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Turning block-sequential automata networks into
smaller parallel networks with isomorphic limit

dynamics

Pacôme Perrotin1,2 and Sylvain Sené1,2

1 Université publique, Marseille, France
2 Aix-Marseille Univ., CNRS, LIS, Marseille, France

Abstract. We state an algorithm that, given an automata network and
a block-sequential update schedule, produces an automata network of
the same size or smaller with the same limit dynamics under the par-
allel update schedule. Then, we focus on the family of automata cycles
which share a unique path of automata, called tangential cycles, and
show that a restriction of our algorithm allows to reduce any instance of
these networks under a block-sequential update schedule into a smaller
parallel network of the family and to characterize the number of reduc-
tions operated while conserving their limit dynamics. We also show that
any tangential cycles reduced by our main algorithm are transformed
into a network whose size is that of the largest cycle of the initial net-
work. We end by showing that the restricted algorithm allows the direct
characterization of block-sequential double cycles as parallel ones.

1 Introduction

Automata networks are classically used to model gene regulatory networks [9,16]
[10,2,4]. In these applications the dynamics of automata networks help to under-
stand how the biological systems might evolve. As such, there is motivation in
improving our computation and characterization of automata networks dynam-
ics. This problem is a difficult one to approach considering the vast diversity of
network structures, local functions and update schedules that are studied. Rather
than considering the problem in general, we look for families or properties which
allow for simpler dynamics that we might be able to characterize [7,8].

We are interested in studying the limit dynamics of automata networks, that
is, the limit cycles and fixed points that they adopt over time, notably since these
asymptotic behaviors of the underlying dynamical systems may correspond to
real biological phenomenologies such as the genetic expression patterns of cellular
types, tissues, or paces. More precisely, we are less interested in the possible
configurations themselves than in the information that is being transfered and
computed in networks over time. As such, given families of networks, one of our
objectives is to count the fixed points and limit cycles they possess.

In this paper, we provide an algorithm that, given an automata network
and a block-sequential update schedule, produces an automata network of the
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same size or smaller with isomorphic limit dynamics under the parallel update
schedule. After definitions in Section 2, this algorithm is detailed in Section 3. In
Section 4, the feasibility of the algorithm on Tangential Cycles (TC) is studied,
a TC being a set of cycles that intersect on a shared path of automata. The
demonstrations of all results are available in the appendix.

Why focusing on TCs? Cycles are fundamental retroactive patterns that are
necessary to observe complex dynamics [14]. They are present in many biological
regulation networks [17] and are perfectly understood in isolation [6,12]. In the-
ory, cycles generate an exponential amount of limit cycles, which is incoherent
with the observed behavior of biological systems [9]. The only way to reduce the
amount of limit cycles is to constrain the degrees of freedom induced by isolated
cycles, which can only be done by intersecting cycles from the purely struc-
tural standpoint. This leads us naturally to TCs, as a simple intersection case.
Double cycles (intersections of two isolated cycles) in particular are the largest
family of intersecting cycles for which a complete characterization exists [12,5];
the present paper generalizes this result to block-sequential update schedules.
Moreover, from the biological standpoint, double cycles are also observed in bi-
ological regulation networks, in which they seem to serve as inhibitors of their
limit behavior [3].

2 Definitions

Let Σ be a finite alphabet. We denote by Σn the set of all words of size n over
the alphabet Σ, such that for all 1 ≤ i ≤ n and x ∈ Σn, xi is the ith letter
of that word. An automata network (AN) is a function F : Σn → Σn, where n
is the size of the network. A configuration of F is a word over Σn. The global
function F can be divided into functions that are local to each automaton:
∀k, fk : Σn → Σ, and the global function can be redefined as the parallel
application of every local function: ∀1 ≤ i ≤ n, F (x)i = fi(x). For convenience,
the set of automata {1, . . . , n} is denoted by S, and will sometimes be considered
as a set of letters rather than numbers. For questions of complexity, we consider
that local functions are always encoded as circuits.

