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Abstract Scoring rules are a popular method for aggregating rankings; they are frequently used in
many settings, including social choice, information retrieval and sports. Scoring rules are parametrized
by a vector of weights (the scoring vectors), one for each position, and declare as winner the can-
didate that maximizes the score obtained when summing up the weights corresponding to the
position of each voter.

It is well known that properly setting the weights is a crucial task, as different candidates can
win with different scoring vectors. In this paper, we provide several methods to identify the winner
considering all possible weights. We first propose VolumetricTop, a rule that ranks alternatives
based on the hyper-polytope representing the set of weights that give the alternative the highest
score, and provide a detailed analysis of the rule from the point-of-view of social choice theory. In
order to overcome some of its limitations, we then propose two other methods: Volumetric-runoff,
a rule that iteratively eliminates the alternative associated with the smallest region until a winner
is found, and Volumetric-tournament, where alternatives are matched in pairwise comparisons; we
provide several insights about these rules. Finally we provide some test cases of rank aggregation
using the proposed methods.

Keywords Scoring rules · rank aggregation · computational social choice · convex sequences ·
Borda count

1 Introduction

An important issue in group decision-making is how to determine a winner or a social ranking from
a set of rankings; the problem of rank aggregation emerges in recommender systems, social choice
(aggregation of preferences), information retrieval (aggregation of the output of different search
engines), sports (aggregation of the performance in several races into a single score). Among the
many aggregation methods, positional scoring rules constitute a particularly popular class. Their
appeal lies in their inherent simplicity, as they assign a weight to each position and designate as
the winner the candidate that achieves the highest score.

In many contexts, in particular in sport competitions, it is often assumed that weights should
constitute a convex sequence [19], meaning that the difference between the weight of the first
position and that of the second position is at least as large as the difference between the weight of
the second and the third position, and so on.

Properly setting the weights is a crucial task; indeed, it has been noted by several authors [37,
22,23,19] that scoring rules with different weights may produce very different outputs. Setting a
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precise vector of weights for a scoring rule can be seen arbitrary; indeed the decision of which
weights to use is critical.

Since providing a precise weight vector may be cognitively difficult in many contexts, it is
interesting to investigate procedures, based on scoring rules, that discriminate alternatives with
imprecise or partially known weights. The goal is to determine a winner without making an arbi-
trary choice for the weights. Over the years many methods for aggregating rankings without fixed
weights have been proposed, starting from the classic work of Cook and Kress [6] that pioneered the
use of data-envelope methods for this problem (that opened a whole research area, see e.g. [13,15,
33]), and the determination of qualitative dominance relations [37]. Decision models with uncertain
weights have found applications in (among others) the evaluation of safety of roads according to
multiple criteria [28] and the evaluation of human physiological state [42].

However, many of the proposed methods are not convincing, as argued by Llamazares and Peña
[22], because they fail to satisfy important social choice properties, or they require the specification
of parameters that are hard to set (and their value will determine the winner). Moreover, we claim
that the methods that are more satisfactory with respect to their theoretical properties, may not
be adapted to all circumstances. Indeed some aggregation methods [23,24] do provide a reasonable
framework, but good properties are obtained by doing some technical choices that could be seen as
arbitrary. The recently proposed method based on minimax regret [38] can be a reasonable choice
when a robust solution has to be found, but may not be accepted if the decision maker is not
pessimistic.

Based on our analysis of the state of the art (that will be carried out in Section 2 ) we identify
some characteristics that an ideal aggregation method should have. We believe that an ideal method
for rank aggregation should have the following characteristics:

– The aggregation method should satisfy basic properties identified by social choice theory, such
as as anonymity, neutrality, Pareto and monotonicity. We will detail which properties are par-
ticularly important and which can be relaxed, bearing in mind that, as we know from the
theory, not all properties can be simultaneously fulfilled.

– The aggregation should not depend on arbitrary parameter choices. Indeed, a method that
requires specifying parameter values will be subject to the fact that, typically, different winners
can emerge with different parameter values; the problem of setting the weights is not solved
but just reframed in terms of a different parameter space.

– The aggregation should be able to rank all alternatives; this means that when a full ranking is
desired in output, all alternatives can be discriminated (with ties between alternatives being a
rather exceptional case).

– The aggregation should not be overly optimistic or pessimistic. While many works insist in
picking the alternative that scores better with respect to the most favorable weights, this may
not justified in terms of decision theory [35]. Similarly, while pessimistic approaches can offer
robust solutions, they may not be suitable to the typical decision-maker.

– Finally, the aggregation should be easy to explain, so that a decision maker can understand
why a particular choice is recommended.

After reviewing the state of the art and showing that current methods fail to satisfy one or
more of the previous points, in this article we aim at identifying an approach with the above
characteristics.

We assume that a committee (or a decision maker) provides us with general requirements on the
weighting vector, such as “the weights should be decreasing” and “the weights should be a convex
sequence”, and more precise ones such as “the difference between the second and the third position
should be more than 5 points”. We propose an approach that aims at is conceptually simple and
that may be easily accepted by decision makers: assuming that we are given constraints on the
possible weights, represented by a feasible region, we consider each possible instance of the weights
as a signal in favor of the alternative that obtains the highest score with such weights. The winner
should be the alternative that is supported by the largest “number” of possible weight vectors
(since the space of possible weights is continuous, we reason about volumes). More precisely, the
set of feasible weights is partitioned with respect to which alternative has the highest score, and
we sort the alternatives based on the volume of each element of the partition. We think that our
proposed method better captures the essence of the idea of reasoning about the different possible
scoring vector, than many methods previously proposed.
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The article is organized as follows:

– In Section 2 we review some background and discuss related works.
– In Section 3 we present our baseline method to discriminate candidates, called VolumetricTop,

provide some insights and an analysis of its properties.
– In Section 4 we provide an alternative method, VolumetricTop with runoff (Volumetric-runoff)

that proceeds by using VolumetricTop repeatedly; it progressively eliminates the worst per-
forming alternative until only one alternative remains, that is declared to be the winner.

– In Section 5 we discuss a variation of VolumetricTop, called VolumetricTop with tournament
(Volumetric-tournament), that performs a series of pairwise comparisons between the alterna-
tives. The alternative that prevails in the highest number of comparisons is declared to be the
winner.

– We then present a use case with a real dataset in Section 6 considering data from different
seasons of the F1 racing championship.

– Then, we conclude with discussions and final remarks (Section 7).
– Appendix A describes an approximate method for computing the volume of the polytope that

can be employed by VolumetricTop and the other methods (although other algorithms to com-
pute the volume could be used).

2 Background

In this section we review relevant background; we start by presenting the basic decision problem and
some notation; then we present some background knowledge on scoring rule and on social choice;
finally we discuss related works on scoring rules with uncertain weights, stressing the limitations
of previous approaches.

2.1 Preliminaries

We assume n agents, or voters, express preferences in the form of rankings involving a set of m
candidates A = {a, b, c, . . .}, also called items or alternatives; rankings are assumed to be linear
orders (complete, transitive, asymmetric and irreflexive binary relation).

Positional scoring rules (see, for an introduction on social choice theory, for example, [32,43])
discriminate between candidates by fixing a weight to each rank: they assign a score to each
alternative based on its rank distribution (since all scoring rules in this work are positional, we
simply call them scoring rules in the rest of the paper). We use vxj to denote the number of

times alternative x was ranked in the j-th position. Note that
∑m

j=1 v
x
j = n for each x ∈ A and∑

x∈A vxj = n for each j = 1, . . . ,m. We use vx to denote the vector (vx1 , . . . , v
x
m). For example

suppose a profile with m = 3 alternatives and n = 2 voters whose preferences are a ≻ b ≻ c and
c ≻ b ≻ a; then, the rank distributions are as follows: va = (1, 0, 1), vb = (0, 2, 0) and vc = (1, 0, 1).

A scoring rule specifies the vector of weights w1, . . . , wm (also called scoring vector) to be
assigned to each position. The score obtained by a candidate according to weight vector w =
(w1, . . . , wm) is

sw(x) =

m∑
j=1

wjv
x
j . (1)

The alternative with the highest score is picked as the winner. It is also possible to rank the
alternative from the best to the worst. For example plurality is obtained by setting w1 = 1 and
wj = 0 for all j ∈ {2, . . . ,m}.

By choosing a particular w, it is possible to specify some preferences on which kind of aggrega-
tion is desired, by giving more or less weight to the first positions compared to the positions that
came afterwards in the ranking. First of all, we assume that not all weights are null, otherwise the
alternatives are not discriminated (degenerated scoring rule). A natural hypothesis is to require
that the sequence of weights is non-increasing: wi ≥ wi+1 for all i ∈ {1, . . . ,m− 1}; this expresses
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the basic intuition that in a ranking an alternative is at least as preferred to the alternatives that
come afterwards in the ranking; this hypothesis is in practice always adopted.

A scoring rule is invariant to affine positive transformations of the scoring vector, which means
that the ranking obtained with the scoring vector w and the ranking obtained with w′ = αw + β
(with α > 0 and arbitrary β) are the same. Therefore, with no loss of generality, we let w1 = 1 and
wm = 0 (therefore we have m−2 degrees of freedom). A particular scoring rule is the Borda rule [7]
that uses linear weights; given the assumptions, the Borda rule is given by setting wj =

m−j
m−1 .

Note Borda may not be adequate in decision contexts where greater discrimination between
the positions is needed. Indeed it is often assumed that the positional weights constitute a convex
sequence [37,19], meaning that the difference between the first and the second weight is not less
than the difference between the second and the third, and so on. In such a case the weights need
to satisfy the following constraint, for each i between 1 and m− 2:

wi − wi+1 ≥ wi+1 − wi+2 ⇐⇒ wi − 2wi+1 + wi+2 ≥ 0. (2)

Note that Borda and plurality are convex; furthermore convexity is often satisfied by the weights
used when combining ranks in sports, races and other situations (e.g. formula one world champi-
onship, alpine skiing world cup).

We will use WD to denote the set of scoring vectors with weakly decreasing (i.e. non-increasing)
weights

WD =
{
(w1, . . . , wm)

∣∣∣1 = w1 ≥ w2 ≥ . . . ≥ wm−1 ≥ wm = 0
}
. (3)

We use WC to denote the set of non-increasing scoring vectors whose weights constitute a convex
sequence1 (with our boundary assumptions, w1 = 1 and wm = 0)

WC =
{
(w1, . . . , wm)

∣∣∣w ∈ WD ∧ wi − 2wi+1 + wi+2 ≥ 0 ∀i∈ [[m−2]]
}
. (4)

While we mainly focus on WD and WC , the methods that we propose in this article can as well
tackle situations where additional information about the weights is present. In fact, we might
formalize the preferences for a certain difference between contiguous weights, that is:

wi − wi+1 ≥ ti

where ti represents the minimum difference between contiguous weights.
We also cover situations where only top-k positions, with k < m − 1, contribute to the score.

In this case we have that wk+1 = . . . = wm = 0, so that there are only k unknowns. This can be
handled in our approach by simply considering, for each x, the ranking distribution (vx1 , . . . , v

x
k , v

x
≥k)

where vx≥k is the number of times that alterantive x arrives in a position worse than k. This will be
the case of the F1 dataset in Section 6. In order to avoid making the presentation overly complex,
we assume k = m− 1, that is, all but the last position might contribute to the score.

2.2 Social choice theory

Social choice theory deals with the design and the analysis of methods for collective decision
making; an important focus of social choice concerns methods for the aggregation of individual
preferences into a collective preference. A social choice function associates a profile (a vector of
linear orders, each one associated with a different voter) with one or more winners in A, according
to a voting rule; instead, when a ranking is desired as output, a social welfare function is used to
associate a profile with a ranking.

Theoreticians have formulated several properties that model good behaviors of a social choice
or social welfare function. Ideally, a social choice/welfare function would satisfy all reasonable
properties; unfortunately, this is not possible as it was shown by the Arrow’s theorem [2]. When
proposing a new rule, it is usual to analyze it to see which properties are satisfied and which are

1 There is some redundancy in the constraints: it is enough to assume convexity and wm−1 ≥ 0 to ensure that
the sequence is not increasing.



Volumetric Aggregation Methods for Scoring Rules with Unknown Weights 5

not, to better appreciate the suitability of the rule in the desired context. Below we provide a
short reminder of the traditional properties that are studied in the theory of social choice (see, for
instance, [43]); note that these properties can be formulated in slightly different ways depending
on whether the output is a set of winners (social choice function) or a ranking (social welfare
function).

