
HAL Id: hal-04440112
https://hal.science/hal-04440112

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimising Attractor Computation in Boolean
Automata Networks

Kévin Perrot, Pacôme Perrotin, Sylvain Sené

To cite this version:
Kévin Perrot, Pacôme Perrotin, Sylvain Sené. Optimising Attractor Computation in Boolean Au-
tomata Networks. LATA’20 & 21, Sep 2021, Milan, Italy. pp.68-80, �10.1007/978-3-030-68195-1_6�.
�hal-04440112�

https://hal.science/hal-04440112
https://hal.archives-ouvertes.fr

Optimising attractor computation in Boolean
automata networks

Kévin Perrot2, Pacôme Perrotin1, and Sylvain Sené2

1 Aix Marseille Univ., Univ. de Toulon, CNRS, LIS, France
2 Université Publique, Marseille, France

Abstract. This paper details a method for optimising the size of Bool-
ean automata networks in order to compute their attractors under the
parallel update schedule. This method relies on the formalism of modules
introduced recently that allows for (de)composing such networks. We
discuss the practicality of this method by exploring examples. We also
propose results that nail the complexity of most parts of the process,
while the complexity of one part of the problem is left open.

Keywords: Boolean automata networks · modularity · optimisation

1 Introduction

Boolean automata networks (BANs) are studied for their capacity to succintly
expose the complexity that comes with the composition of simple entities into
a network. They belong to a wide family of systems which include cellular au-
tomata and neural networks, and can be described as cellular automata with
arbitrary functions and on arbitrary graph structures.

Understanding and predicting the dynamics of computing with BANs has
been a focus of the scientific community which studies them, in particular since
their applications include the modelling of gene regulatory networks [13,22,15]
[5,6]. In those applications, fixed points of a BAN are often viewed as cellular
types and limit cycles as biological rhythms [13,22]. It follows that most biological
studies relying on BANs require the complete computation of their dynamics to
propose conclusions. The complete computation of the dynamics of BANs is
an exponentially costly process. Indeed, for n the size of a BAN, the size of
its dynamics is precisely 2n. The dynamics of a BAN is usually partitionned
in two sorts of configurations: the recurring ones that are parts of attractors
and either belong to a limit cycle or are fixed points; the others that evolve
towards these attractors and belong to their attraction basins. The questions of
characterising, computing or counting those attractors from a simple description
of the network have been explored [8,1,10,7,16,2], and have been shown to be
difficult problems [8,18,3,4,17].

In this paper, we propose a new method for computing the attractors of a
BAN under the parallel update schedule. For any input network, this method
generates another network which is possibly smaller and which is guaranteed

2 K. Perrot et al.

+

+

-

-

+
∧

+ -

+

BANs

+

+

-

-

+

+ -

+

Acyclic modules

f = ¬α3

Output functions

BAN to AM

Section 3
AM to output functions

Section 4

Output functions to AM

Section 5

AM to BAN

Section 6

Fig. 1. Illustration of the optimisation pipeline explored in this paper. Each arrow
corresponds to a part of the pipeline, and a section in this article.

to possess attractors isomorphic to those of the input network. Computing the
dynamics of this smaller network therefore takes as much time as needed to
compute the dynamics of the input networks, divided by some power of two.

This method uses tools and results developed in previous works by the au-
thors [19,20]. These works involve adding inputs to BANs, in a generalisation
called modules. In some cases, the entire computation of a module can be under-
stood as functions of the states of its inputs, disregarding the network itself. In
particular, a result (Theorem 16) states that two networks that have equivalent
such computations share isomorphic attractors.

Section 2 starts by exposing all the definitions needed to read this paper. Sec-
tion 3 explores the question of obtaining an acyclic module (AM) from a BAN.
Section 4 explains how to extract so called output functions from a module. Sec-
tion 5 details how to generate a minimal module from a set of output functions.
Finally Section 6 shows the final step of the method, which implies constructing
a BAN out of an AM and computing its dynamics. Each section explores com-
plexity results of the different parts of the process, and details examples along
the way. An illustrative outline of the paper can be found in Figure 1.