For (i, j) any pair of automata, i is said to influence j if and only if there
exists a configuration x ∈ Σn in which there exists a state change of i that
changes the state of fj(x). More formally, i influences j if and only if there
exists x, x′ ∈ Σn such that ∀k, xk = x′

k ⇔ k ̸= i and fj(x) ̸= fj(x
′).

It is common to represent an automata network F as the digraph with its
automata as nodes so that (i, j) is an edge if and only if i influences j. This
digraph is called the interaction digraph and is denoted by GI(F ) = (S,E), with
E the set of edges. The automata network described in Example 1 is illustrated
as an interaction digraph in Figure 1.
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Fig. 1. Interaction digraph of the AN detailed in Example 1.

Example 1. Let F : B3 → B3 be an AN with local functions

fa(x) = ¬xb ∨ xc

fb(x) = xa

fc(x) = ¬xb

An update schedule is an infinite sequence of non-empty subsets of S, called
blocks. Such a sequence describes in which order the local functions are to be
applied to update the network, and there are uncountably infinitely many of
them. A periodic update schedule is an infinite periodic sequence of non-empty
subsets of S, which we directly define by its period. The application of an update
schedule on a configuration of a network is the parallel application of the local
functions of the subsets in the sequence, each subset being applied one after the
other.

For example, the sequence π = (S) is the parallel update schedule. It is
periodic, and its application on a configuration is undistinguishable from the
application of F . The sequence ({1}, . . . , {n}) is also a periodic update schedule,
and implies the application of every local function in order, one at a time.

Formally, the application of a periodic update schedule ∆ to a configuration
x ∈ Σn is denoted by the function F∆, and is defined as the composition of the
applications of the local functions in the order specified by ∆. For any subset
X ⊆ S, updating X into x is denoted by FX(x) and is defined as

∀i ∈ S, FX(x)i =

{
fi(x) if i ∈ X
xi otherwise

.

Example 2 provides an example of the execution of the network detailed in
Example 1 under some non-trivial update schedule.

Example 2. Let ∆ = ({b, c}, {a}, {a, b}) be a periodic update schedule, and let
x = 000 be an initial configuration. For F the AN detailed in Example 1, we
have that:

F∆(000) = (F{a,b} ◦ F{a} ◦ F{b,c})(000)

= (F{a,b} ◦ F{a})(001)

= F{a,b}(101) = 111.

A block-sequential update schedule is a periodic update schedule where all the
subsets in a period form a partition of S; that is, every automaton is updated
exactly once in the sequence. If every subset in the sequence is of cardinality 1,
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Fig. 2. Update digraph of the AN detailed in Example 1, for ∆ = ({a}, {b}, {c}).
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Fig. 3. Two dynamics of the AN F detailed in Example 1. On the left, the dynamics
of F under the parallel update schedule. On the right, the dynamics of F under the
update schedule ∆ = ({a}, {b}, {c}). The limit dynamics are depicted with bold arrows.

the update schedule is said to be sequential. For any AN with automata S, both
the parallel update schedule and the |S|! different sequential update schedules are
block-sequential. Block-sequential update schedules are fair update schedules, in
the sense that applying it updates each automaton the same amount of times.

The application of a block-sequential update schedule on an AN can be oth-
erwise represented as an update digraph, introduced in [15,1]. For F an AN and
∆ a block-sequential update schedule, the update digraph of F∆, denoted by
GU (F∆), is an annotation of the network’s interaction digraph, where any edge
(u, v) is annotated with < if u is updated strictly before v in ∆, and with ⩾
otherwise. An update digraph of the AN detailed in Example 1 is illustrated in
Figure 2.

Given an automata network F and a periodic update schedule ∆, we define
the dynamics of F∆ as the digraph with all configurations x ∈ Σn as nodes, so
that (x, y) is an edge of the dynamics if and only if F∆(x) = y. We call limit
cycle of length k any sequence of unique configurations (x1, x2, . . . , xk) such that
F∆(xi) = xi+1 for all 1 ≤ i < k, and F∆(xk) = x1. A limit cycle of length one
is called a fixed point. The limit dynamics of F∆ is the subgraph which contains
only the limit cycles and the fixed points of the dynamics. The limit dynamics
of the network defined in Example 1 are emphasized in Figure 3.