– Neutrality requires the social choice function to have no bias in favor of any alternative.
– For anonymity the identity of the voters are irrelevant. This is in contrast to dictatorship, where

the preferences of a particolar voter (the dictator) determines the outcome for the society.
– Pareto requires that, if all voters prefer alternative a to b, then the society should also prefers

a to b
– A social choice function is unanimous, if all voters place an alternative in first position, this

alternative is selected as winner.
– According to Independence to Irrelevant Alternatives (IIA), the social preference between two

alternatives should depend only on the preferences between these two alternatives.
– To be monotone, a social choice function has to satisfy the following: if some voters raises a

winning alternative in their ranking without changing the orders of the remaining ones, that
alternative continues to be a winner.

– Homogeneity requires that replicating the same profile several times lead to the same social
choice.

– Consistency [40], sometimes also called reinforcement, states that, if an alternative is the winner
when considering two different population of voters, then the same alternative should be a
winner when the two populations are merged together.

Positional scoring rules, that we introduced in Section 2.1, are a class of social choice function
that has been characterized by an important result by Young [40]: a neutral and anonymous social
choice function is consistent if and only if it is a scoring rule. Morevoer, Fishburn [9] discusses
properties of the Borda method that makes it special among the positional scoring rules.

While social choice theory typically assumes that all aspects of the decision problem (including
voter preferences) are known, researchers in computational social choice theory (the field deal-
ing with algorithmic and computational aspects of social choice) have considered, in recent years,
methods for dealing with partially specified preference profiles [18]. This interest arises from the
realization that, in modern applications of social choice (such as group decision making and rec-
ommender systems), it is unrealistic to expect full knowledge on the decision context. So far, much
of the emphasis has been on uncertainty over the votes (partial orders are provided instead of full
rankings), rather than on the rule. A seminal work deals with algorithms (and their computational
complexity) for determining possible and necessary winners when aggregating partial orders [39]:
an alternative is a possible winner if and only if there exists a full profile (made of full rankings)
that extends the given partial profile in wich the alternative is a winner (similarly, a necessary
winner is an alternative that is winning in all full profiles extending the current partial profile).
Other papers have also dealt with uncertainty in votes, but focusing on elicitation [8,41,26] (asking
additional preferences in order to converge to a winner as soon as possible).

While we consider rules that have weights associated to positions, Baumeister et al. [4] have
considered aggregation rules with weights attached to individual voters and provided methods for
computing possible winners. Some authors have considered machine learning methods in relation
to scoring rules: Procaccia et al. [36] studied how a scoring vector can be learned from examples,
while Haghtalab et al. [14] considered, in a setting of repeated social choice, how to learn the
weights attached to voters.

One main underlying hypothesis of positional scoring rules is the assumption that all votes
contribute equally to the score of an alternative. Indeed, scoring rules use a sum to aggregate the
points that an alternative obtains from the different voters. Recently, this assumption has been
questioned [5]; in particular, it has been proposed a positional voting system [12,11] using the
Ordered Weighted Average (OWA) operator: the scores are aggregated by taking into account the
rank of a score in the ordered list of scores obtained from the votes. This allow to weigh differently
the points obtained according to the best rank obtained, the second best rank, etc.; for example,
one may want to disregard the best and the worst voter. This is similar to what happens in artistic
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sports at the Olympics, that are judged by first removing the high and low scores and averaging
the remaining scores achieved.

The work by Narodytska et al. [31] proposes an approach where several voting rules are con-
sidered at the same time; their approach works in rounds: the alternatives that are winners for at
least one of the rules are kept while the others are discarded from the profile, the voting rules are
then applied again to the modified profile and this process continues until a fixed point is found.
While their work is relevant somehow, we stress that their work is not focused on scoring rules.

2.3 Scoring rules with uncertain weights

Scoring rules are a very common method for aggregating rankings (that can model preferences,
outcomes of races, etc) into a single one and hence determine a winner. It is well known that
setting the weights correctly is an important issue, as one can obtain different winners depending
on the chosen weights. Motivated by this realization, several authors have proposed approaches to
score alternatives without having a precise scoring vector. Similar to works concerning dominance
relations in multiattribute domains [34,27,16], it is possible [37] to determine a partial order
between the alternatives according to dominance relations that identify alternatives that are less
preferred than another one for any feasible scoring vector. An alternative x dominates an another
alternative y with respect to W , when for all w ∈ W , s(x;w) ≥ s(y;w) and, for some w, we have
s(x;w) > s(y;w). This means that x will in general be a better choice than y, since x always
achieves at the least the score of y and in some cases it achieves a strictly higher score. Note
however that dominance only gives us a partial order, so it is usually not enough to unambiguously
define a winner.

An important finding is that it is possible to quickly check dominance by considering cumulative
ranks, also frequently called cumulative standings [37]. These are defined as the cumulative sum of
the rank vectors, starting from the first position: for each x ∈ A, the vector V x = (V x

1 , . . . , V x
m−1)

is such that V x
j =

∑j
l=1 v

x
l is the number of times that alternative x has been ranked in position j

or better; note that V x has only m− 1 components (we do not consider the number of times that
an alternative was ranked at least in the last place, as it is always equal to the number of voters
n). Cumulative ranks have been used by several authors (see e.g. [37,13,22,25,38]). Let x, y ∈ A;
we have that x dominates y with respect to WD if and only if V x

j ≥ V y
j ∀j ∈ {1, . . . ,m−1}, and

there is i ∈ {1, . . . ,m−1} such that V x
i > V y

i .

To consider the case of convex weights (WC), it is needed to consider the double cumulative
rank distribution, also called cumulative of the cumulative standings [37,19]:

Vx
j =

j∑
l=1

V x
l =

j∑
l=1

l∑
o=1

vxo =

j∑
l=1

(j − l + 1)vxl ∀j ∈ {1, . . . ,m−1}

In the case of convex weights (WC), we can compare the double cumulative ranks of two alternatives
componentwise to check if a dominance relation exists. Let x, y ∈ A; x dominates y with respect
to WC if and only if all components of Vx are higher or equal than the corresponding component
of Vy, and the relation is strict for at least one component.

Example 1 Consider the following numeric example. The first table reports the distribution of
the ranks, to be read as follows: a is ranked two times first, two time second, etc., while b is never
ranked first but is ranked 6 times second and 2 times third. The second table reports the cumulative
ranks (for example, a is ranked 4 times in the second position or better) and the third the double
cumulative ranks.

Alternative v·1 v·2 v·3 v·4

a 2 2 2 2
b 0 6 2 0
c 2 0 4 2
d 4 0 0 4

Alternative V ·
1 V ·

2 V ·
3

a 2 4 6
b 0 6 8
c 2 2 6
d 4 4 4

Alternative V·
1 V·

2 V·
3

a 2 6 12
b 0 6 14
c 2 4 10
d 4 8 12
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– When considering decreasing weights (set WD), one can establish dominance by pairwise com-
parisons of rows in the table of cumulative ranks; for instance alternative a dominates alter-
native c since V a

1 = V c
1 , V

a
2 > V c

2 , and V a
3 = V c

3 . The set of undominated alternatives is then
{a, b, d}.

– When considering convex weights (set WC), now alternative d dominates alternative a; more-
over d dominates c since Vd

j > Vc
j for all j ∈ {1, . . . ,m−1}. The set of undominated alternatives

is {b, d}.

Dominance relations are useful, but usually are not enough to determine a winner; therefore
it is typically necessary to design methods to differentiate the alternatives based on their ranks
without knowing the weights precisely.

A method that determines a winner from the rank distribution can be seen as a social choice
function and analyzed with respect to the properties studied in social choice. An additional desider-
atum emerges when considering aggregation with unknown weights: the aggregation method should
not perturbed by changes in the performance of dominated alternatives (alternatives that are al-
ways worse off than some others). This intuition is formalized by the property called Independence
from the Rank of Dominated Alternatives (IRDA), that is a relaxation of IIA requiring that dom-
inated alternatives do not influence who the winner is; more precisely [38] it is necessary that the
set of winners does not change whenever a profile is modified in a way that everything stays the
same beside the ranks of dominated alternatives.

Definition 1 A social choice function f satisfies Independence from the Rank of Dominated Al-
ternatives (IRDA) if, for any two profiles p, p′, defined on the same alternatives A, we have that
f(p) = f(p′), the winners are the same in p and p′, whenever

1. the set of undominated alternatives is the same in p and p′, and
2. the rank distributions of all alternatives that are undominated is the same in p and p′.

When discussing methods for aggregation with uncertain weights, we need to verify whether or note
this property is verified, in addition to the others properties introduced before. When considering
the different methods available in the literature for aggregating rankings with respect to a scoring
rule with an unknown or incompletely specified weighting vector, we will be careful to the following
points:

– Does the method satisfy reasonable properties in terms of social choice theory?
– Does the method avoid to depend on arbitrary parameter choices? (our preference goes to

method that do not introduce extra parameters).
– Is the method able to rank all alternatives? Or it is just capable to recommend a winning

alternative? (an ideal method will be able to rank all alternatives, including dominated ones).
– Is the method optimistic or pessimistic? (we prefer methods that avoid rewarding extreme

behaviors).
– Is the method easy to explain to a decision maker? (Scoring rules are popular because they are

easy to understand; the fact to deal with unknown weights add a layer of complexity, but it
would be great if the aggregation is done in a way that the decision maker can understand why
an alternative has been chosen instead of another one).

Our analysis will show that none of the methods presented so far is completely convincing with
respect to the previous points.

DEA-based models A classic paper is the one by Cook and Kress [6] that proposes, using methods
based on Data Envelopement Analysis (DEA), to evaluate each alternative with respect to the
most favorable weights (the weight vector that gives the highest score to that alternative), while
constraining all aggregate scores to be less than a maximum valid value (typically set to one). The
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score of each alternative can be computed using the following linear program:

Zx =max

m∑
j=1

wjv
x
j (5)

s.t.

m∑
j=1

wjv
y
j ≤ 1 ∀y ∈ A (6)

wj − wj+1 ≥ d(j, ϵ) (7)

wk ≥ d(k, ϵ) (8)

The main limitation of this procedure is that often several alternatives achieve the maximum
attainable score. Moreover, it is not obvious how to choose the functions d(j, ϵ); this is however
critical since, depending on the choice of d(j, ϵ), a different winner may arise. Cook and Kress
propose another optimization method to break ties. However, this second optimization problem is
found to be equivalent to scoring rules with specific weights (and not very convincing given the
goal of measuring each alternative to weight vector that most favours it against the others).

Several other model, based on modifications of the original idea by Cook and Kress have then
been proposed. An excellent review of many of these methods is provided by by Llamazares and
Peña [22], underlying the limits of many of these works.

Hashimoto [15] modifies the DEA method of Cook by allowing an alternative x to obtain a
score higher than one by constraining the score of all others alternatives to be less than one (this
relates to the so-called exclusion method; see [1]) to Cook and Kress’s model. This means that the
Constraint (6) is substituted with the following:

m∑
j=1

wjv
y
j ≤ 1 ∀y ∈ A\{x}.

The model also presents a simplification since it fixes d(j, ϵ) = ϵ, that is, uses a fixed small constant ϵ
instead of the discriminative function d(j, ϵ). The main problem of this method is that, as shown by
Llamazares and Peña [22], dominated candidates may change the order of undominated candidates:
Hashimoto’s model does not satisfy the IRDA property.

A method based on cross-evaluation (each alternative is evaluated not just with respect to the
most favouring weight vector but also with respect to vectors favouring the competitors) has been
proposed [13] but since it is non monotonic, it is not considered a suitable choice. The models of
Obata and Ishii [33] and its extension [10] suffer from the dependency on dominated alternatives
(IRDA is not satisfied). Khodabakhshi and Aryavash [17] propose a method that is closely related
to Hurwicz’s criterion, where the objective function is a combination of an optimistic and of a
pessimistic component considering several restrictions on the weight; later Llamazares [20] has
provided closed-form expressions for this model.

Llamazares and Peña proposed [23,19] a modification of the DEA model of Cook and Kress
where they introduce a new constraint requiring that the sum of the scores of the alternatives not
being evaluated is constant. We also note that the idea of letting the weights to be completely
flexible has been applied to multiattribute decision making problems [21].