2 Definitions

2.1 Boolean functions

In this paper, we consider a Boolean function as any function f : BA → B,
for A a finite set. An affectation x of f is a vector in BA. When considered as
the input or output of a complexity problem, we encode Boolean functions as
Boolean circuits. A Boolean circuit of f is an acyclic digraph in which nodes
without incoming edges are labelled by an element in A, and every other node
by a Boolean gate in {∧,∨,¬}, with a special node marked as the output of the

Optimising attractor computation in BANs 3

a

b

c

d CSkSt

Ru

S9

Pp

C25

Sl

M

C∗

Fig. 2. On the left, the interaction digraph of FA, as described in Example 1. On the
right, the interaction digraph of FB , as described in Example 2.

circuit. The evaluation f(x) is computed by mapping x to the input nodes of the
circuit, and propagating the evaluation along the circuit using the gates until
the output node is reached.

2.2 Boolean automata networks and acyclic modules

Boolean automata networks BANs are composed of a set S of automata.
Each automaton in S, or node, is at any time in a state in B. Gathering those
isolated states into a vector of dimension |S| provides us with a configuration of
the network. More formally, a configuration of S over B is a vector in BS . The
state of every automaton is bound to evolve as a function of the configuration of
the entire network. Each node has a unique function, called a local function, that
is predefined and does not change over time. A local function is thus a function
f defined as f : BS → B. Formally, a BAN F is a set that assigns a local function
fs over S for every s ∈ S.

BANs are usually represented by the influence that automata hold on each
other. As such the visual representation of a BAN is a digraph, called an inter-
action digraph, whose nodes are the automata of the network, and arcs are the
influences that link the different automata. Formally, s influences s′ if and only
if there exist two configurations x, x′ such that fs′(x) 6= fs′(x

′) and for all r in
S, r 6= s if and only if xr = x′r.

Example 1. Let SA = {a, b, c, d}. Let FA be the BAN defined by fa(x) = xd,
fb(x) = fc(x) = xa, and fd(x) = ¬xb∨¬xc. The interaction digraph of this BAN
is depicted in Figure 2 (left panel).

Example 2. Let SB = {St, Sl, Sk, Pp,Ru, S9, C, C25,M,C∗}. Let FB be the
BAN defined by fSt(x) = ¬xSt, fSl(x) = ¬xSl ∨ xC∗ , fSk(x) = xSt ∨ ¬xSk,
fPp(x) = xSl ∨ ¬xPp, fRu(x) = fS9(x) = ¬xSk ∨ xPp ∨ ¬xC ∨ ¬xC∗ , fC(x) =
¬xRu ∨ ¬xS9 ∨ ¬xSl, fC25(x) = ¬xPp ∨ xC , fM (x) = xPp ∨ ¬xC , and fC∗(x) =
¬xRu ∨ ¬xS9 ∨ xC25 ∨ ¬xM . The interaction digraph of this BAN is depicted in
Figure 2 (right panel).

4 K. Perrot et al.

In the scope of this paper, BANs (and modules) are udpated according to
the parallel update schedule. Formally, for F a BAN and x a configuration of F ,
the update of x under F is denoted by configuration F (x), and defined as for all
s in S, F (x)s = fs(x).

Example 3. Consider FA of Example 1, and x ∈ BSA such that x = 1001. We
observe that FA(x) = 1111. Configurations 1000 and 0111 are recurring and
form a limit cycle of size 2, as well as configurations 0000, 0001, 1001, 1111,
1110 and 0110 that form a limit cycle of size 6.

Dynamics and attractors We define the dynamics of a BAN F as the digraph
with BS as its set of vertices. There exists an edge from x to y if and only if
F (x) = y. An attractor of F is a strongly connected component of its dynamics.
Computing the dynamics of a BAN from the description of its local function is
an exponential process. See [21] for a more throughout introduction to BANs
and related subjects.

Modules Modules were first introduced in [19]. A module M is a BAN with
added inputs. It is defined on two sets: S a set of automata, and I a set of
inputs, with S∩I = ∅. Similarly to standard BANs, we can define configurations
as vectors in BS , and we define input configurations as vectors in BI . A local
function of a module updates itself based on a configuration x and an input
configuration i, concatenated into one configuration. Formally, a local function
is defined from BS∪I to B. The module M defines a local function for every node
s in S.

Example 4. Let Me be the module defined on Se = {p, q, r} and I = {α, β},
such that fp(x) = xα, fq(x) = ¬xp, and fr(x) = xq ∨ ¬xβ .