Since the dynamics of a network is a graph that is exponential in size relative
to the number of its automaton, naively computing the limit dynamics of a family
of network is a computationally expensive process.



Turning block-sequential ANs into smaller parallel networks 5

3 The algorithm

In this section, we look at an algorithm that can turn any automata network F
with a block-sequential update schedule ∆ into another automata network F ′,
such that the limit dynamics of F∆ stays isomorphic to the limit dynamics of
F ′ under the parallel update schedule π. Furthermore, the size of F ′ will always
be the size of F , or less.

This algorithm is built from two parts: first, we parallelize the network thanks
to a known algorithm in the folklore of automata networks. Second, we remove
automata from the networks based on redundancies created in the first step.

First, let us state the usual algorithm that, given an automata network F
and a block-sequential update schedule ∆, provides a new automata network F ′

defined on the same set of automata, such that F∆ and F ′
π have the same exact

dynamics.

Algorithm 1 Parallelization algorithm of F∆

Input
F local functions of a network over S, encoded as circuits
∆ block-sequential update schedule over S

Output
F local functions of a parallel network over S, encoded as circuits

for (u, v) such that u precedes v in ∆ do
apply the substitution xu 7→ θu in fv ▷ θ is a temporary symbol

let X ← S
while |X| > 0 do

let s ∈ X such that fs contains no θ symbol
X ← X \ {s}
for s′ ∈ X do

if fs′ contains θs then
apply the substitution θs 7→ fs in fs′

return F

Algorithm 1 proceeds with two waves of subsitutions. First, for every <-
edge (u,<, v), the influencing automaton u is replaced in the local function of
v by a token symbol θu. All of these token symbols are then replaced by the
corresponding local functions (in this case, fu) in the correct order: that is, no
function is ever used in a substitution if it contains a token character. This way,
even if the network contains a complex tree of <-edges, the substitutions will
be applied in the correct order. It holds that this algorithm always returns, and
runs in polynomial time.

Property 1. Algorithm 1 always returns, and does so in polynomial time.

Sketch of proof. There are no <-edge loop in the update digraph by definition,
and so the algorithm always ends. Encoding local functions as circuits lets us do
all needed substitutions in a straightforward way without increasing the size of
the resulting circuits beyond the size of the input.
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Remark 1. This algorithm is not polynomial if the local functions are encoded
as formulæ, which is a detail often overlooked in the literature where this paral-
lelization algorithm is always assumed to be polynomial.

Theorem 1. For any F∆ Algorithm 1 returns a network F ′ such that the dy-
namics of F∆ is equal to that of F ′

π.

Sketch of proof. Substitution of the form xu 7→ fu(x) in the local function fv
is equivalent to the presence of a <-edge (u,<, v) in the update digraph of the
network; in both cases, v is updated using fu(x) instead of xu. Altogether this
means that both F∆ and F ′

π are the same function.

Algorithm 2 Parallelization algorithm of F∆, with a possible reduction in size

Input
F local functions of a network over S, encoded as circuits
∆ update schedule over S

Output
F ′ local functions of a parallel network over a subset of S,

encoded as circuits
let F ′ ← apply Algorithm 1 to F∆

let GI(F
′)← the interaction digraph of F ′

for (u, v) ∈ S2 do
if ∀x ∈ Σn, fu(x) = g(fv(x)) then ▷ for some g : Σ → Σ

for (u,w) ∈ E(GI(F
′)) do

apply the substitution xu 7→ g(xv) in fw

while ∃u ∈ S such that u has no accessible neighbor in G′
I do

S ← S \ {u} ▷ u is removed from the network

return F ′

Algorithm 2 is our contribution to this process, and removes automata that
are not necessary for the limit dynamics of the network. It proceeds in two steps:
first, the algorithm identifies pairs of automata with equivalent local functions,
up to some function. In other terms, if one automaton u can be computed as a
function g of the local function of another automaton v, then u is not necessary
and all references to xu in the network can be replaced by g(xv) for an identical
result. Of course, this only works under the hypothesis that u and v are updated
synchronously, which is the case after the application of Algorithm 1. Second,
the algorithm iteratively removes any automaton that has no influence in the
network, that is, that has no accessible neighbor in the interaction graph of the
network. These automata are not part of cycles and do not lead to cycles, and
as such have no impact on the attractors.