Regret-based method One could argue that the previous methods are “optimistic” in the sense that
they associate each alternative with its highest value, under some constraints on the scoring vector.
Recently, it has been proposed [38] to adopt the criterion of minimax regret in order to determine
the winner in the case of uncertain weights. This approach associates each alternative with its
maximum regret and the alternative associated with the minimax value is chosen as the winner.
More formally, the max regret (MR) of alternative x is defined as:

MR(x;W ) = max
y∈A

max
w∈W

{
sw(y)− sw(x)

}
= max

y∈A
max
w∈W

{m−1∑
j=1

wjv
y
j −

m−1∑
j=1

wjv
x
j

}
. (9)

MR(x;W ) is the worst-case loss associated with picking alternative x as a winner when w ∈ W
(max regret is always non-negative). It can seen as an adversarial selection of the scoring vector w
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from W in order to maximize the loss between the chosen alternative x and the alternative with
highest score using w as scoring vector.

The minimax regret is defined as MMR(W ) = minx∈A MR(x;W ) and the set S∗ of regret-
optimal alternatives as S∗(W ) = argminx∈A MR(x;W ). The set S∗(W ) contains the alternatives
that achieve minimax regret: for all x∗ ∈ S∗(W ), MR(x∗;W ) = MMR(W ). The value of MMR
is non-negative. The alternatives in S∗(W ) are to be considered as “winners” according to this
approach.

The straightforward approach for computing minimax regret involves solving a series of linear
optimization problems. The main results of the article by Viappiani is that the winners (the
alternatives with lowest max regret) can be easily found without solving an optimization problem
using formulas that involve cumulative ranks (in the case of WD) and double cumulative ranks (in
the case of WC). This method has been then extended [30] to the case of simultaneous uncertainty
about the rule and the user votes; the authors propose both a winner determination method based
on regret and elicitation strategies; these strategies asks questions specifically picked with the aim
of reducing regret.

The method based on regret has the advantage of being able to satisfy reasonable theoretical
properties, it does not introduce additional parameters, it can rank all alternatives according to
max regret, and it can provide explanations in terms of worst-case loss. However it is a pessimistic
approach and as such it does not fit our desiderata.

3 Aggregation using Volumetric Approaches

The idea that we propose in this article is to view all feasible scoring vectors as equally important
possible opinions about how the candidates should be ranked; the intuition is that the winner
should be the alternative that is supported as winner by the largest number of scoring vectors.
Since the space of possible weights is continuous, we associate each alternative with its region of
optimality. The method is neither “optimistic” as the model based on data envelope analysis (and
does not suffer from the issues associated with several of the approaches based on DEA [22]), nor
“pessimistic” as the model based on minimax regret [38].

The first method that we propose, VolumetricTop, selects the alternative(s) with the greatest
region of optimality. We first fomalize the rule in Section 3.1; we then analyze VolumetricTop as a
social choice function in Section 3.2.

3.1 VolumetricTop rule

We propose a new method to compare the alternatives when the weights are not known. Our method
associates each alternative with the volume of the region of the weights that makes it a winner.
We think that this method is relatively natural, as it embodies the idea of evaluating alternatives
according to the different scoring vectors that are compatible with some given constraints, and not
just a singe one. More precisely, we define, for each alternative, the notion of optimal region as the
set of weights that gives it a score higher than all other alternatives.

Definition 2 Given an alternative a, the optimal region of a is the set of feasible weights, denoted
W ∗,a, that gives a the highest score among the alternatives in A; formally:

W ∗,a = {w ∈ W : sw(a) ≥ sw(y) ∀y ∈ A}.

Recall that the score of x with respect to weight vector w is sw(x) =
∑m

j=1 wjv
x
j . We observe

that the region W ∗,x is a polytope and is encoded by the following linear constraints:

m∑
j=1

wj(v
x
j − vyj ) ≥ 0 ∀y ∈ A (10)

wi − 2wi+1 + wi+2 ≥ 0 ∀i ∈ {1, . . . ,m−2} (11)

wi ≥ wi+1 ∀i ∈ {1, . . . ,m−1} (12)

w1 = 1, wm = 0 (13)
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Constraint (10) imposes that the score of x must be higher (or equal to) than the score of all other
alternatives. Constraints (11), (12) and (13) encodes the the feasible region of the weights (either
WD or WC). Constraint (11) imposes the weights to be non decreasing. Constraint (12) imposes
the weights to be convex (and should be omitted if this property is not required).

Now, let Vol(W ∗,a) be the volume of the region W ∗,a. The score Za associated to alternative
a is the normalized volume of its optimality region Vol(W ∗,a). The alternative (or, in case of ties,
the alternatives) with highest value is (are) chosen as overall winner(s) by the VolumetricTop rule.

Definition 3 Let a ∈ A. The value Za is the normalized volume of the optimal region W ∗,a of a:

Za =
Vol(W ∗,a)∑

x∈A Vol(W ∗,x)
.

The Volumetric-Top method declares as winners the alternatives maximizing Z:

argmax
a∈A

Za = argmax
a∈A

Vol(W ∗,a).

Obviously, if it is wished to output a ranking, instead of only determining the winners, we can
rank the alternatives according to the volume of optimality Z; i.e. we deem a better than b if
Vol(W ∗,a) > Vol(W ∗,b) and we have a tie when two alternatives have the same Z value (therefore,
in general, we output a weak order).

With 4 alternatives, the scoring vectors is composed by 4 elements, but since w1 is set to 1 and
w4 is set to 0, there are only 2 degrees of freedom. As boundary conditions, we have 0 ≤ w2 ≤ 1
and 0 ≤ w3 ≤ 1.
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Fig. 1: With 4 alternatives the weight space is fully determined by w2 and w3; the shaded ares
show the feasible monotone weights (on the left) and feasible convex weights (on the right).

For monotone weights, the feasible region is simply determined by the constraint w2 ≥ w3. For
convex weights we have as well the following two constraints that derive from Equation 2:

w1 − w2 ≥ w2 − w3 ⇐⇒ w3 ≥ 2w2 − 1

w2 − w3 ≥ w3 − w4 ⇐⇒ w3 ≤ 1

2
w2

The feasible values for the pair (w2, w3) are shown in the shaded regions in Figure 1.

Example 2 We assume that the 4 alternatives a, b, c, d have the following rank distribution:
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Alternative v·1 v·2 v·3 v·4

a 3 2 2 2
b 0 7 2 0
c 2 0 5 2
d 4 0 0 5

By looking at the cumulative standings (number of times an alternative has reached at least position
i, for all i from 1 to m− 1), it is easy to realize [37] that c is dominated by a. Indeed the vector of
cumulative standings of a is (3, 5, 7) and that of c is (2, 2, 7); these are compared componentwise
and we have that the former has values higher or equal than the latter.

The scores of the alternatives, written in function of the weights (we assume, without loss of
generality, that w1 = 1 and w4 = 0) are:

sw(a) = 2w2 + 2w3 + 3

sw(b) = 7w2 + 2w3

sw(c) = 5w3 + 2

sw(d) = 4

We now analyze the optimality regions of a, b, c, d and their volume, assuming w ∈ WD. We can
see that W ∗,a is the region satisfying the following constraints:

w ∈ WD
{

w2 ≥ w3

sw(a) ≥ sw(x) ∀x∈A\{a}


sw(a) ≥ sw(b) ⇐⇒ w2 ≤ 3

5

sw(a) ≥ sw(c) ⇐⇒ w3 ≤ 2
3w2 +

1
3

sw(a) ≥ sw(d) ⇐⇒ w3 ≥ −w2 +
1
2

These constraints encode the polygon with vertices (0.5, 0), (0.6, 0), (0.6, 0.6), (0.25, 0.25) in the
(w2, w3) plane.

Fig. 2: Optimality regions associated to the alternatives of our example. Monotone weights are
displayed on the left; convex weights on the right.

Figure 2 (left) shows the optimality regions for a, b, d (while the optimal region of c is empty)
associated with this example when assuming monotone weights. By computing the volumes, which
can be done exactly in this simple example, we obtain the following values:

Za = 0.24, Zb = 0.64, Zc = 0, Zd = 0.12.

Therefore, alternative b is the overall winner according to our method. Note that Zc = 0 since c is
dominated.
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Now assume that the weights are in WC (Equation 4), considering as well the convexity con-
straint. The optimal region of a, W ∗,a, is determined by the following set of constraints:

w ∈ WC

{
w1 − w2 ≥ w2 − w3 ⇐⇒ w3 ≥ 2w2 − 1

w2 − w3 ≥ w3 − w4 ⇐⇒ w3 ≤ 1
2w2

sw(a) ≥ sw(x) ∀x∈A\{a}


sw(a) ≥ sw(b) ⇐⇒ w2 ≤ 3

5

sw(a) ≥ sw(c) ⇐⇒ w3 ≤ 2
3w2 +

1
3

sw(a) ≥ sw(d) ⇐⇒ w3 ≥ −w2 +
1
2

Figure 2 (right) shows the optimality regions in this case. The alternatives are associated with
the following values:

Za = 0.46, Zb = 0.04, Zc = 0, Zd = 0.50.

and it is the alternative d being the winner in this case. Note that this time b (the winner assuming
monotone weights) is optimal for very few values of w (that is, a very small volume).

Example 3 We consider the following rank distribution table, taken from [23], with 6 alternatives
and 20 voters; however it is assumed that only the top 4 positions contribute to the score (and
therefore the rank distribution is given only for the first 4 positions).

Alternative v·1 v·2 v·3 v·4

a 3 3 4 3
b 4 5 5 2
c 6 2 3 2
d 6 2 2 6
e 0 4 3 4
f 1 4 3 3

We note that alternatives a, e and f are dominated. We obtain the following values:

Za = 0, Zb = 0.77, Zc = 0.03, Zd = 0.20, Ze = 0 and Zf = 0;

therefore b is the winner according to our method. Note that, according to the first method of
Llamazares [23], the four alternatives a, b, c, d are tied winners; the result is not very satisfying nor
very informative (especially since a is dominated). According to Llamazeres’ second method [23],
that is more discriminating, either alternative c or d, are declared winners (depending on some
specific assumptions about the minimum difference between consecutive weights). We find choosing
c as winner not very convincing: as we can see from our analysis, alternative c can only obtain the
highest score for very few values of the weights, so it is perhaps not a very good choice.

We now consider convex weights; we therefore impose Constraint (11) as well. The scores are

Za = 0, Zb = 0.37, Zc = 0.26, Zd = 0.38, and Ze = 0 Zf = 0;

the alternative d is now the winner. The fact that d is now preferred, rather than b, can be explained
by the tendency of convex weights to favour more alternatives that are more times in the first
positions (d is first six times, while b only four times).

In this article we focus on this article on the use of the volume of the optimal region as a social
choice, and not so much on its actual computation and its issues. There are many techniques and
software tools that can be used to compute the volume of a polytope. In Appendix A we provide
a Monte Carlo approach to provide an approximate computation of Z values.

3.2 Analysis of of VolumetricTop

A probabilistic interpretation We now give a probabilistic interpretation of the volumetric ap-
proach. Assume that the decision maker does have a “true” set of weights but (due cognitive and
time limitations) cannot state them precisely, but only reports that the weight belongs to W . From
the point of view of the computer system tasked with deciding who should win, any weight w that



Volumetric Aggregation Methods for Scoring Rules with Unknown Weights 13

belongs to W seems plausible. Without any other information, it is reasonable to assume a uniform
prior on w (according to the principle of indifference). If the “true” weights are sampled uniformly
at random, from the space of feasible weights W , then it is easy to see that the probability of being
the true winner is proportional to the volume of the optimal region. The VolumetricTop rule then
consists in picking the alternative with maximum probability of winning assuming a uniform prior.

Theoretical properties We provide an analysis of the Volumetric-top aggregation method with
respect to the traditional properties that are studied in the theory of social choice; in particular,
we refer to the properties that were listed in Section 2.2. We view the procedure as a social
choice function, mapping a profile to one or more winners. Note that the information basis is the
rank distribution, imposing an equivalence relation between profiles that induces that same rank
distribution vx for each alternative x ∈ A.

The aggregation method is neutral and anonymous, and unanimous (if all voters place an
alternative in first position, this alternative is selected as winner: indeed the optimality region of
this alternative will cover the entire feasible region of the weights).