We represent modules with an interaction digraph, in the same way as for
BANs. The interaction digraph of a module has added arrows that represent the
influence of the inputs over the nodes; for every node s and every input α, the
node s of the interaction digraph has an ingoing arrow labelled α if and only
if α influences s, that is, there exists two input configurations i, i′ such that
for all β in I, β 6= α if and only if iβ = i′β , and x a configuration such that
fs(x · i) 6= fs(x · i′), where · denotes the concatenation operator.

A module is acyclic if and only if its interaction digraph is cycle-free.

Recursive wirings A recursive wiring over a module M is defined by a partial
function ω : I 6→ S. The result of such a wiring is denoted �ω M , a module
defined over sets S and I \ dom(ω), in which the local function of node s is
denoted f ′s and defined as

∀x ∈ BS∪I\dom(ω), f ′s(x) = fs(x ◦ ω̂), with ω̂(i) =

{
ω(i) if i ∈ dom(ω)
i if i ∈ I \ dom(ω)

.

Optimising attractor computation in BANs 5

Output functions Output functions were first introduced in [20] and present
another way of computing the evolution of an acyclic module. In the Boolean
case, those functions are defined on BI×{1,...,D} → B, for I the input set of
the module, and D some integer. We interpret an input in BI×{1,...,D} as an
evaluation over B of a set of variables I × {1, . . . , D}, and for α ∈ I and d ≤ D,
we denote this variable by αd. In the context of an acyclic module M , αd is
refering to the evaluation of the input α on the dth update of the module. A
vector j ∈ BI×{1,...,D} simply describes an evaluation of all the inputs of the
network over D iterations. With such a vector, and x ∈ BS , it is easy to see that
the acyclic module M can be updated k times in a row, for any k ≤ D. The result
of this update is denoted by M(x, j[1,...,k]). The delay of an output function O
is the maximal value in the set of all the d ∈ N for which there exists α ∈ I such
that variable αd has an influence on the computation of O. That is, there exists
a couple of vectors x, x′ ∈ BI×{1,...,D} which are equal except for x(α,d) 6= x′(α,d),

and O(x) 6= O(x′). Finally, for M an acyclic module defined on the sets S and
I, for D a large enough integer, for x ∈ BS and j ∈ BI×{1,...,D} some vectors,
and for s a node in S, we define the output function of s, denoted Os, as the
output function with minimal delay d such that Os(j) = M(x, j[1,...,k])s. Such a
function always exists, and since it has minimal delay it is always unique.

2.3 Promise problems and classes of function problems

In this paper, we make the hypothesis that every module that is part of an
instance of a complexity problem follows the property that each of its local
functions has only essential variables. That is, a variable is included as input of
the circuit encoding the function if and only if the automaton or input repre-
sented by that variable has an influence on said function. This hypothesis will
be implemented throughout this paper by the use of promise problems [9], which
include a decision method which can dismiss instances of the problem without
that method’s complexity cost being included in the complexity of the problem.

This approach is motivated by the fact that obfuscating the relation between
automatons by building redundant variables in a circuit increases the complexity
of most considered problems. We justify our decision in two points: first, the
approach of this paper is that of providing and studying an applicable method in
a context where misleading inputs in local functions are unlikely. Second, despite
the inclusion of these promises, high complexity issues arise in our pipeline. As
such, we consider that they help understanding the precise issues that prevent
our method from being efficient.

Additionnaly, we consider the FP and FNP classes as defined in [14].

3 From BANs to AMs

The first step of our process is to unfold a BAN into an AM. This simply requires
the removal of any cycle in the interaction digraph of the BAN, and their re-
placement by inputs. In the scope of this paper, the number of inputs generated

6 K. Perrot et al.

is required to be minimal. This is justified by the fact that the complexity of
most of the problems addressed in the pipeline highly depends on the number
of inputs of the considered AM.

I Acyclic Unfolding Functional Problem
Input: A Boolean automata network F , an integer k.
Promise: The encoding of the local functions of F only has essential vari-

ables.
Output: An acyclic module M with at most k inputs and a recursive wiring

ω such that �ω M = F .

Theorem 5. The Acyclic Unfolding Functional Problem is in FNP.

Proof. The promise of this problem allows us to compute the interaction digraph
of F in polynomial time.

Consider the following simple non-deterministic algorithm: first guess a mod-
ule M and a wiring ω; then check that the number of inputs in M is no more
than k and that �ω M syntactically equals F .