Algorithm 2 is non-deterministic, and when the local functions of any pair
of automata (u, v) are shown to be equivalent up to some reversible function
g : Σ → Σ, either automata could replace the influence of the other without
preference. As such, more than one result network is possible, but all are equiv-
alent in their limit dynamics, as will be shown later.
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While it is clear that Algorithm 2 always terminates, its complexity is out
of the deterministic polynomial range, as applying it implies solving the coNP-
complete decision problem of testing if two Boolean formulæ are equal for all
possible pairs of automata and for every possible function g : Σ → Σ. As such,
a polynomial implementation of this algorithm would (at least) imply P = NP.
This drastic conclusion is softened when looking at restricted classes of networks
where redundancies can be easily pointed out, which is the case for the rest of
the paper.

Theorem 2. For any F∆, Algorithm 2 returns a network F ′ such that the limit
dynamics of F∆ and F ′

π are isomorphic.

Sketch of proof. The local transformations operated by the algorithm preserve
the limit dynamics of the network, from which the result naturally follows.

4 Reductions in size of tangential cycles

In this section, we characterize the reduction in size that our algorithm provides
on a specific family of networks. We call tangential cycles (TC) any AN composed
of any number of cycles {C1, C2, . . . , Ck} such that a unique path of automata,
called the tangent, is shared by all of the cycles. The first automaton of the
tangent is the only automaton with more than one in-neighbor, and is called the
central automaton. A TC is represented as part of Figure 4, which contains three
cycles and a tangent of length 0 (only one node is shared between the cycles).

4.1 Reducing block-sequential TCs

The reduction in size provided by Algorithm 2 can be quite large on TCs, as
even TCs updated in parallel can be reduced in size by merging the different
cycles as much as possible. As such, the reduction power of this algorithm is
greater than just removing the redundancies inherent to the block-sequential to
parallel update translation. Indeed, Figure 4 provides an example of a parallel
TC, the size of which is greatly reduced by the application of Algorithm 2. But,
by this process, the final result of Algorithm 2 is no longer a TC.

As explained above, TCs are studied as the next simplest cases of complex
ANs that make biological sense, after automata cycles. Both isolated cycles and
double cycles are examples of TCs. To show that the study of TCs under block-
sequential update schedules can be directly reduced to the study of TCs under
the parallel update schedule, we provide an algorithm that transforms any TC
under a block-sequential update schedule into a TC under the parallel update
schedule, such that their limit dynamics are isomorphic, and the local functions of
their central automaton equivalent. This is done by simply stopping the process
of Algorithm 2 earlier to preserve the TC shape of the network.

The only difference between Algorithms 2 and 3 is that the latter restricts
the reductions it operates. If two local functions are found to be equivalent up to
some function g, Algorithm 3 removes a node if and only if these local functions
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a

b

c

d

e

h

< ⩾

⩾⩾

⩾

⩾

<

⩾

fa(x) = xa ∨ xd ∨ ¬xh

fb(x) = ¬xa

fc(x) = xb

fd(x) = xc

fe(x) = xa

fh(x) = xe

Initial network,
∆ = ({h}, {a, c, d, e}, {b})

N / A

fa(x) = xa ∨ xd ∨ ¬θh
fb(x) = ¬θa

. . .