The aggregation method is monotone: if some voters raise a winning alternative in their ranking
without changing the orders of the remaining ones, that alternative continues to be a winner.
Observe that, when an alternative improves its position in the rankings, its optimality region
cannot decrease and therefore its Z value cannot decrease. Hence, if alternative a is a winner, it
continues to be a winner after a has improved with respect to some voters.

With now check consistency [40] (sometimes also called reinforcement). We remind (see Section
2.2) that a rule is consistent if an alternative that is the winner considering two different population
of voters, then the same alternative should be a winner when the two populations are merged
together. Volumetric aggregation is not consistent: this is not surprising, since, according to Young’s
axiomatization a rule that is neutral, anonymous and consistent should be a scoring rule with a
fixed weight vector (and volumetric aggregation is not a scoring rule). In Example 4 below we
present an example showing that aggregation with Volumetric-top does not satisfy the property of
consistency: indeed in both profiles 1 and 2, the alternative a is the winner according to Volumetric-
top. In the combined profile, however, b, and not a, is the winner.

Example 4 An example showing that aggregation with VolumetricTop does not satisfy consistency.
We assume decreasing weights; alternative a is picked as the optimal alternative in both profile 1
and profile 2. Now consider the merged profile obtained by considering both the voters of profile
1 and of profile 2 (the rank distribution of the merged profile is the result of the sum of the rank
distribution of profile 1 and 2, as can be easily checked by looking at the tables below). Since b, and
not a, is selected by the rule in the merged profile, this means that the rule is not consistent.

Profile 1:

Alternative v·1 v·2 v·3 v·4

a 4 0 0 4
b 0 6 0 2
c 3 0 3 2
d 1 2 5 0

Alternative Z

a 0.333
b 0.311
c 0.056
d 0.300

Profile 2:

Alternative v·1 v·2 v·3 v·4

a 4 0 0 4
b 0 6 0 2
c 1 2 5 0
d 3 0 3 2

Alternative Z

a 0.333
b 0.311
c 0.300
d 0.056

Profile 1 ∪ Profile 2:

Alternative v·1 v·2 v·3 v·4

a 8 0 0 8
b 0 12 0 4
c 4 2 8 2
d 4 2 8 2

Alternative Z

a 0.277
b 0.282
c 0.221
d 0.221
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We now consider homogeneity, requiring that replicating the same profile several times lead to
the same social choice. In terms of rank distribution, when a profile is replicated k times, the value
vxj is multiplied by k, for all positions j and for all alternatives x. When the rank distributions
change in this way, the optimality region that does not change. Therefore homogeneity is satisfied
by our method.

Another property commonly studied in social choice is the independence from adding symmetric
profiles [29]: adding a symmetric profile (a profile where all permutations are present in the same
number) should not change the result of the aggregation. This is actually the case: adding a
symmetric profile induces all scores to be incremented by a constant value; the optimality regions
are unchanged.

It is quite obvious that our rule does not satisfy Independence to irrelevant alternatives (IIA);
however we do not view the lack of satisfaction of IIA as necessarily problematic.

We look for relaxations of IIA that deal only with the rank of the alternatives. Llamazeres and
Peña [22] have noticed that in some aggregation methods that have been proposed in the literature,
the inefficient candidates may change the order of efficient candidates. Therefore it is desirable that
an aggregation method is not perturbed by changes in the performance of dominated alternatives
(alternatives that are always worse off than some others). Our method satisfies the property, called
Independence from the Rank of Dominated Alternatives (IRDA), that requires that dominated
alternatives do not influence who the winner is. IRDA [38] requires that the set of winners does
not change whenever a profile is modified in a way that everything stays the same beside the ranks
of dominated alternatives.

Volumetric-top satisfies IRDA. We provide an intuition of this fact. If an alternative a dominates
b, then it means that, for any feasible weight, the score of a is higher than b; therefore b cannot be
optimal (its region of optimality is void). In the case that the dominance is weak, then b can at most
tie with a, and the region of optimality of a includes that of b. Therefore dominated alternatives
cannot have an impact on the performance of undominated ones.

To conclude the analysis, we can say that overall VolumetricTop displays good characteristics.
Its main limitation is that it does not discriminate all alternatives, in particular all dominated
alternatives obtain a score of zero. Therefore it is not a good method when it is desired to obtain
a full ranking in output.

4 Aggregation with Volumetric-runoff

Algorithm 1: VolumetricTop with Runoff (Volumetric-runoff)

Data: The set of alternatives A and their rank distribution v
Result: Overall winner
C ← A ;
while |C| > 1 do

Compute Zx for all alternatives in C ;

Let x− ∈ argminx∈C Zx ;

Remove x− from C;

end

Let x+ be the remaining item in C;

return x+;

Runoff methods are popular in social choice; they iteratively discard less promising alterna-
tives until a winner is found. The advantage of runoff methods is to eliminate any impact of less
interesting alternatives when comparing the more promising ones. A common case is the plurality
rule: an alternative a may be better than b according to plurality (because the former gets more
times the first ran) but when another alternative c is eliminated, b may gets more first ranksm,
and b may win instead of a. Since c was not going to win anyway, one may want to compare a
and b without considering c; the runoff version does exactly that. An analogous phenomenon may
happen with VolumetricTop; we will describe it with Example 2 below.
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The method proposed in this Section is inspired by Single Transferable Vote (STV) [43] (runoff
version of plurality) and Baldwin’s method [3] (runoff version of Borda). The runoff version of
the volumetric approach, whose pseudocode is shown in Algorithm 1, is called Volumetric-runoff
and maintains a set of alternatives under consideration, initialized as the set A of all alternatives.
At each iteration, the algorithm computes the normalized volume of the optimal region associated
with each of the alternatives and eliminated the alternative associated with the lowest value. When
a single alternative remains, it is returned as the winner.

The algorithm can be used to retrieve a ranking by sorting by the inverse order of removal; that
is, by constructing a ranking by placing in the last position the item that is removed from C in the
first round, by placing in the second last position the item that is removed from C in the second
round, etc. Note, however, that dominated alternatives are not being differentiated, since they all
have a score of zero in the initial round (this problem is solved by the method presented in Section
5). An important, subtle point is that the rank distribution is left unchanged, but when removing
an alternative from the set C, then the optimality region is computed using the constraint 10 with
respect to a smaller set C ⊆ A.

Example 2 (continued) We provide an example of the application of the volumetric runoff vari-
ant, considering the example that we used in the previous Section for illustrating VolumetricTop.

Alternative v·1 v·2 v·3 v·4

a 3 2 2 2
b 0 7 2 0
c 2 0 5 2
d 4 0 0 5

In the first round, the scores are the following:

Za = 0.235, Zb = 0.64, Zc = 0, Zd = 0.125.

The item c is eliminated. Since c was dominated, its optimal region was empty (and its score was
zero); this means that the optimal regions for a, b and d are not impacted from the deletion of c.
Therefore, in the second round, the scores for a,b and d, are unchanged.

Za = 0.235, Zb = 0.64, Zd = 0.125.

In the third round, only alternatives a and b are left. The optimal regions are shown in Figure 3.
We obtain the scores:

Za = 0.36, Zb = 0.64;

therefore a is eliminated and finally b is returned as winner. If we are interested in a ranking,
according to the method the output ranking is b ≻ a ≻ d ≻ c.

Now, we suppose that the weights are convex (w ∈ WC) and we describe how VolumetricTop-
runoff evaluates the alternatives. In the first round, we have:

Za = 0.46, Zb = 0.04, Zc = 0, Zd = 0.50.

Therefore, item c is eliminated. Subsequently (c was dominated, the optimal regions do not change):

Za = 0.46, Zb = 0.04, Zd = 0.50.

Item b is eliminated in the second round. In the third and final round the remaining items a and d
obtain the following scores (Figure 4 shows how the optimal regions of a and d partition WC):

Za = 0.50, Zd = 0.50.

Finally a and d are tied (note that using the original version of VolumetricTop d was the only
winner). The final output ranking is a ∼ d ≻ b ≻ c.

We conclude that, using the Volumetric-runoff method, the winner is b with monotone weights,
while the winners are a and d that are tied when considering the convex weights.
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Fig. 3: The optimal regions in the third round
of Volumetric-runoff, when only alternatives a
and b are considered (Example 2; WD).

Fig. 4: The optimal regions in the third round
of Volumetric-runoff, when only alternatives a
and b are considered (Example 2; WC).

Note that in the previous example, when considering convex weights (WC), alternatives a and
d obtain the same Z value when considered alone (they are tied in the last round of the runoff
method); however d obtained a larger Z value than a when b was present (and therefore d was
the only winner according to VolumetricTop). Since c is clearly far from winning (although c is
not dominated), one may desire that the preference between a and d should not depend on the
performance of c. In this sense the result obtained with Volumetric-runoff seems more plausible.

Example 3 (continued) We show how Volumetric-runoff, the runoff variant of VolumetricTop,
works in the following scenario.

Alternative v·1 v·2 v·3 v·4

a 3 3 4 3
b 4 5 5 2
c 6 2 3 2
d 6 2 2 6
e 0 4 3 4
f 1 4 3 3

Let’s assume monotone weights. The Z scores obtained in the first round are:

Za = 0 Zb = 0.7733 Zc = 0.0267 Zd = 0.2000 Ze = 0.

In the first three rounds a, d, and e are eliminated since they have empty optimal regions (and the
other Z values do not change after their elimination); c is eliminated next since it has the lowest
value. The remaining contestants are b and d; in the next round we have:

Zb = 0.7778 Zd = 0.2222

Therefore the winner is b.
We now consider convex weights; the Z scores obtained in the first round are:

Za = 0 Zb = 0.3719 Zc = 0.2555 Zd = 0.3727 Ze = 0 Zf = 0.

The alternatives a, e and f are eliminated. In the next iteration, we have

Zb = 0.3719 Zc = 0.2555 Zd = 0.3727.

and c is eliminated. Finally we have:

Zb = 0.39 Zd = 0.61.

Therefore the winner is d. Note that in this example the winners obtained with Volumetric-runoff
are the same as the winners obtained with VolumetricTop.
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4.1 Theoretical Properties

It is straightforward to see that the runoff variant is: neutral, anonymous, unanimous, homogeneous,
independent from adding symmetric profiles, independent from the rank of dominated alternatives.
It is not consistent.

The main inconvenience of Volumetric-runoff is that it is not monotone. We show this by
providing an example where an alternative is the winner in a given profile but does not win in a
modified profile obtained by improving its performance.

Example 5 First, consider the following rank distribution:

Alternative v·1 v·2 v·3

a 40 0 40
b 12 52 16
c 28 28 24

We have 3 alternatives and 80 voters; remember that we assume, without loss of generality, that
w1 = 1 (the weight of the first position) and w3 = 0. We assume monotone weights. The uncertainty
is on the weight w2 associated with the second position. In this 1-dimensional setting, the score of
an alternative can be represented by a line in the Cartesian plane; the scores of a, b, and c as a
function of w2 are shown in the left part of Figure 5.

Fig. 5: The score sw(a), sw(b) and sw(c) of the alternatives as a function of w2 (Example 5). Z
values are the length of the interval that makes each alternative the one with the highest score. a
wins in the original profile (on the left) but when the profile is modified, then c is the winner (on
the right).

We compute the optimal regions:

– The optimal region of a is 0 ≤ w2 ≤ 0.4286, and therefore Z(a) = 0.4286− 0 = 0.4286.
– The optimal region of b is 0.6667 ≤ w2 ≤ 1, and therefore Z(b) = 1− 0.6667 = 0.3333
– The optimal region of c is 0.4286 ≤ w2 ≤ 0.6667, and therefore Z(c) = 0.6667−0.4286 = 0.2381.

Using the iterative runoff method, a is the winner. Indeed, according to the score just calculated, c
obtains the lowest value and is therefore eliminated. Then in the second round:

Za = 0.5385, Zb = 0.4615.

And a is declared the winner.

Now, suppose that 3 voters change their preferences and they rank a in the second position
rather than in the third. The resulting rank distribution is as follows:
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Alternative v·1 v·2 v·3

a 40 3 37
b 12 49 19
c 28 28 24

The right part of Figure 5 shows the scores of a, b, and c as a function of w2 in the modified
profile. Now a has the highest score when w2 is between 0 and 0.48, b has the highest score when
w2 is between 0.7619 and 1, and c when 0.48 ≤ w2 ≤ 0.7619. Therefore the volumes of the optimal
regions (that are also the scores obtained by standard VolumetricTop) are :

Za = 0.4800, Zb = 0.2381, Zc = 0.2819;

this means that alternative b is now eliminated in the first round. In the second round, the compe-
tition is between a and c, and a is eliminated.