This algorithm operates in polynomial non-deterministic time since the re-
cursive wiring is a simple substitution of variables, and thanks to the fact that
one only needs to compare �ω M and F at a syntactical level. Indeed, if any
solution exists, then a solution exists with the same number of nodes, the same
inputs, the same wirings, and such that the substitution operated by ω on M
leads to a syntaxical copy of the local functions of F . ut

Theorem 6. The Acyclic Unfolding Functional Problem is NP-hard.

Sketch of proof. There is a straightforward reduction from the Feedback Vertex
Set problem: given G, k we construct a BAN F with OR local functions whose
interaction digraph is isomorphic to G. Then the inputs of a solution M to F, k
correspond to a feedback vertex set (which is given by the codomain of ω). ut

Example 7. Consider SA and FA of Example 1. Let us define IA = {α}. Let
MA be the acyclic module that defines f ′a(x) = xα, f ′b(x) = f ′c(x) = xa, and
f ′d(x) = ¬xb ∨ ¬xc. The module MA is a valid answer to the instance FA, k = 1
of the Acyclic Unfolding Functional Problem. The interaction digraph of this
module is represented in Figure 3 (left panel).

Example 8. Consider SB and FB of Example 2. Let us define IB = {αSt, αSl,
αSk, αPp, αC , αC∗}. Let MB be the acyclic module that defines f ′St(x) = ¬xαSt

,
f ′Sl(x) = ¬xαSl

∨xαC∗ , f ′Sk(x) = xαSt
∨¬xαSk

, f ′Pp(x) = xαSl
∨¬xαPp

, f ′Ru(x) =
fS9(x) = ¬xαSk

∨xαPp
∨¬xαC

∨¬xαC∗ , f ′C(x) = ¬xRu∨¬xS9∨¬xαSl
, f ′C25(x) =

¬xαPp
∨xαC

, f ′M (x) = xαPp
∨¬xαC

, and f ′C∗(x) = ¬xRu∨¬xS9∨xC25∨¬xM . The
module MB is a valid answer to the instance FB , k = 6 of the Acyclic Unfolding
Functional Problem. The interaction digraph of this module is represented in
Figure 3 (right panel).

Optimising attractor computation in BANs 7

a

b

c

dα CSkSt

Ru

S9

Pp

C25

Sl

M

C∗αSt

αSt

αSk

αC

αSk

αC∗
αPp

αC

αSk

αC∗
αPp

αSl αPp

αSl αSl

αC∗

αC

αPp

αPp

αC

Fig. 3. On the left, the interaction digraph of MA, as described in Example 7. On the
right, the interaction digraph of MB , as described in Example 8.

4 Output functions

Output functions were first introduced in [20]. They are a way to characterise the
asymptotic behaviour of an AM as a set of Boolean functions that are computed
from the local functions of the AM. Computing the output functions of an AM
is a crucial step in the pipeline proposed in this work.

I Output Circuit Computation Problem
Input: An acyclic module M , and X ⊆ S a set of output nodes.
Promise: The encoding of the local functions of M only has essential vari-

ables.
Output: An output function for each node in X, encoded as a Boolean

circuit.

Theorem 9. The Output Circuit Computation Problem is in FP.

Sketch of proof. To build the circuit that encodes some output function of the
network, we first construct a list of every output function at different delays
that are required to build it, and prove that this list can be constructed in
polynomial time. We then replace every entry on that list by the circuit that
encodes the corresponding local function, and merge them together to obtain
the circuit encoding the result. ut

Example 10. Consider MA of Example 7. Let XA = {d} be an instance of the
Output Circuit Computation Problem. The circuit Od = ¬α3 is a valid answer
to that instance.

Example 11. Consider MB of Example 8. Let XB = {St, Sk, Sl, Pp, C,C∗} be
an instance of the Output Circuit Computation Problem. The circuits OSt =
¬αSt,1, OSl = ¬αSl,1 ∨ αC∗,1, OSk = αSt,1 ∨ ¬αSk,1, OPp = αSl,1 ∨ ¬αPp,1,
OC = (αSk,2 ∧ ¬αPp,2 ∧ αC,2 ∧ αC∗,2) ∨ ¬αSl,1 and OC∗ = αC,2 ∨ ¬αPp,2 taken
altogether are a valid answer to that instance.