Algorithm 1, first loop (c,
d, e and h are
unchanged)

a

b

c

d

e

h

f ′
a(x) = xa ∨ xd ∨ ¬xe

f ′
b(x) = ¬(xa ∨ xd ∨ ¬xe)

f ′
c(x) = xb

f ′
d(x) = xc

f ′
e(x) = xa

f ′
h(x) = xe

Algorithm 1, second loop

a

d

c

e f ′
a(x) = xa ∨ xd ∨ ¬xe

f ′
c(x) = ¬xa

f ′
d(x) = xc

f ′
e(x) = xa

Algorithm 2 after the
deletion of h and the

merge of b into a. This is
where Algorithm 3 ends

a

d

c f ′
a(x) = xa ∨ xd ∨ ¬xc

f ′
c(x) = xa

f ′
d(x) = ¬xc

End of Algorithm 2, after
the merge of e into c

Fig. 4. Application of Algorithm 1, 2 and 3 on an example network. Different steps
of the algorithm are represented and separated using horizontal lines. At each step,
the interaction graph or update graph and the local functions are the result of the
operations indicated on the right. As the initial network is a TC, the fourth step
represents the result returned by Algorithm 3, which is a TC of smaller size. The fifth
step represents the result returned by Algorithm 2, which is not a TC. Dashed lines
in the interaction digraph connect automata the local function of which are equivalent
up to a negation. Only the first graph is represented as an update digraph, as all the
other networks are updated in parallel.
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Algorithm 3 Parallelization algorithm of a TC F under the block-sequential
update schedule ∆, with a possible reduction in size

Input
F local functions of a network over S, encoded as circuits
∆ update schedule over S

Output
F ′ local functions of a parallel network over a subset of S,

encoded as circuits
let F ′ ← apply Algorithm 1 to F∆

let GI(F
′)← the interaction digraph of F ′

for (u, v) ∈ S2, such that either u or v has more than one in-neighbor in GI(F
′) do

if ∀x ∈ Σn, fu(x) = g(fv(x)) then ▷ for some g : Σ → Σ
for (u,w) ∈ E(GI(F

′)) do
apply the substitution xu 7→ g(xv) in fw

for u ∈ S do
if u has no accessible neighbors in GI(F

′) then
S ← S \ {u} ▷ u is removed from the network

return F ′

are duplicates of the previous local function of the central automaton of the
network. Removing duplications of any function that is part of a cycle would
merge two cycles and the network would no longer be tangential cycles, in a way
that is harder to count the reductions for. Since Algorithm 3 is a variation of
Algorithm 2 that only does less reductions, Theorem 2 still applies in its case.
An application of Algorithms 2 and 3 is illustrated in Figure 4 and the difference
between the algorithms is highlighted.

Theorem 3. Let F be a TC and ∆ a block-sequential update schedule. The
amount of reductions in size that Algorithm 3 operates on F∆ is the number of
<-edges in the update digraph of F∆, and the result is a TC.

Sketch of proof. We show that in a TC, all the local transformations operated
by the algorithm result in the removal of exactly one automaton, and that those
transformations locally preserve the structure of the TC.

If Algorithm 2 cannot be polynomial in the worst case under the hypothesis
that P ̸= NP, Algorithm 3 can be simplified to the following rule: taking a
TC with a block-sequential update schedule, we obtain the equivalent parallel
TC by reducing each cycle by the number of <-edges that its update digraph
contains. This process is quadratic, since we only need to check the possible
<-edges defined by the partial order defined by ∆, which are no more than n2.

4.2 Reducing parallel Boolean TCs further

Applying Algorithm 2 to its full extent to a Boolean TC (That is, a TC defined
over the Boolean alphabet) may result in a larger reduction in size. As any
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automaton that is not the central one has a unary function as its local function,
any pair of non-central local functions is equivalent up to some g : Σ → Σ if they
are influenced by the same automaton. For example, if the central automaton
influences three other automata that represent the start of three chains, these
three automata can be merged into one. Continuing this zipping process yields
a final network only as large as the longest cycle of the initial TC.

This process is not straightforward for non-Boolean TCs, as the local func-
tions along the chains can be non-reversible using modular arithmetics, for ex-
ample. Optimizing these networks is still possible, but requires a more complex
set of substitutions to do so. It has been proven in general using modules and
output functions [13]. The following theorem corresponds to the Boolean case,
proven with more classical means. An example of its application is illustrated in
the two last steps of Figure 4.

Theorem 4. Let F be a Boolean TC. Applying Algorithm 2 to Fπ generates a
network F ′ whose size is that of the largest cycle in F .