Za = 0.48, Zc = 0.52.

Therefore, in the modified profile, c is the winner. Since the modified profile was obtained from
the original one by improving the performance of a (at the expense of b; with the positions of c
unchanged), we can conclude that the method is not monotone.

Note that, in this example, the standard version of VolumetricTop would have declared a winner
in both profiles since a is associated with the larger optimal region; indeed standard VolumetricTop
is monotone. Non-monotonicity emerges from the iterative process of elimination in the runoff
version.

The fact that Volumetric-runoff is not monotone can be seen as a serious drawback. Moreover,
it is not capable of ranking all alternatives; all dominated alternatives are tied. In the next Section
we will see a method that can overcome these problems.

5 Aggregation with Volumetric-tournament

In some situations we are interested in providing a full ranking as output. Volumetric-top may not
be able to differentiate between the alternatives that are inefficient (there is no scoring vector that
make them optimal) whose Z score is 0. Still, we might want to differentiate them. Consider again
Example 3: both Ze = 0 and Zf = 0, therefore a and e are tied. However it is desirable to rank e
before f as the first dominates the latter.

Moreover, it is often possible that the number of alternatives is large but only a very few
alternatives have a non empty optimal region; this make impossible to differentiate the other
alternatives. This actually happens with the dataset of F1 drivers (see Section 6): each year only
about 4-5 are undominated and therefore obtain a Z value higher than zero with VolumetricTop;
all other drivers are tied for VolumetricTop. Reckoning this limitation of the Volumetric-Top rule,
we design an approach based on pairwise comparisons of alternatives, that is able to rank all
alternatives. For each pair of alternatives, we consider the region that makes the first preferred to
the second, and the region of weights that makes the second preferred to the first.

Definition 4 Let a, b ∈ A with a ̸= b. The region pairwise optimal region of alternative a against
b, denoted as W a≥b is defined as:

W a≥b = {w ∈ W : sw(a) ≥ sw(b)}

and Za≥b is the ratio between its volume and the whole region of weights W :

Za≥b =
Vol(W a≥b)

Vol(W )
.

Then, we compare Za≥b and Zb≥a; when the first is higher, or equivalently when Za≥b > 0.5,
we take this as indication that we should prefer a over b (informally, we say that a beats b or
that a wins against b). Following this intuition, if there is an alternative that wins all pairwise
comparisons against all others, then this alternative should be declared as winner. This is formalized
by the notion of Volumetric-Condorcet, that it is analogous to the Condorcet property in standard
methods of social choice.
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Definition 5 The alternative a is a Volumetric-Condorcet winner if it holds that:

|{b ∈ A\{a} : Za≥b > Zb≥a}| = m− 1.

If there is no Volumetric-Condorcet winner, then we pick the alternative that beats most of the
others in pairwise comparisons. We associate to each alternative a ∈ A the score ZV T

a that is the
number of times that a is better than another alternative in pairwise comparisons.

Definition 6 The Volumetric-tournament score of alternative a is:

ZV T
a = |{b ∈ A\{a} : Za≥b > Zb≥a}|

The alternative with highest ZV T value is declared as winner.

It is immediate to realize that Volumetric-tournament will declare as winner the Voulmetric-
Condorcet winner if it exists.

It is possible to display graphically the outcome of Volumetric-tournament using a directed
graph (the tournament graph) where the nodes correspond to alternatives and a direct edge connects
an alternative with another where the former beats the latter. This will be shown in the examples
below.

Fig. 6: The pairwise optimal regions for each pair of alternatives in the case of monotone weights.

Example 2 (continued) We compute the scores according to VolumetricTournament; as usual,
we first consider the general class of decreasing weights. Remember that the scores of the alternatives
in function of the weights (with w1 = 1 and w4 = 0) are:

sw(a) = 2w2 + 2w3 + 3, sw(b) = 7w2 + 2w3,

sw(c) = 5w3 + 2, sw(d) = 4.

The region W a≥b is given by the constraints:{
w ∈ WD ⇐⇒ w2 ≥ w3

sw(a) ≥ sw(b) ⇐⇒ w2 ≤ 3
5

while W b≥a (note that W a≥b and W b≥a partition WD) by the constraints:{
w ∈ WD ⇐⇒ w2 ≥ w3

sw(a) ≤ sw(b) ⇐⇒ w2 ≥ 3
5
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Fig. 7: The tournament graph of Example
2 when using Volumetric-tournament (case
WD).

Fig. 8: The tournament graph of Example
2 when using Volumetric-tournament (case
WC).

Fig. 9: The pairwise optimal regions for each pair of alternatives in the case of convex weights.

Therefore W a≥bis the polygon with vertices (0, 0), (0.6, 0), (0.6, 0.6) in the (w2, w3) plane, while
W b≥a is the one with vertices (0.6, 0), (1, 0), (1, 1). All other pairwise optimal regions for this prob-
lems with respect to WD can be determined in a similar way; they are displayed in Figure 6 and
the (normalized) volumes of the pairwise regions are given in the following table:

Z ·≥· a b c d
a − 0.3600 1 0.8750
b 0.6400 − 0.8571 0.7460
c 0 0.1429 − 0.3600
d 0.1250 0.2540 0.6400 −

The scores can be determined considering, for each row, how many values are greater than 0.5.

– We can see that a beats c and d, but looses against b; therefore ZV T
a = 2.

– Alternative b wins against a, c and d (it is a Volumetric-Condorcet winner): ZV T
b = 3.

– Alternative c looses all pairwise comparisons and ZV T
c = 0.

– Alternative d wins against c and looses the other comparisons: ZV T
d = 1.

Therefore the winner is alternative b (The tournament graph is shown in Figure 7).
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Assuming convex weights (w ∈ WC) we have the following volumes (Figure 9 shows the pairwise
optimal regions):

Z ·≥· a b c d
a 0 0.96 1 0.5
b 0.04 0 0.69 0.18
c 0 0.31 0 0
d 0.5 0.81 1 0

Therefore, alternatives a and d are both winners (they win against b and c and tie between them-
selves; c only wins against b):

ZV T (a) = 2; ZV T (b) = 1; ZV T (c) = 0; ZV T (d) = 2.

The tournament graph is shown in Figure 8. Note that this result is consistent with the result
obtained with Volumetric-runoff, but differs from Volumetric-top.

Example 3 (continued) We compute the scores according to the pairwise variant of Volumetric.
With monotone weigths (WD) we have the following pairwise values:

Z ·≥· a b c d e f
a − 0 0 0 1.0 1.0
b 1.0 − 0.89 0.78 1.0 1.0
c 1.0 0.11 − 0.25 1.0 1.0
d 1.0 0.22 0.75 − 1.0 1.0
e 0 0 0 0 − 0
f 0 0 0 0 1.0 −

Therefore, considering the number of pairwise comparisons won by each alternative, we have the
following scores:

ZV T (a) = 2; ZV T (b) = 5; ZV T (c) = 3; ZV T (d) = 4; ZV T (e) = 0; ZV T (f) = 1.

Thus b is the overall winner (and it is a Volumetric-Condorcet). The final ranking obtained is
b ≻ d ≻ c ≻ a ≻ f ≻ e. Note that this version, differently from VolumetricTop, is able to produce
a total order as output (as it can discriminated between the dominated alternatives as well).

Let’s now consider convex weights; these are the associated volumes of the pairwise regions:

Z ·≥· a b c d e f
a 0 0 0 0 1 1
b 1 0 0.43 0.40 1 1
c 1 0.57 0 0.40 1 1
d 1 0.60 0.60 0 1 1
e 0 0 0 0 0 0
f 0 0 0 0 1 0

Alternative d obtains a score of 5 and it is a Volumetric-Condorcet winner.

ZV T
a = 2; ZV T

b = 3; ZV T
c = 4; ZV T

d = 5; ZV T
e = 0; ZV T

f = 1.

The final ranking obtained is d ≻ c ≻ b ≻ a ≻ f ≻ e.
Note that alternative c, that is the winner according to Llamazares [23] (in some of variants

of his approach), it is ranked third in both cases: this is because it is rarely a good alternatives
according to most weights in either w ∈ WD or w ∈ WC , when compared to the other alternatives
(especially b and d).

Example 5 (continued) Reconsider the example that was used to show the nonmonotonicity of
the runoff version. Considering pairwise matches (left part of Figure 5) we have that c beats both
a and b; a beats b but looses with c; b looses with both.

– Considering a and b : W a≥b = {0 ≤ w2 ≤ 0.5385} and W b≥a = {0.5385 ≤ w2 ≤ 1} (refer to
the left part of Figure 5); therefore a bests b since W a≥b is a longer interval than W a≥b
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– Considering a and c: W a≥c = {0 ≤ w2 ≤ 0.4286} and W c≥a = {0.4286 ≤ w2 ≤ 1} (refer to the
left part of Figure 5); therefore c beats a

– Considering b and c: we have that W b≥c = {0.6666 ≤ w2 ≤ 1} and W c≥b = {0 ≤ w2 ≤ 0.6666};
therefore c beats a

The tournament version of VolumetricTop, therefore, declares alternative c as the winner as it
gets 2 points, alternative a is second with 1 point and finally, alternative b is third with 0 points.

In the modified profile (right part of Figure 5) c continues in being the winner according to
VolumetricTop-tournament. Therefore there is no violation of monotonicity in this case. In fact,
we shall see that the tournament version of VolumetricTop is monotone.

One could wonder if the binary relation induced by pairwise comparisons of optimal regions is
transitive. We show that this is not true in general by providing a counterexample. Indeed in the
following profile (the rank distribution is the same as the combined profile in Example 4) there is
a violation of transitivity.

Alternative v·1 v·2 v·3 v·4

a 8 0 0 8
b 0 12 0 4
c 4 2 8 2
d 4 2 8 2

Z ·≥· a b c d
a − 0.44 0.55 0.55
b 0.56 − 0.45 0.45
c 0.45 0.55 − 0.50
d 0.45 0.55 0.50 −

We have that:

– Alternative b beats a
– Alternative a beats c and d
– However, c bests b and d beats b

The tournament graph is shown in Figure 10. The two cycles (b-a-c-b and b-a-d-b) are reminiscent
of Condorcet cycles in classic voting theory [43]. Note that our method, Volumetric-tournament,
would pick a as a winner in this setting as it is pairwise better than two other alternatives, while
b, c, d beat only one (and a tie holds between c and d).

Fig. 10: An example of an intransitive tournament graph: alternative a beats c, c beats b, and b
beats c. Moreover d beats b, b beats a, and a beats d.
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5.1 Theoretical Properties

The rule is neutral, anonymous, unanimous, homogeneous, independent from adding symmetric
profiles, and independent from the rank of dominated alternatives. It is not consistent (but we
do not view this as problematic, since consistency is inherently linked to a scoring rule with
known weights: see also discussion in Section 2.2). The rule is also monotone; therefore it is more
satisfying than the runoff variant. Moreover, it can rank all alternatives (something that the original
Volumetric-top cannot make).

Since this method satisfies all the characteristics that we have put forward as desirable, it is
the one that look more convincing.