8 K. Perrot et al.

5 Optimal acyclic module synthesis

This part of the process takes as input a set of output functions and generates
a module that realizes these functions with an hopefully minimal number of
nodes. In this part the actual optimisation of the pipeline, if any, can be directly
observed. It is also the part of the pipeline which bears most of the computational
cost.

I Module Synthesis Problem
Input: A set I of input labels, a finite set of output functions O, encoded

as Boolean circuits, defined on those labels, and k an integer.
Output: An acyclic moduleM with at most k nodes such that every function

in O is the output function of at least one node in M .

Theorem 12. The Module Synthesis Problem is coNP-hard.

Proof. Consider an instance f of the Tautology problem, with I the set of propo-
sitional variables contained in f . We define f ′ as the output function defined on
the labels I such that f ′ is obtained from f by substituting all variables α ∈ I by
their equivalent of delay 1, α1. Let us also define f1 as the constant output func-
tion of delay 0 which value is always 1. We compose an instance of the Module
Synthesis Problem with I the set of input labels, O = {f ′, f1} and k = 1. This
instance has a solution if and only there exists an acyclic module with only one
node such that the output function of this node is equivalent to all the output
functions in O. This implies that, if the problem has a solution, f ′ is equiva-
lent to f1, which proves that f ′ and f are tautologies. Therefore computing the
output of the Module Synthesis Problem requires solving a coNP-hard decision
problem. ut

Theorem 13. The Module Synthesis Problem is in FNPcoNP.

Proof. Consider the following algorithm. First, guess an acyclic module M , with
size k. Compute every output function of the network, which is in FP. Then
simply check that every function in O is equivalent to at least one output function
in M , which requires at most |M | × |O| calls to a coNP oracle. ut

It is unclear whether the synthesis problem can be proven to be in FNP or
to be NPcoNP-hard. An attempt has been made to prove the former by using a
greedy algorithm which would fuse nodes in an acyclic module, starting from a
trivially large enough module. However this method seems to require a singular
fusion operation which does not seem to be computable in polynomial time. This
leads us to believe that a greedy algorithm would not prove the Optimal Module
Synthesis Problem to be in FNP. Similarly, it is interesting to consider the open
question of whether or not the Module Synthesis Problem can be proven NPcoNP-
hard. This implies to prove, between other things, that the problem is NP-hard.
This is, to us, another open problem as the Module Synthesis Problem does not
seem equiped to compute the satisfaction of a Boolean formula or circuit.

Optimising attractor computation in BANs 9

This open question bears strong ressemblance to another open problem that
concerns Boolean circuits. The Circuit Minimisation Problem is known to be
in NP but it is not known whether the problem is in P or NP-hard, as both
possibilities have deep consequences on famous open questions in theoretical
computer sciences [12]. The same problem has been found to be NP-complete in
both restricted (DNFs) and generalised (unrestricted Boolean circuits) variations
of the Boolean circuit model [11].

There are strong similarities between acyclic modules and Boolean circuits.
Both are defined on acyclic digraphs, have inputs and outputs, and compute
Boolean functions. It is important to note that this analogy is misleading when
talking about the optimisation of their size. Optimising a Boolean circuit requires
the optimisation of a Boolean function in terms of the number of gates that
computes it. Optimising an acyclic module, however, requires the optimisation
of a network of functions with respect to a notion of delay of the inputs, whereas
in this case one node may contain an arbitrary Boolean function. As such these
problems seem too independent to provide any reduction between them.

Example 14. Consider the output function Od defined in Example 10. Let us
define M ′A as the module defined on S′A = {a, b, d} and IA = {α}, such that
f ′′a = xα, f ′′b = xa and fd = ¬xb. The moduleM ′A is a valid answer to the instance
IA, {Od}, k = 3 of the Module Synthesis Problem. The interaction digraph of this
module is depicted in Figure 4 (left panel).

Example 15. Consider the output functions OB = {OSt, OSl, OSk, OPp, OC ,
OC∗} defined in Example 11. Let us define M ′B as the module defined on
S′B = {St, Sl, Sk, Pp,Ru,C25, C, C∗} and IB = {αSt, αSl, αSk, αPp, αC , αC∗},
such that f ′′St(x) = ¬xαSt

, f ′′Sl(x) = ¬xαSl
∨ xαC∗ , f ′′Sk(x) = xαSt

∨ ¬xαSk
,

f ′′Pp(x) = xαSl
∨ ¬xαPp

, f ′′Ru(x) = ¬xαSk
∨ xαPp

∨ ¬xαC
∨ ¬xαC∗ , f ′′C(x) =

¬xRu ∨ ¬xαSl
, f ′′C25(x) = ¬xαPp

∨ xαC
, and f ′C∗(x) = xC25. The module M ′B is

a valid answer to the instance IB , OB , k = 8 of the Module Synthesis Problem.
The interaction digraph of this module is depicted in Figure 4 (right panel).