Sketch of proof. All the cycles composing F are merged together in a ‘zipping’
transformation.

5 An application: disjunctive double cycles

As an application of this algorithm and as an example to the algorithm’s capac-
ities to reduce the size of the provided network, we turn to the family of dis-
junctive double cycles. Notice that the result still holds for conjunctive double
cycles since conjuctive and disjunctive cycles have isomorphic dynamics [12,11].

In disjunctive automata networks, an edge (u, v) is signed positively if the
xu appears as a positive variable in fv. An edge (u, v) is signed negatively if xu

appears as a negative variable in fv. A cycle is said to be positive if it contains
an even number of negative edges, and negative otherwise.

A disjunctive double cycle is an automata network with an interaction di-
graph that is composed of two automata cycles that intersect in one automaton.
The local function of this central automaton is a disjunctive clause. This family
of networks is very simple to define, and is a simple and intuitive next step after
the family of Boolean automata cycles, which are composed of a single cycle.

Both families have been characterized under the parallel update schedule [12,7];
that is to say, given basic parameters concerning the size of the cycles, their sign,
and any integer k, an explicit formula (defined as a polynomially computable
function) has been given among other to count the number of limit cycles of
size k of such networks under the parallel update schedule. In this section, we
extend this characterization to the block-sequential equivalents by showing how
applying our algorithm reduces the network to a smaller instance of the same
family of networks.

Furthermore, as Boolean automata cycles and disjunctive double cycles are
TCs, our method can be simplified to the simple following rules: given a TC F , a
block-sequential update schedule ∆, count the number of <-edges in the update
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digraph GU (F∆); for every cycle, substract to its size the number of such edges
it contains, while keeping its sign; the final network, under the parallel update
schedule, and the initial network under ∆ have isomorphic limit dynamics. This
is a simple application of Theorem 3, and of the rule of thumb deduced from
Algorithm 3.

We denote by DC(s, s′, a, b) the disjunctive double cycles with cycle sizes a, b
and signs s, s′.

Theorem 5. Let D = DC(s, s′, a, b) be disjunctive double cycles, ∆ a block-
sequential update schedule. For A (B respectively) the number of <-edges on
the cycle of size a (b respectively) in GU (F∆), the limit dynamics of D∆ is
isomorphic to that of D′

π, where D′ = DC(s, s′, a−A, b−B).

Proof. This is a straightforward application of Theorem 3. ⊓⊔

6 Conclusion

In this paper we provide a novel algorithm which allows the reduction in size of
automata networks, in particular by passing the network from a block-sequential
to a parallel update schedule, while keeping isomorphic limit dynamics. While
this algorithm is too computationally expensive for the general case, we study the
specific family of intersection of automata cycles, on which this algorithm is eas-
ily applied. This study allows the discovery that all block-sequential tangential
cycles have isomorphic limit dynamics to parallel tangential cycles. Finally, we
apply this fact to Boolean automata double cycles to characterize their behavior
under block-sequential update schedules.

It seems now clear to us that the difference between the parallel update sched-
ule and block-sequential update schedules is that the latter changes the timing
of the information along sections of the network. In particular, structures such
as tangential cycles can be directly translated into an equivalent parallel net-
work with shorter cycles. We are interested in seeing what effects this translation
could have in a more general set of families of networks, and if there exists other
families in which block-sequential update schedules lead to equivalent parallel
networks which are still part of the family.

As a perspective, we would like to characterize more redundancies that can
be removed from networks to help with the computation of their dynamics. For
example, we are currently interested in more complex compositions of automata
cycles, and have already found equivalences that show that many networks are
equivalent in their limit dynamics where complex parts of automata networks
can be moved alongside cycles without affecting the network’s limit dynamics.

Isolated paths are also a strong candidate for size reduction. Isolated paths
are paths that lead from cycles to other cycles but can only be crossed once.
Our current algorithms conserve such paths, despite it being possible to reduce
them completely without changing the limit dynamics of the network in many
cases, for example when an isolated path is the only way to go from one part
to another. We have to be careful when multiple isolated paths exit from and
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join onto the same parts, as the synchronicity of the information in the entire
network must be preserved.
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de Lyon, 2012.
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A Proofs

Property 1. Algorithm 1 always returns, and does so in polynomial time.