6 Case study

Alternative v·1 v·2 v·3 v·4 v·5 v·6 v·7 v·8 v·9 v·10 v·11 v·12 v·13 v·14 v·15 v·≥16

L. di Grassi 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 17
R. Barrichello 0 0 0 1 1 1 1 1 2 3 0 4 0 3 0 2
M. Schumacher 0 0 0 3 0 3 2 0 3 2 2 0 1 0 1 2
J. Alguersuari 0 0 0 0 0 0 0 0 2 1 4 4 4 0 2 2
N. Heidfeld 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 2
N. Hulkenberg 0 0 0 0 0 1 1 1 0 4 0 0 2 2 1 7
T. Glock 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 17
J. Trulli 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 16
V. Liuzzi 0 0 0 0 0 1 1 0 2 2 1 1 2 0 1 8
K. Chandhok 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 7
F. Massa 0 2 3 3 0 1 2 1 1 1 1 0 0 0 3 1
K. Kobayashi 0 0 0 0 0 1 2 2 1 2 1 1 0 1 0 8
B. Senna 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 16
N. Rosberg 0 0 3 1 5 3 0 2 0 1 0 0 1 0 0 3
F. Alonso 5 2 3 2 0 0 2 2 0 0 0 0 1 1 0 1
A. Sutil 0 0 0 0 2 1 1 1 3 1 1 2 1 0 0 6
M. Webber 4 4 2 0 1 2 0 3 1 0 0 0 0 0 0 2
L. Hamilton 3 5 1 2 2 2 0 0 0 0 0 0 0 1 0 3
R. Kubica 0 1 2 1 4 1 3 2 1 0 1 0 0 0 0 3
V. Petrov 0 0 0 0 1 1 1 0 1 1 2 0 3 1 1 7
H. Kovalainen 0 0 0 0 0 0 0 0 0 0 0 1 2 2 1 13
S. Yamamoto 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6
P. de la Rosa 0 0 0 0 0 0 1 0 0 0 2 2 0 2 0 7
S. Buemi 0 0 0 0 0 0 0 1 1 1 3 3 1 1 1 7
S. Vettel 5 2 3 3 0 1 1 0 0 0 0 0 0 0 1 3
C. Klien 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
J. Button 2 3 2 3 3 0 1 2 0 0 0 1 0 0 0 2

Table 1: The rank distribution for the race results of the 2010 season of the F1 championships;
assuming at most the first 15 positions gives points to the score.

We provide some numerical tests with real data obtained from the PREFLIB data repository2,
providing the rankings of each race in the F1 championships from 1961 to 2018. In this context,
an alternative is a driver and each ranking is the result of a race. The rankings of a given year
have to be aggregated in order to determine the winner for that year. The number of drivers (m)
changes from year to year, ranging from 22 to 62; and as well the number of races (n).

We suppose that at most k = 15 positions contributes to the score; this is consistent with
typical point systems used in race competitions. Obviously a driver that does not participate to a
race does not get any point. If there are only q < k drivers that finish a particular race, the points
associated with positions q + 1, . . . , k are not allocated.

First of all, we consider in details the competition of the year 2010 (m = 27 and n = 19). In
Table 1 we show the rank distributions of the drivers taking part in the 2010 edition of the F1

2 https://www.preflib.org/dataset/00052
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championship. Because finishing a race with position k + 1 or worse does not give any point, the
rank distribution has k + 1 elements, with the last component v≥k+1 being the number of times
the racer finished in position k + 1, k + 1, . . . ,m.

Dominance relations can checked3 using the methods presented in Section 2.3. For example, as-
suming w ∈ WD; we compare the components of the cumulative standings (v·1, v

·
1+v·2, . . . ,

∑k
i=1 v

·
i)

of Button and Schumacher:

(2, 5, 7, 10, 13, 13, 14, 16, 16, 16, 16, 17, 17, 17, 17, 19) ≻ (0, 0, 0, 3, 3, 6, 8, 8, 11, 13, 15, 15, 16, 16, 17)

Since the first vector is component-wise strictly higher the second, Button is necessarily better
than Schumacher: for any feasible w, Button obtains an higher score (this situation is called strong
dominance).

Now consider Button and Kubica; comparing the cumulative standings, we have that

(2, 5, 7, 10, 13, 13, 14, 16, 16, 16, 16, 17, 17, 17, 17) ⪰ (0, 1, 3, 4, 8, 9, 12, 14, 15, 15, 16, 16, 16, 16, 16)

here ⪰ means that all components of the first vector are higher or equal to the corresponding
components of the second vector. This means that the Kubica cannot have better score than
Button for any w ∈ WD. Indeed, when using 11-approval (the rule that gives 1 point if the driver
is at most in the 11th position) Button and Kubica are tied with the same score (they both get 16
points); however there is no w ∈ WD that makes Kubica strictly better than Button.

In Table 1 the lines in bold corresponds to undominated drivers (the drivers such that there
exists no driver that dominated them): Alonso, Webber, Hamilton, Vettel and Button. All other
drivers are dominated: there is no possible w that makes them strictly better than these five, and
there is at least w for which they are worse.

We now consider how different aggregation methods differentiate the drivers with respect to
the races of the year 2010:

– Alonso and Vettel win according to plurality, they both obtain 5 points. Webber gets 4, Hamil-
ton 3 and Button 2.

– According to 3-approval, that is a scoring rule with weight w = (1, 1, 1, 0, . . . , 0), Alonso, Webber
and Vettel are tied with 10 points while Hamilton gets 9 points; finally Button gets 7 points.

– According to Borda, that is w = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), we have that Alonso wins, followed
by Webber, Vettel and then Hamilton and Button.

– The official F1 competition made use of the scoring vector (25, 18, 15, 12, 10, 8, 6, 4, 2, 1), when
using these weights the winner is Sebastian Vettel.

– Instead, if one uses the weighting vector (25, 20, 16, 13, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1) then we have
that the winner is Fernando Alonso.

– Now, consider our volumetric approaches assuming monotone weights (w ∈ WD):
– By applying VolumetricTop, assuming monotone weights, F. Alonso is the winner with

0.54, followed by Webber with 0.38, Vettel is third with 0.05, then Hamilton with 0.02, and
Button is fifth (0.01).

– Using Volumetric-runoff, we also obtain that Alonso is the winner. Indeed, after having
eliminated all the dominated alternatives, only Alonso, Webber, Hamilton, Vettel and But-
ton remain. Button is then eliminated in the second round. Then, Hamilton is eliminated
and Alonso, Webber and Vettel are the three remaining. After eliminating Vettel, in the
last stage we have Alonso and Webber: finally Alonso wins.

– For Volumetric-tournament, Alonso is the winner with 26 points.
– Considering convex weights (w ∈ WC) we have that only Alonso, Webber and Vettel are

undominated. VolumetricTop picks Vettel as the winner with Z-score of 0.96 (meaning that for
the vast majority of compatible scoring weights he is the winner) while Alonso gets 0.04 and
Webber a value less than 0.01.
Vettel is also the winner for Volumetric-runoff and Volumetric-tournament.

We now show that the tournament version of VolumetricTop allows the assessment of all race
participants, including those dominated. In Table 2 we can see how the different drivers rank
according to the tournament method when assuming, respectively, monotone and convex weights.
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(a) monotone assumption WD

Rank Driver Tournament Score

1 F. Alonso 26
2 M. Webber 25
3 S. Vettel 24
4 J. Button 23
5 L. Hamilton 22
6 R. Kubica 21
7 N. Rosberg 20
8 F. Massa 19
9 M. Schumacher 18
10 R. Barrichello 17
11 A. Sutil 16
12 K. Kobayashi 15
13 J. Alguersuari 14
14 V. Petrov 13
15 N. Hulkenberg 12
16 V. Liuzzi 11
17 S. Buemi 10
18 P. de la Rosa 9
19 N. Heidfeld 8
20 H. Kovalainen 7
21 K. Chandhok 6
22 J. Trulli 5
23 L. di Grassi 2
23 T. Glock 2
23 B. Senna 2
26 S. Yamamoto 1
27 C. Klien 0

(b) convex assumption WC

Rank Driver Tournament Score

1 S. Vettel 26
2 F. Alonso 25
3 M. Webber 24
4 L. Hamilton 23
5 J. Button 22
6 F. Massa 21
7 N. Rosberg 20
8 R. Kubica 19
9 M. Schumacher 18
10 R. Barrichello 17
11 A. Sutil 16
12 K. Kobayashi 15
13 V. Petrov 14
14 N. Hulkenberg 13
15 V. Liuzzi 12
16 J. Alguersuari 11
17 S. Buemi 10
18 P. de la Rosa 9
19 N. Heidfeld 8
20 H. Kovalainen 7
21 J. Trulli 6
22 K. Chandhok 5
23 L. di Grassi 2
23 T. Glock 2
23 B. Senna 2
26 S. Yamamoto 1
27 C. Klien 0

Table 2: The scores obtained by the F1 drivers in 2010 according to the tournament version of
VolumetricTop.

Note that Di Grassi, Glock and Senna are tied in the 23-th position as they have exactly the same
rank distribution.

We now present the results of aggregation for the different seasons in the table below, by com-
paring our method(s) with classical approaches of social choice. Table 3 shows, for the period
1987–2010, the scores of different drivers according to different methods: plurality (the driver who
arrives first in a race takes 1 point, all others that 0), 3-approval (the first three divers in a race take
1 point), Borda, the point system used by F1 in 2010, and the methods that we propose: Volumet-
ricTop, runoff-Volumetric and Volumetric-tournament (either considering monotone weights, WD

or convex weights, WC). For Volumetric-runoff the score corresponds to the number of rounds in
which the alternative avoided being eliminated (the higher the better); for Volumetric-tournament
the value is the number of times in which the alternatives has the larger volume in pairwise com-
parisons (the maximum being m− 1, with m being the number of drivers). Only drivers that are
undominated in WD are shown in the table; moreover, a checkmark in the last column means that
the driver is also undominated in WC . Dominance is checked using the techniques discussed in
Section 2.3.

By analyzing the F1 data it is surprising to see that, in this dataset, the three variations
of VolumetricTop always pick the same winner. However, it is often the case that a different
assumption on the weights (monotone or convex) changes the winner: in 13 seasons the winner
according VolumetricTop when assumingWD is different from the winner according VolumetricTop
when assuming WC . Moreover, the way the three Volumetric methods rank the undominated
alternatives changes depending on the method: for example, in 1969, assuming monotone weights
(w ∈ WD) both VolumetricTop and Volumetric-runoff rank Stewart first, then Beltoise as second,
and Ickx third; while Volumetric-tournament ranks Ickx as second after Stewart, with Beltoise
third.

3 See also [38] for analysis of this dataset with respect to possible winners and with minimax-regret.
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Year m Alternative Plur 3-appr Borda F1 VolTop VolTop runoff runoff tourn tourn

WD WC WD WC WD WC

1950 81 fagioli 0.00 5.00 4.87 3.48 0.72 0.50 80.00 80.00 80.00 80.00 ✓
farina 3.00 3.00 4.73 3.72 0.28 0.50 79.00 79.00 79.00 79.00 ✓

1951 84 ascari 2.00 4.00 5.27 4.12 0.04 0.00 82.00 0.00 82.00 82.00
fangio 2.00 5.00 5.67 4.28 0.96 1.00 83.00 83.00 83.00 83.00 ✓

1952 105 ascari 6.00 6.00 6.00 6.00 1.00 1.00 104.00 104.00 104.00 104.00 ✓
farina 0.00 4.00 5.27 3.68 0.00 0.00 103.00 0.00 103.00 103.00

1953 108 ascari 5.00 5.00 6.33 5.64 0.30 1.00 106.00 107.00 106.00 107.00 ✓
farina 1.00 5.00 5.73 4.16 0.00 0.00 105.00 0.00 105.00 105.00
hawthorn 1.00 3.00 6.53 4.36 0.70 0.00 107.00 0.00 107.00 106.00 ✓

1954 97 fangio 6.00 7.00 7.67 7.08 1.00 1.00 96.00 96.00 96.00 96.00 ✓

1955 84 moss 1.00 3.00 3.67 2.52 0.00 0.00 80.00 0.00 81.00 82.00
fangio 4.00 5.00 5.00 4.72 1.00 1.00 83.00 83.00 83.00 83.00 ✓
mieres 0.00 0.00 3.33 1.44 0.00 0.00 81.00 0.00 80.00 80.00
trintignant 1.00 1.00 3.67 2.00 0.00 0.00 82.00 0.00 82.00 81.00

1956 85 fangio 2.00 5.00 5.87 4.44 1.00 1.00 84.00 84.00 84.00 84.00 ✓
collins 2.00 4.00 4.53 3.52 0.00 0.00 83.00 0.00 83.00 83.00 ✓

1957 76 fangio 4.00 6.00 6.07 5.44 1.00 1.00 75.00 75.00 75.00 75.00 ✓

1958 87 moss 4.00 5.00 5.47 4.72 0.00 0.01 85.00 85.00 85.00 85.00 ✓
hawthorn 1.00 7.00 7.87 5.60 1.00 0.99 86.00 86.00 86.00 86.00 ✓

1959 88 jack brabham 2.00 5.00 6.07 4.40 0.98 1.00 87.00 87.00 87.00 87.00 ✓
trintignant 0.00 2.00 5.47 2.92 0.02 0.00 86.00 0.00 86.00 86.00