6 Final wiring and analysis

The final step in the pipeline is simply to wire the module obtained in Section 5
so that the obtained networks hold isomorphic attractors to the input network.
This is ensured by application of the following result.

Theorem 16 ([20]). Let M and M ′ be two acyclic modules, with T and T ′

subsets of their nodes such that |T | = |T ′|. If there exists a bijection g from I to
I ′ and a bijection h from T to T ′ such that for every s ∈ T , Os and O′h(s) have
same delay, and for every input sequence j with length the delay of Os,

Os(j) = O′h(s)(j ◦ g
−1)

then for any function ω : I → T , the networks �ω M and �h◦ω◦g−1 M ′ have
isomorphic attractors (up to the renaming of automata given by h).

10 K. Perrot et al.

a

b

dα CSkSt

Ru

Pp

C25

Sl

C∗αSt

αSt

αSk

αC

αSk

αC∗
αPp

αSl αPp

αSl αSl

αC∗

αC

αPp

Fig. 4. On the left, the interaction digraph of M ′A, as described in Example 14. On the
right, the interaction digraph of M ′B , as described in Example 15.

Applying this theorem to the current problem is simple: the module M is
the module obtained in Section 3, and the module M ′ is the module obtained
in Section 5. The set T is the set of nodes which are substituted by new inputs
in the process described in Section 3. The set T ′ is the set of nodes in M ′ which
are considered as the output of the module, for example when the module M ′

is obtained as the result of the application of the functional problem defined in
Section 5.

As modules M and M ′ are defined over the same set of inputs, the bijection
g is the identity. The bijection h is directly constructed so that for all s ∈ T ,
h(s) in M ′ has an equivalent output function as s in M , which is always possible
thanks to the careful structure of our pipeline. It follows quite clearly that for
any s ∈ T , and for any input sequence j, Os(j) = O′h(s)(j ◦ g

−1) holds, and the
theorem applies.

Example 17. Consider M ′A of Example 14. Let ωA(α) = d. The AN �ωA
M ′A is

defined over S′A = {a, b, d} such that f ′′′a (x) = xd, f
′′′
b (x) = xa, f ′′′d (x) = ¬xb.

The interaction digraph of this module is depicted in Figure 5 (left panel).

Example 18. Consider M ′B of Example 15. Let ωB(αs) = s, for all s ∈ XB .
The AN �ωB

M ′B is defined over S′B = {St, Sl, Sk, Pp,Ru,C25, C∗} such that
f ′′′St(x) = ¬xSt, f ′′′Sl(x) = ¬xSl ∨xC∗ , f ′′′Sk(x) = xSt∨¬xSk, f ′′′Pp(x) = xSl ∨¬xPp,
f ′′′Ru(x) = ¬xSk ∨ xPp ∨ ¬xC ∨ ¬xC∗ , f ′′′C (x) = ¬xRu ∨ ¬xSl, f ′′′C25(x) = ¬xPp ∨
xC , and f ′C∗(x) = xC25. The interaction digraph of this module is depicted in
Figure 5 (right panel).

This allows us to compute the attractors of any BAN by computing the
dynamics of another BAN with possibly less nodes, thus dividing the number of
computed configurations by some power of two. Examples throughout this paper
showcase the application of the pipeline over two initial examples.

Examples 1, 7, 10, 14 and 17 show the optimisation of a simple four nodes
network into a three nodes equivalent network. The optimisation proceeds here
by ‘compacting’ two trivially equivalent nodes, b and c, into one. The resulting

Optimising attractor computation in BANs 11

a

b

d CSkSt

Ru

Pp Sl

C25

C∗

Fig. 5. On the left, the interaction digraph of F ′A, as described in Example 17. On the
right, the interaction digraph of F ′B , as described in Example 18.