Proof. Let us denote by <-graph the subset of the graph GU (F∆) where only the <-
edges have been preserved. The<-graph of F∆ is always a tree (or multiple disconnected
trees): if this wasn’t the case, there would be a cycle of <-edges in GU (F∆), which would
mean a cycle of automata that are all updated strictly before their out-neighbor, which
is impossible.

Algorithm 1 will place a θ symbol for every edge in the <-graph. In the second
loop, the selected s is always a leaf of one of the trees contained in the <-graph. The
applied substitution removes that leaf from the <-graph. By the structure of a tree, all
the <-edges will be removed and the algorithm terminates.

To see that this algorithm can be performed in polynomial time, consider that all
of the local functions are encoded as circuits. As such, it is enough to prepare a copy of
each local function into one large circuit, on which every substitution will be performed.
Any substitution xu 7→ θu is performed by renaming the corresponding input gate. Any
substitution θs 7→ fs(x) is performed by replacing the input gate which corresponds to
θs by a connection to the output gate of the circuit that computes the local function
fs. These substitutions are performed for every <-edge in the update digraph of F∆,
which can be done by doing one substitution for every pair in the partial order provided
by ∆, which is never more than n2. The resulting circuit is then duplicated for every
automaton in the output network, which leads to a total size of no more than k2, for
k the size of the input. ⊓⊔

Theorem 1. For any F∆ Algorithm 1 returns a network F ′ such that the dynamics
of F∆ is equal to that of F ′

π.

Proof. Let us consider some configuration x ∈ Σn, and let us compute its image x′

in both systems. Let us consider the initial block X0 in ∆. For any automaton in X0,
its local function is untouched in F ′, and thus F∆(x)|X0 = F ′(x)|X0 . Suppose that
F∆(x)|X0∪...∪Xk = F ′(x)|X0∪...∪Xk for some k, let us prove that is true when including
the next block Xk+1.

Let v ∈ Xk+1. By the nature of updates in ∆, fv will be updated using the values
in F∆(x) for any xu such that u ∈ X0∪ . . .∪Xk, and in x otherwise. In F ′, in the local
function f ′

v and for any u ∈ X0∪ . . .∪Xk that influences v, a substitution has replaced
xu by f ′

u(x), which implies that the value of v will be updated using a value of u in
F ′(x). Pulling this together, we obtain that fv(x) = f ′

v(x) and F∆(x)|X0∪...∪Xk+1 =
F ′(x)|X0∪...∪Xk+1 , and the recurrence yields F∆(x) = F ′(x) for any x. ⊓⊔

Theorem 2. For any F∆, Algorithm 2 returns a network F ′ such that the limit dy-
namics of F∆ and F ′

π are isomorphic.

Proof. By Theorem 1, the network F ′ returned by the application of Algorithm 1 to
F∆ has identical dynamics to F∆.

Algorithm 2 operates two kinds of modifications.

The first operation is replacing the influence of any automaton u by another au-
tomaton v if they are found to have equivalent local function up to some g : Σ → Σ,
that is, fu = g ◦ fv. For any configuration x, the value of fu(x) and g(fv(x)) are al-
ways equal. Thus, substituting the variable xu by g(xv) in the local functions of every
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out-neighbor of u will lead to an identical limit behavior. After this substitution, the
automaton u does not have any influence over the network. Morever, all its previous
out-neighbors in GI(F

′) are now the out-neighbors of v.

The second operation is iteratively removing automata that do not influence any
automaton. Let u be such an deleted automaton. Consider a limit cycle (x1, x2, . . . ,
xk) in G. By definition of a limit cycle, G(xi) = xi+1 for any i, G(xk) = x1, and
xi = xj ⇒ i = j. Consider the component xi

u for some i. Since u does not influence
any automaton, xi+1 is a function of xi|S\{u}. As the entire sequence is aperiodic,
the sequence of the subconfigurations xi|S\{u} is also aperiodic, and the attractor is
preserved in F ′. ⊓⊔

Theorem 3. Let F be a TC and ∆ a block-sequential update schedule. The amount
of reductions in size that Algorithm 3 operates on F∆ is the number of <-edges in the
update digraph of F∆, and the result is a TC.