1960 91 phil hill 1.00 2.00 5.33 2.72 0.01 0.00 87.00 0.00 87.00 87.00
trips 0.00 0.00 5.33 2.20 0.06 0.00 88.00 0.00 88.00 86.00
jack brabham 5.00 5.00 6.13 5.48 0.21 0.99 89.00 90.00 89.00 90.00 ✓
mclaren 1.00 6.00 6.33 4.84 0.72 0.01 90.00 89.00 90.00 89.00 ✓
ireland 0.00 3.00 5.20 2.92 0.00 0.00 0.00 0.00 86.00 88.00

1961 62 gurney 0.00 3.00 5.80 3.40 0.26 0.00 60.00 0.00 60.00 60.00
phil hill 2.00 6.00 6.07 4.72 0.74 1.00 61.00 61.00 61.00 61.00 ✓
moss 2.00 2.00 3.60 2.64 0.00 0.00 0.00 0.00 59.00 59.00

1962 61 hill 4.00 6.00 7.80 6.32 1.00 1.00 60.00 60.00 60.00 60.00 ✓

1963 62 clark 7.00 9.00 9.33 8.48 1.00 1.00 61.00 61.00 61.00 61.00 ✓

1964 41 gurney 2.00 2.00 4.80 2.48 0.00 0.00 0.00 0.00 35.00 35.00
bandini 1.00 4.00 5.67 3.32 0.00 0.00 0.00 0.00 37.00 36.00
hill 2.00 5.00 6.67 5.04 0.24 1.00 39.00 40.00 39.00 40.00 ✓
clark 3.00 3.00 5.47 4.12 0.00 0.00 37.00 38.00 36.00 37.00 ✓
ginther 0.00 2.00 7.00 3.84 0.76 0.00 40.00 0.00 40.00 38.00 ✓
surtees 2.00 6.00 5.80 4.76 0.00 0.00 38.00 39.00 38.00 39.00 ✓

1965 54 hill 2.00 6.00 8.40 6.12 1.00 0.78 53.00 53.00 53.00 53.00 ✓
clark 6.00 6.00 6.47 6.04 0.00 0.22 52.00 52.00 52.00 52.00 ✓

1966 33 jack brabham 4.00 5.00 6.27 5.20 0.93 1.00 32.00 32.00 32.00 32.00 ✓
rindt 0.00 3.00 5.80 3.48 0.07 0.00 31.00 0.00 31.00 31.00

1967 45 clark 4.00 5.00 6.53 5.00 0.00 0.00 41.00 42.00 41.00 42.00 ✓
jack brabham 2.00 6.00 8.20 6.08 0.05 0.00 43.00 43.00 43.00 43.00 ✓
amon 0.00 4.00 7.00 3.76 0.00 0.00 42.00 0.00 42.00 41.00
hulme 2.00 8.00 8.53 6.44 0.95 1.00 44.00 44.00 44.00 44.00 ✓

1968 43 siffert 1.00 1.00 5.93 2.76 0.00 0.00 38.00 0.00 38.00 38.00
hill 3.00 6.00 7.27 5.72 0.31 1.00 41.00 42.00 41.00 42.00 ✓
hulme 2.00 3.00 7.47 4.84 0.67 0.00 42.00 0.00 42.00 40.00 ✓
rodriguez 0.00 3.00 6.07 3.00 0.00 0.00 39.00 0.00 39.00 39.00
stewart 3.00 4.00 7.20 5.04 0.02 0.00 40.00 0.00 40.00 41.00

1969 31 ickx 2.00 5.00 7.53 5.04 0.00 0.00 28.00 0.00 29.00 29.00
stewart 6.00 7.00 8.60 7.28 0.99 1.00 30.00 30.00 30.00 30.00 ✓
beltoise 0.00 3.00 7.27 3.72 0.01 0.00 29.00 0.00 28.00 28.00

1970 43 jack brabham 1.00 4.00 6.27 3.36 0.00 0.00 37.00 0.00 39.00 38.00
amon 0.00 3.00 7.20 3.80 0.74 0.00 42.00 0.00 42.00 39.00 ✓
hulme 0.00 4.00 6.93 4.20 0.19 0.00 41.00 40.00 41.00 40.00 ✓
rodriguez 1.00 2.00 6.13 3.44 0.00 0.00 0.00 0.00 37.00 37.00
ickx 3.00 5.00 6.53 4.96 0.07 0.66 40.00 42.00 40.00 42.00 ✓
pescarolo 0.00 1.00 6.27 2.60 0.00 0.00 38.00 0.00 38.00 36.00
rindt 5.00 5.00 5.53 5.00 0.00 0.34 39.00 41.00 36.00 41.00 ✓

1971 50 peterson 0.00 5.00 7.07 4.56 0.00 0.00 48.00 0.00 48.00 48.00
stewart 6.00 7.00 8.07 7.12 1.00 1.00 49.00 49.00 49.00 49.00 ✓

1972 42 emerson fittipaldi 5.00 8.00 8.33 7.04 0.96 1.00 41.00 41.00 41.00 41.00 ✓
amon 0.00 1.00 4.87 2.44 0.00 0.00 0.00 0.00 39.00 39.00
hulme 1.00 7.00 7.73 5.48 0.04 0.00 40.00 0.00 40.00 40.00

1973 43 hulme 1.00 3.00 8.60 4.68 0.00 0.00 41.00 0.00 41.00 41.00
stewart 5.00 8.00 11.20 8.84 1.00 1.00 42.00 42.00 42.00 42.00 ✓

1974 62 emerson fittipaldi 3.00 7.00 9.93 7.28 0.11 0.93 60.00 61.00 60.00 61.00 ✓
regazzoni 1.00 7.00 10.20 6.92 0.89 0.07 61.00 60.00 61.00 60.00 ✓

1975 52 lauda 5.00 8.00 11.00 8.52 1.00 1.00 51.00 51.00 51.00 51.00 ✓

1976 54 hunt 6.00 8.00 9.73 8.24 0.03 0.16 51.00 52.00 51.00 52.00 ✓
lauda 5.00 9.00 9.93 8.28 0.15 0.84 52.00 53.00 52.00 53.00 ✓
scheckter 1.00 5.00 10.47 6.84 0.82 0.00 53.00 0.00 53.00 51.00 ✓

1977 61 reutemann 1.00 6.00 10.00 6.32 0.03 0.00 59.00 0.00 59.00 58.00
hunt 3.00 5.00 7.67 5.28 0.00 0.00 0.00 0.00 56.00 56.00
mario andretti 4.00 5.00 8.07 5.92 0.00 0.00 0.00 0.00 57.00 57.00 ✓
lauda 3.00 10.00 11.00 8.80 0.97 1.00 60.00 60.00 60.00 60.00 ✓
scheckter 3.00 9.00 8.80 6.88 0.00 0.00 0.00 0.00 58.00 59.00

1978 46 laffite 0.00 2.00 8.53 4.04 0.04 0.00 44.00 0.00 44.00 43.00
peterson 2.00 7.00 8.53 6.36 0.00 0.00 43.00 0.00 43.00 44.00
mario andretti 6.00 7.00 9.73 7.80 0.96 1.00 45.00 45.00 45.00 45.00 ✓

1979 36 gilles villeneuve 3.00 7.00 10.47 7.04 0.01 0.00 34.00 34.00 34.00 34.00 ✓
jones 4.00 5.00 7.33 5.24 0.00 0.00 0.00 0.00 33.00 33.00 ✓
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Year m Alternative Plur 3-appr Borda F1 VolTop VolTop runoff runoff tourn tourn

WD WC WD WC WD WC

scheckter 3.00 6.00 11.40 8.08 0.99 1.00 35.00 35.00 35.00 35.00 ✓

1980 41 reutemann 1.00 8.00 9.47 6.76 0.08 0.00 39.00 0.00 39.00 39.00
jones 5.00 10.00 10.00 8.36 0.92 1.00 40.00 40.00 40.00 40.00 ✓

1981 39 reutemann 2.00 7.00 9.60 6.48 0.73 0.05 38.00 37.00 38.00 37.00 ✓
piquet 3.00 7.00 9.47 6.80 0.27 0.95 37.00 38.00 37.00 38.00 ✓
prost 3.00 6.00 6.20 5.04 0.00 0.00 0.00 0.00 36.00 36.00 ✓

1982 40 keke rosberg 1.00 6.00 10.00 6.20 1.00 1.00 39.00 39.00 39.00 39.00 ✓
alboreto 1.00 2.00 8.07 4.52 0.00 0.00 0.00 0.00 37.00 35.00
prost 2.00 4.00 7.27 4.64 0.00 0.00 0.00 0.00 36.00 36.00
pironi 2.00 6.00 6.73 5.04 0.00 0.00 0.00 0.00 35.00 37.00 ✓
watson 2.00 5.00 8.40 5.32 0.00 0.00 0.00 38.00 38.00 38.00 ✓

1983 35 keke rosberg 1.00 2.00 7.47 4.08 0.00 0.00 0.00 0.00 32.00 32.00
piquet 3.00 8.00 9.40 7.32 0.08 0.31 33.00 33.00 33.00 33.00 ✓
prost 4.00 7.00 9.80 7.40 0.92 0.69 34.00 34.00 34.00 34.00 ✓

1984 35 angelis 0.00 4.00 9.47 5.80 0.01 0.00 32.00 0.00 32.00 32.00
lauda 5.00 9.00 10.73 8.44 0.67 0.00 34.00 0.00 34.00 33.00 ✓
prost 7.00 9.00 10.60 9.08 0.32 1.00 33.00 34.00 33.00 34.00 ✓

1985 36 prost 5.00 11.00 11.67 9.32 1.00 1.00 35.00 35.00 35.00 35.00 ✓

1986 32 piquet 4.00 10.00 11.27 8.68 0.00 0.00 29.00 0.00 29.00 29.00
mansell 5.00 9.00 11.40 8.92 0.02 0.00 30.00 30.00 30.00 30.00 ✓
prost 4.00 11.00 11.87 9.32 0.98 1.00 31.00 31.00 31.00 31.00 ✓

1987 32 piquet 3.00 11.00 11.60 9.12 0.71 1.00 31.00 31.00 31.00 31.00 ✓
mansell 6.00 7.00 8.80 7.32 0.00 0.00 29.00 30.00 29.00 29.00 ✓
senna 2.00 8.00 11.33 7.68 0.29 0.00 30.00 0.00 30.00 30.00

1988 36 prost 7.00 14.00 13.67 12.04 0.98 1.00 35.00 35.00 35.00 35.00 ✓
senna 8.00 11.00 13.00 11.00 0.02 0.00 34.00 34.00 34.00 34.00 ✓

1989 47 prost 4.00 11.00 12.27 9.80 1.00 1.00 46.00 46.00 46.00 46.00 ✓
senna 6.00 7.00 8.53 6.96 0.00 0.00 45.00 0.00 45.00 45.00 ✓

1990 40 berger 0.00 7.00 9.67 6.28 0.00 0.00 36.00 0.00 36.00 36.00
piquet 2.00 4.00 10.33 6.76 0.16 0.00 38.00 0.00 37.00 37.00
prost 5.00 9.00 10.93 9.00 0.70 0.04 39.00 38.00 39.00 38.00 ✓
senna 6.00 11.00 10.67 9.24 0.14 0.96 37.00 39.00 38.00 39.00 ✓

1991 41 senna 7.00 12.00 13.67 11.48 1.00 1.00 40.00 40.00 40.00 40.00 ✓

1992 37 michael schumacher 1.00 8.00 10.53 7.24 0.00 0.00 35.00 0.00 35.00 35.00
alboreto 0.00 0.00 7.53 3.00 0.00 0.00 0.00 0.00 34.00 34.00
mansell 9.00 12.00 12.00 11.16 1.00 1.00 36.00 36.00 36.00 36.00 ✓

1993 35 prost 7.00 12.00 12.87 10.84 1.00 1.00 34.00 34.00 34.00 34.00 ✓

1994 46 michael schumacher 8.00 10.00 10.33 9.44 0.00 0.01 44.00 44.00 44.00 44.00 ✓
panis 0.00 1.00 6.87 2.20 0.00 0.00 0.00 0.00 43.00 43.00
damon hill 6.00 11.00 11.87 10.08 1.00 0.99 45.00 45.00 45.00 45.00 ✓

1995 35 michael schumacher 9.00 11.00 12.07 10.72 0.98 1.00 34.00 34.00 34.00 34.00 ✓
herbert 2.00 4.00 10.60 6.72 0.02 0.00 33.00 0.00 33.00 33.00