BAN has dynamics 21 times smaller than the initial network, with isomorphic
attractors. Examples 2, 8, 11, 15 and 17 show the optimisation of a larger, more
intricate network which is drawn from a model predicting the cell cycle sequence
of fission yeast [5]. This practical example, processed through our pipeline, re-
duces from 10 nodes to 8. This implies a reduction in dynamics size of 22, while
keeping isomorphic attractors. Both sets of examples are illustrated throughout
the paper in Figures 2, 3, 4 and 5.

7 Conclusion

The present paper showcases an innovative way of reducing the cost of computing
the attractors of Boolean automata networks. The method provides better opti-
misation on networks showing structural redundancies, which are removed by the
pipeline. The limitations of this method are still significant; it requires solving a
problem that is at least coNP-hard, and believed to be FNPcoNP-complete. As
it presently stands, this method is not as much a convincing practical tool as it
is a good argument in favor of the powerfulness of acyclic modules, their output
functions, and the approaches they allow together towards the computation of
BAN dynamics.

Other future perspectives include finding better complexity bounds to the
Module Synthesis Problem, finding efficient heuristical or approximate imple-
mentations of the pipeline, and generalising the formalism of output functions
and the optimisation pipeline to different update schedules distinct from parallel.

Acknowledgements The works of Kévin Perrot and Sylvain Sené were funded
mainly by their salaries as French State agents, affiliated to Aix-Marseille Univ.,
Univ. de Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to Univ.
Côte d’Azur, CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and secon-
darily by ANR-18-CE40-0002 FANs project, ECOS-Sud C19E02 project, STIC
AmSud CoDANet 19-STIC-03 (Campus France 43478PD) project.

References

1. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks.
Bull. Math. Biol. 70, 1398–1409 (2008)

12 K. Perrot et al.

2. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in
monotone Boolean networks. SIAM J. Discr. Math. 31, 1702–1725 (2017)

3. Bridoux, F., Durbec, N., Perrot, K., Richard, A.: Complexity of maximum fixed
point problem in Boolean Networks. In: Proc. of CiE’19. LNCS, vol. 11558, pp.
132–143. Springer (2019)

4. Bridoux, F., Gaze-Maillot, C., Perrot, K., Sené, S.: Complexity of limit-cycle prob-
lems in Boolean networks (2020), submitted, arXiv:2001.07391

5. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS One 3, e1672 (2008)

6. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One 5, e11793 (2010)

7. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits
dynamics. Discr. Appl. Math. 160, 398–415 (2012)

8. Floreen, P., Orponen, P.: Counting stable states and sizes of attraction domains in
Hopfield nets is hard. In: Proc. of IJCNN’89. pp. 395–399. IEEE (1989)

9. Goldreich, O.: On promise problems: A survey. In: Theoretical computer science,
pp. 254–290. Springer (2006)

10. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean
networks. Theor. Comput. Sci. 396, 247–253 (2008)

11. Ilango, R., Loff, B., Oliveira, I.C.: NP-hardness of circuit minimization for multi-
output functions. In: Proc. of ECCC’20. pp. TR20–021 (2020)

12. Kabanets, V., Cai, J.: Circuit minimization problem. In: Proc. of STOC’00. pp.
73–79. ACM (2000)

13. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22, 437–467 (1969)

14. Meggido, N., Papadimitriou, C.: A note on total functions, existence theorems,
and computational complexity. Tech. report, IBM, Tech. Rep. (1989)

15. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for
Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)

16. Noual, M.: Dynamics of circuits and intersecting circuits. In: Proc. of LATA’12.
LNCS, vol. 7183, pp. 433–444. Springer (2012)

17. Noûs, C., Perrot, K., Sené, S., Venturini, L.: #P-completeness of counting update
digraphs, cacti, and a series-parallel decomposition method. In: Proc. of CiE’20
(2020), accepted, arXiv:2004.02129

18. Orponen, P.: Neural networks and complexity theory. In: Proc. of MFCS’92. LNCS,
vol. 629, pp. 50–61. Springer (1992)

19. Perrot, K., Perrotin, P., Sené, S.: A framework for (de)composing with Boolean
automata networks. In: Proc. of MCU’18. LNCS, vol. 10881, pp. 121–136. Springer
(2018)

20. Perrot, K., Perrotin, P., Sené, S.: On the complexity of acyclic modules in automata
networks. In: Proc. of TAMC’20 (2020), accepted, arXiv:1910.07299

21. Robert, F.: Discrete Iterations: A Metric Study. Springer (1986)
22. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42,

563–585 (1973)