Proof. Algorithm 1 operates a substitution for every <-edge in the update digraph of
F∆. In this proof, we will show that each of the possible transformations implies the
removal of exactly one node from the network.

For any such edge (u,<, v), there are two cases. Either u is the central automaton,
or not. In any case, u ̸= v since the contrary would imply that an automaton is updated
strictly before itself.

If we suppose that u is the central automaton, this means that fv is a local function
that only depends on xu. It can thus be written fv(x) = g(xu) for some g : Σ → Σ.
After the application of Algorithm 1, we thus obtain fv(x) = g(fu(x)), which implies
the removal of either u or v (but at this point, not both) by Algorithm 3.

If we suppose that u is not the central automaton, this means that fv is an arbitrary
formula which contains xu, and fu is a function of the form fu(x) = g(xw) for some g
and some w ∈ S. Note that w ̸= u by the hypothesis that F is a TC, either w is the
previous automaton in the path, or it is the central automaton v. As such, applying
Algorithm 1 substitutes any mention of xu in fv by g(xw). Previously, u only had
one accessible neighbor, as it was part of a path connecting to the central automaton.
This leaves xu without any accessible neighbors in the interaction digraph of F , which
means that it is removed by Algorithm 3. If the removed edge is part of a cycle, this
means that this cycle will be reduced in size. If the edge is part of the tangent, this
means that the tangent will be reduced in size.

We thus obtain that the number of reductions is at least the number of <-edges
in the update digraph of the network. Suppose now that some extra automaton u
is removed on top of any <-edge related reduction. First observe that if u has no
accessible neighbor, it must have had none from before the application of Algorithm 1,
since in none of the two cases are external automaton disconnected from each other.
Now suppose that fu is equivalent to some fv up to some g. Neither u nor v can be the
central automaton, as any duplication of that function is handled in the first case. This
proves that the number of reductions is exactly the number of <-edges in the update
digraph of (F,∆).

Let us now show that the result of Algorithm 3 is a TC. If the initial network
had a central automata, there still exists a unique central automata at the end of the
algorithm, even if the original central automata was removed in a chosen reduction.
Paths that exit the central automata in the previous network still exit the central
automata in the result, in the same number, and still share some tangent. The paths
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can be smaller in size, as well as the tangent, but they still end in the central automata.
⊓⊔

Theorem 4. Let F be a Boolean TC. Applying Algorithm 2 to Fπ generates a network
F ′ whose size is that of the largest cycle in F .

Proof. Starting from the initial TC F , all of the automata directly influenced by the
automata at the end of the tangent u (but that are not u) have local functions fv(x) =
g(xu), fw(x) = h(xu), . . . for g, h, . . . : Σ = {0, 1} → Σ. All these functions g, h, . . .
are not constant functions, since the automata that they represent are influenced by
an automaton by hypothesis. Thus, they can only be defined as the identity or the
negation of xu. As a consequence, all but one of these automata will be removed by
the algorithm as they are all equivalent up to some g.

This same argument can be repeated by taking all the automata influenced by the
only automaton resulting from the previous iteration, excluding the central automaton.
At each step, all of the automata at the same distance from the central automaton are
merged. Hence, at the end of this process, whatever the choices made for merging au-
tomata along the iterative process, the resulting AN will be compoesed of k automata,
with k the length of the largest cycle of F . ⊓⊔

Theorem 5. Let D = DC(s, s′, a, b) be disjunctive double cycles, ∆ a block-sequential
update schedule. For A (B respectively) the number of <-edges on the cycle of size a (b
respectively) in GU (F∆), the limit dynamics of D∆ is isomorphic to that of D′

π, where
D′ = DC(s, s′, a−A, b−B).

Proof. This is a straightforward application of Theorem 3. ⊓⊔