1996 24 villeneuve 4.00 11.00 11.87 9.20 0.37 0.00 22.00 0.00 22.00 22.00
damon hill 8.00 10.00 12.00 10.32 0.63 1.00 23.00 23.00 23.00 23.00 ✓

1997 28 michael schumacher 5.00 8.00 11.47 9.16 0.97 0.96 27.00 27.00 27.00 27.00 ✓
alesi 0.00 5.00 10.07 5.72 0.01 0.00 25.00 0.00 25.00 25.00
villeneuve 7.00 8.00 10.67 8.88 0.02 0.04 26.00 26.00 26.00 26.00 ✓

1998 23 michael schumacher 6.00 11.00 12.13 9.72 0.41 0.00 21.00 0.00 21.00 21.00
irvine 0.00 8.00 10.93 6.92 0.00 0.00 20.00 0.00 20.00 20.00
hakkinen 8.00 11.00 12.20 10.84 0.59 1.00 22.00 22.00 22.00 22.00 ✓

1999 24 irvine 4.00 9.00 12.87 9.48 1.00 1.00 23.00 23.00 23.00 23.00 ✓
hakkinen 5.00 10.00 10.47 8.64 0.00 0.00 22.00 22.00 22.00 22.00 ✓

2000 23 michael schumacher 9.00 12.00 12.73 11.44 0.24 1.00 21.00 22.00 21.00 22.00 ✓
coulthard 3.00 11.00 12.60 9.28 0.13 0.00 20.00 0.00 20.00 20.00
hakkinen 4.00 11.00 12.93 10.32 0.64 0.00 22.00 0.00 22.00 21.00 ✓

2001 26 michael schumacher 9.00 14.00 14.53 13.08 1.00 1.00 25.00 25.00 25.00 25.00 ✓

2002 23 michael schumacher 11.00 17.00 16.53 15.20 1.00 1.00 22.00 22.00 22.00 22.00 ✓

2003 24 michael schumacher 6.00 8.00 12.53 9.44 0.97 1.00 23.00 23.00 23.00 23.00 ✓
montoya 2.00 9.00 10.80 7.84 0.00 0.00 0.00 0.00 21.00 21.00
raikkonen 1.00 10.00 11.53 8.52 0.03 0.00 22.00 22.00 22.00 22.00 ✓

2004 25 barrichello 2.00 14.00 14.60 10.84 0.00 0.00 23.00 0.00 23.00 23.00
michael schumacher 13.00 15.00 16.07 14.68 1.00 1.00 24.00 24.00 24.00 24.00 ✓

2005 27 alonso 7.00 15.00 15.73 12.88 1.00 1.00 26.00 26.00 26.00 26.00 ✓

2006 27 alonso 7.00 14.00 15.13 12.84 1.00 1.00 26.00 26.00 26.00 26.00 ✓

2007 26 raikkonen 6.00 12.00 13.53 10.88 0.04 0.75 23.00 25.00 23.00 25.00 ✓
alonso 4.00 12.00 13.93 10.64 0.72 0.07 25.00 23.00 25.00 23.00 ✓
hamilton 4.00 12.00 13.87 10.60 0.24 0.17 24.00 24.00 24.00 24.00 ✓

2008 22 heidfeld 0.00 4.00 11.40 6.00 0.00 0.00 18.00 0.00 18.00 18.00
massa 6.00 10.00 12.20 9.60 0.00 0.11 19.00 20.00 19.00 20.00 ✓
hamilton 5.00 10.00 13.13 9.72 0.94 0.89 21.00 21.00 21.00 21.00 ✓
kubica 1.00 7.00 12.47 7.44 0.06 0.00 20.00 0.00 20.00 19.00

2009 25 vettel 4.00 8.00 10.80 8.24 0.00 0.00 23.00 0.00 23.00 23.00
button 6.00 9.00 13.27 10.08 1.00 1.00 24.00 24.00 24.00 24.00 ✓

2010 27 F. Alonso 5.00 10.00 13.67 10.00 0.54 0.04 26.00 25.00 26.00 25.00 ✓
M. Webber 4.00 10.00 13.60 9.68 0.38 0.00 25.00 24.00 25.00 24.00 ✓
L. Hamilton 3.00 9.00 13.07 9.60 0.02 0.00 23.00 0.00 22.00 23.00
S. Vettel 5.00 10.00 13.20 10.24 0.05 0.96 24.00 26.00 24.00 26.00 ✓
J. Button 2.00 7.00 13.07 8.56 0.01 0.00 22.00 0.00 23.00 22.00

2011 28 vettel 11.00 17.00 17.33 15.68 1.00 1.00 27.00 27.00 27.00 27.00 ✓

2012 25 raikkonen 1.00 7.00 14.07 8.28 0.03 0.00 22.00 0.00 22.00 22.00
alonso 3.00 13.00 15.27 11.12 0.77 0.60 24.00 24.00 24.00 24.00 ✓
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Year m Alternative Plur 3-appr Borda F1 VolTop VolTop runoff runoff tourn tourn

WD WC WD WC WD WC

vettel 5.00 10.00 15.07 11.24 0.20 0.40 23.00 23.00 23.00 23.00 ✓

2013 23 vettel 13.00 16.00 17.27 15.88 1.00 1.00 22.00 22.00 22.00 22.00 ✓

2014 24 ricciardo 3.00 9.00 14.00 9.76 0.01 0.00 21.00 0.00 21.00 21.00
rosberg 5.00 15.00 15.27 12.68 0.26 0.00 22.00 0.00 22.00 22.00
bottas 0.00 6.00 12.47 6.76 0.00 0.00 20.00 0.00 20.00 20.00
hamilton 11.00 16.00 15.53 14.36 0.73 1.00 23.00 23.00 23.00 23.00 ✓

2015 22 hamilton 10.00 17.00 17.13 15.24 1.00 1.00 21.00 21.00 21.00 21.00 ✓

2016 24 ricciardo 1.00 8.00 16.27 10.24 0.00 0.00 22.00 0.00 21.00 21.00
rosberg 9.00 16.00 18.33 15.40 1.00 0.99 23.00 23.00 23.00 23.00 ✓
hamilton 10.00 17.00 17.60 15.20 0.00 0.01 21.00 22.00 22.00 22.00 ✓

2017 25 bottas 3.00 13.00 16.53 12.20 0.00 0.00 23.00 0.00 23.00 23.00
hamilton 9.00 13.00 17.73 14.52 1.00 1.00 24.00 24.00 24.00 24.00 ✓

2018 20 hamilton 11.00 17.00 18.73 16.32 1.00 1.00 19.00 19.00 19.00 19.00 ✓

2019 20 hamilton 11.00 17.00 19.07 16.28 1.00 1.00 19.00 19.00 19.00 19.00 ✓

2020 23 verstappen 2.00 11.00 10.87 8.44 0.00 0.00 0.00 0.00 20.00 20.00
bottas 2.00 10.00 12.33 8.60 0.00 0.00 0.00 0.00 21.00 21.00
hamilton 11.00 13.00 14.93 13.44 1.00 1.00 22.00 22.00 22.00 22.00 ✓

Table 3: The scores obtained by undominated alternatives in F1 championships (years
1961-2008) with different aggregation methods (Plur=plurality; 3-appr=3-approval voting;
VolTop=VolumetricTop; runoff=VolumetricRunoff; tourn=VolumetricTournament.

7 Conclusions

Scoring rules are social choice functions used to rank a set of alternatives. Their main issue is that
the choice of the weights associated with the different positions is critical, as different winners can
emerge depending on the chosen weights. Indeed the weights used in many contexts (for instance,
in sports competitions) can often be seen as arbitrary. In this article, we considered preference
aggregation in the context of social choice when the weights are not defined apriori, therefore
avoiding the cognitive burden of specifying a scoring vector precisely. We provided a family of
methods that evaluate alternatives with respect to all feasible weights belonging to a predefined
wide class (monotone weights, convex weights). The proposed methods are analyzed from the point
of view of social choice theory. We illustrate the use of our rules with several examples and provide
a detailed presentation of its use in a real dataset.

Our approach allows to aggregate different opinions (expressed as rankings) and determine
cardinal scores to differentiate the alternatives. The key idea of our work is to consider, for each
alternative, the set of weights (the optimal region) that give it the highest score among the al-
ternatives. The first method that we proposed, called VolumetricTop, sorts the alternatives by
the volume of their optimal region. We believe that the VolumetricTop rule naturally catches the
idea that, roughly speaking, an alternative that scores well with respect to many possible weights
should be preferable to one that scores well for only few combinations of weights. Differently from
previous works, the proposed rule is neither optimistic nor pessimistic, and it is also relatively
easy to explain to a decision maker. Moreover, VolumetricTop has a probabilistic interpretation:
it picks the alternative that has the highest probability of winning according to the scoring rule
with uncertain w, assuming a uniform distribution on the weights in W .

We then study two modifications of VolumetricTop inspired by classic social choice methods: the
first variant is a runoff version that iteratively eliminates the alternative with the smallest volume.
Volumetric-runoff returns more plausible results than VolumetricTop in some circumstances since
in VolumetricTop less performing alternative may have some undue influence on how the most
performing one are ranked; however we show this alternative method to be non-monotonic, so this
method is not entirely satisfying. A second variant, called Volumetric-tournament, is based on a
tournament between the alternatives, where all possible pairs of alternatives are compared with
respect to the volume of the region of the weights that make one better than the other. Volumetric-
tournament satisfies the good properties of the original VolumetricTop method, while at the same
time returns more reasonable results as Volumetric-runoff, and can also provide a full ranking of
the alternatives as output (VolumetricTop only ranks the undominated ones). These observations
make Volumetric-runoff the most promising approach.
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In future works we are interested in evaluating the behavior of the proposed rules in case of
manipulation, in studying additional theoretical properties of VolumetricTop and its variants, and
in considering the effect of the presence of missing votes.
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A Sampling Techniques for Volume Approximation

Algorithm 2: MCMC computation of Z values
Data: The set of alternatives A and their rank distribution v and x ∈ A, number b of burn-in samples
Result: Z values
Let Zx = 0 ∀x ∈ A;
Let w = (w1, . . . , wm) ∈W ; // initialized to a feasible weight

for n = 2, . . . , N + b do
for i = 1, . . . ,m− 1 do

Compute w⊥
i = argminw∈W wi ;

Compute w⊤
i = argmaxw∈W wi ;

Set wi to random value sampled uniformly in the interval [w⊥
i , w⊤

i ]

end
if n ≤ b then

continue ; // burn-in samples

end
x∗ = argmaxx∈A s(x;w);
Zx∗ = Zx∗ + 1 ; // increment Z value for winner wrt to vector w

end
Let Zx = Zx/N ∀x ∈ A ; // normalization of Z values

return Z;

Our method requires to compute the volume of the optimal regions, that are multi-dimensional convex polytopes.
This is not a trivial task. To do this we adopt a method based on a Markov chain using Monte Carlo. The approach,
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detailed in Algorithm ??, proceeds as follows. Starting from an initial vector w, we repeatedly produce new samples
starting by fixing all positions of the weight vector w except one, and sample uniformly at random the new value
for such position in a way that the new vector satisfy the constraints of the feasible region. As usual in Monte Carlo
methods, several samples at the beginning of the process are discarded (burn-in period).

As we show below, w⊥
i and w⊤

i can be readily computed when considering monotone or convex weights. Indeed,
let wi be the value of w in the i-th dimension.

– For monotone weights with threshold values, at each step, wi must be sampled uniformly between wi+1 + ti+1

and wi−1 − ti−1.

w⊥
i = wi+1 + ti+1 (14)

w⊤
i = wi−1 − ti−1 (15)

– For convex sequences, we need to sample the new value so that the resulting vector is still non-increasing and
convex. The constraints (from Equation 2) implicating position i are the following:

wi−2 − wi−1 ≥ wi−1 − wi

wi−1 − wi ≥ wi − wi+1

wi − wi+1 ≥ wi+1 − wi+2

From the first and the third constraint we derive the lower bound for wi to be max[2wi−1−wi−2, 2wi+1−w+2],

while the second constraint gives the upper bound
wi−1−wi+1

2
, from which we sample uniformly. Therefore, we

derive:

w⊥
i = max[2wi−1−wi−2, 2wi+1−w+2] (16)

w⊤
i =

wi−1 − wi+1

2
(17)

This approach to computing the volume seems effective in practice.


