim sup
d→+∞

R⋆
imp(d) ≤ inf

(f,h)∈Fν×G
EZ

[
(Y − f(Z)h(Z))2

]
. (40)

Proof for the case Z compact, F dense in continuous function, and
f ⋆continuous First, let’s show that the risk is continuous for the set of continuous
prediction functions. Let f, g two continuous function on B∞(0, B) (ball for ∥∥∞), then

|R(f) −R(g)| =
∣∣E [(f(Z) − f ⋆(Z))2 − (g(Z) − f ⋆(Z))2

]∣∣
= |E [(f(Z) − g(Z))(g(Z) + f(Z) − f ⋆(Z))]|
≤ ∥f − g∥∞ (∥f∥∞ + ∥g∥∞ + ∥f ⋆∥∞)

≤ ∥f − g∥∞ (2B + ∥f ⋆∥∞).

That concludes that risk is continuous. Then, we consider β = 1, thus h(Z) =∫
β(w′)ϕ(Z,w′)dµ(w′) > 0 almost-surely because ϕ(Z,w′) > 0 almost surely. Thus

considering in (40), f(Z) = f ⋆(Z)/h(Z), f is continuous, we conclude using continuity
of risk and f ∈ F̄ .

Proof for Gaussian RF In this case ϕ(z, (w,w′
0)) = Φ(z⊤w′ + w′

0), consider I =∫
Φ(w′

0)dµ. We consider hϵ(z) =
∫
∥w′∥≤ϵ

ϕ(Z, (w′, w′
0)dµ(w′, w0)/

∫
∥w′∥≤ϵ

Φ(w′
0)dµ(w′, w′

0),

|I − hϵ(Z)| ≤ 1∫
∥w′∥≤ϵ

Φ(w′
0)dµ(w′)

∫
∥w′∥≤ϵ

|ϕ(0, (0, w′
0)) − ϕ(Z, (w′, w0))|dµ(w′, w′

0).

Using that that Φ is C Lipschitz,

|I − hϵ(Z)| ≤ Cϵ∥Z∥.

We conclude using h = hϵ for a decreasing sequence of ϵ and f = f ⋆/I in (40).
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